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Abstract

Complex color patterning is a characteristic feature of dwarf

minke whales (DMWs; Balaenoptera acutorostrata) which

has been used to photographically identify (photo-ID) indi-

viduals and to research an aggregation on Australia's Great

Barrier Reef (GBR). DMW color patterns have been

described and applied in various studies, but a detailed and

systematic analysis of their complexity is yet to be per-

formed. Here, we applied a novel categorization tool to

assess the variation, asymmetry, and association of several

DMW color pattern elements, subelements, and their charac-

ter states. Proportions, hierarchical clustering, and multiple

correspondence analysis revealed a high level of asymmetric

color pattern variation, with white markings dominant and

associated on the right of the body. Our results will improve

the citizen science driven photo-ID of this little-known ceta-

cean as labor-intensive manual methods transition to more

efficient automated approaches. Such advancement will be

challenging, yet beneficial for broader research into the

poorly understood areas of DMW life history, evolution,

genetics, social structure, and feeding. This could also poten-

tially allow investigation into the functional significance of

their color patterns.
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1 | INTRODUCTION

Following observations of a diminutive and distinctively marked form off South Africa (Best, 1985) and Australia

(Arnold et al., 1987), “dwarf” minke whales (DMWs) were proposed by Rice (1998) as a subspecies of the common

minke whale (Balaenoptera acutorostrata). Although, their taxonomy remains unresolved (Risch et al., 2019), DMWs

display several osteological, morphometric, and pigmentation differences to both the common and Antarctic minke

whale (Balaenoptera bonaerensis; Arnold et al., 1987, 2005). Recent mitochondrial DNA evidence (Ramirez-Flores

et al., 2019) has further highlighted genetic divergence within this species complex, but additional morphological and

molecular evidence is needed for the DMW to receive formal subspecies designation (IWC, 2001).

DMWs are sporadically sighted throughout the Southern Hemisphere in locations including South America,

South Africa, New Zealand, Vanuatu, and New Caledonia (Arnold, 1997). They have also been observed around

western and eastern Australia more frequently in recent years (Risch et al., 2019). However, the only known predict-

able aggregation of DMWs occurs on the northern Great Barrier Reef (GBR) during the austral winter, when

hundreds of individuals migrate up the eastern Australian coast from the Subantarctic (Birtles et al., 2015;

Ramirez-Flores et al., 2019). Sightings are common between May and September, with 90% occurring in June and

July (Birtles et al., 2014). Why this aggregation occurs remains unclear as no feeding, mating, or calving has been

observed in the area (Birtles et al., 2002). Based on strong site fidelity, social behavior, and sightings of pre-

established cow and calf pairs, it is suggested that these sheltered waters may be an important location for courtship

and nursing (Birtles & Mangott, 2011).

DMWs within the GBR are highly inquisitive and willingly interact with vessels and snorkelers, which led to the

establishment of a permit-based swim-with-DMW industry at the aggregation site in 1996 (Dunstan et al., 2007). In

collaboration with this, the Minke Whale Project (MWP) at James Cook University has harnessed citizen science to

investigate the biology and ecology of this little-known cetacean for over 30 years. This research has increased

understanding on the interacting population's size (Sobtzick, 2010), demographics (Dunstan et al., 2007), behavior

(Mangott, 2010), and movement (Birtles et al., 2015). Most importantly, it provides vital information for the sustain-

able management and conservation of GBR DMWs (Birtles et al., 2014; Curnock, 2010; Curnock et al., 2013;

Valentine et al., 2004). Central to the MWP's work is a long-term photo-identification (photo-ID) study which uses

temporally stable color patterning, along with scars and other natural markings, to accurately identify individuals

repeatedly over space and time (Birtles et al., 2002).

DMWs are the second smallest and most highly patterned mysticete. Like many other surface foraging marine

species, they are counter shaded for predator concealment (Caro et al., 2011; Thayer, 1909). Their lateral coloration

is, however, more complex and may be comprised of several dark gray fields descending from the dorsum, a number

of white blazes ascending from the ventrum, and a series of light gray patches, saddles, and streaks (Arnold

et al., 2005). Each of these components can be defined as a distinct element (e.g., thorax patch) and/or subelement

(e.g., anterior margin) of fixed position and hue that varies in character state (e.g., sinuous) depending on the occur-

rence and distribution of pigment (Figure 1). Therefore, whilst the color patterns of DMWs follow a general template,

each individual displays a unique profile much like the spots of giraffes (Lee et al., 2018) or fingerprints of humans

(Junaid Mir et al., 2014). Like the fin whale (Balaenoptera physalus; Methion & Díaz L�opez, 2019), DMW coloration is

consistently asymmetrical whereby markings on the right anterior third of the body are lighter than those on the left

(Arnold et al., 2005). This is due to the co-occurrence of several white blazes across a single profile, particularly on

the right. Together these sources of variation, asymmetry, and association produce differences both within and

between individuals that are proven to persist over time (Birtles et al., 2002).
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Various attempts have been made to define DMW color patterns due to their importance in photo-ID and

broader research (Arnold et al., 2005; Birtles et al., 2001; Hasling, 2003; Sobtzick, 2010; Stephens et al., 2015;

Watson, 2011). This has generated a multitude of context-specific terms which have been built upon over time to

classify elements, subelements, and character states. However, given that their application has been entirely descrip-

tive thus far, many of these lack definitive criteria. Furthermore, the variation, asymmetry, and association of DMW

color patterns has not yet been investigated in a robust manner. With this in mind, Hutchings (2020) developed a

suite of standardized descriptors that could be applied with greater certainty and consistency. These were refined

through the visual assessment of several hundred individuals and agreement tests between multiple MWP members.

In this study, we present the first application of this novel categorization tool in a detailed systematic analysis of

DMW color pattern complexity. More specifically, we aimed to quantify the variation, asymmetry, and association of

several elements, subelements, and character states.

2 | METHODS

Imagery for photo-ID was opportunistically collected by MWP members, passengers, and crew from swim-with-

DMW industry vessels. This process involved maintaining a dedicated watch during daylight hours and attempting to

photograph all individuals present for each in-water interaction. Trained assessors then manually collated, organized,

and analyzed this imagery within hard drive directories, Microsoft Excel spreadsheets, and digital viewers. Photo-

graphs and videos were first graded using a five-point system based on image quality and information content so

that they could be ordered from most to least useful (Sobtzick, 2010). All available imagery was then visually

assessed to assign as many DMWs as possible with a unique, alphanumeric identity (ID). A complete ID was assigned

F IGURE 1 This dwarf minke whale (DMW) has a thorax patch (element) anterior margin (subelement) which is
sinuous (character state).
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where an individual's left-hand side (LHS) and right-hand side (RHS) were visible and connected in a top side shot. A

partial ID was assigned when imagery only existed for one side of an individual's body or if two sides, thought to

belong to the same animal, could not be connected by at least three distinguishing features. Multi-shot reference

libraries of each ID were then validated by several MWP members to reduce the likelihood of LHS and RHS images

being falsely classified as the same, or a different, whale.

A data set of 196 complete IDs and 2,078 images from the 2017 season was compiled for this study. This

cohort represented the MWPs most comprehensive within-season photo-ID census to date (Daley, 2019). Par-

tial IDs were deliberately excluded so that analysis could be performed across the entire body. A single, experi-

enced assessor then used a recently developed DMW color pattern categorization tool (Figure S1) to record

character state in 12 elements and subelements (Figure 2) of each individual's LHS and RHS. An exception to

this was made for the nape streak dorsal portion which, given its anatomical position, was categorized by the

same character state across both sides of the body. To ensure all the elements and subelements were equally

represented, only individuals for which character states could be observed across the entire body were

included in the analysis. This filtering removed 94 individuals, leaving 102 individuals for which full body color

pattern profiles were compared.

Hierarchical clustering was performed separately for the LHS and RHS color pattern profiles in RStudio

(Appendix S1). Gower's metric (Gower, 1971) was chosen to create the distance (dis)similarity matrices due to its

ability to handle categorical variables (Huang, 1998). Divisive clustering (i.e., a top-down approach where all observa-

tions begin in one cluster then are split recursively down the hierarchy) was applied here as it is considered most

accurate for larger data sets (Everitt, 2011). Optimum cluster number was determined from average silhouette width,

a simple and popular validation index independent of assumptions (Batool & Hennig, 2021). Branch height was used

as a measure of (dis)similarity and gauge of tree topology to reveal which attributes of the data (i.e., character states)

were underlying certain nodes. Mean relative difference in branch height was also calculated to compare this across

the LHS and RHS. Cophenetic correlation coefficients were computed both separately and together for these den-

drograms. This evaluated how well each clustering result preserved its distance (dis)similarity matrix and how alike

the two trees were in terms of branch height (Saraçli et al., 2013). A tanglegram of lowest possible entanglement

was produced to display the dendrograms for each side of the body in parallel. This allowed visual comparisons to be

made simultaneously across both the LHS and RHS.

Multiple correspondence analysis was carried out on the LHS and RHS color pattern profiles in RStudio as well

(Appendix S2). Individual and variable coordinates, derived from chi-squared distances of the raw contingency tables,

were mapped independently so that their results could be interpreted in turn. This generated a plot for each upon

F IGURE 2 The 12 dwarf minke whale (DMW) color pattern elements and subelements analyzed.
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which the distance between points (i.e., individuals or character states) provided a graphic measure of their associa-

tion (Abdi & Valentin, 2006). Eigenvalues were extracted to identify the proportion of variance retained by the first

two dimensions. Axes contribution and squared cosine values were used to assess the definition and quality of repre-

sentation for individuals and variables along both dimensions (Lê et al., 2008).

3 | RESULTS

Character state proportions differed within and between the elements and subelements (Figure 3) as well as across

the sides of the body (Figure 4). Some features appeared largely asymmetric (e.g., MB = 94.12%) because they were

well expressed on the RHS yet poorly defined on the LHS. For instance, eye and mandible blazes were usually

F IGURE 3 Proportions of character states observed for each element and subelement across both the left-hand

side (LHS) and right-hand side (RHS) of the 2017 cohort of dwarf minke whales (DMWs).
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present on the RHS (e.g., MB_MA = 88.24%) and mostly absent on the LHS (e.g., EB_A = 93.14%). Similarly, the

RHS rostral saddle posterior margin was often concave (36.27%), whilst that of the LHS was generally diffuse

(51.96%). The axillary patch also appeared quite asymmetric with the RHS most frequently being broadly (52.94%) or

narrowly attached (36.27%). In contrast, the most symmetric features (e.g., CC_A = 85.29%) were dominated by just

one or two traits across the entire body. For example, the anterior and posterior caudal chevrons were attached on

both the LHS (e.g., CC_P = 84.31%) and RHS (e.g., CC_P = 76.47%) for over three quarters of the individuals. Like-

wise, the thorax patch peak was hooked (e.g., LHS = 53.92%) or pointed (e.g., RHS = 50.98%) with a curved

(e.g., LHS = 53.92%) or sinuous (e.g., RHS = 56.86%) anterior margin for most of the observed cohort. The anterior

triangle also appeared relatively symmetrical given it was most frequently absent on both the LHS (68.63%) and RHS

(51.96%). Other features, such as the nape streak insert location and peduncle blaze, were symmetric on occasion

(e.g., PB = 50.98%). These elements displayed multiple character states, with more evenly distributed proportions,

across each side of the body. The nape streak dorsal portion was typically double peak (48.04%) or sinuous (24.51%).

LHS and RHS color pattern profiles were each sorted into two hierarchical clusters (Figure 5). Across both sides

of the body, these clusters diverged at branch heights of 0.92 and 0.83, respectively. For the LHS, cluster one con-

tained 84 members and cluster two contained 18. Individuals in the first cluster were grouped by having an attached

anterior caudal chevron, whereas those in the second cluster displayed the detached form of this feature. Beyond

this, one pair (#27 and #95) shared the same LHS color pattern profile and another eight pairs differed by a single

character state (e.g., #21 and #58). The former terminated on the same node and the latter diverged at a branch

height of 0.08. For the RHS, cluster one contained 78 members and cluster two contained 24. Individuals were

grouped depending on their combination of traits for the nape streak insert location, thorax patch peak and axillary

patch. No pairs shared the same RHS color pattern profile and only three pairs differed by a single character state

(e.g., #95 and #58). These also diverged at a branch height of 0.08. Across both sides of the body, the two individuals

(#95 and #58) with the most similar color pattern profiles differed by three character states on the LHS and one on

the RHS. The cophenetic correlation coefficient for the LHS was 0.53 and for the RHS was 0.50. Between these two

F IGURE 4 Asymmetry in each element and subelement (see Supplementary Material 1(a-l) for abbreviations) for
the 2017 cohort of dwarf minke whales (DMWs).
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dendrograms, the cophenetic correlation coefficient was 0.15, the mean relative difference in branch height was

0.23 and the lowest possible entanglement achieved was 0.29.

The cumulative proportions of variance retained by the first two dimensions of the individual (Figure 6) and vari-

able (Figure 7) multiple correspondence analyses were 11.37% and 9.57%. For the individual plot, LHSs were closely

positioned in the second and third quadrats with RHSs further dispersed among the second and fourth quadrats.

RHSs predominately defined both axes (e.g., #86 = 2.4%) with just one LHS contributing in a similar extent to the

F IGURE 5 Tanglegram of hierarchical cluster analysis showing left-hand side (LHS) and right-hand side (RHS)
color pattern variation for the 2017 cohort of dwarf minke whales (DMWs). The shorter the height (Gower's metric)
of a branch, the more similar the color pattern profile of individuals. Solid branches represent individuals belonging
to cluster one. Dashed branches represent individuals belonging to cluster two. Thicker branches represent
individuals that were either categorized by the same color pattern profile (e.g., the LHS of #27 and #95) or differed
by only one character state (e.g., the RHS of #45 and #49).
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second dimension (#81 = 2.3%). On the contrary, element and subelement character states from both sides of the

body contributed to axes definition for the variable plot (e.g., LHS_CC_A_DE = 4.5% and RHS_PB_D = 4.4%). Dif-

fuse peduncle blazes as well as detached and absent caudal chevrons were closely paired by orientation and drawn

out to the right of the x-axis. Nearby was also the RHS major eye blaze, narrowly attached, broadly detached, and

narrowly detached axillary patches. Squared cosine values reflected that certain individuals and variables were mod-

erately represented by these plots (e.g., #56 = 0.52 and RHS_CC_P_AT = 0.41).

4 | DISCUSSION

The 2017 cohort of DMWs demonstrated a high degree of color pattern complexity underpinned by several sources

of variation, asymmetry, and association. The elements and subelements displayed certain character states which

were common (e.g., a hooked thorax patch peak) and others that were rare (e.g., an anvil thorax patch peak). In addi-

tion, some of these features (e.g., the eye blaze) were highly asymmetric and expressed their traits in a consistent

F IGURE 6 Multiple correspondence analysis between the left-hand side (LHS) and right-hand side (RHS) color

pattern profiles of each 2017 individual dwarf minke whale (DMW). The individuals which contributed most to the
dimensional variance are labeled.
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rather than a random manner. This was particularly evident on the right anterior third of the body where markings

often appeared lighter than those on the left. Similarly, several white blazes were found to be associated across the

entire length of the RHS. This result is notable considering it occurred despite proportions indicating that, overall,

these character states (e.g., a diffuse peduncle blaze) were rarer. Color pattern profiles on the RHS of individuals

were also more variable, with fewer similarities detected within the cohort through hierarchical clustering. Multiple

correspondence analysis confirmed that the LHS color pattern profiles of individuals were in fact more like each

other than they were to their own RHS and vice versa. These findings reinforce the many asymmetric differences

that can exist both within and between unique DMWs.

Research on cetacean coloration has largely focused on the more distinctly marked odontocetes (Mercer, 1973;

Mitchell, 2011). Several studies report geographic variation in the saddle patch, dorsal cape, and postocular patch of

killer whales (Orcinus orca; Baird & Stacey, 1988; Evans et al., 1982; Visser & Mäkeläinen, 2000). Similarly, the color

pattern components of white-beaked (Lagenorhynchus albirostris; Bertulli et al., 2016), spotted (Stenella frontalis;

F IGURE 7 Multiple correspondence analysis between the left-hand side (LHS) and right-hand side (RHS)
character states of each element and subelement (see supplementary material for abbreviations) for the 2017 cohort
of dwarf minke whales (DMWs). The character states which contributed most to the dimensional variance are
labeled.
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Herzing, 1997), bottlenose (Tursiops sp.; Krzyszczyk & Mann, 2012), humpback (Sousa chinensis; Chen et al., 2018),

and spinner (Stenella longirostris) dolphins (Perrin, 1972) have been shown to display ontogenetic differences. Sexual

dichromatism has also been documented in the killer whale (Evans & Yablokov, 1978) and Fraser's dolphin

(Lagenodelphis hosei; Azevedo et al., 2003). Furthermore, it is hypothesized that the distinct markings of some ceta-

ceans may aid in disruptive coloration (Madsen & Herman, 1988), intraspecific communication (Yablokov, 1963) and

prey disorientation. White markings upon the flanks (Würsig & Würsig, 1980), pectoral fins (Brodie, 1977), and man-

dible (Gaskin, 1967) are thought to be useful in corralling schools of invertebrates and fish. The asymmetrical anterior

coloration of the fin whale (Methion & Díaz L�opez, 2019), also shown here for the DMW, is an adaption that could

allow individuals to startle, concentrate, and capture prey when lunging from one side (Tershy & Wiley, 1992). An

examination of this hypothesis for the DMW was outside the scope of this study. However, our results demonstrate

that DMW color pattern complexity rivals that of many odontocetes and functional significance related to crypsis,

socialization, and foraging is certainly possible and worthy of further investigation (see also Arnold et al., 2005).

The limitations of this study should be borne in mind when interpreting these results. Firstly, imagery collection

for photo-ID depends upon the voluntary approach of individuals to swim-with-DMW vessels (Birtles et al., 2001).

Therefore, whilst there is no indication of unobserved animals on the periphery of most encounters (Mangott

et al., 2011), the resulting data only represent the interacting population. Sampling of the study area also depends

upon access made available by the tourism operators. Thus, it is neither random nor systematic, but opportunistic

and reflective of industry site use (Curnock, 2010; Curnock et al., 2013). This is a common constraint in marine-based

citizen science research. Although necessary, the sample size was further constrained to only those individuals which

could be assigned full body color pattern profiles. Many of the elements and subelements (e.g., the nape streak insert

location) were difficult to distinguish even in high quality imagery. This then raises the concern that more distinct

character states (e.g., a swirled anterior triangle) may have been overrepresented given that they were easier to

observe. The large number of categorical variables involved also somewhat confounded statistical analysis. For

example, cophenetic correlation values were moderate suggesting that each clustering result only moderately pre-

served its distance (dis)similarity matrix. Likewise, MCA plots were based upon a small amount of dimensional vari-

ance for which many individuals and variables had low axes contribution and squared cosine values.

Lastly, though we used a single, experienced assessor and the most standardized DMW color pattern categoriza-

tion tool available (Hutchings, 2020), the visual assignment of character states in this manner has the inherent poten-

tial to introduce bias. Moreover, defining color pattern in this way presents a predicament in and of itself given it

simply cannot capture fine scale detail. For instance, the nape streak dorsal portion falsely appeared entirely symmet-

rical due to the way in which it was categorized. Whilst this novel tool is a significant advance on preceding

approaches, its wider application in DMW photo-ID, particularly between multiple, inexperienced assessors, is yet to

be thoroughly reviewed and considered best practice. However, there is potential for it to be implemented into auto-

mated processes as the quantity of imagery collected and the number of identified individuals grows beyond the abil-

ity of manual methods (Konovalov et al., 2020). For example, an algorithm could be trained to read and quantify

DMW color pattern complexity based on the probabilities of variation, asymmetry, and association found for the

several elements, subelements, and character states explored here. Automatic recognition software has increased

the usability and efficiency of photo-ID for many taxa in recent years (Adams et al., 2006; Blount et al., 2022;

Carvajal-Gámez et al., 2017; Hemingson et al., 2019). The employment of this in an accurate manner for DMWs will

be made challenging by inconsistent image quality. Nonetheless, such advances have the potential to greatly acceler-

ate species assessment and conservation management action (Blount et al., 2019).

This study represents the most detailed systematic analysis of DMW color pattern complexity to date and is the

first of its kind undertaken for a mysticete species. We applied a novel categorization tool to confirm that a high level

of asymmetric color pattern variation exists, with white markings dominant and associated on the right of the body.

Future work should strive to increase understanding of DMW life history, evolution, genetics, social structure, and

feeding in order to further investigate the functional significance of their distinctive markings. Similarly, there is a

need to move towards automated approaches in DMW photo-ID as manual processes have become increasingly
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time-consuming. Although, training an algorithm to read and quantify such a complex color pattern, even in high-

quality imagery, will be a difficult feat. Our results provide a foundation for this that will, in turn, benefit the citizen

science driven photo-ID, broader research, and conservation management of this little-known cetacean.
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