New age constraints support a K/Pg boundary interval on Vega Island, Antarctica: Implications for latest Cretaceous vertebrates and paleoenvironments

Roberts, Eric M., O’Connor, Patrick M., Clarke, Julia A., Slotznick, Sarah P., Placzek, Christa J., Tobin, Thomas S., Hannaford, Carey, Orr, Theresa, Jinnah, Zubair A., Claeson, Kerin M., Salisbury, Steven, Kirschvink, Joseph L., Pirrie, Duncan, Lamanna, Matthew C., and UNSPECIFIED (2023) New age constraints support a K/Pg boundary interval on Vega Island, Antarctica: Implications for latest Cretaceous vertebrates and paleoenvironments. Geological Society of America Bulletin, 135 (3/4). pp. 867-885.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: https://doi.org/10.1130/B36422.1
 
1
1


Abstract

A second K/Pg boundary interval in the northern sector of the Antarctic Peninsula on Vega Island has been proposed, yet current temporal resolution of these strata prohibits direct testing of this hypothesis. To not only test for the existence of a K/Pg boundary on Vega Island but also provide increased age resolution for the associated vertebrate fauna (e.g., marine reptiles, nonavian dinosaurs, and avian dinosaurs), the Vega Island succession was intensively resampled. Stratigraphic investigation of the Cape Lamb Member of the Snow Hill Island Formation, and in particular, the overlying Sandwich Bluff Member of the López de Bertodano Formation, was conducted using biostratigraphy, strontium isotope stratigraphy, magnetostratigraphy, and detrital zircon geochronology. These data indicate a Late Campanian–early Maastrichtian age for the Cape Lamb Member and present three possible correlations to the global polarity time scale (GPTS) for the overlying Sandwich Bluff Member. The most plausible correlation, which is consistent with biostratigraphy, detrital zircon geochronology, sequence stratigraphy, and all but one of the Sr-isotope ages, correlates the base of the section to C31N and the top of the section with C29N, which indicates that the K/Pg boundary passes through the top of the unit. A second, less plausible option conflicts with the biostratigraphy and depends on a series of poorly defined magnetic reversals in the upper part of the stratigraphy that also correlates the section between C31N and C29R and again indicates an inclusive K/Pg boundary interval. The least likely correlation, which depends on favoring only a single Srisotope age at the top of the section over biostratigraphy, correlates the section between C31N and C30N and is inconsistent with an included K/Pg boundary interval. Although our preferred correlation is well supported, we failed to identify an Ir-anomaly, spherules/ impact ejecta, or other direct evidence typically used to define the precise position of a K/Pg boundary on Vega Island. This study does, however, confirm that Vegavis, from the base of the Sandwich Bluff Member, is the oldest (69.2–68.4 Ma) phylogenetically placed representative of the avian crown clade, and that marine vertebrates and nonavian dinosaurs persisted in Antarctica up to the terminal Cretaceous.

Item ID: 78490
Item Type: Article (Research - C1)
ISSN: 1943-2674
Copyright Information: © 2022 Geological Society of America
Date Deposited: 24 Oct 2023 00:36
FoR Codes: 37 EARTH SCIENCES > 3705 Geology > 370506 Palaeontology (incl. palynology) @ 100%
SEO Codes: 28 EXPANDING KNOWLEDGE > 2801 Expanding knowledge > 280107 Expanding knowledge in the earth sciences @ 100%
Downloads: Total: 1
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page