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Abstract

This paper analyses a set of random fractional partial differential equations (rfPDEs)

for water movement in soils. The rfPDEs for both rigid and swelling soils are solved

for both a random flux boundary condition (BC), and random concentration

BC. Solutions from a random flux BC are presented for the large-time and small-time

situations with the large-time solution as a very simple method for determining the

flux through the surface of the soil. The equation of cumulative infiltration is pre-

sented with random parameters of the rfPDE subject to a random concentration

BC. The simulations using the results of the rfPDE for the two types of BCs yielded

encouraging and stable results based on two sets of field data: the first set of the

data was measurements at a single site while the second set was from 26 measure-

ments in a small catchment. The results suggest that the presented procedures are

very useful methods for the interpolation, extrapolation, and prediction of hydrologi-

cal variables and parameters such as water content, hydraulic conductivity or the flux

through the surface of the soil. The methodologies presented in this paper are able

to reveal and reproduce the realistic hydrological processes in nature which are often

stochastic and random.
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1 | INTRODUCTION

The natural processes in the environment and the environment itself

are variable and their uncertainties are common in time and space.

The movement of water in soils is a typical example which is affected

by many factors such as the non-uniformity of soil properties and

uncertain exchanges of water, other materials and the energy inside

and outside of the soil. Many existing deterministic assumptions spec-

ified in models for water movement in soils may not be the optimal

choice although the use of deterministic models is an unquestioned

norm. To account for these uncertainties, stochastic or random

models are expected to better represent realistic water movement in

soils, which is the key focus of this paper.

Partial differential equations (PDEs) play a central role in describ-

ing water flow, solute transport and related processes overland, in

soils and aquifers as well as in water bodies (Bear, 1971). Based on

the fractional PDEs (fPDEs) for water flow in soils (Su, 2014, 2021),

random fractional partial differential equations (rfPDEs) for water

movement in soils are investigated and examples are analysed in this

paper. The rfPDEs discussed in this paper are extensions of the fPDEs

by considering the stochastic parameters, initial condition (IC),
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boundary conditions (BCs) or source terms which constitute the math-

ematical problem of water movement in soils.

In this paper, the following conventions are made:

1. in this Introduction section, Yevjevich's (1974) convention is fol-

lowed that regards the words stochastic, random and probabilistic

as synonyms in generic descriptions. In the rest of the paper, the

two words, stochastic and random, refer to different forms of

PDEs, ODEs or fPDEs.

2. a stochastic fPDE (sfPDE) refers to those special forms of PDEs for

the process of water flow or solute movement in porous media

that are driven by a stochastic source term in the form of fractional

Brownian motion (fBm) which is Gausian with unbounded trajecto-

ries (Burgos et al., 2022) or the principal variable is stochastic

(Makahane & Atangana, 2022).

3. random fPDE (rfPDE) refers to an fPDE with a random parameter or

parameters which appear, at least, in one of the following forms:

(1) the coefficient(s) or parameter(s) of an rfPDE; (2) order(s) of

fractional derivatives; (3) initial condition (IC); (4) boundary condi-

tions (BCs), and (5) source terms. The randomness could be any

probability distribution functions in the terms from (1) to (5) with-

out a specific requirement for its distribution such as fBm for an

sfPDE (Burgos et al., 2022). The random PDE was considered an

emergent mathematical subject since the surveys by Bharucha-

Reid (1973) appeared (Casabán et al., 2018). In this paper, we fur-

ther consider random fPDEs or rfPDEs for water movement in

soils, particularly infiltration subject to two types of random inputs

on the surface of the soil known as the boundary condition in addi-

tion to the random hydraulic conductivity and stochastic moisture

content.

The debate whether an event is deterministic or stochastic has

been an opinion towards philosophy and science for about 3000 years

since the Greek civilisation (Yevjevich, 1974). The two approaches in

the quantitative analysis of water flow in geological strata and on the

earth surface appeared more than a century ago.

The classic PDEs with either constant or deterministic functions as

coefficients are based on integer calculus and emerged from the situa-

tions when ordinary differential equations (ODEs) failed to model

some physical phenomena such as vibration of strings, waves in liq-

uids and in the gravitational field, and propagation of sound (Evans

et al., 1999). The earliest PDEs were proposed for the analysis of

imaginary fluids in terms of hydrodynamics, a word coined by Euler in

1734 as a pure mathematic topic (Evans et al., 1999). Principles in

hydrodynamics were applied to real fluids to form hydraulics

(Daugherty et al., 1989) which was further extended to create hydrol-

ogy at large scales.

In hydrodynamics and hydraulics, a set of integer-based PDEs

known as the Navier–Stokes equations (NSEs) evolved over time and

appear in the literature as the bridge stones of fluid mechanics. The

simplified NSEs appear as different models including Darcy's law for

the velocity of water movement in porous media, and the Saint-

Venant equations for flow on the surface and/or in channels which

have been simplified further to form a number of other models such

as the kinematic wave equation for overland flow, and so forth (Chow

et al., 1988).

Models based on the integer calculus have dominated hydrology,

soil science and related fields since the middle 1800s when Darcy

(1856) presented a differential equation for the analysis of water flow

in porous media. Darcy's experiment and analysis marked the modern

era of the formal mathematical analysis of water flow in soils and

aquifers. Boussinesq (1904) presented a set of PDEs for hydrodynam-

ics, particularly one PDE for water flow in aquifers which is widely

used today. Shortly after those developments, Gardener and Widstoe

(1921) proposed PDEs for water movement in soils, and one of which

was applied further to develop an equation of infiltration which essen-

tially predates the well-known Horton equation (Horton, 1939). How-

ever, Gardner and Widstoe's formulation with the density as the

principal variable for water flow is not used today, instead Richards'

(1931) potential-based PDE, widely known as the Richards equation,

has been the most commonly used mathematical model in the context

of unsaturated flow in porous media.

The earlier developments and applications of PDEs were mainly

concerned with deterministic systems until 1827 when Robert Brown

observed random motion of pollens suspended in water

(Gardiner, 1985, p. 2–3). Lord Rayleigh (J.W. Strutt, 1902) first consid-

ered the statistical description of the random motion following

Brown's observations with no substantial findings. It was Einstein

(1905) whose work about the nature of Brown motion must be

regarded as the beginning of the stochastic modelling of natural phe-

nomena (Gardiner, 1985, p. 2–3).

The emergence of fPDEs for water movement in soils is among

the latest developments in hydrology and soil science, which is a

result of the gradual improvement in our understanding of material

movement in the environment. The development of fPDEs for generic

“environmental processes” by Compte (1997) is one particularly rele-

vant example. Comprehensive developments on the related topics

have recently been presented by the author (Su, 2021).

The author (Su, 2014, 2021) has shown that the fPDE can be

derived for water movement in soils from the theory of the

continuous-time random walks (CTRW), where the variables for space

and time are random variables and the probability density function

(pdf) of the random walks is the principal variable in the fPDE. This

means that fPDEs for water flow and solute transport in porous media

derived from the CTRW theory are stochastic models. However, the

nomenclature for these kinds of equations in the similar literature

does not conform to the conventional definition of a stochastic fPDE

(or sfPDE) because neither is a stochastic source term essential nor

are their coefficients random.

The fPDEs for water movement in soils appeared around three

decades ago, and the literature on their detailed analysis and applica-

tions have not been comparable to those for integer PDEs such as the

Richards equation. Three issues are clearly worthwhile investigating

for water movement in soils, which are (1) the variability in the param-

eters in the fPDEs; (2) variability of the initial condition and/or

(3) boundary conditions to reflect more natural conditions and uncer-

tain environments. Examples of random conditions and uncertain

environments include a variable rainfall on the surface of the soil, and
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the random or probabilistic changes in the soil properties along soil

profiles and across the field.

The types of distributions of soil particles across a soil profile par-

tially determine the soil properties which are reflected in model

parameters such as the diffusivity and hydraulic conductivity of the

soil. According to Hartemink (2016), reports in the English literature

alone indicated that Donaldson (1852) seemed to be the first to report

physical investigations of soils, particularly soil texture and particle

sizes so that quantitative investigations of soil properties along soil

profiles would have taken place in the late 1800s.

When a mathematical model from continuum fluid mechanics is

introduced to model water flow in porous media with discrete flow

paths resulting from complex pore geometries, some kinds of averag-

ing methods are required to assess a quantity of the flow across the

porous media. At the pore scale, the spatial distribution of pores could

be highly variable, and one kind of analysis is analogous to electric sig-

nals superimposed with random noises. By defining a representative

elementary volume (REV) (Marle, 1967), an REV functions as a noise

filter similar to the signal filter in electrical engineering that filters out

the random noises and produces a smooth signal (Yeh &

Stephens, 1988, p. 12). Mathematically, the process is formulated as

H xð Þ¼
ð
h xþηð Þf ηð Þdη, ð1Þ

where H xð Þ is the output as a smoothed, continuous, function; h xð Þ is
the original, noisy and irregular signal, and f ηð Þ is the filter equivalent

to a weighting factor.

In geological investigations, stochastic differential equations

(SDEs) were also used for deriving descriptions of particle size distri-

butions (Gripenberg, 1934; Krumbein, 1934) and earlier quantitative

investigations clearly appeared which can be seen from these bibliog-

raphies in different languages. SDEs were further applied to analyse

flow in heterogeneous porous media by Warren and Price (1961).

In addition to the SDEs, porosity and permeability as key parame-

ters of flow and porous media were found to obey log-normal distri-

butions by Law (1944) who was regarded as the first researcher to do

so (Freeze, 1975). While the previous works were important pioneer-

ing studies on flow in porous media, mainly in the petroleum industry,

the stochastic approach by Freeze (1975) on flow in aquifers was

regarded by Dagan (2002) as the emergence of stochastic modelling

in a hydrological context even though Matheron (1965, 1969, 1971,

1973) explored earlier stochastic distributions of hydrological vari-

ables and parameters in terms of geostatistics and stochastics (see

also de Marsily, 1986).

Mueller (2009) provided a concise overview of the origin and

development of sPDEs. It is seen from Mueller that SDEs were stud-

ied intensively throughout the twentieth century, but sPDEs were

investigated much later. The sPDE has diverse origins with early work

stemming from Zakai (1969) in filtering theory, and theoretical devel-

opment by Pardoux (1972, 2007) and Krylov and Rosovski (1981) (see

also Dalang et al., 2009; Walsh, 1986). rPDEs emerged as a mathe-

matical subject in the early 1970s marked by Bharucha-Reid's (1973)

survey (Casabán et al., 2018).

In more applied fields such as geosciences and engineering, a brief

historical review of stochastic modelling of flow in porous media was

provided by Warren and Price (1961). Stochastic modelling of water

flow in soils and transport in porous media in general was reported by

Freeze (1975), Matheron and de Marsily (1980), Gelhar (1986), Cush-

man (1987), Serrano (1990), Serrano and Unny (1990), Simmons et al.

(1995) and Dagan (2002). Reports on geostatistical, spatial stochastic

analyses of flow can be found in Matheron (1965, 1969, 1971, 1973),

and geospatial random processes and parameter estimation are

detailed in a comprehensive monograph by Christakos (1992).

Stochastic modelling and issues in surface hydrology were pro-

vided by Yevjevich (1974), Klemeš (1978), Yevjevich (1987), Wright

et al. (2020) and Beven (2021). A futuristic opinion on hydrological

modelling, including stochastic approaches, was discussed by Yevje-

vich (1991).

The above survey indicates that the investigations reported to

date include the applications of PDEs, sPDEs and fPDEs for water

flow in porous media, statistical/stochastic descriptions of porous

media for flow parameters (diffusivity and conductivity etc.) and

porous media itself with the REV concept, initial condition or bound-

ary conditions, and source terms. Earlier investigations on porous

media can be traced back to the middle and late 1800s, stochastic

modelling of natural environmental processes started in 1905 and the

diverse origins of the stochastic approaches started around the 1960s.

In this paper, the rfPDE is solved subject to two types of random

BCs: one BC is for a random flux at the surface of the soil and the sec-

ond BC is a random water content on the surface. Solutions derived

from these two types of BCs are then used for assessing important

hydrological processes:

1. the solution derived from the random flux BC is used to compute

the variable rate of infiltration into the soil which is very important

but very difficult to determine in practice, and.

2. the solution from the random water content on the boundary is

used to derive an equation of cumulative infiltration. With the

equations of cumulative infiltration, the random parameters are

used to generate random interpolation and extrapolation of cumu-

lative infiltration based on field data measured both at a site

(Talsma & van der Lelij, 1976) and from 26 sites at a catchment

scale (Sharma et al., 1980). Detailed analyses and discussion of the

results are presented in relevant sections, which demonstrate that

the methods and procedures presented in this paper are very

robust, stable, consistent, and reliable for hydrological applications.

2 | MATHEMATICAL PRELIMINARIES AND
BACKGROUND FOR WATER FLOW IN SOILS

2.1 | Random models and concepts

In terms of water flow in soils, the earlier presentation (Su, 2014)

established the connection between the CTRW concept and anoma-

lous water flow in both rigid and swelling soils. The CTRW theory

models the motion of particles or water parcels with two probabilities

SU 3 of 15
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for the two stages of random particle movements: one probability

relates to the motion (or jump) length and the second probability to

the waiting time of the particles before the next movement in a

sequence of two states. Each jump length and the waiting time are

independent random variables (irv), and each probability is indepen-

dently identically distributed (iid) (Gorenflo et al., 2007; Tejedor &

Metzler, 2010). The iid positive waiting times are denoted by

T1,T2,T3,…, each having the same probability density function (pdf),

φ tð Þ,t>0, and the iid random jumps are denoted by X1,X2,X3,… in a

real domain, R, each having the same pdf w xð Þ,x�R. With these defi-

nitions, the probability density of the particle (or water parcel) move-

ment in the soil can be written in the Laplace-Fourier domain as

(Gorenflo et al., 2007; Gorenflo & Mainardi, 2005)

êu κ,sð Þ¼ sβ�1

sβþjκjγ iωsignκ
, ð2Þ

where κ and s are the Fourier and Laplace transform variables,

respectively; β is the exponent for the probability of the waiting time

intervals between two consecutive steps; γ is the exponent for the

probability of the length of steps for the random walks; ω is the

skewness acting on the space variable, jωj≤ min γ,2� γf g,
and iωsignκ ¼ exp i signκð Þωπ=2½ �.

In the symmetrical case of ω¼0, Equation (2) can be inverted to

the following fractional diffusion-wave equation (fDWE) (Gorenflo &

Mainardi, 2009).

∂βu x,tð Þ
∂tβ

¼ ∂γu x,tð Þ
∂xγ

, u x,0ð Þ¼ δ xð Þ: ð3Þ

The fDWE in Equation (3) with the Dirac delta function, δ(x), as

an initial condition results from the asymptotic or long-time

approximation of the CTRW model with the two transitional pdfs for

the length of jumps, P X > xð Þ, and waiting time intervals, P J> tð Þ,
obeying power laws, that is, P X > xð Þ≈ x�γ , and P J> tð Þ≈ t�β

(Meerschaert, 2011).

The left-hand side of Equation (3) is the Caputo fractional

derivative with respect to time, t, while the right-hand side of it is the

Riesz-Feller fractional derivative (RFFD) with respect to space, x. The

connections between RFFD and other fractional derivatives such as

Riemann-Liouville fractional derivatives (RLFD) and Caputo fractional

derivatives (CFD) can be found in Gorenflo et al. (2002). In the sym-

metrical case of ω¼0, the RFFD is simply the Riesz potential, and the

difference between RFFD and RLFD is the factor (see details in

Appendix A),

cþ β,0ð Þ¼ c� β,0ð Þ¼ 1
sin πβ=2ð Þ , ð4Þ

which can be incorporated in the diffusion coefficient so that RFFD

and RLFD can be conveniently used interchangeably.

With convection due to a shift jump size distribution in the

CTRW theory (Zhang et al., 2009), a set of fPDEs were presented ear-

lier (Su, 2014) and one of these fPDEs to be analysed in this paper is

of the form

∂βθ

∂tβ
¼ ∂

∂z
D θð Þ ∂

ηθ

∂zη

� �
� ∂K θð Þ

∂z
ð5Þ

with

0< β ≤1; 0 < η≤1 ð6Þ

and θ is the water content; D θð Þ and K θð Þ are the diffusivity and

hydraulic conductivity functions, respectively; z is the depth of the soil

and t is time. The diffusivity and hydraulic conductivity is related

through the relationship (Philip, 1969)

D θð Þ¼K θð Þdψ
dθ

, ð7Þ

where ψ is the water potential in the unsaturated soil.

An extension of the CTRW theory and fPDE to swelling soils has

also been provided which can be written as (Su, 2014),

∂βθ

∂tβ
¼ ∂

∂m
Dm θð Þ ∂

ηθ

∂mη

� �
� γnα�1ð ÞdKm θð Þ

dθ
∂θ

∂m
, ð8Þ

where m is the material coordinate; γn is the particle specific gravity; α

is the gradient (or slope) of the shrinkage curve, which is a ratio on the

graph of the specific volume, v, versus water content or moisture

ratio, θ; Dm θð Þ is the material diffusivity given by

Dm θð Þ¼Km θð Þ
1þθ

dΦ
dθ

ð9Þ

with Φ being the unloaded matrix potential, and Km θð Þ being the

unsaturated material hydraulic conductivity defined as (Smiles &

Raats, 2005, Equation (29), for a negative sign in their Equation (28))

Km θð Þ¼ km
θs

γnα�1ð Þ ð10Þ

with km being the saturated material hydraulic conductivity (Smiles &

Raats, 2005) given a

km ¼K θð Þθs, ð11Þ

where K θð Þ is the conventional unsaturated hydraulic conductivity.

Based on the previous development (Su, 2014, 2021), we further

investigate random boundary conditions and parameters in fPDEs for

water flow in soils.

4 of 15 SU
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2.2 | Methods for solutions of random fPDEs

There are different methods for the solutions of random fPDEs

(or rfPDEs), and methods used in this paper are based on the random

Laplace transform method detailed by Casabán et al. (2015) and mean

square Laplace transform by Burgos et al. (2022). Interested readers

are referred to related literature for other methods such as random

differential operational calculus (Villafuerte et al., 2010), random

Laplace transform (Casabán et al., 2015), random Fourier transform

(Casabán et al., 2018), and mean square Laplace transform (Burgos

et al., 2022) etc.

3 | RANDOM FRACTIONAL PARTIAL
DIFFERENTIAL EQUATIONS FOR WATER
MOVEMENT IN SOILS

Here we are mainly concerned with rfPDEs for water movement in

soils. For simplicity, let us define that θ is a random variable, and

Equation (5) with η¼1 applies to vertical water movement in soils,

∂βθ

∂tβ
¼ ∂

∂z
D θð Þ ∂θ

∂z

� �
� ∂K θð Þ

∂z
ð12Þ

with

0< β ≤1: ð13Þ

3.1 | Parameters and their forms

3.1.1 | Diffusivity and hydraulic conductivity

While the relationship between the diffusivity and hydraulic conduc-

tivity is defined in Equation (7), a large number of functions have been

found to be suitable for the diffusivity (Philip, 1960a, 1960b). In prac-

tice, power functions are important and convenient for the diffusivity

(Philip, 1992),

D θð Þ¼D0θ
b ð14Þ

and the hydraulic conductivity

K θð Þ¼K0θ
k , ð15Þ

where D0, b, K0, and k are constants, which need to be determined

experimentally.

3.1.2 | Dimensions of the parameters

When a fractional order is introduced into the PDE such as in

Equation (12), there are different options for defining the dimensions

of the fPDE. One option is to accept and use the new dimensions in

an fPDE, and the second option is to introduce a new parameter to

the original PDE (Kilbas et al., 2006, p. 464) so that the usual dimen-

sions of the parameters are retained while ensuring correct dimen-

sions in the fPDE. With the approach by Kilbas et al. (2006), the new

fractional diffusion coefficient and hydraulic conductivity in

Equation (12) are, respectively, updated as

Df ¼D θð Þτ1�β ð16Þ

and

Kf ¼K θð Þτ1�β , ð17Þ

where β is the order of the fPDE in Equation (12); D θð Þ and K θð Þ are
the diffusion coefficient and hydraulic conductivity, respectively, in

the integer-based PDE, and τ is the new time parameter which accom-

modates the new dimensions. With this approach, Equation (12) is

updated to be

∂βθ

∂tβ
¼ τ1�β ∂

∂z
D θð Þ ∂θ

∂z

� �
� ∂K θð Þ

∂z

� �
: ð18Þ

3.2 | The possible random terms in an fPDE for
water flow in soils

The randomness of the flow problem can appear in any of the follow-

ing terms and/or their combinations:

1. Equation (12) and its IC and BCs such as the flux into or out of

the soil;

2. D θð Þ and/or K θð Þ;
3. β (Li et al., 2009; Sun et al., 2009, 2011).

The order of fractional derivatives can take different forms.

Reports in the literature suggest that the order of fractional deriva-

tives can be one of seven types, which ranges from a constant to a

random function (for a brief summary, see Su, 2021, p. 109). In this

paper, we use a constant β that only varies with different soils. We

are particularly interested in the random flux of water through the

surface of the soil, random water content on the surface of the soil

and relevant solutions while the randomness of D θð Þ and K θð Þ are
allowed.

4 | SOLUTIONS SUBJECT TO A RANDOM
FLUX BOUNDARY CONDITION ON THE
SURFACE OF THE SOIL

4.1 | The random flux boundary condition for rigid
soils

For rigid soils, solutions of the rfPDE in Equation (18) is solved for soil

water movement subject to a random flux BC or the BC of the third

kind with a semi-infinite profile:

SU 5 of 15
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θ¼ θi, t¼0, z>0, ð19Þ

τ1�β K θð Þ�D θð Þ ∂θ
∂z

� �
¼ τ1�βr, t>0, z¼0, ð20Þ

∂θ

∂z
¼0, t>0, z!∞, ð21Þ

where θi is the initial water content; r is the random flux on the sur-

face of the soil with the dimension L=T½ �, and it is positive for inflow

into the soil and negative for evaporation from the soil. Note that the

random flux accompanied by a dimensional correction factor τ1�β;

K θð Þ and D θð Þ are the hydraulic conductivity and diffusivity, respec-

tively. All these quantities could take forms of random variables

(Casabán et al., 2015), deterministic functions or constants as

reported in the literature.

For swelling soils, the corresponding IC and BCs are given below,

θ¼ θi, t¼0,m>0, ð22Þ

τ1�β γnα�1ð ÞKm θð Þ�Dm θð Þ ∂θ
∂m

� �
¼ τ1�βr, t>0, m¼0, ð23Þ

∂θ

∂m
¼0, t>0, m!∞: ð24Þ

In the derivation of the solutions, the reduced water content

is used,

ϑ¼ θ�θi
θs�θi

, ð25Þ

where θs is the saturated value of θ.

We look for solutions of Equation (18) with b¼0, and k¼1 for

the diffusivity and hydraulic conductivity as discussed in Su (2010,

2012, 2014) with conditions in Equations (19), (20) and (21). Applying

the random Laplace transform (Casabán et al., 2015) to Equation (18)

and the conditions in Equations (19), (20) and (21) yields the following

result,

D0
d2eϑ
dz2

�K0
deϑ
∂z

� τβ�1sβeϑ¼0, ð26Þ

eϑ¼0, t¼0, z>0, ð27Þ

τ1�β K0
eϑ�D0

∂eϑ
∂z

" #
¼ τ1�βr, t> 0, z¼0, ð28Þ

∂eϑ
∂z

¼0, t> 0, z!∞, ð29Þ

where s is the random Laplace transform variable and eϑ is the random

Laplace transform of ϑ.

The solution of a similar problem defined by Equation (26) subject

to Equations (27), (28) and (29) () has been given in the Laplace

domain (Gershon & Nir, 1969; van Genuchten & Alves, 1982)

eϑ z,sð Þ¼ r
K0

2τ1�βK0

uþ τ1�βK0

� �
exp

τ1�βK0�u
� �ez

2τ1�βD0

� �
ð30Þ

with

u¼ τ1�βK0 1þ 4D0sβ

τ3 1�βð ÞK2
0

 !1=2

: ð31Þ

Equation (30) is very complex in the Laplace domain and cannot

be easily inverted analytically, and numerical inversion is required. In

this paper, we present two forms of asymptotic solutions below which

correspond to large-time and small-time asymptotic results.

4.2 | Large-time solutions for rigid and swelling
soils

4.2.1 | Large-time solution for rigid soils

In this method, an exact inversion of Equation (30) is not visibly possi-

ble, and numerical approximations can be carried out for certain situa-

tions. Here we are only interested in the large time situation when

t!∞ or s!0, u≈ τ1�βK0 in Equation (31) so that Equation (30) can

be inverted to yield a solution of the form

ϑ z,tð Þ¼ r
K0

, ð32Þ

which, with the original variables restored, is

θ¼ θs�θið Þr
K0

þθi ð33Þ

with the dimensions of K0 and r as L=T½ �.
Equation (33) is very easy to use for determining the water con-

tent given the influx on the surface and the conductivity of the soil. In

fact, in most situations it is much more convenient to measure the

water content and the conductivity of the soil because the accurate

influx is unknown for it is the net inflow rate rather than the gross

rainfall intensity or irrigation rate. For this reason, Equations (32) and

(33) are rearranged to yield

r¼ϑ z,tð ÞK0, ð34Þ

which, with the original variables restored, is

r¼K0
θ�θi
θs�θi

� �
: ð35Þ
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In these solutions from Equations (32) to (35), the influx r >0 is

for infiltration and r <0 for evaporation.

4.2.2 | Large-time solution for swelling soils

Referring to the previous section, the related solution and results for

swelling soils are

θ¼ θs�θið Þr
γnα�1ð ÞK0

þθi ð36Þ

and

r¼ γnα�1ð ÞK0
θ�θi
θs�θi

� �
, ð37Þ

where r >0 is for infiltration and r <0 for evaporation.

4.3 | Small-time approximation

4.3.1 | Small-time approximation rigid soils

The derivation of the small-time solution is detailed in Appendix B

with the aid of random Laplace transform (Casabán et al., 2015), and

the solution for small time is presented as Equation (B10),

ϑ z,tð Þ¼ K0 r

D1=2
0

exp
K0z
2D0

� �
t β=2ð Þ�1ϕ �β=2, β=2;� z

D1=2
0 tβ=2

 !
, ð38Þ

where

ϕ �β=2,β=2;� z

D1=2
0 tβ=2

 !
¼
X∞
k¼0

1
k!Γ 1�kð Þβ=2½ � � z

D1=2
0 tβ=2

 !k

ð39Þ

is the Wright function (Gorenflo et al., 1999; Kilbas et al., 2006). The

temporal component of Equation (38) can be written as

Φ �β=2,β=2;� z

D1=2
0 tβ=2

 !
¼ t β=2ð Þ�1ϕ �β=2,β=2;� z

D1=2
0 tβ=2

 !
ð40Þ

which is the generalized Wright function (GWF).

Stankovi�c (1970), Equation (31) showed that the GWF in

Equation (40) has an asymptotic expression for z
D1=2
0

tβ=2
!∞, that is,

Φ �β=2,β=2;� z

D1=2
0 tβ=2

 !
� sin πβ=2ð ÞΓ 1�β=2ð Þ

π

z

D1=2
0 tβ=2

 ! β=2ð Þ�1

,

ð41Þ

which enables Equation (38) to be written as

ϑ z,tð Þ� K0 r

D1=2
0

exp
K0z
2D0

� �
sin πβ=2ð ÞΓ 1�β=2ð Þ

π

z

D1=2
0 tβ=2

 ! β=2ð Þ�1

ð42Þ

for z
D1=2
0

tβ=2
!∞.

4.3.2 | Small-time approximation for swelling soils

Referring to the Equation (38) in the previous section, the parallel

solution for swelling soils is

ϑ m,tð Þ¼ γnα�1ð ÞK0 r

D1=2
m0

exp
γnα�1ð ÞK0m

2Dm0

� �
t β=2ð Þ�1ϕ �β=2,β=2;� m

D1=2
m0 t

β=2

 !
,

ð43Þ

where

ϕ �β=2,β=2;� m

D1=2
m0 t

β=2

 !
¼
X∞
k¼0

1
k!Γ 1�kð Þβ=2½ � � m

D1=2
m0 t

β=2

 !k

ð44Þ

with Dm0 for swelling soils which is equivalent to D0 for rigid soils.

The corresponding asymptotic result of Equation (43) for swelling

soils is

ϑ m,tð Þ� γnα�1ð ÞK0 sin πβ=2ð ÞΓ 1�β=2ð Þr
πD1=2

m0

exp
γnα�1ð ÞK0m

2Dm0

� �
m

D1=2
m0 t

β=2

 ! β=2ð Þ�1

ð45Þ

for m
D1=2
m0

tβ=2
!∞.

4.4 | Examples: determination of the random flux
into and out of the soil using the large-time solution

In this section, two examples are demonstrated to compute the ran-

dom flux into and out of the soil surface based on Equation (35) with

the given random soil water content θ and random hydraulic conduc-

tivity K0. The first example is generated from a small variability in the

soil water content and the second example from a large variability in

the water content of the soil.

Both examples are based on the same hydraulic conductivity.

Note that due to the random nature of the variables, each simulation

is different from the previous result even though the same values are

assigned to these parameters.

4.4.1 | Random influx with a small variability in the
water content of the soil

With the measured water content, θ, and hydraulic conductivity of

the soil, K0, as random values, the random infiltration flux, r, is

SU 7 of 15
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computed using Equation (35). As the random variable could take any

forms of probability distributions (Casabán et al., 2018), it is assumed

here that both the water content and hydraulic conductivity of the

soil have the normal distributions. The random variables representing

both θ and K0 were generated by the random number generator,

randn, in MATLAB (Mathworks, Inc., 2002).

The input values for these random parameters are hypothesised

as: the mean θ¼0:3 with a standard deviation σ¼0:02, and the mean

K0 ¼10:0mm=h with a standard deviation σ¼1:0mm=h. Then the

computed random flux, r, is shown together with the inputs in

Figure 1.

While it is feasible to determine the random infiltration flux, r, in

Figure 1 using Equation (35) with both the measured water content, θ,

and hydraulic conductivity of the soil, K0, as random values, a con-

stant K0 can also be used for simplicity.

4.4.2 | Random influx with a large variability in the
water content of the soil

The input values for this example are hypothesised as: the mean

θ¼0:3 with a standard deviation σ¼0:06, and the mean

K0 ¼10:0 mm=h with a standard deviation σ¼1:0mm=hour. The com-

puted random flux, r, is shown together with the inputs in Figure 2.

The computation of the flux using Equation (35) or (37) is very

easy, and this procedure is probably one of the simplest inverse prob-

lems. The simulated results presented in Figures 1 and 2 are straight-

forward, which simply show that the larger the influx, the higher the

water content in the soil.

5 | SOLUTIONS SUBJECT TO A
CONCENTRATION BOUNDARY CONDITION

5.1 | Solutions for swelling soils

With the following initial and boundary conditions,

θ¼ θi , t¼0, m>0, ð46Þ

θ¼ θ0, t>0, m¼0, ð47Þ

θ!0, t>0, m!∞ ð48Þ

the solution of Equation (8) with η¼1 was presented earlier

(Su, 2010) with deterministic parameters. In the current analysis, the

parameters of the fPDE in Equation (8) are treated as random parame-

ters and related results are discussed here.

With a constant diffusivity, and linear hydraulic conductivity of

the form

K¼K1þK0θ ð49Þ

and the initial and boundary conditions in Equations (46), (47) and

(48), the cumulative infiltration is similar to the one given earlier

(Su, 2010)

I tð Þ¼AtþStβ=2 ð50Þ

and the infiltration rate is given by differentiating Equation (50) with

respect to time,

F IGURE 1 Computed random fluxes
into and out of the soil, r from the
measured water content, θ, and hydraulic
conductivity, K0.
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i tð Þ¼Aþ β

2
St β=2ð Þ�1, ð51Þ

where A is the final infiltration rate, and S is the anomalous sorptivity

given by

S¼ θ0�θið ÞΓ 1�β=2½ �D1�β=2
m

2 K0 γnα�1ð Þ½ �1�β
: ð52Þ

When the anomalous sorptivity is known, rearranging

Equation (52) yields the anomalous diffusivity for the swelling media,

Dm ¼ 2S K0 γnα�1ð Þ½ �1�β

Γ 1�β=2½ � θ0�θið Þ

( )2= 2�βð Þ
: ð53Þ

5.2 | Solutions for rigid soils

For rigid or non-swelling soils, with the initial and boundary conditions

are

θ¼ θi , t¼0, z>0, ð54Þ

θ¼ θ0, t>0, z¼0, ð55Þ

θ!0, t> 0, z!∞ ð56Þ

the equation for cumulative infiltration is

I tð Þ¼AtþStβ=2 ð57Þ

and the infiltration rate is given by differentiating Equation (57) with

respect to time,

i tð Þ¼Aþ β

2
St β=2ð Þ�1, ð58Þ

where A is the final infiltration rate, and S is the anomalous sorptivity

given by

S¼ θ0�θið ÞΓ 1�β=2½ �D1�β=2

2K1�β
0

: ð59Þ

When the anomalous sorptivity is known, rearranging

Equation (59) results in the anomalous diffusivity for the swelling

media,

D¼ 2SK1�β
0

Γ 1�β=2½ � θ0�θið Þ

( )2= 2�βð Þ
: ð60Þ

5.3 | Methods for determining values of the
parameters

The final infiltration rate, A, and the anomalous sorptivity, S, derived

in the previous analysis (Su, 2010) from the data of Talsma and van

der Lelij (1976), are treated as random ones here, and the values of A

and S were the results of optimal curve fitting which are regarded as

the mean value in this example. Other methods based on the spectral

analysis (Yu et al., 2010) can also be used when the number of mea-

surements is large.

F IGURE 2 Computed random
fluctuations of the soil water flux from a
higher water content, θ, and hydraulic
conductivity, K0.
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5.4 | Examples

In this section, examples are presented for the application of the ran-

dom infiltration equation in Equation (50) and its parameters. These

examples are based on data measured in the field for both a single

location (examples [1] and [2]) and a number of measurements at a

catchment scale (example [3]).

5.4.1 | Measurements and random simulation at a
single site

Randomly simulated parameters A and S

The data used in this study was collected by Talsma and van der Lelij

(1976) from a rice field near Coleambally, New South Wales,

Australia. The dominant soil type is Wunnamurra clay and Tuppal clay.

An earlier study (Su, 2010), which presented an fPDE and verified

using the data of cumulative infiltration by Talsma and van der Lelij

(1976), showed that A¼1:29 mm=day, S¼48:58 mm=day1=2, and

β¼0:2385 for this clay soil complex.

Based on Equation (50) which is identical in structure to the equa-

tion presented earlier (Su, 2010) but with different definitions, the

parameter values derived (Su, 2010) are A¼1:29 mm=day,

S¼48:58 mm=day1=2 and β¼0:2385, and it is also assumed that a

standard deviation of A is σ¼0:1 mm=day and that of S is

σ¼3:0 mm=dayβ=2. With these data, Figure 3 is generated using the

randn algorithm in MATLAB which generates normal distributions for

both A and S. Note that with the introduction of the dimensional

correction factor τ1�β (Kilbas et al., 2006), the dimensions of A and S

have the usual units and are different from the previous report in

Su (2010).

While the final infiltration rate, A, in Figure 3 is determined as a

random variable, it can also be treated as a constant for simplicity

which is different from the sorptivity as shown in Equation (52) as a

function of different parameters.

Interpolation of the cumulative infiltration subject to random A and S

Based on the earlier findings (Su, 2010) using data from a single site

(Talsma & van der Lelij, 1976), here we treat A¼1:29 mm=day,

S¼48:58 mm=dayβ=2 as the random variables with β¼0:2385, and

standard deviation of σ¼0:1 mm=day for A and that of

σ¼3:0 mm=dayβ=2 for S as demonstrated in Figure 3. Then the ran-

dom variability in cumulative infiltration in Equation (50) subject to

these random parameters is computed and graphed in Figure 4.

The seemingly stable and consistent trend of the cumulative infil-

tration generated by the normal distributions for both random vari-

ables A and S suggest that the methodologies based on the rfPDE is

an excellent tool for interpolation, extrapolation, and prediction.

5.4.2 | Measurements and random simulation at a
catchment scale

Spatial variability of infiltration parameters A and S

In this example, the random concept and the related equation of

cumulative infiltration and its parameters demonstrated in the

F IGURE 3 The variability of the two
random variables A and S for a single
location.
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previous examples are applied to a catchment scale. The catchment,

where the data on infiltration were collected from 26 sites by Sharma

et al. (1980), was a 9.6-ha small catchment in the Southern Great

Plains near Chickasha, Oklahoma, USA. Three soil types were identi-

fied as Renfrow silt loam, Grant silt loam and Kingfisher silt loam.

Equation (50) was fitted to the measured data of Sharma et al.

(1980) for infiltration at a catchment scale, which resulted in

A¼0:0348, S¼0:5869, and β¼1:0. In comparison with the results in

the previous example with data of Talsma and van der Lelij (1976), the

value of β is much larger because the soils in this catchment are silt

loams rather than clay complex. Based on these derived values, a stan-

dard deviation of σ¼0:002 cm=min for A and σ¼0:025 cm=min1=2

for S were used to generate Figure 5.

Interpolation of the cumulative infiltration subject to random A and S

The original data of Sharma et al. (1980) with the optimal fitting and

the computed interpolation and extrapolation of cumulative infiltra-

tion in Equation (50) with random A and S generated in Figure 5 was

used ito generate Figure 6.

It can be seen from Figures 4 and 6 that the interpolation at a sin-

gle location and a catchment scale as well as the extrapolation in

Figure 6 are very stable and consistent, which provide confidence for

interpolation, extrapolation, and prediction if they are needed.

6 | CONCLUSIONS AND DISCUSSION

It is shown from the survey of the literature that it has been more

than 100 years since 1905 when stochastic modelling of natural phe-

nomena was regarded as a new scientific approach. Deviating from

the early stage of stochastic PDE models reported since the 1960s till

early 2000s for soil water movement, this paper demonstrates the

application of random fractional PDEs (or rfPDEs). The key points are

as follows based on the analysis with two types of boundary condi-

tions for the rfPDE:

1. It is demonstrated here that the rfPDE approach with random

parameters yields a realistic and excellent tool for the analysis of

water movement in soils with two types of boundary conditions.

F IGURE 4 Comparison of an optimal fit and the random
simulation of cumulative infiltration data measured in the field
(Talsma & van der Lelij, 1976).

F IGURE 5 The variability of the two
random variables A and S for a
catchment.
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2. In the examples with the flux boundary condition, it is shown that

the method presented here is stable and realistic for computing

the fluxes through the soil, which are difficult to measure in prac-

tice even though their definitions are clear. The presented solu-

tions as methods for determining the flux or either of the other

two quantities are recommended for large time situation which is

close, but not identical, to the steady-state scenarios. It is yet to

determine the threshold when the large time situation is exact in

the soil water content. For small time solutions, numerical methods

must be used to approximately invert Equation (30) from the

Laplace domain.

3. For infiltration subject to a concentration boundary condition dem-

onstrated in Section 5, the final infiltration rate A, and the sorptiv-

ity, S, have been demonstrated as random quantities in computing

cumulative infiltration. The effect of the order of fractional deriva-

tives, β, is yet to be analysed once it is treated as a random quan-

tity. With the same random quantities of A and S, the infiltration

rate is expected to follow a similar trend. In this paper, equations

of infiltration with orders of temporal fractional derivatives,

β, are analysed only. With η ≠1 in Equations (5) and (8), the ana-

lyses and equations of infiltration presented earlier (Su, 2014) can

also be used if the parameters in the fPDEs (Su, 2014) are defined

as random ones.

4. Compared to the measured cumulative infiltration, the computed

cumulative infiltration from the random variables A and S are sta-

ble and consistent. This fact is consistent for data from both single

location and at a catchment scale and suggests that the equation

of cumulative infiltration derived from the solution of the rfPDE is

an excellent tool for interpolation, extrapolation and prediction.

5. The examples presented here are for vertical random flow only.

For two-dimensional and three-dimensional random flows, the

spatial variability of the random parameters in the fPDEs or similar

models can be assessed using geostatistical methods such as those

demonstrated by Matheron (1965, 1969, 1971) and Christa-

kos (1992).

6. The simulated results for infiltration subject to a random flux in

Figures 1 and 2 and for cumulative infiltration in Figures 4 and 6

are very stable and consistent. These findings are very encouraging

and demonstrate the capacities of the methodologies presented in

this paper for potential practical applications. Practitioners in

hydrology are often faced with the reality that data from the field

not only vary significantly in their measured values in a random

way, they are also limited by the number of measurements in addi-

tion to limited time intervals or periods. With the methodologies

presented in this paper, the stochastic variability of the values of a

parameter in a hydrological model for water movement in soils can

be simulated, and the interpolation, extrapolation and prediction of

water movement in soils such as infiltration can be computed.

Overall, this approach based on the rfPDE has been demon-

strated to be a very simple and stable method for generating realistic

quantities for hydrological parameters when their measurement is dif-

ficult such as the flux through the surface of the soil. The methodolo-

gies presented here are innovative and were not reported in the

literature in hydrological and soil sciences to date, and the approach is

a step forward in the understanding of realistic hydrological processes

in nature.
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APPENDIX A

Riesz-Feller fractional derivatives (RFFD) and Riemann-Liouville frac-

tional derivatives (RLFD): The RFFD becomes the Liouville fractional

derivative for ω¼�γ with the positive sign for the forward fractional

derivative and the negative sign for the backward fractional derivative

(Ortigueira and Trujillo, 2012, p. 5155–5156). Gorenflo et al. (2002)

detailed the connections between the RFFD, xD
β
θ , and Riemann-

Liouville fractional derivative (RLFD), xD
β
�,

xD
β
θ ¼� cþ β,θð ÞxDβ

þ þc� βð ,θÞxDβ
�

� 	
, ðA1Þ

where

cþ β,θð Þ¼ 1
sin βπð Þ sin β�θð Þπ

2

h i
, ðA2Þ

c� β,θð Þ¼ 1
sin βπð Þ sin βþθð Þπ

2

h i
: ðA3Þ

In the symmetrical case of ω¼0, Gorenflo et al. (2002,

Equation (A.8)) showed that the difference between the RFFD and

the RLFD is a constant only,

cþ β,0ð Þ¼ c� β,0ð Þ¼ 1
sin πβ=2ð Þ ðA4Þ

then

xD
β
0 ¼

1
sin πβ=2ð Þ xD

β
� ðA5Þ

and

xI
β
0 ¼

1
sin πβ=2ð Þ xI

β
�: ðA6Þ

APPENDIX B

Small-time solutions subject to a flux BC or the BC of the third kind as

a random variable

eϑ¼0, t¼0, z>0, ðB1Þ

K0
eϑ�D0

∂eϑ
∂z

¼�r sð Þ, t>0, z¼0, ðB2Þ

∂eϑ
∂z

¼0, t>0, z!∞, ðB3Þ

where s is the random Laplace transform variable and eϑ is the random

Laplace transform of ϑ. The solution of the above problem in the ran-

dom Laplace domain is similar to that for steady-state solute transport

(van Genuchten & Alves, 1982, p. 57)

eϑ z,sð Þ¼ r sð Þ
K0

2K0

uþK0

� �
exp

K0�uð Þz
2D0

� �
ðB4Þ

with

u¼K0 1þ4D0sβ

K2
0

 !1=2

ðB5Þ

and eϑ¼eϑ0 for z¼0. For small time t or large value of sβ , the term
4D0sβ

K2
0

�1 applies so that Equation (B5) can be approximated by

u¼2D1=2
0 sβ=2 ðB6Þ

then Equation (B4) can be approximated for small time by

eϑ z,sð Þ¼ r sð Þ
K0

exp
K0z
2D0

� �
2K0

K0þ2D1=2
0 sβ=2

 !
exp � z

D1=2
0

sβ=2
 !

ðB7Þ

or

eϑ z,sð Þ¼ r sð Þ
K0

exp
K0z
2D0

� �
2K0

2D1=2
0 þK0s�β=2


 �
0@ 1As�β=2 exp � z

D1=2
0

sβ=2
 !

ðB8Þ

For small time or large sβ=2, the term K0s�β=2 is neglected com-

pared to 2D1=2
0 , Equation (B8) is cast into

eϑ z,sð Þ¼K0r sð Þ
D1=2
0

exp
K0z
2D0

� �
s�β=2 exp � z

D1=2
0

sβ=2
 !

: ðB9Þ

The inverse Laplace transform of Equation (B9) is given as

(Stankovi�c, 1970; Gorenflo et al., 1999)

ϑ z,tð Þ¼K0r tð Þ
D1=2
0

exp
K0z
2D0

� �
t β=2ð Þ�1ϕ �β=2,β=2;� z

D1=2
0 tβ=2

 !
, ðB10Þ

where

ϕ �β=2,β=2;� z

D1=2
0 tβ=2

 !
¼
X∞
k¼0

1
k!Γ 1�kð Þβ=2½ � � z

D1=2
0 tβ=2

 !k

ðB11Þ

is the Wright function (Gorenflo et al., 1999; Kilbas et al., 2006) withP∞
k¼0

being the summation of terms k¼0,1,2þ….
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