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Abstract

The gut microbiota are critical for maintaining the health and physiological function of individ-

uals. However, illness and treatment with antibiotics can disrupt bacterial community com-

position, the consequences of which are largely unknown in wild animals. In this study, we

described and quantified the changes in bacterial community composition in response to ill-

ness and treatment with antibiotics in a native Australian rodent, the fawn-footed mosaic-

tailed rat (Melomys cervinipes). We collected faecal samples during an undiagnosed illness

outbreak in a captive colony of animals, and again at least one year later, and quantified the

microbiome at each time point using 16s ribosomal rRNA gene sequencing. Gut bacterial

composition was quantified at different taxonomic levels, up to family. Gut bacterial compo-

sition changed between time periods, indicating that illness, treatment with antibiotics, or a

combination affects bacterial communities. While some bacterial groups increased in abun-

dance, others decreased, suggesting differential effects and possible co-adapted and syner-

gistic interactions. Our findings provide a greater understanding of the dynamic nature of the

gut microbiome of a native Australian rodent species and provides insights into the manage-

ment and ethical well-being of animals kept under captive conditions.

Introduction

The mammalian intestinal tract houses an immense diversity of microbial organisms (upwards

of 100 trillion [1, 2]). These organisms, collectively known as the gut microbiota, help to main-

tain a balance between the microecological environment and host physiological functioning,

including immunity [3–5], digestion [6], nutrition [7], metabolic function [8] and defence

against pathogens [9]. Thus, they are critical for the overall health [10, 11] and growth [6] of

the host. Importantly, the gut microbiome is strongly influenced by multiple external factors,

including diet [12], conspecifics [13] and pharmacological drugs, such as antibiotics [14].

Antibiotics can have both positive and negative effects on gut microbial composition due to

direct differential species responses (e.g., Gram-positive bacteria have a permeable cell wall
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that generally does not restrict the penetration of antibiotics [15]) and indirect effects (e.g.,

interacting effects, where a reduction or elimination of one species may allow another species

to thrive due to a reduction in competition for space and nutrients [16]). Consequently,

changes in microbial composition impact host biological functioning. For example, the bacte-

rial family Muribaculaceae is known to decrease in abundance with antibiotic treatment [11],

and decreased abundance of Muribaculaceae is associated with anxiety and depressive-like

behaviours in C57BL/6 laboratory mice [17]. In contrast, the bacterial family Akkermansiacae

increases in abundance with antibiotic treatment [11]. These bacteria provide protection from

intestinal inflammation [18–20] and gut barrier impairment [21], and increase in response to

physiological stress to help rebalance the gut microbiota [17].

While the effects of antibiotics on the gut microbiome have principally focused on humans

and laboratory animals, understanding how antibiotics impact the gut microbiome also has rel-

evance for wildlife. Trevelline et al. [22] suggested that an understanding of the gut microbiome

could have significant relevance for understanding host-microbe coevolution in wild animals,

while Chong et al. [23] suggested that it could also offer important insights for conservation.

There are two considerations. Firstly, increasing anthropogenic impacts place direct pressure

on species through increased risk of extinction, resulting in threatened species often being con-

fined to captivity for management purposes [23]. The captive management of animals could

result in the direct administration of antibiotics in response to illness [23]. While antibiotics are

essential in this context, improving the lives and health of animals [24], they would have a corre-

sponding effect on the gut microbiome, which could be positive or negative. Secondly, antibi-

otic usage by humans can have collateral effects on wildlife [24]. Anthropogenic impacts may

have an indirect effect on species through environmental contamination, where antibiotics

enter ecosystems via waterways [25] and these effects can further be carried up food chains [26].

Investigation of the effects of antibiotics on the gut microbiome of wild species thus provide

valuable information that could be useful for their management and conservation.

Fawn-footed mosaic-tailed rats (Melomys cervinipes) are medium-sized nocturnal murid

rodents endemic to Australia [27]. In 2018, individuals in a captive colony of mosaic-tailed

rats presented with an undiagnosed illness (results from blood tests, nasal swabs, stool samples

and x-rays provided no definitive diagnosis as to the cause), giving us an opportunity to

explore the effects of antibiotic treatment and illness on the gut microbiota. Symptoms

included diarrhoea, lethargy, inappetence and weight loss. Consultation with a local veterinar-

ian saw affected animals treated with Bactrim (a combination of two antibiotics: sulfamethoxa-

zole and trimethoprim). Animals responded favourably and recovered to full health on this

treatment. Healthy animals have a vigorous appetite (including active begging behaviours),

bright, wide-open eyes, maintenance of a good weight (70–80 g [27]), a well-groomed pelage

and demonstrate species-typical behaviours, including climbing [27].

The aim of the study was therefore to describe and quantify the changes in bacterial com-

munity composition in response to illness and treatment with antibiotics. As this was an

opportunistic study, we made no a priori predictions on the direction of the effects of antibiot-

ics on the gut microbial composition of mosaic-tailed rats; however, we did expect to observe

differences in gut microbial composition because of either illness, treatment with antibiotics,

or both.

Materials and methods

Ethical note

The research complied with the Australian Code for the Care and Use of Animals for Scientific

Purposes [28] and the ABS/ASAB guidelines for the ethical treatment of animals [29]. The
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Animal Ethics Screening Committee of James Cook University approved housing and hus-

bandry of animals (clearance number: A2539). The wild-caught individuals used in this study

were originally trapped with permission from the Department of Science (permit numbers:

WISP14530814 and WITK14530914). Individuals were observed daily and received beha-

vioural enrichment (scattered seeds to stimulate foraging, platforms and sticks for climbing,

and cardboard rolls and wooden blocks for chewing). Individuals were weighed every two

weeks to monitor health. The onset of the illness was sudden and without obvious cause.

When the first four individuals started showing symptoms, they were immediately transported

to a veterinarian for assessment. Unfortunately, these four individuals died prior to receiving

treatment. Twenty-three individuals that were treated with antibiotics recovered completely.

No further illnesses have occurred in this colony since. No animals were euthanised for the

purposes of this study. All deaths were natural and a consequence of the undiagnosed illness.

Subjects

Mosaic-tailed rats used in this study originated from a combination of wild-caught and F1 cap-

tive-born individuals (wild-caught: n = 15; captive-born: n = 14). All individuals were sexually

mature and had been kept in captive conditions for at least 12 months before the study. For

details on the general husbandry of mosaic-tailed rats, see Rowell & Rymer [30]. Briefly,

mosaic-tailed rats were housed individually in wire-frame cages with wood shavings for bed-

ding, and a cylindrical plastic nest box, hay, and paper towel for nesting material. Environmen-

tal enrichment items were provided. Each individual was fed ± 5 g of mixed seeds and rodent

chow (Vetafarm Origins), and ± 5 g of fruits or vegetables (e.g., apple, cucumber) daily. Water

was available ad libitum.

Sample collection and preparation

While 23 individuals were treated with antibiotics, faecal samples were only collected from 14

individuals (6 males and 8 females; individuals randomly selected for each sex from the avail-

able infected individuals) due to financial limitations associated with sequencing (designated

TREATMENT). NP was blind to the group allocation. Faecal samples were collected fresh dur-

ing routine husbandry during the period of antibiotic treatment, with the intention of collect-

ing at least 1 g of faecal samples per individual. We also collected faecal samples from the same

treated individuals (designated POST-TREATMENT) over 1 year later. Because this study was

opportunistic, there were no incidences of sick individuals not receiving antibiotics and later

recovering, nor were there incidences of healthy animals receiving antibiotics (i.e., no con-

trols). Faeces were initially frozen at -20˚C and later sent to the Australian Centre for Ecoge-

nomics (ACE; https://ecogenomic.org/) sequencing laboratory for DNA extraction and

sequencing.

DNA extraction protocol

DNA was extracted by ACE using the following protocols. The DNA was first extracted from

40–200 mg of the sample. The sample was bead beaten using 0.1–0.15 mm Zirconia/silica

beads (BioSpec Products #11079101z) on a Powerlyser 24 homogenizer (Mo-Bio #13155) as

per the manufacturer’s instructions. Thereafter, 1.2 ml of Lysis buffer (Perkin Elmer Cat No

#CMG-1076) was added to each tube, and tubes were then vortexed. Thereafter, 30 μl of Pro-

teinase K (Perkin Elmer Cat No #CMG-820) was added to each sample, samples were vor-

texed, and were then incubated at 70˚C for 10 mins. Samples were incubated at 95˚C for a

further 5 mins and then processed on a MoBio Powerlyzer for 5 mins at 2000 rpm. Samples

were then centrifuged for 1 min at 10000g. For each sample, 800 μl of supernatant was
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transferred to a deep well on a 96 well plate. DNA extraction was performed using a Chema-

gic™ 360 instrument (#2024–0020) following the manufacturer’s protocol for Purification for

Human Faeces using 75 μl specially washed magnetic beads (Perkin Elmer Cat No #CMG-

1076) and eluted into 50 μl of buffer. The DNA concentration was measured using a Qubit

high sensitivity assay (ThermoFisher Scientific; Qubit 3.0 and #Q32854). This was then

adjusted to a concentration of 5 ng/ul. The extracted DNA was of sufficient quality to proceed

without requiring further dilution or clean up.

PCR amplification and amplicon sequencing protocols

The 16s rRNA gene encompassing the V6 to V8 regions was targeted using the 926F (5’-AA
ACTYAAAKGAATTGRCGG -3’) and 1392wR (5’-ACGGGCGGTGWGTRC-3’) primers [31].

These were modified to contain Illumina specific adapter sequences

(926F:5’TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAAACTYAAAKGAATTGRCGG3’
and 1392wR: 5’GTCTCGTGGGCTCGGGTCTCGTGGGCTCGGAGATGTGTAT AAGAGACA
GACGGGCGGTGWGTRC3’). The small subunit ribosomal RNA of eukaryotes (18s) and pro-

karyotes (16s), specifically the V6, V7 and V8 regions, were amplified by the universal primer

pair Univ_SSU_926F-1392wR.

The 16s library was prepared using the workflow outlined by Illumina (#15044223 Rev.B).

PCR productions of ~466bp were first amplified according to the defined workflow, with an

alteration in polymerase used to substitute NEBNext1Ultra™ II Q51Mastermix (New

England Biolabs #M0544) in standard PCR conditions. Agencourt AMPure XP beads (Beck-

man Coulter) were used to purify the resulting PCR amplicons. The Illumina Nextera XT 384

sample Index Kit A-D (Illumina FC-131-1002) was then used to index the purified DNA with

unique 8 bp barcodes in standard PCR conditions with NEBNext1Ultra™ II Q51Mastermix.

Following the manufacturer’s protocol, the indexed amplicons were then pooled in equimolar

concentrations and sequenced on the MiSeq Sequencing System (Illumina) using paired end

sequencing with V3 300 bp chemistry.

The following control reactions were included in the amplicon library construction and

sequencing: 1) Positive amplification control to monitor bias in the amplicon library construc-

tion. This was performed from a known mock community. 2) Negative amplification control

to monitor contamination in library construction. This was performed from a like processed

reagent control; 3) Single well empty chamber controls to monitor cross contamination within

the library preparation. This was performed within processing plates; and 4) Negative index

positions between runs, designated as in line controls, to monitor for run-to-run bleed

through.

The passing quality control of the resulting sequences was determined as 10,000 raw reads

per sample prior to data processing and passing quality control metrics in line with Illumina

supplied reagent metrics of overall Q30 for 600bp reads of> 70%.

Sample analysis

ACE provides the relative abundance of different bacterial groups from the taxonomic domain

through to species, where possible. We calculated the relative abundance of different bacterial

taxa within each taxonomic rank (where there was sufficient data to allow statistical analyses)

as a percentage of the overall abundance.

Statistical analysis

Statistical analyses were performed using RStudio (version 2022.02.3; https://www.rproject.

org; R version 4.2.1, https://cran.rstudio.com). Data from all animals were used. No data points
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were excluded from any analyses. Thus, data in all models included all individuals (n = 14).

While the total number of reads was different between time periods (during antibiotic treat-

ment and after), a comparison of the proportions at the Domain level for Archaea and Eukarya

showed no significant difference (Wilcoxon rank sum test with continuity correction: Archaea:

W = 382, p = 0.192; Eukarya: W = 382, p = 0.160), suggesting that normalizing the data using

proportions is appropriate [32]. The model-level significance for all models was set at α = 0.05.

Due to the extensive size of the microbiome generally, we do not report all patterns at all

taxonomic levels. Rather, we systematically worked from the level of Domain, exploring only

those groups accounting for more than 1% (in either the TREATMENT or the POST-TREAT-

MENT group) of the bacterial diversity at each taxonomic level. Only significant statistics are

reported in text. All remaining results are reported in S1 Table.

We first used separate principal components analyses (PCA; corrplot package [33]) at each

taxonomic level (i.e., phylum, class, etc.), except Domain, incorporating the groups accounting

for more than 1% of the diversity, to reduce the number of predictors, and to discern potential

ecological relationships between different bacterial groups in relation to treatment. We only

included a principal component (PC) in later analyses if the eigen value was above 1. We

report the variance (alone and combined) for included PCs.

Thereafter, for each taxonomic level (except Domain), we tested for treatment (TREAT-

MENT vs POST-TREATMENT), sex (male or female) and birth origin (captive-born or wild-

caught) effects on the magnitude of the PCs using separate rank-based non-parametric analy-

ses for longitudinal data (F2-LD-F1 design, nparLD package [34]). We included the random

effect of individual identity as a subject in these models. These analyses offer a robust frame-

work for non-continuous variables, small sample sizes and skewed data [34]. Only significant

effects are noted in the text, but all results are presented in S1 Table. Cohen’s d effect sizes were

calculated for the main effects only using the effectsize package [35] and are presented with

confidence intervals in brackets.

We then ran individual rank-based non-parametric analyses for longitudinal data

(F2-LD-F1 design) to determine which bacterial groups might be the main contributors of pat-

terns of variation within each PC. We only report statistical information for bacterial groups

where the factor under scrutiny was significant (e.g., when analysing phyla, if there was a treat-

ment effect for PC1, we systematically ran models for each bacterial phylum contributing the

most to that PC, and report only those models that showed a treatment effect; main text and

S1 Table).

We used the phyloseq package [36] to graphically display the alpha diversity of the gut bacte-

rial community from each time period. We also compared overall bacterial community abun-

dance for each time period using paired t-tests. Finally, we identified species of particular

pathogenic interest unique to each time period, and then used the KEGG database (Kyoto Ency-

clopedia of Genes and Genomes; (https://www.kegg.jp/kegg/) to explore potential functional

pathways. We used FunGene (the functional gene pipeline & repository; http://fungene.cme.

msu.edu/) to briefly explore some relationships with known antibiotic resistance genes [37].

Results

Domain

There was a significant effect of treatment on the abundance of Bacteria (ATS = 41.17, df = 1;

p< 0.001; d = 1.52 [0.66, 2.35]). The period of antibiotic treatment resulted in a significantly

lower abundance of Bacteria (mean ± SE: TREATMENT: 84.31 ± 3.05%; POST-TREAT-

MENT: 97.82 ± 1.41%; Fig 1). There were no other significant effects or interactions on the

abundance of Bacteria in the microbiome (S1 Table).
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Phylum

12 bacterial phyla were common in both time periods. Of these, six phyla collectively

accounted for more than 99% of the bacterial diversity, regardless of the period of time

(TREATMENT: Bacteroidota: 42.23 ± 5.06%; Cyanobacteria: 2.53 ± 1.01%; Bacillota:

35.32 ± 1.72%; Fusobacteria: 1.60 ± 1.25%; Pseudomonadota: 9.13 ± 3.39%; Verrucomicro-

biota: 8.52 ± 2.78%; POST-TREATMENT: Bacteroidota: 48.39 ± 2.41%; Cyanobacteria:

0.68 ± 0.16%; Bacillota: 44.68 ± 3.38%; Fusobacteriota: 0.12 ± 0.12%; Pseudomonadota:

1.94 ± 0.50%; Verrucomicrobiota: 3.54 ± 1.23%).

For bacterial phyla, the first and second PCs collectively explained 66.29% of the variance

(S2 Table). For PC1 (hereafter PC_Phylum1), Verrucomicrobiota contributed the most to the

variance (31%), followed by Bacteroidota (25%), Fusobacteriota (23%) and Pseudomonadota

(17%). Verrucomicrobiota, Fusobacteriota and Pseudomonadota were all positively correlated

with each other, and all were negatively correlated with Bacteroidota (S3 Table). For PC2

(hereafter PC_Phylum2), Bacillota contributed the most to the variance (55%), followed by the

Cyanobacteria (28%). However, there was no significant correlation between these two bacte-

rial phyla., and the abundance of Cyanobacteria was not correlated with any other phylum.

The Bacillota was significantly negatively correlated with all PC_Phylum1 phyla (S3 Table).

While there was no significant treatment effect for PC_Phylum1 (ATS = 0.13; df = 1;

p = 0.715; d = 0.61 [-0.15, 1.37]; Fig 2A), there was a significant treatment effect for Pseudomo-

nadota (ATS = 18.62; df = 1; p< 0.001; d = -0.79 [-1.56, -0.02]), which showed a significantly

higher abundance during the period of antibiotic treatment (Fig 2B). There was also a signifi-

cant birth � treatment effect on the abundance of Pseudomonadota (ATS = 14.60; df = 1;

p< 0.001), with captive-born individuals showing a significantly lower abundance of Pseudo-

monadota during the period following treatment with antibiotics and illness. Furthermore,

there was a significant treatment effect for PC_Phylum2 (ATS = 9.51; df = 1; p = 0.002; d =

-0.85 [-1.62, -0.06]; Fig 2A), which was likely associated with the abundance of Bacillota

(ATS = 10.04; df = 1; p = 0.002; d = 0.93 [0.14, 1.71]). There was a significantly lower

Fig 1. Box and whisker plot of Domain Bacteria (%) in fawn-footed mosaic-tailed rat (Melomys cervinipes) faecal

samples. For rats treated with antibiotics (TREATMENT) and more than one year later (POST-TREATMENT).

https://doi.org/10.1371/journal.pone.0281533.g001
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abundance of Bacillota during the period of antibiotic treatment (Fig 2B). There were no other

significant effects (S1 Table).

Class

14 bacterial classes were common in both time periods. Of these, eight accounted for more

than 93% of the bacterial diversity, regardless of the period of time (TREATMENT: Alphapro-

teobacteria: 2.05 ± 0.89%; Bacilli: 6.03 ± 1.66%; Bacteroidia: 42.23 ± 5.06%; Clostridia:

Fig 2. (a) Principal components analysis and (b) Box and whisker plot of two Bacterial Phyla in fawn-footed mosaic-tailed

rat (Melomys cervinipes) faecal samples. Principal components analysis shows the first two principal components of 6

bacterial phyla for rats treated with antibiotics (red) and more than one year later (blue). Box and whisker plot of Phyla

Bacillota (%) and Peusodomonadota (%) for both treatments.

https://doi.org/10.1371/journal.pone.0281533.g002
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24.43 ± 1.56%; Fusobacteriia: 1.60 ± 1.25%; Gammaproteobacteria: 7.09 ± 3.44%; Negativi-

cutes: 1.21 ± 0.35%; Verrucomicrobiae: 8.52 ± 2.78%; POST-TREATMENT: Alphaproteobac-

teria: 0.68 ± 0.36%; Bacilli: 11.97 ± 1.60%; Bacteroidia: 48.39 ± 2.41%; Clostridia:

32.49 ± 2.80%; Fusobacteriia: 0.12 ± 0.12%; Gammaproteobacteria: 1.26 ± 0.29%; Negativi-

cutes: 0.18 ± 0.17%; Verrucomicrobiae: 3.54 ± 1.23%).

For bacterial classes, the first and second PCs collectively explained 60.37% of the variance

(S2 Table). For PC1 (hereafter PC_Class1), Verrucomicrobiae contributed the most to the var-

iance (31%), followed by Bacteroidia (23%), Fusobacteriia (21%) and Gammaproteobacteria

(16%). Verrucomicrobiae, Fusobacteriia and Gammaproteobacteria were all positively corre-

lated with each other, and all were negatively correlated with Bacteroidia, although the rela-

tionship was only significant between Bacteroidia and Verrucomicrobiae (S3 Table). For PC2

(hereafter PC_Class2), Negativicutes contributed the most to the variance (26%), followed by

the Clostridia (20%), Alphaproteobacteria (19%) and the Bacilli (18%). The Negativicutes were

significantly negatively correlated with both the Bacilli and Clostridia, which were positively

correlated with each other (S3 Table). There were no other significant correlations observed

(S3 Table).

There was no significant treatment effect for PC_Class1 (ATS = 0.11; df = 1; p = 0.744; Fig

3A; d = 0.55 [-0.21, 1.30]). However, there was a significant treatment effect for PC_Class2

(ATS = 10.26; df = 1; p = 0.001; d = 0.97 [0.18, 1.75]; Fig 3A), which was likely associated with

the abundance of Bacilli (ATS = 6.96; df = 1; p = 0.008; d = -1.05 [-1.83, -0.25]), Clostridia

(ATS = 8.49; df = 1; p = 0.004; d = 0.95 [0.16, 1.73]) and Negativicutes (ATS = 9.68; df = 1;

p = 0.002; d = -1.00 [-1.78, -0.21]). There was a significantly lower abundance of Bacilli and

Clostridia during the period of antibiotic treatment, whereas there was a significantly higher

abundance of Negativicutes during this period (Fig 3B). There were no other significant effects

(S1 Table).

Order

27 bacterial orders were common across both time periods. Of these, 10 accounted for more

than 63% of the bacterial diversity, regardless of the period of time (TREATMENT: Bacteroi-

dales: 42.22 ± 5.06%; Enterobacterales: 4.46 ± 3.36%; Erysipelotrichales: 3.65 ± 0.70%; Eubac-

teriales: 24.42 ± 1.56%; Fusobacteriales: 1.60 ± 1.25%; Gastranaerophilales: 2.50 ± 1.02%;

Lactobacillales: 5.97 ± 1.67%; Rhodospirillales: 2.02 ± 0.89%; Selenomonadales: 1.21 ± 0.35%;

Verrucomicrobiales: 8.52 ± 2.78%; POST-TREATMENT: Bacteroidales: 48.26 ± 2.42%; Enter-

obacterales: 0.12 ± 0.12%; Erysipelotrichales: 8.58 ± 1.49%; Eubacteriales: 0.00 ± 0.00%; Fuso-

bacteriales: 0.12 ± 0.12%; Gastranaerophilales: 0.54 ± 0.14%; Lactobacillales: 1.62 ± 0.27%;

Rhodospirillales: 0.66 ± 0.36%; Selenomonadales: 0.18 ± 0.17%; Verrucomicrobiales:

3.53 ± 1.23%).

For bacterial orders, the first four PCs collectively explained 73.40% of the variance (S2

Table). For PC1 (hereafter PC_Order1), Verrucomicrobiales contributed the most to the vari-

ance (24%), followed by Bacteroidales (20%), Fusobacteriales (19%) and Enterobacterales

(14%). Verrucomicrobiales, Fusobacteriales and Enterobacterales were all positively correlated

with each other, and all were negatively correlated with Bacteroidales, although the relation-

ship was only significant between Bacteroidales and Verrucomicrobiales (S3 Table). For PC2

(hereafter PC_Order2), Selenomonadales contributed the most to the variance (24%), followed

by Eubacteriales (16%), and these two bacterial orders were significantly positively correlated

(S3 Table). For PC3 (hereafter PC_Order3), Gastranaerophilales contributed the most to the

variance (47%), followed by Rhodospirillales (24%) and Erysipelotrichales (15%). The Gastra-

naerophilales were significantly positively correlated with the Erysipelotrichales, but there
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were no other significant correlations (S3 Table). Finally, for PC4 (hereafter PC_Order4), Lac-

tobacillales contributed the most to the variance (63%). Interestingly, the Lactobacillales were

only significantly negatively correlated with Eubacteriales (S3 Table).

There was a significant treatment effect for PC_Order1 (ATS = 21.90; df = 1; p< 0.001; Fig

4A; d = 1.09 [0.28, 1.87]), which was likely associated with the abundance of Fusobacteriales

(ATS = 5.62; df = 1; p = 0.018; d = -0.45 [-1.19, 0.31]) and Enterobacterales (ATS = 5.20; df = 1;

p = 0.023; d = -0.49 [-1.24, 0.27]), with both groups showing significantly higher abundance

during the period of antibiotic treatment and illness (Fig 4B). There was also a significant

Fig 3. (a) Principal components analysis and (b) Box and whisker plot of three Bacterial Classes in fawn-footed mosaic-

tailed rat (Melomys cervinipes) faecal samples. Principal components analysis shows the first two principal components of

8 bacterial classes for rats treated with antibiotics (red) and more than one year later (blue). Box and whisker plot of Class

Bacilli (%), Clostridia (%) and Negativicutes (%) for both treatments.

https://doi.org/10.1371/journal.pone.0281533.g003
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treatment effect for PC_Order2 (ATS = 46.05; df = 1; p< 0.001; Fig 4A; d = 2.80 [1.73, 3.85]),

which was likely associated with the abundance of both Eubacteriales (ATS = 210.55; df = 1;

p< 0.001; d = -1.00 [-1.78, -0.21]) and Selenomonadales (ATS = 9.68; df = 1; p = 0.002; d =

-1.00 [-1.78, -0.21]). There was a significantly higher abundance of both bacterial orders dur-

ing the period of antibiotic treatment and illness (Fig 4B). There was also a significant sex �

birth � treatment interaction for PC_Order3 (ATS = 5.84; df = 1; p = 0.016; Fig 4A), which was

likely associated with a treatment effect (ATS = 10.27; df = 1; p = 0.001; d = 1.14 [0.32, 1.93])

and a birth � treatment effect (ATS = 4.70; df = 1; p = 0.030) on the abundance of Erysipelotri-

chales and, to a lesser extent, by a near significant sex � birth � treatment effect on the

Fig 4. (a) Principal components analysis and (b) Box and whisker plot of six Bacterial Orders in fawn-footed mosaic-

tailed rat (Melomys cervinipes) faecal samples. Principal components analysis shows the first two principal components of

10 bacterial orders for rats treated with antibiotics (red) and more than one year later (blue). Box and whisker plot of

orders Eubacteriales (%), Erysipelotrichales (%), Rhodospirillales (%), Selenomonadales (%), Fusobacteriales (%) and

Enterobacterales (%) for both treatments.

https://doi.org/10.1371/journal.pone.0281533.g004
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abundance of Rhodospirillales (ATS = 3.06; df = 1; p = 0.080). There was a significantly lower

abundance of Erysipelotrichales during the period of antibiotic treatment and illness (Fig 4B),

but captive-born individuals showed a greater shift in abundance from the period of antibiotic

treatment and illness to the period post-treatment from 3.5% to 10.2% compared to wild-

caught individuals, which increased from 3.8% to only 6.5%. In addition, male captive-born

individuals had significantly higher abundances of Rhodospirillales during the period of treat-

ment than following treatment, and had significantly higher abundances of Rhodospirillales

than male wild-caught individuals at both time periods, and female captive-born individuals

in the period following treatment. There were no other significant effects (S1 Table).

Family

49 bacterial families were common in both time periods. Of these, 17 accounted for more than

88% of the bacterial diversity, regardless of the period of time (TREATMENT: Akkermansia-

ceae: 8.52 ± 2.78%; Bacteroidaceae: 10.29 ± 2.59%; Clostridiales vadin BB60 group:

0.36 ± 0.34%; Enterobacteriaceae: 4.46 ± 3.36%; Erysipelotrichaceae: 3.65 ± 0.70%; Eubacteria-

ceae: 0.01 ± 0.00%; Fusobacteriaceae: 1.60 ± 1.25%; Lachnospiraceae: 19.42 ± 1.40%; Lactoba-

cillaceae: 5.90 ± 1.67%; Muribaculaceae: 13.75 ± 3.55%; Peptostreptococcaceae: 2.36 ± 0.34%;

Prevotellaceae: 0.37 ± 0.37%; Rhodospirillales (uncultured): 2.02 ± 0.89%; Rikenellaceae:

4.27 ± 1.49%; Oscillospiraceae: 1.85 ± 0.19%; Tannerellaceae: 13.42 ± 2.64%; Veillonellaceae:

1.21 ± 0.35%; POST-TREATMENT: Akkermansiaceae: 3.53 ± 1.23%; Bacteroidaceae:

2.24 ± 1.47%; Clostridiales vadin BB60 group: 1.31 ± 0.29%; Enterobacteriaceae: 0.12 ± 0.12%;

Erysipelotrichaceae: 8.52 ± 1.51%; Eubacteriaceae: 2.43 ± 0.68%; Fusobacteriaceae:

0.12 ± 0.12%; Lachnospiraceae: 19.87 ± 1.89%; Lactobacillaceae: 1.30 ± 0.16%; Muribaculaceae:

42.00 ± 3.05%; Peptostreptococcaceae: 0.14 ± 0.12%; Prevotellaceae: 0.58 ± 0.36%; Rhodospiril-

lales (uncultured): 0.66 ± 0.36%; Rikenellaceae: 1.08 ± 0.59%; Oscillospiraceae: 3.09 ± 0.51%;

Tannerellaceae: 1.95 ± 0.86%; Veillonellaceae: 0.00 ± 0.00%).

For bacterial families, the first six PCs collectively explained 76.10% of the variance (S2

Table). For PC1 (hereafter PC_Family1), Peptostreptococcaceae contributed the most to the var-

iance (16%), followed by Muribaculaceae (14%), Tannerellaceae (12%), Rikenellaceae (8%) and

Eubacteriaceae (8%). Peptostreptococcaceae, Tannerellaceae and Rikenellaceae were all signifi-

cantly positively correlated with each other, and all were negatively correlated with Muribacula-

ceae and Eubacteriaceae, while Muribaculaceae and Eubacteriaceae were positively correlated

with each other (S3 Table). For PC2 (hereafter PC_Family2), Fusobacteriaceae contributed the

most to the variance (27%), followed by Akkermansiaceae (24%) and Clostridiales vadin BB60

group (13%). Fusobacteriaceae was significantly positively correlated with Akkermansiaceae,

and neither were correlated with Clostridiales vadin BB60 group (S3 Table). For PC3 (hereafter

PC_Family3), Lachnospiraceae contributed the most to the variance (31%), followed by Prevo-

tellaceae (23%). They were not significantly correlated with each other (S3 Table).

For PC4 (hereafter PC_Family4), Rhodospirillales (uncultured) contributed the most to the

variance (22%), followed by Oscillospiraceae (17%). Although these two families were nega-

tively correlated, this was not significant (S3 Table). For PC5 (hereafter PC_Family5), Entero-

bacteriaceae contributed the most to the variance (25%), followed by Erysipelotrichaceae

(16%), Veillonellaceae (15%) and Bacteroidaceae (10%). Enterobacteriaceae and Erysipelotri-

chaceae were significantly negatively correlated, while Veillonellaceae and Bacteroidaceae

were significantly positively correlated (S3 Table) Finally, for PC6 (hereafter PC_Family6),

Lactobacillaceae contributed the most to the variance (61%).

There was a significant treatment effect for PC_Family1 (ATS = 34.41; df = 1; p < 0.001;

d = 2.48 [1.46, 3.46]; Fig 5A), which was likely associated with the abundance of
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Eubacteriaceae (ATS = 58.76; df = 1; p < 0.001; d = 1.35 [0.52, 2.17]), Muribaculaceae

(ATS = 48.02; df = 1; p< 0.001; d = 2.28 [1.30, 3.23]), Peptostreptococcaceae (ATS = 39.04;

df = 1; p < 0.001; d = -2.31 [-3.26, -1.33]) and Tannerellaceae (ATS = 19.17; df = 1;

p< 0.001; d = -1.56 [-2.40, -0.70]) with Eubacteriaceae and Muribaculaceae showing signifi-

cantly higher abundances in the period following treatment with antibiotics and illness, and

Peptostreptococcaceae and Tannerellaceae showing significantly higher abundances during

the period of antibiotic treatment and illness (Fig 5B). There was also a significant treatment

effect for PC_Family4 (ATS = 4.36; df = 1; p = 0.037; Fig 5A; d = -0.49 [-1.24, 0.27]), which

Fig 5. (a) Principal components analysis and (b) Box and whisker plot of 5 bacterial families in fawn-footed mosaic-tailed

rat (Melomys cervinipes) faecal samples. Principal components analysis shows the first two principal components of 17

bacterial families for rats treated with antibiotics (red) and more than one year later (blue). Box and whisker plot of orders

Eubacteriaceae (%), Muribaculaceae (%), Oscillospiraceae (%), Peptostreptococcaceae (%) and Tannerellaceae (%) for

both treatments.

https://doi.org/10.1371/journal.pone.0281533.g005
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was likely associated with the abundance of Oscillospiraceae (ATS = 9.93; df = 1; p = 0.002;

d = 0.86 [0.08, 1.63]), with a higher abundance being observed during the period following

treatment with antibiotics and illness (Fig 5B). There were no significant treatment effects

for the remaining families (S1 Table).

There was a significant sex effect for PC_Family1 (ATS = 4.00; df = 1; p = 0.046; d = -0.42

[-1.17, 0.35]), which was likely associated with sex effects for Muribaculaceae (ATS = 4.29;

df = 1; p = 0.038; d = -0.42 [-1.18, 0.34]), Peptostreptococcaceae (ATS = 6.94; df = 1; p = 008;

d = 0.46 [-0.30, 1.22]) and Rikenellaceae (ATS = 15.25; df = 1; p< 0.001; d = -0.75 [-1.51,

0.02]), with males having a significantly higher abundance of Muribaculaceae than females,

but females having a significantly higher abundance of both Peptostreptococcaceae and Rike-

nellaceae. There was also a significant sex effect for PC_Family2 (ATS = 6.12; df = 1; p = 0.013;

d = 0.16 [-0.58, 0.90]), although which family was driving this sex effect for this PC is not clear.

There was also a significant sex � birth � treatment interaction for PC_Family4 (ATS = 4.18;

df = 1; p = 0.041), which was likely associated with a treatment effect observed for Oscillospira-

ceae, and a near significant sex � birth � treatment effect for Rhodospirillales (uncultured)

(ATS = 3.06; df = 1; p = 0.080). Wild-caught females and captive-born males showed a greater

abundance of Rhodospirillales (uncultured) during the period of antibiotic treatment and ill-

ness, while the lowest abundance of Rhodospirillales (uncultured) was observed in wild-caught

males during treatment and captive-born males following treatment (0.26% for each). There

were no other significant effects (S1 Table).

Bacterial community diversity and species of interest

Mean observed overall abundance was significantly higher for the period following treatment

with antibiotics and illness (t13 = -16.21, p < 0.001; Fig 6). All alpha diversity indices calculated

were greater for the period following treatment with antibiotics and illness (Fig 6).

Two bacterial species from Class Gammaproteobacteria, namely Pseudomonas aeruginosa
(Family Pseudomonadaceae) and Stenotrophomonas maltophilia (Family Xanthomonadaceae),

were identified from faecal samples collected during treatment with antibiotics and illness, but

not from samples taken a year later. Using KEGG, three biological pathways for Pseudomonas
aeruginosa were identified (biofilm formation, exopolysaccharide biosynthesis and quorum

sensing), but no pathways were identified for Stenotrophomonas maltophilia. One bacterial

species from Phylum Bacillota, namely Clostridium perfringens (Family Clostridiaceae), one

bacterial species from Phylum Pseudomonadota, namely Haemophilus influenzae (Family Pas-

teurellaceae), and one bacterial species from Phylum Actinomycetota, namely Nocardiopsis
dassonvillei (Family Nocardiopsaceae), were identified from faecal samples collected more

than a year following treatment with antibiotics and illness, but not from samples taken during

the illness itself. However, as both Haemophilus influenzae and Nocardiopsis dassonvillei were

detected in only single, separate individual mosaic-tailed rats, their presence was unlikely a

response to this illness. Using KEGG, one biological pathway for quorum sensing was identi-

fied for Clostridium perfringens. Finally, Clostridioides difficile (Family Peptostreptococcaceae)

was present at both time periods, but at significantly higher abundance during the period of

treatment with antibiotics and illness (V = 91, p = 0.013). No pathways were identified for C.

difficile in the KEGG database. Several antibiotic resistance genes (FunGene database), includ-

ing arna, beta_intI1 and vante were associated with all 6 bacterial species, while some in the

aac2i family (e.g., aac2i and aac2ib) were only common to P. aeruginosa and Stenotrophomo-
nas maltophilia. Not all associations are noted here.
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Discussion

In this study, we explored the effects of antibiotic treatment and illness on the gut microbiota

of fawn-footed mosaic-tailed rats at different taxonomic levels. Because this study was oppor-

tunistic, there were no incidences of sick individuals not receiving antibiotics and later recov-

ering, nor were there incidences of healthy animals receiving antibiotics. Therefore, the results

cannot be isolated specifically to the effects of antibiotics alone, the effects of illness alone, or a

combination of antibiotics and illness. Furthermore, we cannot rule out potential contamina-

tion effects due to opportunistic sampling and analysis through an external laboratory [38]. As

a result, we discuss the results with a broader view to possible effects, noting that future studies

will be required to clearly untangle these effects.

At the level of the domain, there was a lower abundance of Bacteria during the period of ill-

ness and treatment with antibiotics. This is not surprising, as antibiotics are commonly used to

eliminate or reduce the virulence of harmful bacteria that have accumulated in the body [39].

While some antibiotics are fairly specific to their target bacteria, many antibiotics prescribed are

broad-spectrum, having the capacity to affect both harmful and beneficial bacteria [40]. Further-

more, symptoms of illness, such as diarrhoea, are also known to purge the gut of microbiota [41].

Fig 6. Species diversity measures of the bacterial community in fawn-footed mosaic-tailed rat (Melomys cervinipes) faecal samples. For rats treated with

antibiotics (TREATMENT) and more than one year later (POST-TREATMENT).

https://doi.org/10.1371/journal.pone.0281533.g006
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The Bacteroidota and Bacillota dominated the bacterial diversity, regardless of the period of

time. This is consistent with other mammals (e.g., redfronted lemurs (Eulemur rufifrons) [42];

koalas (Phascolarctos cinereus) [23]). The positive correlation between Verrucomicrobiota,

Fusobacteriota and Pseudomonadota, and the increased abundance of these bacterial phyla

during the period of illness and treatment with antibiotics, suggest possible direct interactions

between bacterial phyla. Increased abundance of Pseudomonadota during the period of illness

and treatment with antibiotics is thought to arise due to increasing epithelial oxygenation, dis-

rupting anaerobiosis and leading to an expansion of facultative Pseudomonadota [43]. Thus,

Pseudomonadota are thought to be good signatures of illness [44], signalling the risk of infec-

tion and inflammatory response [45] and a bloom in Pseudomonadota reflects gut dysbiosis

[46]. Dramatic colonisation of the gut microbiota by Verrucomicrobiota following antibiotic

treatment is also known [47, 48]. Because of the important role of Verrucomicrobiota in glu-

cose homeostasis [49], perhaps an increase in abundance of bacteria in this phylum in

response to Pseudomonadotal blooms could reflect an attempt by the host to restore gut dys-

biosis. Furthermore, we also found that there was a lower abundance of Bacillota during the

period of illness and treatment with antibiotics, consistent with Xavier [50]. Importantly, the

negative correlation between Bacillota and Bacteroidia is typical of the responses of these two

phyla to antibiotic treatment [40], and further demonstrates how the ratio of Bacillota to Bac-

teroidia (known as the F/B ratio) is indicative of gut dysbiosis, particularly with relevance to

inflammatory bowel disease [51].

The Bacteroidia and Clostridia dominated the bacterial classes, regardless of the period of

time. This is consistent with studies by Kim et al. [52], Pajarillo et al. [53] and Dong et al. [54].

The decreased abundance of Bacilli and Clostridia in the guts of mosaic-tailed rats during the

period of illness and treatment with antibiotics is likely reflective of the negative state of the

animals at the time. Ulcerative colitis is an inflammatory bowel disease, and a decrease in the

abundance of Bacilli occurs during ulcerative colitis [55]. Similarly, inflammatory bowel dis-

ease is characterised by a decreased abundance of Clostridia [56]. Finally, an increased abun-

dance of Negativicutes during the period of illness and treatment with antibiotics is consistent

with other studies (e.g., feedlot cattle [57]).

The majority of Negativicutes are Gram-negative, obligate anaerobes, whereas Bacilli are

predominantly Gram-positive, with both anaerobic and aerobic species. Furthermore, Clos-

tridia, while also strictly anaerobic, contain both Gram-positive and Gram-negative species.

The decreased abundance of Bacilli and Clostridia is likely a consequence of purging of the gut

microbiota from diarrhoea [41], consistent with symptoms presented by the illness in the col-

ony of mosaic-tailed rats. It is also possible that the combination of sulfamethoxazole-trimeth-

oprim is more effective against Gram-positive Bacilli and Clostridia, contributing to their

decreased abundance, whereas this treatment may be less effective against Gram-negative spe-

cies, such as Negativicutes. These associations warrant further investigation.

The Bacteroidales, Eubacteriales, Lactobacillales and Verrucomicrobiales dominated the

bacterial orders, regardless of the period of time. This is largely consistent with Maurice et al.

[58] for wild wood mice (Apodemus sylvaticus). Our findings of an increase in abundance of

Fusobacteriales in response to antibiotic treatment is consistent with those for pigs [59], and a

disruption to the gut microbiota, such as via infection, is known to lead to blooms of Entero-

bacterales in other species [60], which likely explains the increased abundance observed here.

An increase in the abundance of Eubacteriales under antibiotic treatment is consistent with

female BALB/c mice treated with a combination of metronidazole, ampicillin, neomycin sul-

phate, vancomycin, and ceftriaxone sodium [61]. Interestingly, this increased abundance is

suggested to represent either a compensatory response to a reduction in bacteria belonging to

the family Muribaculaceae [62], which we observed here, or that bacteria in this order, being
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more resistant to antibiotics [62] can flourish during these periods. However, why we found

an increased abundance of Selenomonadales will require additional studies, although

increased abundance of this group may be reflective of a particular diseased state (e.g.,

increased Selenomonadales abundance is seen for type 2 diabetes [63], but not type 1 diabetes

[64]). Finally, our findings of decreased Erysipelotrichales during the period of illness and anti-

biotic treatment are consistent with studies on humans experiencing Crohn’s inflammatory

bowel disease [65, 66], while increased Erysipelotrichales in the period following antibiotic

treatment is suggestive that members of this order are highly immunogenic and can flourish

post-antibiotic treatment [67, 68]. We also found that wild-caught individuals showed a slower

recovery of this bacterial family over time compared to captive-born individuals. This varia-

tion in the overall abundance of Erysipelotrichales because of birth origin has also been

observed in the endangered Amargosa vole (Microtus californicus scirpensis) [69]. Variation in

the abundance of Erysipelotrichales, particularly Allobaculum, has been linked to ingestion of

a high fibre and carbohydrate rich diet [70, 71]. However, these studies showed contrasting

effects. If wild-caught mosaic-tailed rats retain some of their native microbial communities in

response to the diet provided, this might explain why wild-caught and captive-born individu-

als differed specifically in this bacterial order.

The administration of antibiotics likely had a direct effect on the abundance of Peptostrep-

tococcaceae, Muribaculaceae and Tannerellaceae, as a similar increase in abundance of Peptos-

treptococcaceae and Tannerellaceae, and decrease in abundance of Muribaculaceae, in

different strains of laboratory mice, is known to occur in response to treatment with antibiotics

(gentamycin sulphate and cefradine: Peptostreptococcaceae [72]; amoxicillin: Muribaculaceae

[73]; Clindamycin: Tannerellaceae [74]). We also found sex-specific differences in gut micro-

bial composition for Muribaculaceae, Peptostreptococcaceae and Rikenellaceae. A higher

abundance of Muribaculaceae in males and a higher abundance of Rikenellaceae in females is

consistent with studies of C57BL/6 laboratory mice [75]. Similarly, a higher abundance of Pep-

tostreptococcaceae in females is consistent with studies on B6.129S wild-type mice [76].

A decreasing abundance of Oscillospiraceae, with a corresponding increase in Bacteroida-

ceae, is also consistent with a diseased state, particularly signalling the onset of inflammation

[77]. Interestingly, we found a decreased abundance of Eubacteriaceae during the period of

treatment with antibiotics and illness, which contrasts other studies showing the opposite pat-

tern in humans treated with rifaximin [78] or in dogs in response to inflammatory bowel dis-

ease [79]. A decrease in abundance of this bacterial family could suggest co-adapted or

synergistic interactions with Muribaculaceae, whereby effects experienced by one family

affected the other. However, this remains to be tested.

Infectious agents interact with each other, and virulence can be affected by their interac-

tions with other pathogens [80]. These mechanisms can include antagonisms or synergisms

(e.g., quorum sensing [81]). Antagonisms or synergisms between different bacterial orders

could explain why some bacterial groups increased in abundance while others decreased in

abundance in response to the antibiotics and illness. However, targeted studies are needed to

determine whether the relationships between the different groups are simply a consequence of

their similar responses (e.g., both Eubacteriales and Lactobacillales increased in abundance, so

they may be simply positively correlated because of this) or are the outcome of particular

pathobiotic mechanisms [82].

Alpha diversity indices were lower during this period of illness and treatment with antibiot-

ics. While diversity indices may fail in that they may not include lower abundance taxa [83],

the overall abundance of bacteria was depressed during the period, suggesting that bacterial

communities are compromised by illness, antibiotics, or both. During the period of illness and

treatment with antibiotics, two bacterial species with pathogenic properties were identified,
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namely Pseudomonas aeruginosa and Stenotrophomonas maltophilia. Neither species was iden-

tified in the microbiome of mosaic-tailed rats assessed over a year later. Pseudomonas aerugi-
nosa is an opportunistic multi-drug resistant pathogen that produces redox-active phenazines

(e.g., pyocyanin and phenazine 1-carboxylic acid or PCA) involved in several biological path-

ways, including quorum sensing [84], biofilm formation and virulence [85, 86], iron acquisi-

tion [84, 85] and exopolysaccharide biosynthesis [87]. Pseudomonas aeruginosa converts PCA

to pyocyanin via the phenazine-modifying genes, phzM and phzS [88] and is also known to

suppress host immunity by activating the DAF-2-Insulin-like signalling pathway [89].

Stenotrophomonas maltophilia is an uncommon bacterium, and infection is difficult to treat

[90]. It is involved in biofilm formation, with spgM, rmlA, and rpfF genes having a close associ-

ation with biofilm formation [91]. Stenotrophomonas maltophilia also secretes outer mem-

brane vesicles (OMVs) that cause an inflammatory response and stimulate the expression of

proinflammatory cytokine and chemokine genes, including interleukin (IL)-1β, IL-6, IL-8,

tumour necrosis factor-α and monocyte chemoattractant protein-1 [92].

Clostridium perfringens forms a normal component of the intestinal microflora [93]. Some

of its isolates show resistance to sulfamethoxazole and trimethoprim antibiotics [94]. Thus, it

is surprising that it was absent from samples obtained during the period of illness and antibi-

otic treatment. Why this was the case is not clear. Haemophilus influenzae and Nocardiopsis
dassonvillei (an opportunistic human pathogen [95]) were each detected in only single, sepa-

rate individuals, suggesting that their presence was unlikely a response to this illness.

Clostridioides difficile was present in the gut at both time periods; however, its abundance

was higher during the period of illness and treatment with antibiotics. It is well known for its

antibiotic resistance [96] and for causing serious diarrhoeal infections [97], although it can

also become established in the gut without signs of disease [98]. This bacterium produces both

enterotoxin [99] and cytotoxin [100], glucosyltransferases that target and inactivate the Rho

family of GTPases [101], which are the causative agents of diarrhoea and inflammation. Clos-
tridioides difficile is also involved in several biological pathways, including quorum sensing

[102], exopolysaccharide biosynthesis, encoded by the slpA gene and 11 of its paralogs [103]

and biofilm formation, a key regulator of which is the Spo0A gene [104].

Our results provide a greater understanding of how illness and antibiotics impact the gut

microbiome of a native Australian rodent species kept under captive conditions. While the ill-

ness remains undiagnosed, antibiotic treatment was effective in curing all affected individuals,

and no reoccurrence of the illness has subsequently occurred. Following the illness and treat-

ment with antibiotics, all individuals were visually monitored daily and weighed every two

weeks to assess body condition. While some potentially pathogenic bacteria were recorded in

the guts of some individual mosaic-tailed rats in the period following illness and treatment

with antibiotics, their general low abundance, and no physical manifestation of symptoms in

individuals carrying these bacteria suggests that presence is not necessarily indicative of poten-

tial illness, and that these bacteria may simply comprise a normal component of the gut micro-

flora, as is known for Clostridium perfringens [93]. Furthermore, that the overall bacterial

diversity of the mosaic-tailed rat microbiome increased over time suggests that normal gut

homeostasis was restored over time and provides a good baseline for future comparisons of

the gut microbiota in this population.

Preventing or managing illness in captive species is a fundamental ethical issue, and

humans have a duty of care to ensure that captive species are provided treatment in the event

of illness (clause 3.2.1 [28]). However, as our study shows, illness and treatment with antibiot-

ics can have vastly different effects on the different bacterial groups found in the gut, depleting

some, while causing characteristic blooms in others. Future studies on the gut microbial com-

position of wild fawn-footed mosaic-tailed rats will be useful for understanding how captivity
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affects the microbiome independently of illness and antibiotic treatment, providing new

insights into the effective management of this species and related species in captivity. Further-

more, studies with carefully considered controls and deliberate manipulation of antibiotics

could equally provide insights into the specific reasons for why we observed changes in the gut

microbial communities of mosaic-tailed rats.
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