JCU ePrints

This file is part of the following reference:

Bruce, M.D. (2007) The development and 3D geometry of porphyroblast inclusion trails: significance for the tectonic evolution of the Lebanon Antiformal Syncline, New Hampshire. PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/7874

The development and 3D geometry of porphyroblast inclusion trails: significance for the tectonic evolution of the Lebanon Antiformal Syncline, New Hampshire

Volume II: Figures, Tables and Appendices

Thesis submitted by Matthew Donald Bruce BSc (Hons) in July, 2007

for the degree of Doctor of Philosophy in the School of Earth and Environmental Sciences

Table of Contents, Volume II

Table of cont	ents	i
List of tables		ii
List of figures	S	iii
с		
	ovement directions in porphyroblastic rocks: Evaluation of the "FitPitch"	A 1
	d the "asymmetry" methods.	A-1
	ne internal inclusion trail geometries preserved within a first phase of	D 1
1	rphyroblast growth	B-1
	ogressive deformation partitioning and deformation history:	a 1
	vidence from millipede structures	C-1
Section D Ti	ming nappe development in multiply tectonised rocks: A new approach	D-1
Appendix A:	FitPitch data	vii
Appendix B:	Sample localities and mineralogical data	xvii
Appendix C:	JCU collection numbers	XX
Appendix D:	Structure and stratigraphy of the Lebanon Antiformal	
	Syncline, New Hampshire, USA	Мар
Appendix E:	Electronic supplements	CD
	E01-asymmetry method.mov	
	E02-vertical sigmoid slice 090.mov	
	E03-vertical sigmoid rotate.mov	
	E04-vertical sigmoid slice 000.mov	
	E05-vertical sigmoid slice 010.mov	
	E06-vertical sigmoid slice 030.mov	
	E07-horizontal millipede slice.mov	
	E08-vertical millipede slice 120.mov	
	E09-vertical millipede rotate slice.mov	
	E10-millipede.zip	
	E11-vertical spiral rotate.mov	
	E12-vertical spiral slice 000.mov	
	E13-vertical spiral slice 010.mov	
	E14-vertical spiral slice 030.mov	
	E15-vertical spiral slice 090.mov	

List of Tables

Section A

Table 1 Table 2	FitPitch results for samples MB019, MB028 and MB030 FIA orientations calculated with the FitPitch computer program versus the asymmetry method	A-5 A-8
Section C		
Table 1	Pitch of S ₂ preserved as inclusion trials in plagioclase porphyroblasts	
	in the hinge plus lower and upper limbs of the fold	C-11
Table 2	Width between S ₃ seams measured across porphyroblasts	C-12
Section D		
Table 1	FIA data from the Lebanon Antiformal Syncline separated into that	
	from andalusite, staurolite and garnet porphyroblasts	D-8
Table 2	Major element analyses (shown as weight % oxide) of bulk compositions	5
	used in the calculation of pseudosections.	D-15

List of Figures

Section A

Figure 1.	Representation of Foliation Inflection/ Intersection Axes (FIAs)	A-1
Figure 2.	3D model demonstrating the asymmetry method for establishing the	
	FIA trend for a sample containing simple sigmoid inclusion trails	A-2
Figure 3.	Major structural features of New Hampshire	A-3
Figure 4.	Map of the study area showing major structural features and sample	
	localities	A-4
Figure 5.	Pitch data for sample MB019	A-6
Figure 6.	Photomicrograph of a porphyroblast from sample MB019 plus plot of	
	pitch measurements	A-7
Figure 7.	Pitch data for sample MB030	A-9
Figure 8.	Photomicrographs of porphyroblasts from sample MB030 plus plot of	
	pitch measurements	A-11
Figure 9.	Separation of MB030 pitch data into two planes according to FitPitch	
	and core and rim data plotted separately.	A-12
Figure 10.	Hand specimen of sample MB028 and photomicrograph of coticule	A-13
Figure 11.	Pitch data for sample MB028	A-14
Figure 12.	Photomicrograph of a porphyroblast from sample MB028 plus plot of	
	pitch measurements	A-15

Section B

Figure 1.	Vertical cross-section through a porphyroblast within an obliquely	
	dipping foliated matrix	B-1
Figure 2.	3-D sketch showing porphyroblasts that grew in crenulation hinges	
	during a deformation event that formed a sub-vertical foliation	B-2
Figure 3.	3-D sketch showing porphyroblasts that grew in crenulation hinges	
	during a deformation event that formed a sub-horizontal foliation	B-3
Figure 4.	Location map of samples TC1365 and TC1365i	B-4
Figure 5.	Spiral-shaped inclusion trails and associated line diagram	B-5
Figure 6.	Slightly sigmoidal shaped inclusion trails in garnet porphyroblasts	B-6

Figure 7.	Photomicrographs of staurolite and garnet in sample TC1365	B- 7
Figure 8.	Skeletal inclusion trail geometries drawn as vertical cross-sections	
	for each porphyroblast phase in each layer	B-8
Figure 9.	Series of parallel vertical cuts through a model porphyroblast	B-9
Figure 10.	Sequence showing creation of the model porphyroblast	B-11
Figure 11.	Set of radial sections made through the centre of the 3-D porphyroblast	B-12
Figure 12.	Sections made through the schematic inclusion trails and original model	B-13
Figure 13.	Range of inclusion trail patterns made by taking sections through the	
	schematic model porphyroblast at different orientations and at various	
	distances from the centre	B-14
Figure 14.	Inclusion trail geometry in three different horizontal cuts through the	
	porphyroblast	B-15
Figure 15.	Porphyroblast growth ceases once a differentiated crenulation cleavage	
	begins to form in the immediate vicinity	B-16
Figure 16.	Skeletal diagrams of vertical cross-sections through spiral-shaped	
	inclusion trails in porphyroblasts	B-17
Figure 17.	Equal area rose diagrams showing the pitch of truncational	
	discontinuities preserved as inclusion trails	B-18
Figure 18.	Stereonets of FIA plunges and histograms of angle of plunge data	B-19
Figure 19.	Stereonet showing how the intersection of a sub-horizontal plane with	
	any other steeply dipping plane has a gentle plunge	B-20

Section C

Figure 1.	Partitioning of deformation	C-1
Figure 2.	Millipede shaped geometry of the strain field that results from coaxial	
	progressive bulk inhomogeneous shortening	C-2
Figure 3.	Accurately reproduced line diagram from fig. 8 in Ghosh (1975)	C-3
Figure 4.	Accurately reproduced line diagram from fig. 11 in Ghosh (1975)	C-4
Figure 5.	Millipede like geometries produced experimentally	C-5
Figure 6.	Line diagrams show how the core of a porphyroblast may preserve a	
	coaxial millipede geometry and difference between differentiation and	
	vergence asymmetry	C-6
Figure 7.	Millipede structures preserved in fold hinge	C-7

Figure 8.	Fold hinge showing the relative orientation and locations of blocks from	
	which thin sections were cut	C-8
Figure 9.	Plagioclase porphyroblast containing highly oblique millipede-	
	shaped trails	C-10
Figure 10.	Photographic detail of right hand millipede end	C-13
Figure 11.	Millipede plagioclase porphyroblast in a sub horizontal section	C-14
Figure 12.	Reconstruction of millipede structure	C-15
Figure 13.	Two horizontal slices cut through the millipede model	C-16
Figure 14.	Vertical millipede sections	C-17
Figure 15.	Radial sections through the millipede model	C-18
Figure 16.	Sketches showing changing scales of deformation partitioning	C-19
Figure 17.	Cut-away profile view of a model spiral and the range of inclusion trail	
	geometries radial thin sections through spiral porphyroblast	C-20

Section D

Figure 1.	Location map showing the major fold structures	D-1
Figure 2.	Detailed map of the study area	D-2
Figure 3.	Schematic section showing the position of the Lebanon Antiformal	
	Syncline on the overturned limb of the refolded Blue Hills Nappe	D-3
Figure 4.	Photomicrographs showing inclusion trail geometries preserved in	
	garnet porphyroblasts	D-5
Figure 5.	Photomicrographs of garnet porphyroblasts from sample MB030	D-6
Figure 6.	3D model demonstrating the asymmetry method for establishing the	
	FIA trend for a sample containing simple sigmoid inclusion trails	D-7
Figure 7.	Equal area rose diagrams of FIA trends	D-9
Figure 8.	Maps and equal area rose diagrams of the 4 successive FIA sets	D-10
Figure 9.	Histograms showing the asymmetry of inclusion trails	D-11
Figure 10.	Block diagram illustrating the major structural and stratigraphic features	
	of the Lebanon Antiformal Syncline	D-12
Figure 11.	Photomicrographs of pseudomorphs of staurolite and muscovite	
	after andalusite	D-13
Figure 12.	Photomicrographs illustrating the relationship between andalusite,	
	staurolite and sillimanite	D-14

Figure 13.	Pseudosections showing approximate P-T paths for rocks in the	
	transition zone, staurolite zone and sillimanite zone	D-16
Figure 14.	Histograms showing the relative frequency of inclusion trail asymmetries	D-17
Figure 15.	Accumulation of displacement during gravitational collapse	D-18
Figure 16.	Inclusion trail asymmetries divided into FIA sets and plotted separately	
	for the northern and southern limb of the Lebanon Antiformal Syncline	
	and the northern and the southern limbs of the second order antiforms	D-19
Figure 17.	Schematic sketch showing the effects of a developing sub-horizontal	
	foliation with a clockwise differentiation asymmetry on each limb of	
	an upright fold	D-20
Figure 18.	Map showing the distribution of samples containing FIA set 3	D-21
Figure 19.	Schematic representation of the upper 50-60 km of the lithosphere	
	during uplift and gravity induced collapse phases of orogenesis	D-22
Figure 20.	Schematic diagram showing the relationship between deformation,	
	metamorphism and porphyroblast growth	D-23