Blockchain-Enabled IoT for Rural Healthcare: Hybrid-Channel Communication with Digital Twinning
Kerrison, Steve, Jusak, Jusak, and Huang, Tao (2023) Blockchain-Enabled IoT for Rural Healthcare: Hybrid-Channel Communication with Digital Twinning. Electronics, 12 (9).
|
PDF (Published Version)
- Published Version
Available under License Creative Commons Attribution. Download (533kB) | Preview |
Abstract
Internet of Things (IoT) and blockchains are enabling technologies for modern healthcare applications, offering the improved monitoring of patient health and higher data integrity guarantees. However, in rural settings, communication reliability can pose a challenge that constrains real-time data usage. Additionally, the limited computation and communication resources of IoT sensors also means that they may not participate directly in blockchain transactions, reducing trust. This paper proposes a solution to these challenges, enabling the use of blockchain-based IoT healthcare devices in low-bandwidth rural areas. This integrated system, named hybrid channel healthcare chain (HC2 ), uses two communication channels: short-range communication for device authorisation and bulk data transfer, and long-range the radio for light-weight monitoring and event notifications. Both channels leverage the same cryptographic identity information, and through the use of a cloud-based digital twin, the IoT device is able to sign its own transactions, without disclosing the key to said twin. Patient data are encrypted end to end between the IoT device and data store, with the blockchain providing a reliable record of the data lifecycle. We contribute a model, analytic evaluation and proof of concept for the HC2 system that demonstrates its suitability for the stated scenarios by reducing the number of long-range radio packets needed by 87× compared to a conventional approach.
Item ID: | 78675 |
---|---|
Item Type: | Article (Research - C1) |
ISSN: | 2079-9292 |
Keywords: | blockchain; digital twin; Internet of Things; healthcare; encryption; privacy; rural; LPWAN |
Copyright Information: | © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
Date Deposited: | 10 May 2023 00:03 |
FoR Codes: | 46 INFORMATION AND COMPUTING SCIENCES > 4604 Cybersecurity and privacy > 460403 Data security and protection @ 60% 46 INFORMATION AND COMPUTING SCIENCES > 4604 Cybersecurity and privacy > 460407 System and network security @ 40% |
SEO Codes: | 22 INFORMATION AND COMMUNICATION SERVICES > 2204 Information systems, technologies and services > 220405 Cybersecurity @ 50% 22 INFORMATION AND COMMUNICATION SERVICES > 2201 Communication technologies, systems and services > 220104 Network security @ 50% |
Downloads: |
Total: 72 Last 12 Months: 16 |
More Statistics |