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In an era of climate and biodiversity crises, ecosystem rehabilitation is critical to

the ongoing wellbeing of humans and the environment. Coastal ecosystem

rehabilitation is particularly important, as these ecosystems sequester large

quantities of carbon (known in marine ecosystems as “blue carbon”) thereby

mitigating climate change effects while also providing ecosystem services and

biodiversity benefits. The recent formal accreditation of blue carbon services is

producing a proliferation of rehabilitation projects, which must be monitored

and quantified over time and space to assess on-ground outcomes.

Consequently, remote sensing techniques such as drone surveys, and

machine learning techniques such as image classification, are increasingly

being employed to monitor wetlands. However, few projects, if any, have

tracked blue carbon restoration across temporal and spatial scales at an

accuracy that could be used to adequately map species establishment with

low-cost methods. This study presents an open-source, user-friendly

workflow, using object-based image classification and a random forest

classifier in Google Earth Engine, to accurately classify 4 years of

multispectral and photogrammetrically derived digital elevation model drone

data at a saltmarsh rehabilitation site on the east coast of Australia (Hunter River

estuary, NSW). High classification accuracies were achieved, with >90%
accuracy at 0.1 m resolution. At the study site, saltmarsh colonised most

suitable areas, increasing by 142% and resulting in 56 tonnes of carbon

sequestered, within a 4-year period, providing insight into blue carbon

regeneration trajectories. Saltmarsh growth patterns were species-specific,

influenced by species’ reproductive and dispersal strategies. Our findings

suggested that biotic factors and interactions were important in influencing

species’ distributions and succession trajectories. This work can help improve

the efficiency and effectiveness of restoration planning and monitoring at

coastal wetlands and similar ecosystems worldwide, with the potential to

apply this approach to other types of remote sensing imagery and to

calculate other rehabilitation co-benefits. Importantly, the method can be

used to calculate blue carbon habitat creation following tidal restoration of

coastal wetlands.

OPEN ACCESS

EDITED BY

Sharif A. Mukul,
University of the Sunshine Coast,
Australia

REVIEWED BY

Sanjeev Srivastava,
University of the Sunshine Coast,
Australia
Radhika Bhargava,
National University of Singapore,
Singapore

*CORRESPONDENCE

Dana Lanceman,
d.lanceman@unsw.edu.au

SPECIALTY SECTION

This article was submitted to
Conservation and Restoration Ecology,
a section of the journal
Frontiers in Environmental Science

RECEIVED 20 April 2022
ACCEPTED 12 October 2022
PUBLISHED 03 November 2022

CITATION

Lanceman D, Sadat-Noori M, Gaston T,
Drummond C and Glamore W (2022),
Blue carbon ecosystem monitoring
using remote sensing reveals wetland
restoration pathways.
Front. Environ. Sci. 10:924221.
doi: 10.3389/fenvs.2022.924221

COPYRIGHT

© 2022 Lanceman, Sadat-Noori,
Gaston, Drummond and Glamore. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 03 November 2022
DOI 10.3389/fenvs.2022.924221

https://www.frontiersin.org/articles/10.3389/fenvs.2022.924221/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.924221/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.924221/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.924221/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2022.924221&domain=pdf&date_stamp=2022-11-03
mailto:d.lanceman@unsw.edu.au
https://doi.org/10.3389/fenvs.2022.924221
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2022.924221


KEYWORDS

UAV, google earth engine, environmental economic accounting, salt marsh,
mangroves, rehabilitation, drones, object-based image analysis

1 Introduction

Wetlands are ecosystems that are permanently, seasonally or

intermittently inundated with water and exist in the transition

zone between terrestrial and aquatic ecosystems (Junk et al.,

2014). Wetlands support high levels of biodiversity, providing

habitats, food and breeding grounds for many taxa, including fish

and waterbirds (Saintilan and Rogers, 2013). Wetlands also

provide many important services to humans, including flood

mitigation (Narayan et al., 2017), water filtration (Aziz and Van

Cappellen, 2021) and carbon sequestration (Burden et al., 2019).

However, wetlands have been particularly negatively impacted by

anthropogenic activities and are rapidly declining (Mckee et al.,

2012; Saintilan and Rogers, 2013; Boon et al., 2015). Due to these

declines, there is an urgent need to conserve and restore

wetlands, and all ecosystems, as recognised by the United

Nations, who declared 2021–2030 as the “Decade of

Ecosystem Restoration” (Waltham et al., 2020).

“Blue carbon” is the term used to describe carbon sequestered

and stored by coastal marine ecosystems, including coastal

wetlands. Blue carbon ecosystem rehabilitation is an

increasingly recognised approach towards mitigating climate

change, while also providing other biodiversity and ecosystem

service benefits (McLeod et al., 2011). This is because coastal

wetlands, including mangroves, saltmarshes and seagrasses,

sequester more carbon per area (McLeod et al., 2011) and can

accumulate and store carbon in soils for longer periods (Howard

et al., 2017) than terrestrial ecosystems. Rehabilitating coastal

wetlands is an effective approach to increasing blue carbon

sequestration, by restoring or creating new areas to

accumulate and store carbon in vegetation and soils (Howard

et al., 2017). On-ground rehabilitation of blue carbon habitats is

becoming increasingly economically viable, with landowners able

to secure accredited carbon credits by rehabilitating natural

ecosystems in many countries (Warren-Rhodes et al., 2011;

Um, 2021). Even at coastal rehabilitation sites not explicitly

targeted for carbon sequestration, blue carbon is increasingly

quantified as a rehabilitation co-benefit. Methods for verifying

blue carbon habitats are currently in early stages of development

and include Verra’s blue carbon conservation methodology

(Verra, 2020) and the blue carbon method under Australia’s

Emission Reduction Fund (Commonwealth of Australia, 2022).

These methodologies require accurate input data on spatial and

temporal changes in blue carbon ecosystem areas over time,

which are also necessary for growing our understanding of

restoration trajectories and informing developments in

restoration approaches. As such, there is a growing need for

robust and low-cost workflows to track blue carbon ecosystems

over various spatial and temporal domains.

Remote sensing techniques are one potential option to

quantify blue carbon ecosystem areas, which can then be

converted to blue carbon volumes using known or measured

carbon sequestration rates for each species/ecosystem (e.g.,

Lovelock et al., 2013). Remote sensing allows data to be

collected objectively and on larger spatial and temporal scales

than via ground-based surveys, especially across intertidal

wetlands, which are often difficult to access (Pham et al.,

2019). In particular, unmanned aerial vehicles

(UAVs–henceforth referred to as drones) are relatively

inexpensive, flexible and convenient platforms that are widely

accessible and can collect optical, thermal, multispectral and/or

elevation data. Drones have the capacity to collect very high

resolution data (up to 0.55 cm; Dronova et al., 2021), potentially

enabling high accuracy and precision in coastal wetland

monitoring. While studies frequently monitor on unitemporal

or bitemporal scales (e.g., Kelly et al., 2011; Meng et al., 2017),

drones allow flexibility in monitoring frequency, and there is

scope for exploring the benefits of multitemporal surveys for

rehabilitation monitoring (Ridge and Johnston, 2020). The use of

drone imagery to quantify blue carbon ecosystem rehabilitation

is a good starting point to explore the applicability of aerial

monitoring techniques and to understand how high-accuracy

methods might be adapted for lower resolution satellite imagery.

For remote sensing data to be useful for blue carbon

quantification and other purposes, images must be accurately

classified, or used to build maps showing the distribution of

different land cover types. In the blue carbon context, this

classification should ideally be undertaken on a species level, to

understand vegetative biodiversity and species-specific trends, and

because different wetland vegetation species have different life

histories and carbon sequestration capabilities (Lovelock et al.,

2013) and can support different faunal species (Laegdsgaard,

2006). The two main approaches used to classify remote

sensing data are pixel-based methods, which classify each pixel

individually, and object-based methods, which classify clusters of

adjacent pixels with similar characteristics (Chapple and Dronova,

2017; Pham et al., 2019; Proença et al., 2019). Object-based

methods are considered more accurate for classifying very high

resolution data (Pham et al., 2019; Tmušić et al., 2020). Object-

based image analysis (OBIA) or geographic OBIA (GEOBIA)

groups pixels into segments and then categorises these

segments into classes, based on their characteristics (Dronova,

2015; Kucharczyk et al., 2020). OBIA uses spectral, contextual

(position of objects relative to one another), textural (spectral

range within objects) and geographic (shape and size of objects)

“features” or attributes of segments for classification, with different

studies using different combinations of these features for

classification (Kucharczyk et al., 2020).
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There are many software applications that support OBIA

(Kucharczyk et al., 2020), with the most popular option being the

dedicated software eCognition (Dronova, 2015; Ma et al., 2017).

While eCognition has a user interface and is feature-rich, it is a

commercial software and thereby less accessible. Open-source

software options for OBIA have been developed, including GRASS

GIS (Grippa et al., 2017), Orfeo Toolbox (Grizonnet et al., 2017),

InterIMAGE (DeCosta et al., 2010), RSGISLib (Shepherd et al., 2019),

SPRING (Câmara et al., 1996) and Google Earth Engine (Tassi and

Vizzari, 2020). However, while there have been numerous

publications exploring different algorithms for classification,

including for OBIA (e.g. Hossain and Chen, 2019; Pham et al.,

2019;Wen andHughes 2020), few papers have focused on developing

workflows for these diverse software options. Some of these options,

such asOrfeoToolbox, also have limited support communities online,

making classification difficult when unknown errors are encountered.

Within the wetlands context, open-source options only account for a

few previously published studies in the literature (Dronova, 2015),

with even fewer open-source multitemporal (but see Myers et al.,

2018) or restoration studies. Hence, to encourage accurate and

accessible wetland monitoring in a time when wetland

rehabilitation is rapidly increasing, there is a need for object-based

wetland classification studies with clear open-source workflows.

This study aims to demonstrate an approach for accurately

tracking blue carbon at a rehabilitation site over time, while

addressing several methodological gaps in remote sensing and

image classification approaches to coastal wetland monitoring. To

this aim, first we demonstrate an effective, open-source and user-

friendly method for remote sensing monitoring of blue carbon

restoration sites. Second, we produce accurate classifications on a

species-level. Third, as image resolution is known to be important

for accurate detection of fine-scale details (Dronova et al., 2021), we

investigate what resolution is necessary for accurate saltmarsh

rehabilitation monitoring. Fourth, in assessing the trajectory of

blue carbon growth at a rehabilitation site (as detailed in Sadat-

Noori et al., 2021), we develop an understanding of temporal, spatial,

environmental and biological aspects of blue carbon restoration.

This involves generating and analysing a series of accurate classified

maps and tracking saltmarsh recovery over a 4-year period (January

2017 to December 2020) at an intertidal site, including an

assessment of:

1) Overall area of rehabilitated blue carbon habitat

(i.e., saltmarsh).

2) Spatial patterns in saltmarsh growth (i.e., patch metrics).

3) Temporal trends in saltmarsh growth.

4) Differences in growth patterns/trends between saltmarsh

species.

5) Influence of elevation on saltmarsh regrowth.

These findings will help inform future restoration planning,

particularly in the southern hemisphere, where there is a lack of

wetland remote sensing studies (Pham et al., 2019).

2 Methods

2.1 Study site

The present study focuses on Fish Fry Flat (~20 ha), part of a

Ramsar-listed coastal wetland on Kooragang Island, Hunter

Wetlands National Park, NSW, Australia (Figure 1). Kooragang

Island is located within the Hunter River estuary, has a temperate

climate (Bureau of Meteorology, 2022a), with 1,100 mm average

annual rainfall (Bureau of Meteorology, 2022b), and facilitates

multiple mangrove and saltmarsh ecosystems. Since the 1970s, at

least 67% of Kooragang Island’s saltmarsh has been lost, mainly due

to anthropogenic hydrological changes allowing greater tidal flows

to the region, sea level rise and subsequent mangrove encroachment

(Rogers et al., 2013). In response to greater tidal flows since the

1990s, the saltmarsh and mudflat ecosystems of the study site (Fish

Fry Flat) have been increasingly outcompeted by grey mangroves

(Avicennia marina), causing a loss of important shorebird habitat

(Williams et al., 2000). In 2016, a saltmarsh rehabilitation program

was initiated, with the primary aim of restoring shorebird habitat.

This involved using Smart (flood) Gate systems to reinstate a tidal

flushing regime designed to encourage saltmarsh growth (see Sadat-

Noori et al., 2021; Rankin et al., 2022). This rehabilitation process,

starting with a bare site and facilitating natural saltmarsh

recruitment and regeneration (i.e. no planting) over time,

provided a useful opportunity to explore remote-sensing

monitoring techniques for blue-carbon rehabilitation. In brief, the

rehabilitation process involved applying a tidal replicate method to

control tidal flows into the estuary, creating an inundation pattern

that favours saltmarsh ecosystems (see Sadat-Noori et al., 2021).

Changes in the mean ground surface elevations of saltmarsh were

anticipated following these deliberate changes to the wetland’s tidal

regime, and adaptive management strategies were undertaken to

reduce saltmarsh loss at high elevations (Sadat-Noori et al., 2021).

2.2 Data collection

2.2.1 Drone surveys
Since tidal restoration began at Fish Fry Flat, drone flights

have been regularly conducted to monitor the site (Table 1). High

density elevation data and high resolution RGB aerial imagery

were collected using an eBee Real-Time Kinematic (RTK) fixed

wing drone or a DJI Phantom four RTK multirotor, while high-

resolution multispectral (green, red, red edge and near infrared)

data were collected using an eBee Ag fixed wing drone equipped

with a Parrot Sequoia multispectral sensor (Table 1). Drone

flights were programmed to fly autonomously at a flight height of

120 m with 80% forward lap and sidelap. To improve geometric

accuracy, a minimum of six Ground Control Points (GCPs) were

evenly distributed around the study site for each survey flight.

Flights were timed to maximise uniformity of cloud cover and

minimise atmospheric effects on image quality. The adjustable
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floodgates were set to ensure minimumwater levels onsite during

the surveys. Ground sampling distances (GSDs–distances

between pixels) were approximately 3 cm for RTK surveys

and approximately 12 cm for multispectral surveys.

2.2.2 On-ground vegetation survey
Vegetation surveys were conducted around the same date as

each drone survey, sampling saltmarsh vegetation at varying

ground surface elevations (see Rankin et al., 2022). These

vegetation data were used to visualise major saltmarsh species

in the drone imagery and guide the selection of training and

validation points for classification. Vegetation sampling

identified three major saltmarsh species in the study area;

Sporobolus virginicus (sand couch), Sarcocornia quinqueflora

(glasswort) and Suaeda australis (seablite), however, other

saltmarsh and invasive weed species are known to exist on

site (Rankin et al., 2022).

2.3 Pre-processing

Initial pre-processing of the RGB and multispectral aerial

imagery was completed in Pix4D Mapper software package

(Pix4D SA, 2021) to produce georeferenced orthomosaic

images (stitched together spectral images) and 3D digital

surface models (DSMs–elevation maps). Images were

reprojected from WGS84 to a local projected coordinate

system, GDA 1994 MGA Zone 56. Ground Control Point

(GCP) locations were input into the software and the

rayCloud editor used to match GCPs with at least

20–30 images per GCP. The XYZ georeferencing accuracy of

each dataset was validated to a root mean square error (RMSE)

of <0.02 m when compared to the GCP positions. Point clouds

were generated at half image size with a minimum of three

matching images per point and an “optimal” point density. For

RGB/RTK data, orthomosaics were created and DSMs generated

using noise filtering, surface smoothing and the Inverse Distance

Weighting method. For multispectral drone imagery,

radiometric processing and “Camera, Sun Irradiance and Sun

Angle” calibrations were done using input reflectance panel

photographs for each spectral band. Radiometric calibration

FIGURE 1
Study site extent with respect to: (A) Australia, (B) Kooragang Island and (C) Fish Fry Flat, also showing high tide extent. Imagery source: ESRI.

TABLE 1 Summary of data collected on drone flights at Fish Fry Flat
rehabilitation site between 2017 and 2020. RTK = Real Time
Kinematic and refers to the ability of the drone to collect location and
elevation data.

Survey Survey
date

Data collected Drones used

0 months 13/02/2017 RGB, elevation,
multispectral

eBee RTK, eBee Ag with
Sequoia

9 months 19/10/2017 RGB, elevation,
multispectral

eBee RTK, eBee Ag with
Sequoia

18 monthsa 22/08/2018 RGB, elevation eBee RTK

21 monthsa 09/11/2018 Multispectral eBee Ag with Sequoia

26 months 30/04/2019 RGB, elevation,
multispectral

Phantom 4 RTK, eBee Ag
with Sequoia

34 months 18/12/2019 RGB, elevation,
multispectral

Phantom 4 RTK, eBee Ag
with Sequoia

42 months 13/08/2020 RGB, elevation,
multispectral

Phantom 4 RTK, eBee Ag
with Sequoia

46 months 08/12/2020 RGB, elevation,
multispectral

Phantom 4 RTK, eBee Ag
with Sequoia

a18 months and 21 months surveys were used together, as complimentary data were

collected at each survey. These surveys are henceforth referred to together as “18

months”.
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images were corrupt for one survey date (9 months) and these

data were processed using “no correction”. Reflectance panel

photographs with moderate lighting were used where possible.

Green, Red, Red Edge, Near Infrared and Normalised Difference

Vegetation Index (NDVI) reflectance maps were generated.

To ensure consistent georeferencing among images,

multispectral reflectance maps were georeferenced to their RGB

counterparts in QGIS version 3.8.3 (QGIS Development Team,

2021) using four to five manually selected link points per image

(Supplementary Table S1). Artificial structures (e.g. cement

foundation blocks, pipelines) with distinct corners were used as

reference points to increase precision. A first-order polynomial or

affine transformation was applied. It was aimed to keep the RMSE

under 0.1 m, however, this was not possible for one image, where

obvious artificial structures were not well captured (Supplementary

Table S1). Images were rectified using cubic convolution, which has

been shown to produce the highest-quality results for aerial imagery

(Rizeei and Pradhan, 2019). Subsequently, all images were clipped to

the study area extent (Figure 1C). Multispectral images were then

resampled to the higher resolution DSM cell size, to preserve

elevation data detail. Band ranges for multispectral bands and the

DSM were standardised to a range of 0–255 (8 bits), to ensure an

equal weighting of all bands, as required for many classifiers,

including random forest (Immitzer et al., 2016; De Luca et al.,

2019). Finally, all multispectral rasters and the DSM were merged

into multiband rasters for each survey date, to use as inputs for

classification. An overview of pre-processing procedures is provided

in Supplementary Figure S1.

2.4 Image classification

Image classification was performed on multiband rasters

with five spectral bands (Green, Red, Red Edge, Near Infrared

and NDVI) and one elevation band (DSM).

2.4.1 Object-based image analysis
Object-based image analysis (OBIA) was used for

classification, as it is increasingly recognised to produce

superior results to pixel-based techniques for classifying

wetlands (Tmušić et al., 2020). OBIA involves first segmenting

images, based on their spectral and/or elevation values, into

“objects” of an appropriate size for the landscape element/s of

interest (in our case, saltmarsh plants) (Hossain and Chen, 2019).

Then, “features” or attributes (such as mean elevation) relating to

these image objects are derived for each object (Kucharczyk et al.,

2020). Training data are generated for the classes of interest, and

are used with the segmented image and feature data to train a

machine-learning classifier (Kucharczyk et al., 2020).

2.4.2 Google Earth Engine
Google Earth Engine was used for image classification

because it is an open-source, cloud-based platform that uses a

programming language (JavaScript) (Gorelick et al., 2017) and

supports OBIA. Google Earth Engine is a computationally

efficient platform for image classification, as data are stored as

rasters for the entire classification process, greatly reducing

computation times, compared with classification processes

that polygonise images (Tassi and Vizzari, 2020). Google

Earth Engine is usually used for analysing open-source remote

sensing data that are available within its data inventory, such as

Landsat and Sentinel-2 imagery (Gorelick et al., 2017), but can

also be used for analysing user-specific data, such as the drone

data used in this study.

2.4.3 Segmentation
The first step of object-based classification is segmentation,

where the input multiband image is segmented into meaningfully

sized image objects (Hossain and Chen, 2019). In Google Earth

Engine, segmentation was performed using a Simple Non-

Iterative Clustering (SNIC) function. In SNIC, objects were

grown iteratively from “seeds” that were distributed evenly

throughout the image. Neighbouring pixels around each seed

with similar image attributes for each band were grouped

together to form objects, so that each generated object

represented a single land-cover type. The most accurate

results were achieved with parameters seed = 5, compactness =

1, connectivity = 8 and neighbourhoodSize = 10. The seed

parameter represents the number of pixels between objects’

starting locations; a small number was chosen so that object

edges, and hence small saltmarsh clumps, could be accurately

captured. Compactness refers to the squareness of objects; a small

number was used so that objects were less square. Connectivity

refers to directions of growth for objects (adjacent vs. adjacent

and diagonal growth); we allowed both adjacent and diagonal

growth. Neighbourhood size refers to the radius of pixels used

when merging objects from adjacent tiles, which are used to

increase computation speed; we used the default value of double

the seed value.

2.4.4 Feature extraction
Object attributes, known as “features”, were then extracted.

There are hundreds of possible features that can be derived in this

process (e.g. Hladik and Alber, 2014; Wan et al., 2014; Dronova,

2015; Husson et al., 2016; Chapple and Dronova, 2017; Husson

et al., 2017; Murfitt et al., 2017; Chabot et al., 2018; Kucharczyk

et al., 2020). These features fall into several categories: elevation

(relating to elevation data), spectral (relating to spectral bands),

textural (relating to the range and distribution of pixels within an

object), contextual (relating to the proximity of objects to

important features in the landscape) and geometric (relating

to the shape and size of objects) (Kucharczyk et al., 2020). For the

present study, we synthesised the range of features employed in

previous studies and considered the tools available for feature

extraction in Google Earth Engine to derive the set of features

listed in Table 2. Due to the functionality of Google Earth
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Engine’s tools, some of these features needed to be calculated in

neighbourhoods across the entire image, and later averaged

during segmentation. These included Grey-Level Co-

occurrence Matrix features (correlation, inverse difference

moment, contrast and angular second moment) and entropy,

which are all measures of texture. Other features were calculated

for each object after segmentation: mean, standard deviation,

kurtosis (steepness of peak in frequency distribution curve),

skewness (asymmetry of frequency distribution curve), area

and perimeter.

2.4.5 Classes of interest
Three saltmarsh classes were selected for classification,

representing the three most common native saltmarsh species

at our study site: Sporobolus virginicus (co-dominant),

Sarcocornia quinqueflora (co-dominant) and Suaeda australis

(non-dominant). Five environmental classes were also selected:

“grass”, which also included other non-saltmarsh vegetation

(including weeds), “mud”, which included all bare soil/clay/

mud, “dead vegetation”, “water” and “road”. For the first

post-rehabilitation dataset (9 months), Sarcocornia

quinqueflora was broken up into two classes, representing

young and old saltmarsh clumps, as the original model had

difficulty recognising small, young saltmarsh clumps. Suaeda

australis was not classified in either of the first two datasets, as it

was not present at 0 months (area = 0 ha) and made up a very

small area, insufficient for classification, at 9 months. For the

42 months dataset, “algae” was included as an additional class, as

it was prevalent during this time period and easily misclassified as

saltmarsh.

2.4.6 Generation of training and validation
datasets

Ground-truth data from field-based vegetation surveys (Sadat-

Noori et al., 2021) were used to identify the appearance of

saltmarsh species on the drone imagery. In QGIS (QGIS

Development Team, 2021), 100 points were then digitally

selected within each class in every orthomosaic, ensuring these

points represented the full variability within the class, were evenly

spaced throughout the image (i.e., there were no large areas

without training points) and were independent of one another

(i.e., not close together) (Dronova, 2015). An equal number of

points was selected for each class to reduce underestimation and

overestimation of small and large classes, respectively (Kucharczyk

et al., 2020). High quality training/validation data were especially

important for early datasets, where saltmarsh clumps were harder

to distinguish, and in some cases training/validation data were

iteratively revised to produce more accurate classifications. For

each orthomosaic, 50% of the chosen points were randomly

selected for training and 50% for validation, as recommended

in a review of OBIA accuracy assessments (Ye et al., 2018), and as a

balance between time efficiency and classification accuracy. While

it has been suggested that larger training/validation datasets might

improve classification accuracy (Kucharczyk et al., 2020), we found

limited improvements in accuracy when testing with 100, 200 or

300 data points on a sample dataset.

2.4.7 Classification
A random forest classifier was used for image classification,

as random forest has consistently produced highly accurate

results in previous wetland classification studies (Pham et al.,

2019). Random forest parameters were set at numberOfTrees =

500 and minLeafPopulation = 1, as these parameter values

produced the most accurate results. The classification was run

at several resolutions to evaluate the impact of resolution on

classification accuracy: 0.1 m (equivalent to the lowest resolution

of our input data), 0.5 m, 1 m and 2 m resolutions. The GINI

importance (relative importance for classification; Pasquarella

et al., 2018) of each feature (Table 2) in each classification was

evaluated, and model training and validation accuracy calculated

by comparing landcover classes in classified images to manually

selected validation points (Section 2.4.6), as often done in image

classification studies (e.g. Pande-Chhetri et al., 2017; Ventura

et al., 2018), using confusion matrixes. Confusion matrixes

estimate producer’s accuracy (percent of manually selected

points in each class that were correctly classified), user’s

accuracy (percent of classified points in each class that are

truly that class) and overall accuracy (percent of correctly

TABLE 2 Features used for classification and examples of their use in
previous wetland classification studies.

Category Feature Previous studies

Elevation (DSM) Mean Hladik and Alber (2014), Husson et
al. (2017)

Standard
deviation

Koma et al. (2018)

Kurtosis Koma et al. (2018)

Skewness Koma et al. (2018)

Spectral (red, green,
NIR, REG, NDVI)

Mean Wan et al. (2014), Husson et al.
(2016), Chapple and Dronova
(2017), Chabot et al. (2018)

Standard
deviation

Kurtosis Broussard et al. (2018)

Skewness Broussard et al. (2018)

Textural (red, green,
NIR, REG,
NDVI, DSM)

Entropy Husson et al. (2016), Chabot et al.
(2018)

Correlation Husson et al. (2016), Pande-Chhetri
et al. (2017)

Inverse
difference
moment

Wan et al. (2014), Husson et al.
(2016)

Contrast Cao et al. (2018)

Angular second
moment

Cao et al. (2018)

Geometric Area Fernandes et al. (2014), Zeng et al.
(2019)

Perimeter Zeng et al. (2019)
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classified points across all classes). Then, each classification was

iteratively run with the 1–56 most important feature/s to

determine the smallest number of features that produced the

most accurate (highest overall validation accuracy) classification

for each dataset/resolution combination. The “seed” argument

within the random forest classifier was varied to ensure

reproducibility, and was found not to impact classification

results. Classified maps were exported using the optimal

number of features for each dataset at the 0.1 m resolution.

2.5 Data analysis

All data analysis was performed in RStudio Version 1.2.5

(patch metrics) and 1.4.1106 (all other analysis) (RStudio Team,

2021), using the 0.1 m resolution data.

To test for differences in the GINI importance of different

features and bands for classification, a factorial ANOVA was

computed using the importance values for each feature/band

combination for each dataset (n = 7), after checking normality

and equal variance assumptions. There was a significant

interaction between feature and band, so a post hoc Tukey’s

test was run to test for differences between feature/band

combinations, and to determine which features/bands were

most important for classification models.

To explore saltmarsh growth patterns, ecologically-relevant patch

metrics (as identified by previous studies: Gonzalez et al., 2019; Kelly

et al., 2011) were calculated for each classified image using the package

landscapemetrics version 1.5.4 (Hesselbarth et al., 2019). Selected class-

level patch metrics were patch area, class area, core area, number of

patches, cohesion, Euclidean nearest-neighbour distance, clumpiness,

contiguity and shape, while landscape-level metrics were contagion,

Shannon’s diversity and Shannon’s evenness (Table 3). These metrics

related to research questions (Table 3). Temporal trends in patch

metrics were investigated with Kendall rank correlations, using the

packageKendall version 2.2 (McLeod, 2011), and changes in areawere

quantified.

To understand how saltmarsh growth and loss have contributed

to net area changes, spatial changes in Sporobolus virginicus and

Sarcocornia quinqueflora between the 0 months and 46 months

datasets, and between each pair of successive datasets, were

explored in QGIS (QGIS Development Team, 2021). Areas of

saltmarsh growth (non-saltmarsh to saltmarsh transition), loss

(saltmarsh to non-saltmarsh transition) and species transition

were calculated. Changes in Suaeda australis were not calculated

because of issues with this species’ classification accuracy.

Changes in the mean ground surface elevation of saltmarsh

species were also investigated. The initial DSM (bare

ground—0 months) was intersected with the classified images to

determine themean ground surface elevation of each saltmarsh class

TABLE 3 Class- and landscape-level patch metrics calculated from classified images, and relevant research questions.

Scale Metric
type

Metric Description Research question

Class Area and
edge

Patch area Patch area for each class Did the average patch size of each saltmarsh class change
over time?

Total (class) area Total area of each class Did the total area of each saltmarsh class change over
time?

Core area Core area Percentage area of each patch that is non-perimeter cells Did the proportion of core to edge area in saltmarsh
classes change over time?

Aggregation Number of patches Number of patches is also a measure of class fragmentation How many distinct saltmarsh clumps are there of each
class? Did this change over time?

Cohesion Connectedness of patches of each class Are patches of each class aggregated or isolated? Did this
change over time?

Euclidean nearest-
neighbour distance

Shortest distance to the nearest neighbouring patch to each
patch of each class

How close are patches of each class together, on average?
Did this change over time?

Clumpiness Measure of patch clustering for each class How connected are patches of each class? Did this change
over time?

Shape Contiguity Spatial connectedness of cells within patches How connected are cells within patches in each saltmarsh
class? Did this change over time?

Shape index Ratio between patch perimeter and theoretical minimum
patch perimeter (i.e. if the patch was perfectly circular)

Are saltmarsh patches irregularly or regularly shaped?
Did this change over time?

Landscape Aggregation Contagion Probability that any two neighbouring cells in the
landscape are part of the same class

Does the landscape consist of large, connected patches of
each class, or smaller, disparate patches? Did this change
over time?

Diversity Shannon’s diversity Measure of diversity of classes, based on the number of
classes and the abundance of each class

Did the landscape become more diverse over time?

Shannon’s evenness Ratio between Shannon’s diversity and theoretical
maximum Shannon’s diversity – measures dominance vs
evenness of classes within a landscape

Is the landscape dominated by a particular class or are
classes evenly distributed? Did this change over time?
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in each dataset, and themean elevation where saltmarsh growth, loss

and transitions occurred over time. Then, temporal trends in mean

elevation for each species were investigated using Kendall rank

correlations (McLeod, 2011).

2.6 Blue carbon calculations

The BlueCAM method was recently developed by the

Australian Government under the Emissions Reductions

Fund as a method for calculating carbon sequestration by

coastal ecosystems using input data related to climate,

elevation, hydrology, wetland type, area and time

(Australian Government Clean Energy Regulator, 2022;

Commonwealth of Australia, 2022). This method was used

to estimate blue carbon volumes sequestered by rehabilitated

saltmarsh based on blue carbon ecosystem areas. The climate

region was “tropical humid” and relevant parameters included

a 25-year permanence period and a 1.6 m tidal regime,

identified using water level monitoring data collected on

site over the 4-year monitoring period (see Sadat-Noori

et al., 2021). The average elevation of rehabilitated

saltmarsh was calculated as an additional parameter. We

only calculated carbon sequestered and did not account for

FIGURE 3
Change in saltmarsh area over time post rehabilitation at the
study site. Areas were calculated using 0.1 m resolution classified
images with > 75% user’s and producer’s accuracy for each species
Supplementary Figure S4, Supplementary Figure S5).

FIGURE 4
Spatial changes in Sporobolus virginicus and Sarcocornia
quinqueflora over the study period (46 months): loss (saltmarsh to
non-saltmarsh), growth (non-saltmarsh to saltmarsh), transitions
between species and retention (saltmarsh retained over
time).

FIGURE 2
Classified drone images (0.1 m resolution) indicating land
cover changes post rehabilitation. Note that water cover is variable
between images because the wetland is a dynamic system that
experiences natural and synthetically mimicked (via
automated floodgates; Sadat-Noori et al., 2021) variations in tidal
inundation over multiple timescales.
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carbon emissions, which would have been generated from

vehicle travel, smart gate creation, etc., and would need to be

considered for full carbon budgeting. The model was run for

the study period to calculate carbon abated during this time.

The model was also used to project carbon volumes after 10,

20, 30, 40 and 50 years post-rehabilitation, assuming

saltmarsh areas remained stable over these timeframes.

The entire processing workflow, showing the major steps

involved from aerial imagery capture to blue carbon calculations,

is summarised in Supplementary Figure S2. All code used for

classification and analysis is available in the Data Accessibility

section (Lanceman, 2022).

3 Results

The image classification produced seven classified maps at

0.1 m resolution (Figure 2).

3.1 Classification success

The number of features required to produce the most accurate

classification varied between datasets and resolutions (between 3 and

28; Supplementary Table S2). In all datasets, classification accuracy

initially increased rapidly when includingmore features, reaching an

FIGURE 5
Class-level patch metrics: mean patch area, mean core area index (percentage of each patch that is non-edge cells), number of patches,
cohesion (connectedness of patches of the same class), clumpiness (proportion of adjacent patches that are the same class) and mean contiguity
(connectedness of cells within patches) for three saltmarsh classes (Sporobolus virginicus, Sarcocornia quinqueflora and Suaeda australis). There are
missing data for Suaeda australis because it was not classified in the first two dataset.
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approximate plateau with less than 10 features, and often decreasing

slightly with additional features. In a factorial ANOVA modelling

the importance of feature/band combinations, there was a significant

interaction between feature and band (F = 6.3, SS = 81,605, MS =

2040, df = 40, p <0.001). A Tukey’s test revealed that the “mean”

values of each band were significantly more important (all p <0.05)
than all other features in the model (n = 50, Supplementary Figure

S3). Mean elevation was the most important feature in the model,

with significantly greater importance (all p < 0.001) than all other

features (n = 55, Supplementary Figure S3).

For these most accurate classifications, training overall accuracy

was consistently very high (0.997–1) across datasets for 0.1 m and

0.5 m resolutions and high (0.943–0.998) for 1 m and 2m resolutions

(Supplementary Table S3). Validation overall accuracy was very high

(>~0.9) for 0.1 m resolution, high (>0.8) for 0.5 m and 1m

resolutions, and moderate (0.685–0.786) for 2 m resolution

(Supplementary Table S3). Validation producer’s accuracy and

user’s accuracy similarly decreased with coarsening resolution, and

were relatively consistent across datasets (Supplementary Figure S4,

Supplementary Figure S5). For the 0.1 m resolution classified images,

user’s and producer’s accuracies were always above 75%, and usually

above 85%, for all saltmarsh species (Supplementary Figure S4,

Supplementary Figure S5). Resolution had a greater impact on the

producer’s and user’s accuracy of saltmarsh species than most other

classes (Supplementary Figure S4, Supplementary Figure S5).

3.2 Growth patterns

Saltmarsh area significantly increased by 6.39 ha (142%) at

the site over the 4-year period after rehabilitation (Kendall rank

correlation, tau = 0.905, p = 0.007, Figure 3). The most substantial

change in saltmarsh area occurred in Sarcocornia quinqueflora,

which significantly increased by 5.75 ha (595%) over the 4-year

monitoring period (tau = 0.905, p = 0.007, Figure 3). Suaeda

australis also significantly increased by 1.60 ha (tau = 0.867, p =

0.02, Figure 3). Sporobolus virginicus experienced a net decline in

area (0.96 ha or 27%) over time, however this change was non-

significant (tau = -0.238, p = 0.55, Figure 3).

Spatial analysis of saltmarsh trends revealed that over time,

an area of 2.18 ha of Sporobolus virginicus was lost (including

transitions to non-saltmarsh and to Sarcocornia quinqueflora),

mainly around the outer parts of its distribution, while 1.28 ha

grew elsewhere, mainly in inner areas (Figure 4; Table 4).

Simultaneously, 0.85 ha of Sarcocornia quinqueflora was lost,

mostly in outer areas, while 6.62 ha grew more centrally

(Figure 4; Table 4).

Patch metrics analyses highlighted differences in growth

patterns between species and over time (Figure 5). Sarcocornia

quinqueflora experienced the most notable changes in patch

metrics over time, significantly increasing in mean patch area

(Kendall rank correlation, tau = 0.81, p = 0.02), mean core area

index (Kendall rank correlation, tau = 0.71, p = 0.04), cohesion

(Kendall rank correlation, tau = 0.91, p= 0.007) andmean contiguity

(Kendall rank correlation, tau = 0.71, p = 0.04) over time (Figure 5).

Sarcocornia quinqueflora also exhibited a (non-significant) hump-

shaped time series for number of patches, and an inverse hump-

shaped time series for clumpiness (Figure 5). There were no

significant trends in any metric for either of the other species

over time, and no notable trends in Euclidean nearest neighbour

distance or shape index. Suaeda australis exhibited distinctive

growth patterns, with much smaller patch sizes and lower values

for cohesion and clumpiness (Figure 5) than the other species.

Sporobolus virginicus had relatively consistent values for all patch

metrics, notably having consistently very high values for cohesion

and clumpiness (Figure 5). In terms of landscape-level patchmetrics,

there was a significant increasing trend in Shannon’s diversity over

time (Kendall rank correlation, tau = 0.81, p = 0.02), while trends in

contagion and Shannon’s evenness were non-significant

(Supplementary Figure S6).

There was a significant negative trend in the mean ground

surface elevation that Sarcocornia quinqueflora grew at over time

(Kendall rank correlation, tau = -1, p = 0.003), changing from

0.9 m pre-rehabilitation to 0.5 m after 46 months

(Supplemementary Figure S7). There were no trends in

elevation for either of the other species (Supplementary Figure

S7). Sarcocornia quinqueflora growth mainly occurred at low

elevations (~0.5 m), while loss/transitions occurred at high

elevations (~0.9 m) (Supplementary Figure S8). Sporobolus

virginicus growth occurred at middle elevations (~0.7 m),

while loss occurred at higher elevations (~0.8 m) and

transitions to Sarcocornia quinqueflora occurred at lower

elevations (~0.6 m) (Supplementary Figure S8).

3.3 Blue carbon quantification

When all input data were entered into BlueCAM (Section

2.6), the blue carbon accounting model estimated that the

additional 6.39 ha of saltmarsh that grew during the study

TABLE 4 Changes in Sporobolus virginicus and Sarcocornia
quinqueflora over the study period (46 months). “Loss” refers to
locations where saltmarsh was converted into a non-saltmarsh land
cover, while “transition” refers to changes between saltmarsh species,
and “growth” refers to where non-saltmarsh land cover was
converted into saltmarsh.

Saltmarsh change Area (ha)

Sporobolus loss 1.90

Sarcocornia loss 0.59

Sporobolus to Sarcocornia transition 0.28

Sarcocornia to Sporobolus transition 0.26

Sporobolus growth 1.02

Sarcocornia growth 6.34
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period resulted in 31.9 tonnes carbon being sequestered in above-

ground biomass and 43 tonnes in soil. This makes a total of

56.2 tonnes of carbon abated, given a 25-year permanence period.

Carbon abatement was projected to increase over time at a

slower, linear rate, with ~129 tonnes of carbon projected to be

abated after 10 years and ~464 tonnes after 50 years.

4 Discussion

This study developed a highly accurate image classification

workflow for monitoring blue carbon restoration over time at a

species level. By classifying a 4-year time series of drone images at

a rehabilitation site, we identified spatial and temporal growth

trends, and differences in growth patterns between saltmarsh

species, which will be useful for informing future rehabilitation

strategies. Our workflow was almost entirely open-source, and

thereby very accessible. The workflow could be made entirely

open-source by using freely available software for drone

photogrammetry processing such as those recommended by

Myburgh et al. (2021), although this may reduce accuracy.

4.1 Classification success

The classifications were highly accurate at 0.1 m (90–94%)

and 0.5 m (85–94%) resolutions, greater than accuracy levels

commonly reported in wetland classification studies (Dronova,

2015; Ye et al., 2018). In reviews of 209 and 61 OBIA studies,

respectively, Ye et al. (2018) and Dronova (2015) both found an

average overall accuracy level of 85%, lower than our accuracies.

Given we maintained accuracies at > 80% at 1 m pixel resolution,

and that there are now at least 15 satellite sensors that produce

images at resolutions of 0.3–1 m (Satellite Imaging Corporation,

2022), there is substantial potential worldwide to undertake

accurate high-resolution image classification using a workflow

similar to ours with commercial satellite imagery. This would

allow wetland monitoring on much larger scales than possible

with drones or ground-based surveys. However, only two current

satellite sensors (Satellogic and SkySat-C) provide multispectral

imagery with ≤1 m resolution (Satellite Imaging Corporation,

2022), and imagery from all commercial satellites is expensive to

acquire. There is currently no freely available satellite imagery at

these ultra-high resolutions, posing a barrier for areas with

limited funding. In addition, satellites do not generally capture

elevation data, which we found to be the most important band for

producing accurate classifications. Since we found that accuracies

were strengthened with multiple image bands and decreased

substantially at 2 m resolution, we caution undertaking species-

level wetland classifications, particularly at rehabilitation sites

with small vegetation clumps like saltmarsh, using satellite

imagery with resolutions >1 m. Therefore, if funding allows,

commercial satellites could permit large-scale, high-frequency

monitoring with acceptable accuracies. If not, drones remain a

good option for more accessible and affordable monitoring at

smaller scales. More research is needed to better understand the

differences in wetland restoration classification between drones

and other high-resolution remote-sensing options, especially

those that generate different types of spectral and elevation data.

Classification accuracy was dependent on which object

features were used for classification. Band means were the

most important features for classification, but it was almost

always necessary to also include other types of features for

optimal accuracy (Supplementary Table S2). There was no

consistency in which additional features were needed to

improve accuracy, and previous studies have also not agreed

on to which features are most important for classification

(Chapple and Dronova, 2017; Espriella et al., 2020). Therefore,

for effective classification, we suggest calculating a range of

feature types (as shown in this study), and then selecting the

optimal set of features for each dataset. Computation of many

features using a cloud-based approach like Google Earth Engine

can be achieved in seconds, hence there are few disadvantages in

starting with excessive features. Given that mean elevation was

the most important feature for image classification, our study has

provided evidence that using elevation and multispectral data

together improves classification accuracy, as suggested by

previous studies (e.g., Husson et al., 2017; Doughty and

Cavanaugh, 2019; Digiacomo et al., 2020), especially for

photogrammetrically-derived DSMs (Pinton et al., 2021). This

makes sense, because boundaries between mudflats, saltmarsh

species and terrestrial vegetation are strongly driven by tidal

inundation depths (Clarke and Hannon, 1970). Therefore, it is

suggested that future studies also consider these data types

together.

We were able to accurately classify saltmarsh vegetation to a

species level. Classifications were more effective, and training/

validation data required less revisions, for species with larger

clumps and for later datasets (i.e., after clumps had grown

larger). Although our models produced high user’s and

producer’s accuracy for all saltmarsh species, visual observation

of classified images revealed that Suaeda australis had been

consistently overestimated across datasets and resolutions, with

these errors likely also explaining inconsistencies in elevation for

this species (Supplementary Figure S7). This may reflect a potential

minimum threshold in the area or density of classes needed for

accurate classification. The inconsistency between reported and

observed accuracy is likely due to the small size of Suaeda

australis clumps, making them less likely to intersect with a

validation point. More work should be done to improve

classification accuracy of minor components of the landscape,

such as using a hierarchical classification that first breaks the

landscape into broader groups and then classifies within these

groups (Husson et al., 2016). Such technique development may

also allow classification of less common wetland species, which were

not considered for classification in this study.
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4.2 Spatial and temporal trends in
saltmarsh growth

The use of multitemporal data allowed exploration of temporal

trends in rehabilitation, revealing insights about natural saltmarsh

colonisation patterns at a site with tidal conditions artificially

optimised to promote saltmarsh growth and limited ongoing

management (see Sadat-Noori et al., 2021; Rankin et al., 2022).

Saltmarsh growth rates were relatively linear over time, but increased

after 18months (Figure 3). The initial lag in regenerationmay reflect

the time period required for saltmarsh establishment and existing

organic matter decomposition (e.g., 15% degradation of fibrous

mangrove roots over 9 months in south-east Australia; Van der Valk

and Attiwill, 1984), as the major saltmarsh species, Sarcocornia

quinqueflora, struggles to establish where there is existing above- or

below-ground biomass (Genders, 1996). The time lag could also

reflect seed availability (Erfanzadeh et al., 2009), initial lack of

mutualistic fauna (Derksen-Hooijberg et al., 2017), time required

for saltmarsh clumps to mutualistically support one another

(Silliman et al., 2015), or climatic differences between years or

seasons. For example, increased rainfall and/or inundation can

promote saltmarsh growth by decreasing salinity stress (Breen

et al., 1977; Laegdsgaard, 2006; Green et al., 2009), while high

salinity levels inhibit Sarcocornia quinqueflora germination

(Partridge and Wilson, 1987). Given southeast Australia

experienced a severe drought during the first 3 years post-

rehabilitation (Bureau of Meteorology, 2020), climatic stressors

likely contributed to lagged growth rates and saltmarsh

transitions to dead vegetation and weeds (Figure 2, Figure 3). At

our site, and at other rehabilitation sites involving altered hydrology,

the initial lag could also be related to simultaneous saltmarsh loss

and growth (Figure 4) as species shift in elevation (Supplementary

Figure S7) due to the deliberately altered tidal regime, also likely

contributing to the net decline in Sporobolus virginicus over time

(Figure 4; Table 4). Time lags in regeneration should be anticipated

in other rehabilitation studies, and monitoring of relevant

environmental, biological and climate factors would be useful to

identify which factors are driving growth rates at each specific site.

Saltmarsh growth would be expected to plateau once all suitable

bare areas have been colonised, with an upper growth limit controlled

by elevation/inundation and pasture grass competition (Streever and

Genders, 1997). In our study, most bare areas were colonised by

saltmarsh after 4 years, with landscape diversity also increasing during

this time (Supplementary Figure S6), aligning with timeframes of

other nearby rehabilitation sites (e.g., ~5 years; Glamore et al., 2021;

Laegdsgaard, 2006). This indicates that saltmarsh rehabilitation via

natural regeneration can occur relatively quickly, providing insight

into trajectories of blue carbon restoration at saltmarsh rehabilitation

sites in south-east Australia. While substantial growth in vegetation

suggests a successful trajectory towards rehabilitation, it is likely the

site will continue to evolve in both cover and biodiversity into the

future, and continuedmonitoring, as well as comparison with control

and reference sites, would allow for the calculation of rehabilitation

timeframes and validation of carbon accumulation rates. Knowledge

of blue carbon accumulation rates will help in predicting blue carbon

volumes at sites over various timescales, with the next challenge in

blue carbon accounting being predicting changes in the price of

carbon into the future.

Classifying saltmarsh to the species level allowed identification of

differences in growth patterns, which reflect species’morphology and

reproductive strategies. The three saltmarsh species classified in this

study are competitors (Zedler et al., 1995) that occupy similar tidal

heights (Hickey and Bruce, 2010), and their distribution at a

rehabilitation site is largely dependent on the relative suitability of

conditions and reproductive strategy of each species. The marsh

ecotype of Sporobolus virginicus reproduces almost exclusively via

rhizome production by extending underground stems (Blits and

Gallagher, 1991), mainly expanding from existing vegetation

(Figure 4), reflecting its consistently high patch metrics values for

cohesion, clumpiness and patch area (Figure 5). Conversely,

Sarcocornia quinqueflora and Suaeda australis regenerate via

seeding (Green et al., 2009), and can create new saltmarsh clumps

across the landscape (Figure 2). This patchiness is reflected in Suaeda

australis’s consistently low values for cohesion, clumpiness and patch

area, and Sarcocornia quinqueflora’s hump-shaped trends for number

of patches and clumpiness, as it produced many new clumps that

eventually merged into larger patches (Figure 5). Sarcocornia

quinqueflora is known to reproduce and disperse rapidly in

favourable conditions (Laegdsgaard, 2002) by producing large

quantities of buoyant, tidally-dispersed, desiccation-resistant seeds

(Nelson, 1994). Conversely, Sporobolus virginicus is known to

expand more slowly (Laegdsgaard, 2002), reflecting our observed

differences in growth rates between species (Figure 3; Table 4). Our

study demonstrates that investigating multitemporal trends in patch

metrics can provide useful insights into species’ growth patterns and

reproductive strategies. The results also suggest that leaving a site to

regenerate naturally, with appropriate tidal inundation patterns, will

favour faster-growing species that are better dispersers.

In this study, Sarcocornia quinqueflora was the most dominant

species, with increasing dominance over time, as its seeding dispersal

and rapid reproduction allowed it to outcompete other species and

limit their realised niches (biologically restricted distributions), similar

to species interactions observed in previous saltmarsh rehabilitation

studies (Erfanzadeh et al., 2009; Sullivan et al., 2018), including at sites

in Australia with similar species assemblages (Green et al., 2009).

Depending on co-benefits targeted at rehabilitation sites, single-species

dominance may be acceptable, for example if saltmarsh area and

growth speed are primary goals. However, for sites aiming for

biodiversity, a more balanced distribution of saltmarsh species may

be desirable, to support a greater range of faunal species (Laegdsgaard,

2006). To facilitate this, a mixed rehabilitation approach could be

employed based on target species’ ecology. For example, growth of

slower-growing species like Sporobolus virginicus could be encouraged

via planting, while allowing natural regeneration of more competitive

species (Green et al., 2009;Winning andMacFarlane, 2010). However,

deliberate encouragement of slower-growing species may not be
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necessary, as it is possible that a more balanced distribution of species

could naturally evolve over time. For example, studies have suggested

that succession may occur in regenerating saltmarsh sites, where

Sarcocornia quinqueflora is gradually outcompeted by Sporobolus

virginicus (Adam, 1990; Zedler et al., 1995). Longer-term

monitoring is required to assess the ongoing evolution of the site’s

biodiversity.

4.3 Blue carbon and co-benefits

The 56.2 tonnes of carbon (Section 3.3) abated by

rehabilitated saltmarsh during the study period are equivalent

to the amount of carbon produced by 12 passenger vehicles over a

year (United States Environmental Protection Agency, 2018). If

the saltmarsh rehabilitation area remained stable at 6.4 ha, it is

projected to abate ~8.4 tonnes (1.3 tonnes per hectare) carbon

per year, equivalent to emissions from two cars each year. This is

similar to the trajectory and rate of carbon accumulation

measured or modelled in previous saltmarsh rehabilitation

studies (Burden et al., 2019; Santini et al., 2019). Over larger

spatial scales of rehabilitation, much more substantial quantities

of carbon could be abated, contributing to climate change

mitigation strategies. In addition, as carbon accounting

methods are further developed, species differences in carbon

sequestration (Lovelock et al., 2013) may be able to be accounted

for, leading to more accurate carbon calculations.

There is great potential for remote sensing technologies to

monitor rehabilitation co-benefits beyond blue carbon. For

example, remote sensing has also been used at coastal and

wetland sites to quantify waterbird usage (Francis et al., 2020),

count people (i.e., measure tourism) (Provost et al., 2019) and

investigate hydrological dynamics (Wu et al., 2019), with

potential implications for quantifying hydrological ecosystem

services such as flood mitigation. A combined remote sensing

approach that quantified a broader range of rehabilitation co-

benefits would allow more aspects of blue carbon ecosystems to

be valued, providing further economic incentives for their

rehabilitation.

5 Conclusion

By developing a user-friendly workflow for classifying

drone imagery, this study has provided insight into blue

carbon restoration and monitoring procedures. We

achieved very high classification accuracy using

multispectral and photogrammetric elevation data, object-

based methods and a random-forest classifier in the Google

Earth Engine environment. This image classification workflow

could be used for monitoring wetland rehabilitation sites

around the world, improving the efficiency and

effectiveness of monitoring regimes. The workflow could

potentially be applied to very high-resolution commercial

satellite or plane-based imagery to achieve similar accuracy

levels on greater spatial and temporal scales, and could be

adapted to also quantify rehabilitation co-benefits, such as

waterbird usage and tourism.

Over a 46-month period, saltmarsh rehabilitation was shown

to be successful at the study site. Within 4 years of instating a

saltmarsh-favouring tidal regime, almost the entire wetland was

covered by naturally dispersed saltmarsh, providing insight into

trajectories of blue carbon restoration across time and space.

However, rehabilitation is currently dominated by one species,

Sarcocornia quinqueflora, which was most effective at rapidly

dispersing and growing. Biodiversity outcomes should continue

to be monitored onsite, with less competitive saltmarsh species

targeted for enhancement. Careful consideration of both the

environmental needs of and biotic interactions between target

species for rehabilitation will produce rehabilitation site designs

that maximise multiple outcomes, such as regeneration speed,

blue carbon benefits and biodiversity.
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