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Abstract: Bovine respiratory disease (BRD) is a major cause of illness and death in cattle; however, its
global extent and distribution remain unclear. As climate change continues to impact the environment,
it is important to understand the environmental factors contributing to BRD’s emergence and re-
emergence. In this study, we used machine-learning models and remotely sensed climate data at
2.5 min (21 km2) resolution environmental layers to estimate the risk of BRD and predict its potential
future distribution. We analysed 13,431 BRD cases from 1727 cities worldwide between 2005 and
2021 using two machine-learning models, maximum entropy (MaxEnt) and Boosted Regression Trees
(BRT), to predict the risk and geographical distribution of the risk of BRD globally with varying model
parameters. Different re-sampling regimes were used to visualise and measure various sources of
uncertainty and prediction performance. The best-fitting model was assessed based on the area under
the receiver operator curve (AUC-ROC), positive predictive power and Cohen’s Kappa. We found
that BRT had better predictive power compared with MaxEnt. Our findings showed that favourable
habitats for BRD occurrence were associated with the mean annual temperature, precipitation of
the coldest quarter, mean diurnal range and minimum temperature of the coldest month. Similarly,
we showed that the risk of BRD is not limited to the currently known suitable regions of Europe
and west and central Africa but extends to other areas, such as Russia, China and Australia. This
study highlights the need for global surveillance and early detection systems to prevent the spread of
disease across borders. The findings also underscore the importance of bio-security surveillance and
livestock sector interventions, such as policy-making and farmer education, to address the impact of
climate change on animal diseases and prevent emergencies and the spread of BRD to new areas.

Keywords: bovine respiratory diseases; bio-security; climate change; ecological model; species
distribution modelling; machine learning; boosted regression; one health
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1. Introduction

Bovine respiratory diseases (BRD) are respiratory-tract diseases that are potentially
fatal for feedlot cattle [1]. BRD mainly affects the upper and lower respiratory tract and is
caused by complex bacteria, viruses and parasites [1]. BRD-related diseases are a major
concern for livestock production in both developing and developed countries [2,3], and they
greatly affect the well-being of both animals and humans. These diseases occur sporadically
and often manifest in young calves, which has made BRD among the costliest diseases,
particularly affecting the North American beef cattle industrial sector [4].

For example, in western Canada, about 10% to 30% of calves from the auction market
have been reported as BRD-treated. Mortality rates in BRD-treated animals typically range
from 5% to 10% [5]. In Ethiopia, respiratory diseases accounted for 17.5% of calf mortality
in calves [6].

Through a proper study of the underlying dynamics in the livestock sector, interven-
tions need to be made, especially in policy-making. Farmers also need to be enlightened
on how to adapt to climate change by understanding the association between climate
change and animal diseases. From an economic perspective, livestock has been a critical
driver of well-being for centuries, ensuring meat and dairy security and improving the
livestock productivity needed for economic prosperity [7]. With recent climatic changes
and the experience of extreme weather events, governments, agriculture stakeholders and
policymakers are facing a great challenge in decision-making and trading activities [8–10].

Hence, the need to make informed decisions with minimal uncertainties can be accom-
plished by finding information from species and disease distribution models (SDMs) in
order to identify sites that may support BRD populations. Therefore, the objectives of this
study are two-fold: First, to investigate how changes in environmental factors could serve
as indicators for the emergence or re-emergence and spread of bovine respiratory diseases
(BRD) globally using an ecological niche modelling (ENM) approach. Secondly, to design
models that can accurately analyse the distribution for suitable habitats of BRD.

To improve the early identification of BRD in the population, nasal swab samples
are usually collected to identify the prevalence of BRD viral nucleic acids [11]. However,
it has been reported that, in populations at high risk for BRD, suspect predictive values
from clinical methods might be inadequate and time-consuming [11]. To complement
the clinical approach, we propose using SDMs to determine habitat suitability for global
BRD occurrence. SDMs can also be used to improve the preparedness for the increasing
environmental risks and climate change as BRD pathogens emerge and re-emerge as their
spread may be responsive to the changing environmental temperatures (extreme coldness
and heat) and high air humidity.

The advancement of machine-learning (ML) techniques has opened up new possi-
bilities for ecological modelling that are more complex, flexible and powerful. ML-based
SDMs have the potential to revolutionize the way we understand and predict disease
distributions [12,13]. ML algorithms, such as gradient boosting machines (GBMs) and
artificial neural networks (ANNs), can capture non-linear relationships between variables
and provide more accurate predictions of species distributions compared to traditional
models. ML algorithms can also handle large and complex datasets with many predictor
variables, providing more comprehensive models that account for multiple environmental
drivers [12]. The increased accuracy, flexibility, interpretability and robustness to missing
data and overfitting make ML-based ENMs a powerful tool for basic and applied ecology
research [14].

In this study, we used two ML approaches to SDMs: Maximum Entropy (MaxEnt)
and Boosted Regression Trees (BRT). These models allow us to predict the association
between BRD distributions and climate change. We examined the vulnerability encom-
passing several meteorological variables and its impact on the habitat and spread of
BRD—thus allowing the identification of high-risk zones where assistance in early investi-
gation/detection is required.
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SDMs have been validated and provided good accuracy performance in predicting
species and disease distribution across a landscape based on their responses to environ-
mental conditions [12,15]. The models incorporate species occurrence data and measurable
environmental variables, such as topo-climatic data and biotic predictors [16]. BRDs are
caused by infections and can spread quickly across cattle populations with high-contact
density and disease-prone environments. Adopting SDMs and other disease-management
approaches may deliver more effective tracking, control and mitigation of BRD-related
impacts. The use of climate-based SDMs to predict potential species ranges has been shown
to provide a high predictive power and, therefore, comes highly recommended [12,15].

In the following section of the paper, we present the materials and methods used in
the study. Section 3 describes the model derivation, model predictability, software and
modelling framework. The empirical results of the model comparison and the model
assessment predicting suitability, predicting future suitability and the effects of climate
change is presented in Section 4. Section 5 discusses the findings, and our conclusions are
in Section 6.

2. Materials and Methods
Data Sources

We used both biological data and environmental data in this study. First, a biological
dataset of 13,431 occurrences of BRD (bovine Tuberculosis Disease (BTD) and Infectious
Bovine Rhinotracheitis (IBR)) from 1727 different cities between 2005 and 2021 was obtained
publicly from the World Organisation for Animal Health’s (WOAH, founded as OIE) World
Animal Health Information System (WAHIS) and is plotted in Figure 1. Biological data
provides reliable occurrence space where the disease has been observed [17]. Geocoding
of the locations of the data (latitudes and longitudes) was performed using ezGeocode
software (ez34.net inc.).

Second, we extracted environmental data using data from Climatic Research Unit [18,19]
at 2.5 min (5 km2) resolution environmental layers. We use the environmental data to de-
scribe the environmental conditions where the disease is present [20]. The data contained
19 bioclimate variables, which were derived from temperature and precipitation values. These
bioclimate variables represent annual trends, seasonality and limiting and extreme factors,
including the coldest and hottest monthly temperatures (Table 1). For modelling, we used all
19 variables for the current period (1970–2000) and future climate projections 2021 + 2040).

Table 1. Bioclimatic variables used in this study.

Acronym Description Unit

bio1 Annual Mean Temperature ◦C
bio2 Mean Diurnal Range (Mean of monthly (maximum temperature–minimum temperature)) ◦C
bio3 Isothermality (BIO2/BIO7) (×100) ◦C
bio4 Temperature Seasonality (SD ×100) %
bio5 Max Temperature of Warmest Month ◦C
bio6 Min Temperature of Coldest Month ◦C
bio7 Temperature Annual Range (BIO5-BIO6) ◦C
bio8 Mean Temperature of Wettest Quarter ◦C
bio9 Mean Temperature of Driest Quarter ◦C
bio10 Mean Temperature of Warmest Quarter ◦C
bio11 Mean Temperature of Coldest Quarter ◦C
bio12 Annual Precipitation mm
bio13 Precipitation of Wettest Month mm
bio14 Precipitation of Driest Month mm
bio15 Precipitation Seasonality (CV) %
bio16 Precipitation of Wettest Quarter mm
bio17 Precipitation of Driest Quarter mm
bio18 Precipitation of Warmest Quarter mm
bio19 Precipitation of Coldest Quarter mm

Note: Standard Deviation (SD) and Coefficient of Variation (CV).
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(a)

(b)

Figure 1. Global distribution of BRD: (a) the red dots show the occurrence of Bovine Tuberculosis Dis-
ease (BTD) and (b) the blue dots represent the occurrence of Infectious Bovine Rhinotracheitis (IBR).

3. Models

We use two machine-learning (ML)-based techniques to model the spatial distribution
of BRD via (1) Maximum Entropy (MaxEnt) and (2) Boosted Regression Trees (BRT).
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3.1. Maximum Entropy Approach

MaxEnt is a method for modelling the distribution pattern for BRD for several reasons.
First, it uses both continuous and categorical variables [21]. Secondly, MaxEnt estimates the
most uniform distribution of sample points over background locations based on constraints
obtained from the data [22–25]. Thirdly, MaxEnt proved to be less sensitive than other
approaches to the number of sites present that were required to develop an accurate
model [25]. MaxEnt is relatively insensitive to sample size as its regularization compensates
for overfitting when using only a handful of locations.

In the conservation of ecology, modelling species’ geographical distributions is very
important [26]. MaxEnt uses present data and compares locations where the species has
been found to all the environments in the study region. The main principle behind Max-
Ent is determining the probability distribution that maximises the entropy, meaning that
it is the closest to the uniform distribution or the most spread-out subjected to certain
constraints [22–24]. One of the constraints is that the expected value of each feature un-
der the estimated distribution is approximately equal to the empirical mean. The other
constraint is that the sum of the estimated probability equals one. Features refer here to
the environmental variables or real-valued functions. The occurrence locations serve as
sample points.

Let X represent a geographical region (space on which the distribution is defined) of
interest that is a set of discrete grid cells. Define x1, x2, . . . , xm ∈ X as the localities from
which the disease was observed and recorded in the geographical region. As mentioned
above, our aim is to estimate the probability distribution in different localities indepen-
dently selected from X. The features f1, f2, . . . , fm are defined by continuous functions
fi : X → R, with π̃[ fi] denoting the empirical expectation of the features f and π̃ is its em-
pirical (observed) distribution. The empirical expectation for each feature fi, i ∈ {1, . . . , m}
is known (from the data) and given by

π̃[ fi] =
1
n

n

∑
k=1

fi(xk) (1)

However, the actual empirical distribution π̃ is not unknown. The goal of species
distribution estimation is to find the distribution, π̂, that approximates π̃ by constraining
that its expectation for each feature fi is equal to π̃[ fi], i.e., π̂[ fi] = π̃[ fi]. As there are many
such distributions, the idea of ME is to select the one that maximises the entropy.

Entropy H of a probability distribution π̂ on a probability space X is defined as [27]:

H(π̂) = − ∑
x∈X

π̂(x) ln π̂(x) (2)

Entropy is a measure of choices for an event to be selected [28]. Thus, the distribution
with fewer constraints has higher choices and entropy. This makes the estimated ME
probability distribution π̂ become less constrained. Based on this, MaxEnt is formulated
as follows:

max H(π̂)

s.t. ∑
x∈X

π̂(x) = 1

∑
x∈X

fi(x)π̂(x) = µi, for i = 1, . . . , m

(3)
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where µi is the expectation of the empirical distribution. Solving the above Equation (3)
using Lagrangian multipliers function L(π̂, λ0, λ1) gives us;

argmax︸ ︷︷ ︸
π̂(x∗)

− ∑
x∈X

π̂(x) ln π̂(x) + λ0

(
∑

x∈X
π̂(x)− 1

)
+ λ1

(
∑

x∈X
f (x)π̂(x)− µi

)
︸ ︷︷ ︸

L

, (4)

where λ0 and λ1 are Lagrangian multiplier parameters. Next is to maximise Equation (4)
by differentiating the function L(π̂, λ0, λ1) with respect to π̂(x∗), λ0 and λ1 where x∗ ∈ X
is a specific locality in the geographical region where the disease was observed.

∂L
∂π(x∗) = − ln π̂(x∗)− 1 + λ0 + λ1π̂(x∗) + λ1 f (x∗) = 0

∂L
∂λ0

= ∑x∈X π̂(x)− 1 = 0

∂L
∂λ1

= ∑x∈X f (x)π̂(x)− µi = 0

(5)

We simplify Equation (5) to obtain

π̂(x∗) =
exp (λ1 f (x∗))

exp(−(λ0 − 1))
(6)

∑
x∈X

π̂(x) = 1 (7)

∑
x∈X

f (x)π̂(x) = µi (8)

We then substitute Equation (6) into Equation (7) and obtain

exp (−(λ0 − 1) = ∑
x∈X

exp (λ1 f (x)) (9)

Abstracting Equation (6) using Equation (9), we find the optimal solution, which is
the same as the Gibbs distribution

π(x∗) =
exp (λ1 f (x∗))

∑x∈X exp (λ1 f (x))
(10)

Equation (10) is related to the Gibbs distribution where ∑x∈X exp (λ1 f (x)) = zλ,
which can be shown from Equation (7). π̂(x)’s are probabilities and, thus, identically equal
to unity, which should manifest into Equation (11).

∑
x∈X

π̂(x) = ∑
x∈X

[
exp (λ1 f (x∗))

∑x∈X exp (λ1 f (x))

]
=

∑x∈X exp (λ1 f (xi))

∑x∈X exp (λ1 f (xj))
= 1 (11)

Therefore, since the estimated probability distribution is the same as the Gibbs distri-
bution, then our model becomes:

qλ(x) =
exp (λf(x))

Zλ
, (12)

where λ is the feature weights or a vector of n real-valued coefficients, f denotes a vector of
n features, and Zλ is the normalizing constant, which makes sure that qλ(x) adds to 1 and
is given by:

Zλ = ∑
x∈X

exp (λf(x)) (13)
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Next, is to fit the model. Using maximum likelihood estimation, the likelihood of λ is
defined by:

L(λ) =
n

∏
i=1

qλ (14)

and the log-likelihood is

⇒ log L(λ) = log
n

∏
i=1

qλ(xi) = ∑
x∈X

log qλ(xi) (15)

= ∑
x∈X

log
(

exp(λ f (xi))

Zλ

)
(16)

= ∑
x∈X

λ f (x)− ∑
x∈X

log Zλ (17)

⇒ log L(λ) = ∑
x∈X

λ f (x)− n log Zλ (18)

The required MaxEnt probability distribution π̂ is, therefore, defined as the maximum
likelihood Gibbs probability distribution qλ of n samples [29]. Moreover, it is also equal
to the minimum negative logarithm likelihood Gibbs probability of n samples denoted as
π̃[− ln (qλ)], and it is given by:

π̃[− ln (qλ)] = ln Zλ −
1
n ∑

x∈X
λ f (x) (19)

In some cases, overfitting can occur when training the maximum entropy algorithm.
This happens when the empirical feature expectation is not equal to the true mean brought
about by choosing large values of the feature weights. This can be avoided by L1 regular-
ization. L1 regularization overfitting can be determined by:

|π̂[ fi]− π̃[ fi]| ≤ αi, (20)

for each feature fi and some constants αi. By minimizing the error, the ME probability
distribution becomes

π̃[− ln (qλ)] + ∑
x∈X

αi|λi|. (21)

3.2. Boosted Regression Tree Approach

Initially, for this particular machine-learning algorithm, three requirements are needed
as the inputs, i.e.,

1 The training set, {xi, yi}, i = 1, . . . , n where xi and yi represent the independent
(features) and dependent variables, respectively.

2 The loss function, L(y, F(x)). It is differentiable.
3 Number of iterations/trees.

The outputs are obtained by following the pseudo algorithm, which is given in steps,
i.e.,

Step 1: We construct the first model (base model) by initializing the model with a
constant value. The base model gives one output (predicted value), which is the average
value for the dependent variable. Alternatively, the base model is also found by

F0x = argmin︸ ︷︷ ︸
γ

(
n

∑
i=1

L(y, γ)

)
, (22)

where γ = the predicted value for the base model = ŷ, and using a regression function,
the loss function is given by L(y, γ) = ∑n

i=1
1
2 (yi − ŷ)2. What we need in the first step is to

find the predictive value ŷ that must minimise the loss function. y− ŷ is the residue error.
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Step 2: This is where the ensemble process starts by iterating m = 1 to M, where m is
the number of trees.

Step 3: Compute the pseudo residuals or errors using a loss function. This is done by
differentiating the loss function, i.e.,

L(y, γ) =
n

∑
i=1

1
2
(y− ŷ)2 (23)

−∂L
∂ŷ

=
n

∑
i=1

(y− ŷ) (24)

Therefore, the gradient/residual is expressed as

γim = −
[

∂L(y, F(xi))

∂F(xi)

]
, for i = 1, . . . , n (25)

where the negative indicates a gradient decent because we want to minimise our gradient,
and F(xi) is a function that is used to predict the actual values by taking in the independent
features. The idea is to see how the loss function changes with respect to the change in
our model.

Step 4: Next is to fit the base learner hmm(x) by building a discussion tree by inputting
the residue error γim as the dependent variable and xi as the independent variable, i.e.,
{xi, γim}

γm = argmin︸ ︷︷ ︸
γ

(
n

∑
i=1

L(yi, Fm−1(xi) + γ)

)
, (26)

where Fm−1(xi) is the previous model output, and the loss function is given by L(yi, Fm−1(xi)+

γ) = ∑n
i=1

1
2 (yi − (Fm−1(xi) + ŷ))2. We now find γ, which minimises the loss function.

Step 5: Update the model:

Fm(x) = Fm−1(x) + γmhm(x), (27)

where γm is the learning rate and is between 0 and 1, hm(x) is the summation of the residues
for the new tree.

3.3. Model Predictability

The following indices were used to evaluate the models in this study. The predictive
accuracy for both models was evaluated using the area under the curve (AUC) of a receiver
operator curve (AUC). This was done by using cross-validation and test data to test the
effectiveness of the model. Other measures include positive predictive power (PPP), a mea-
sure of the rate between the true positive and total predicted positive values; Cohen’s kappa
and the threshold at which the sum of the sensitivity (true positive rate) and specificity
(true negative rate) is highest (spec_sens) [30]. We also used the variable importance index
to measure the contribution of each predictor in a model [31]. Additionally, we examine the
probability of the occurrence of BRD under changing climate conditions via the response
curve. In the response plots, we examine how the probability of occurrence of BRD changes
with each environmental predictor.

3.4. Modelling Framework and Software

The dependent variable was the 13,431 cases of BRD (BTD and IBR)) recorded in
1727 cities globally (Figure 1). The independent (features) variables were the set of 19 bio-
climate variables described in Table 1. The MaxEnt model was fitted using the R-package
Gibbs probability distribution [32]. Using the cleaned data, the model was then fitted to
predict the potential response of the BRD to the current period and climate change (future).
Before fitting the model, we performed cross-validation by having the data points, i.e., 80%
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and 20%, as training and test data to evaluate how well the model can predict a particular
location of the species using the test data. All analyses were implemented in R version 4.0.4.
Boosted Regression Tree (BRT) models were fitted using the BRT package [33].

4. Results

There were a total of 1109 and 618 occurrences of BTD and IBR, respectively, in this
study (Figure 1). The distribution of BRD mainly occured in Europe, America, Russia,
Africa and China, while Africa had more BTD occurrences than IBR.

4.1. Model Assessment and Variable Importance

It is essential to know the relative contribution of each predictor in a model and the
model’s accuracy. Table 2 presents model assessment indices measured by AUC, PPP,
Cohen’s κ and spec_sen. First, we used the AUC values to identify and check the accuracy
of the MaxEnt and BRT models. (Table 2 and Figure A3) present the results of the AUC
values for the MaxEnt and BRT models for BTD and IBR. The results show that the AUC
values for MaxEnt and BRT were >0.5, implying that both models have good accuracy.
However, the AUC values for BRT models were higher than those of MaxEnt. The range of
values of agreement for the kappa statistics were good (>0.4) except for the MaxEnt models
in the training set. The PPP values also indicate the goodness of the predicted results.

Table 2. Assessment of model accuracy for predicting the global area under the curve (AUC) of
a receiver operator curve (AUC), positive predictive power (PPP), Cohen’s kappa and the thresh-
old at which the sum of the sensitivity (true positive rate) and specificity (true negative rate) is
highest (spec_sens).

Model BRD
Training Test

AUC PPP Kappa Sens_Spec. AUC PPP Kappa Sens_Spec.

MaxEnt BTD 0.835 0.725 0.377 0.411 0.910 0.644 0.285 0.340
IBR 0.828 0.573 0.378 0.415 0.883 0.616 0.301 0.281

BRT BTD 0.878 0.792 0.456 0.402 0.936 0.603 0.511 0.512
IBR 0.916 0.723 0.516 0.395 0.874 0.833 0.475 0.423

Table 3 and Figure A2 present the relative importance of each of the 19 predictors in
the model. We measured the contribution of each variable to the habitat suitability index.
The magnitude of the contribution is presented as percentages and indicates how much
the variable is influential in driving the probability of occurrence of BRD. The six variables
with the highest relative importance for BTQ were the precipitation of the coldest quarter
(bio19), minimum temperature of the coldest month (bio6), annual mean temperature
(bio1), mean diurnal range (bio2), annual precipitation (bio12) and mean temperature
of the wettest quarter (bio8). These variables accounted for 75% of the drivers of BTD.
Similar relative importance variables were observed for IBR, except for the addition of
the mean temperature of the warmest quarter (bio10) and precipitation of the warmest
quarter (bio18).

In addition to the AUC and variable importance, we used the ecological response curve
to visualise the marginal effect from ME and BRT SDMS (Figures A1 and A4). The figures
indicate the predicted probability of the presence of BRD on the y-axis and the scaled value
for the predictors (×10). These response curves provide more insight into the predictors
than do the variable contributions.
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Table 3. Variable relative importance for the BRT model.

Variable % BTD % IBR

bio19 19.9 25.2
bio6 17.5 9.3
bio1 12.2 18.4
bio2 10.4 9.3

bio12 8.3 3.5
bio8 6.7 2.7
bio4 3.9 1.6

bio10 3.5 5.0
bio5 3.4 0.4
bio3 2.9 3.0

bio11 2.6 3.4
bio18 2.4 7.3
bio17 2.2 2.7
bio7 1.2 0.8
bio9 1.1 0.4

bio16 1 0.4
bio14 0.5 3.4
bio13 0.3 0.7
bio15 0.1 2.3

Note: Variables are described in Table 1.

For example, consider the top panel of Figure A1 presenting the response curves for the
ME model for BTB. We observed that, below the threshold of−10 ◦C of bio1, the probability
for BTD occurrence is near zero and then increases non-linearly up to 30 ◦C. This implies
that the BTD habitat suitability ranges from an annual mean temperature of −10 ◦C to
30 ◦C.

For bio2 (the mean diurnal range), which is the mean of the difference between the
monthly maximum temperature and minimum temperature, we saw that a value higher
than 4 ◦C decreased the probability of BTD occurrence. Bio8, on the other hand, revealed
an inverse U-shape between the mean temperature of the wettest quarter and the risk of
BTD occurrence. The relationship between IBR and the predictors is depicted in the bottom
panel of Figure A1. For example, the relationship between bio1 and IBR was bell-shaped
with the least favourable threshold of annual mean temperature <−20 ◦C and >30 ◦C.

For BRT (Figure A4), we observed that bio6, in addition to bio19, bio12, bio8, bio1
and bio2 had the highest variable contribution for the likelihood of the occurrence of BTD.
Looking at bio6, the minimum temperature of the coldest month, below the threshold of
−20 ◦C, reduced the likelihood of BRD to zero and then increased non-linearly up −10 ◦C
and, thereafter, became constant. This implies that the BTD likelihood occurrence increases
with a minimum temperature ranging between −20 ◦C and −10 ◦C.

Similarly, for IBR (bottom panel Figure A4), bio2, in addition to bio19, bio6, bio1 and
bio18, had the highest variable contribution for the suitable habitat for IBR. For bio2, we
observe that, below the threshold of 6 ◦C, the likelihood for IBR occurrence was zero and
then non-linearly increased up to 10 ◦C and then decreased again.

4.2. Predicted Suitability

Figure 2 presents the distribution of habitat suitability index for BTD and IBR using
climate variables described in Table 1. The predicted values represent the probabilities
for suitable habitat for BRD occurrence, and they range from 0 to 1. The results from ME
(Figure 2 top panel) and BRT (Figure 2 bottom panel) predicted similar geographically
favourable habitats for BTD and IBR. The distribution of favourable habitats for BTD was
mostly Europe, western Russia, southern China, Australia and India, central, western
and eastern parts of Africa, South America and North America. While the results from
ME and BRT were similar, ME included some areas in Africa and South America suitable
for BTD. IBR, on the other hand, had a wider geographically suitable habitat, including
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Europe, western Russia, southern China, America and central Africa. Prediction for habitat
suitability for IBR was similar for both models.

(a) (b)

(c) (d)

Figure 2. Prediction of habitat suitability distribution for (a,b) BTD and IBR, respectively, using ME.
(c,d) BTD and IBR, respectively, using BRT. The greenish colour in the scale colour bar indicates
suitable habitats for BRD occurrence, while the pinkish colour indicates habitats that are less suitable
for BRD occurrence.

4.3. Predicted Future Suitability

The future (2021–2040) predictions of habitat suitability for BTD and IBR occurrences
using ME and BRT are presented in the top and bottom panels of Figure 3, respectively.
Compared to the current geographical distribution of habitat suitable for BTD and IBR
described above, we observed that the geographical spread of favourable habitat for BTD
and IBR extended to western Russia, North America and the Middle East in Figure 3.

(a) (b)

Figure 3. Cont.
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(c) (d)

Figure 3. Future prediction of habitat suitability distribution for BRD using ME and BRT. (a,b) BTD
and IBR, respectively, using ME. (c,d) BTD and IBR, respectively, using BRT. The greenish colour in
the scale colour bar indicates suitable habitats for BRD occurrence, while the pinkish colour indicates
habitats that are less suitable for BRD occurrence.

4.4. The Effect of Climate Change

Furthermore, we examined the effects of climate change on the suitability of habitat of
BRD for ME. The differences in the suitability habitat index between the current time and
the future are shown in Figure 4. Positive values indicate an increasing spread of favourable
habitat conditions for BRD, while negative values indicate a reduction in favourable habitat
conditions. Greener colours indicate a change in habitat suitability, yellow colours indi-
cate no change, and brownish colours indicate a reduction in habitat suitability for BRD.
From Figure 4, we observed that many changes in suitability were made in northern Russia,
North America, Finland, Sweden, Saudi Arabia and northern and central Africa.

(a) (b)

Figure 4. Changes in habitat suitability for (a) BTB and (b) IBR.

5. Discussion

This study extended previous research in several important ways in advancing our
understanding of the BRD emergence or re-emergence and the interaction between BRD
and climate factors. Using two machine-learning modelling techniques (BRT and MaxEnt)
to analyse complex ecological data, we identified the effect of spatial and climate drivers on
the emergence and spread of BRD. The results generated a novel description of the global
suitability index of BRD prevalence.
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The applied focus of this study to deliver global risk maps of emerging or re-emerging
of BRDs supports targeted improvements in biosecurity surveillance. The study used
advanced statistical models to explain the unequal global distribution of occurrence, event
detection and surveillance using an algorithm-driven approach to obtain a realistic mapping
of the reporting incidence of BRD even on smaller country-scale resolutions. This allowed
us to estimate and predict the risk of concentration of BRDs at a given location with
biological and bioclimatic variables. Consequently, this study provides policymakers and
farmers with a better understanding of the impacts and risks of climate change on livestock.

The findings of this study showed that a favourable habitat for BRD occurrence is
associated with the mean annual temperature, precipitation of the coldest quarter, mean
diurnal range and minimum temperature of the coldest month. These variables may repre-
sent the same mechanism as tropical regions are generally areas with high biodiversity [34].
However, the predicted suitability maps showed that western and central Africa have
favourable habitats for the occurrence of BRD, making it a cold and wet area, which is a
contradiction since it is known that western and central Africa are hot areas.

Consistent with this study, Cusack and colleagues [35] found an association between
the minimum daily temperature and BRD occurrence in Australian feedlots. Furthermore,
as shown by the response curves for MaxEntand BRT, a threshold above the minimum
temperature of the coldest month, −20 ◦C, increases the probability of BRD occurrence.
This explains why the incidence of BRD is concentrated in regions in Europe, America
and Russia.

The precipitation of the coldest quarter is an important climate variable to consider
when evaluating the risk of respiratory infections, such as BRD. From a mechanistic per-
spective, precipitation can directly impact the environment where cattle are housed by
creating damp and muddy conditions, which can increase the risk of respiratory infections
and thermal stress [36]. Precipitation patterns can influence the transmission of respi-
ratory pathogens [37] by dispersing pathogen-laden respiratory secretions and washing
away protective mucus from the respiratory tracts of cattle, making them more susceptible
to infection.

Additionally, high precipitation levels can also lead to waterlogged feed, reducing
its quality via contaminants, weakening the immune system and increasing the risk of
respiratory diseases [36,38–40]. By understanding the impacts of precipitation on the
environment, feed availability and pathogen transmission, more effective strategies can be
implemented to reduce the risk of bovine respiratory diseases.

This study is not with limitations. First, the SDMs only showed how similar locations
might in relation to the covariates included in the analysis and other locations where BRD
was previously found [41]; they do not predict the extent/magnitude of BRD infection.
More so, the SDMs do not provide information on the animal’s condition but only identify
suitable habitats for the occurrence of BRD. As MaxEnt and BRT best predict the average
environmental habitat suitability for BRD incidence, the suitable habitats are the regions
with an average estimate exceeding the optimal threshold, such as Europe and western
Russia.

Secondly, there is also a possibility that the two models can predict high environmental
suitability among regions similar to regions that are BRD endemic, even if the regions
contain no BRD infections. This makes the covariates determining high environmental
suitability biased towards regions with high BRD prevalence. Finally, it is not always
effective to capture a particular ecological niche using a 5× 5 km resolution of covariate
patterns for all the locations, as sometimes the vector might travel beyond the range of
5 km [42].

6. Conclusions

In summary, the use of climate-based SDMs to predict potential species ranges were
shown to provide a powerful predictive power. This study presented the first attempt to
use BRT and MaxEnt to identify favourable habitats for the occurrence of BRD. Information
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gathered from such SDMs can be used to alert governments and conservation organisations
about the possibility of BRD being established in their respective regions. The results
showed that BRT was the best model to predict the favourable habitat for BRD occurrence
with an AUC value higher than MaxEnt. BRD-free areas that were identified as suitable
could be investigated in early detection and control to prevent the formation of species.
The methods used here can also be used in the prediction of other invasive species.
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Appendix A

(a)

Figure A1. Cont.
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(b)

Figure A1. Response curves for the 19 predictors for ME. (a) BTD data and (b) IBR data. The y-axis
presents the predicted probability of the presence of IBR, and the scaled value for the predictors is
presented on the x-axis (×10).

(a) (b)

(c) (d)

Figure A2. Variable importance indicating the contribution (%) of each predictor to the models. Full
models (a,c) and reduced models (b,d) for BT and IBR, respectively.
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(a) (b)

(c) (d)

Figure A3. ROC curves for BTD and IBR from ME and BRT at different thresholds. (a,b) The ROC
curves for BTD and IBR, respectively, from ME. (c,d) The ROC curves for BTD and IBR, respectively,
from BRT.

(a)

Figure A4. Cont.
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(b)

Figure A4. Response curves for the 19 predictors for BRT. (a) BTD data and (b) IBR data. The y-axis
presents the predicted probability of the presence of BRD, and the scaled value for the predictors is
presented on the x-axis (×10).
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