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Abstract

Aedes aegypti is the principal mosquito vector of dengue, yellow fever, Zika and chikun-

gunya viruses. The wMel strain of the endosymbiotic bacteria Wolbachia pipientis was

introduced into the vector as a novel biocontrol strategy to stop transmission of these

viruses. Mosquitoes with Wolbachia have been released in the field in Northern Queens-

land, Australia since 2011, at various locations and over several years, with populations

remaining stably infected. Wolbachia infection is known to alter gene expression in its

mosquito host, but whether (and how) this changes over the long-term in the context of

field releases remains unknown. We sampled mosquitoes from Wolbachia-infected popu-

lations with three different release histories along a time gradient and performed RNA-

seq to investigate gene expression changes in the insect host. We observed a significant

impact on gene expression in Wolbachia-infected mosquitoes versus uninfected controls.

Fewer genes had significantly upregulated expression in mosquitoes from the older

releases (512 and 486 from the 2011 and 2013/14 release years, respectively) versus the

more recent releases (1154 from the 2017 release year). Nonetheless, a fundamental sig-

nature of Wolbachia infection on host gene expression was observed across all releases,

comprising upregulation of immunity (e.g. leucine-rich repeats, CLIPs) and metabolism

(e.g. lipid metabolism, iron transport) genes. There was limited downregulation of gene

expression in mosquitoes from the older releases (84 and 71 genes from the 2011 and

2013/14 release years, respectively), but significantly more in the most recent release

(509 from the 2017 release year). Our findings indicate that at > 8 years post-introgres-

sion into field populations, Wolbachia continues to profoundly impact expression of host

genes, such as those involved in insect immune response and metabolism. If Wolbachia-
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mediated virus blocking is underpinned by these differential gene expression changes,

our results suggest it may remain stable long-term.

Author summary

The Aedes aegypti mosquito is the main species responsible for urban transmission of den-

gue, Zika and chikungunya viruses. Control measures, including source reduction and

insecticide treatment, have historically struggled to provide sustained control of this spe-

cies to limit disease. An alternative approach involves releasing mosquitoes harbouring

Wolbachia bacteria. Wolbachia inhibits virus transmission by Ae. aegypti and preliminary

evidence indicates that dengue incidence is reduced in locations where it has been

deployed. In this study, we found that Wolbachia significantly upregulates gene expres-

sion in Ae. aegypti at least 8 years after field deployment compared with uninfected con-

trols, although some gene downregulation was also observed. We observed a more

‘muted’ response in mosquitoes from populations with older release histories, with far

fewer genes being differentially regulated versus those from the most recent releases. Irre-

spective of release history, immune response and metabolism genes were significantly

upregulated, and to a lesser extent genes related to behaviour. Our results, combined with

previous studies that have revealed few changes in the Wolbachia genome post release,

provide further evidence of the long-term stability of the effects of Wolbachia on intro-

gressed mosquito populations in the field.

Introduction

The Aedes aegypti mosquito is the primary urban vector of dengue, yellow fever, chikungunya

and Zika viruses [1]. Aedes aegypti has a close association with humans, who are its primary

blood meal source [2]. It also preferentially blood-feeds and rests indoors, and utilizes water-

filled receptacles proximal to human habitation as larval habitats. These behaviours make Ae.
aegypti notoriously difficult to control, particularly in high-density urban areas [3]. Control of

Ae. aegypti has relied on the reduction, elimination or insecticide treatment of receptacle habi-

tats and/or application of adulticides, either as space sprays or targeted indoor residual applica-

tion [4]. However, lack of sustainability of current government-administered control

programs, coupled with insecticide resistance, compromises effectiveness of these control

strategies. More sustainable approaches to controlling Ae. aegypti and its associated arbovi-

ruses are required, especially due to a lack of suitable vaccines (except for yellow fever) or anti-

viral therapies to limit disease.

Alternative strategies involving the targeted release of modified Ae. aegypti are at various

stages of development and show excellent promise for sustained control of arbovirus transmis-

sion [5,6]. One of the most advanced involves the release of Ae. aegypti transinfected with the

endosymbiotic bacterium Wolbachia pipientis, which confers phenotypes that can be exploited

to limit arbovirus transmission [7]. High rates of maternal transmission and cytoplasmic

incompatibility (CI) allow the bacteria to spread through and be maintained in the resident

mosquito population [8,9]. Arbovirus replication and transmission is blocked in mosquitoes

infected with Wolbachia [10–12]. Following initial success with driving the wMel strain of

Wolbachia into Ae. aegypti populations in urban centers of north Queensland, Australia

[8,13,14], releases of Wolbachia-infected Ae. aegypti are being conducted in at least 12
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countries [9,15]. Epidemiological evidence suggests a significant reduction in dengue inci-

dence post deployment in dengue endemic locations [9,16].

Stability of the endosymbiont infection in Ae. aegypti will be critical for the long-term via-

bility of Wolbachia-based arbovirus control programs. Any loss of the virus blocking pheno-

type could lead to increased virus transmission by mosquitoes. High temperatures could lead

to the loss of Wolbachia from populations [17–19], but other factors (such as high fitness costs

due to Wolbachia or the release strain and dry environmental conditions) could be responsible

too [20,21]. Alternatively, there are three potential vulnerabilities for breakdown of virus

blocking related to the evolution of microbe and mosquito: virus evolutionary escape, and

changes to the Wolbachia or mosquito genomes. Hence, post-release long-term monitoring

should include periodic genome sequencing and assessment of the virus, bacteria and mos-

quito. As dengue viruses have an RNA genome, they are subject to relatively high mutational

rates compared to other DNA-based organisms and microbes, so selection of virus strains

which escape from the effects of Wolbachia are a possibility [22].

Other evolutionary pressures may drive genetic changes in either the Wolbachia or the

mosquito. In recent studies to explore the first possibility, mosquitoes collected from north

Queensland had few changes in their Wolbachia genome sequences compared to the pre-

release strain, indicating a high level of stability to date [23,24]. In addition, a comparison of

the mosquito genomes also suggested that there have been few changes in the mosquito

genome since Wolbachia replacement [25], whilst the frequency of Wolbachia in invaded pop-

ulations has remained high [14,26] and most host effects of the Wolbachia have remained sta-

ble [26] with the exception of effects on egg quiescence [27]. Although few genomic changes

have so far been detected and linked to structural changes in genes, it is possible that there

have nevertheless been changes in the expression of host genes which are often sensitive indi-

cators of adaptation, including in immune responses [28].

Changes in gene expression patterns of Wolbachia-infected mosquitoes could lead to loss of

virus blocking abilities. Hypotheses on a virus blocking mechanism can be grouped into the

two broad categories of mosquito immune gene activation and/or competition for host cell

resources (reviewed in [29,30]). However, immune genes are activated by transinfected Wolba-
chia but are not required for blocking in naturally infected hosts, so may not be essential

[31,32]. Important examples of antiviral pathways in the insect cell include the activation of

signalling pathways such as Janus kinase-signal transducer and activator of transcription

(JAK-STAT), reactive oxygen species (ROS), and Toll signalling. Various anti-microbial pro-

teins and compounds can be induced such as the interferon-like Vago and Dnmt2 which may

modify viral RNA, making it susceptible to methylation-mediated degradation. However,

none of these pathways has so far been directly linked to the blocking effect [30]. The exonu-

clease XRN1 is induced in Wolbachia-infected cells and has been associated with viral RNA

degradation [33]. RNA interference is also activated but may not be an important viral block-

ing pathway in Wolbachia-infected cells [34].

An alternative hypothesis to immune activation is that virus is in competition with Wolba-
chia for physical space and other host cell resources. Wolbachia density in some cases may be

correlated with the virus blocking effect [35,36], and exclusion of virus from cells and tissues

where Wolbachia is found at high density suggests competition for cellular resources. Cell

nutrients are regulated by the host, and Wolbachia [37] and viruses may compete for amino

acids. Wolbachia may also alter the metabolism of lipids such as cholesterol [38,39], a molecule

which is also essential for dengue virus replication [40]. Alternatively, Wolbachia may physi-

cally exclude RNA viruses from cellular organelles necessary for viral replication [41]. The rel-

ative contributions of immune activation and host resource competition in virus blocking

remains an open question. Elucidating whether immune activation persists in long-term Ae.
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aegypti—Wolbachia associations would shed light on this question and inform considerations

of the long-term stability of virus blocking.

The objectives of the study described here were threefold. First, we obtained samples from

multiple locations in and around Cairns, Australia, the site of releases of Wolbachia-infected

mosquitoes from 2011–2017 and compared their gene expression to uninfected mosquitoes to

determine which genes were differentially expressed. Second, we established a baseline for

gene expression in Wolbachia-infected mosquitoes for longer-term studies which will help

monitor for any breakdown in virus blocking. Finally, Wolbachia-infected mosquitoes were

present at some sites for up to eight years, so we determined if there were any trends or differ-

ences in mosquito gene expression between sites with older compared with more recent

releases.

Results

Mosquito gene expression clusters according to Wolbachia infection status

Eggs were collected in 2019 from populations where Wolbachia-infected Ae. aegypti were

released in years 2011 (Aae.wMel2011), 2013–2014 (Aae.wMel2013/2014) and 2017 (Aae.

wMel2017), as well as from a wild-type population (Aae.wt) where Wolbachia-infected mosqui-

toes had not been released (Fig 1). Eggs were hatched and reared under laboratory conditions

and transcriptome sequencing (RNA-seq) of pools of 5 adult females at 4 days post emergence

was performed (Table 1).

To ensure that the variation in gene expression described below was likely due to actual

gene expression and not differences in Wolbachia density, the number of copies of wMel wsp
gene in Ae. aegypti was quantified using the method of Lee et al. [42]. There was no significant

difference (Mann-Whitney test P = 0.5926) in Wolbachia density between mosquitoes col-

lected from the 2013–14 and 2017 release locations (S1 Fig; note that there was no material

available for density quantification from the 2011 release sites).

A total of 2,041,416,107 Illumina raw reads were obtained from sequencing on the NovaSeq

at the Australian Genome Research Facility (AGRF). Among these, there was a total of

1,554,852,005 read pairs and overall 89.42% of the pairs were aligned to the Ae. aegypti refer-

ence genome GCF_002204515.2 (https://www.ncbi.nlm.nih.gov/genome/?term=txid7159

[orgn]) (see S1 Table for mapping statistics). Following initial processing of raw reads (see

Materials and methods), differentially expressed genes (DEGs) were identified by comparing

gene expression in Wolbachia-infected versus uninfected mosquitoes using the DESeq2 tool.

DEGs were considered statistically significant when the absolute fold change of the gene

expression was > 2 and adjusted P-value was < 0.05. Comparison of gene expression between

all infected mosquitoes (n = 28 pools) and uninfected mosquitoes (n = 5 pools) resulted in a

total of 747 DEGs (656 upregulated and 91 downregulated). A heatmap of differential expres-

sion in these 747 genes indicated separate clustering of Wolbachia-infected and uninfected

mosquitoes (Fig 2).

Elevated DEGs in mosquitoes from the most recent Wolbachia field release

An analysis of the gene expression of Wolbachia-infected versus uninfected Ae. aegypti indi-

cated that the highest number of DEGs was observed in the Aae.wMel2017 mosquitoes (i.e.

mosquitoes descended from releases that occurred 2 years prior to collection for this study

(Table 2)). By contrast, a smaller number of DEGs was observed in mosquitoes from older

releases, Aae.wMel2011 and Aae.wMel2013/2014 (Table 2), relative to Wolbachia-uninfected mos-

quitoes. The difference in number of DEGs from the Aae.wMel2017 mosquitoes versus those

from the Aae.wMel2011 and Aae.wMel2013/2014 mosquitoes was statistically significant (Chi-
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Fig 1. Map of mosquito collection locations in the Cairns Regional Council area, northern Queensland, Australia.

Wolbachia-infected mosquitoes were released in the suburbs shaded green. There had been no releases of Wolbachia
infected mosquitoes in Caravonica (shaded yellow) up until at least April 2019, when the collections for the current

study were undertaken. Source of baselayer is https://www.arcgis.com/home/item.html?id=

10df2279f9684e4a9f6a7f08febac2a9. This map was created using ArcGIS software by ESRI (www.esri.com). ArcGIS

and ArcMap are the intellectual property of Esri and are used herein under license. For more information about Esri

software, please visit www.esri.com.

https://doi.org/10.1371/journal.pntd.0011222.g001
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square P< 0.001). A principal component analysis (PCA) of all genes indicated a clear

demarcation of gene expression between infected and uninfected mosquitoes descended from

2017 releases (Fig 3A). This demarcation was less apparent in mosquitoes with earlier release

histories (Fig 3B and 3C).

Comparison of DEGs from the three Wolbachia-infected mosquito release times identified

357 common upregulated genes and 23 common downregulated genes (Fig 4). There were 76,

37 and 1029 unique DEGs for the mosquitoes from wMel releases in the Aae.wMel2011, Aae.

wMel2013/2014 and Aae.wMel2017 mosquitoes, respectively, compared with the uninfected

mosquitoes.

We identified 594 genes to be uniquely upregulated in the mosquitoes from locations of

wMel releases in 2017 (that is, not found in any of the earlier releases). The comparison of

expression level of these 594 genes across all populations using the Kruskal-Wallis test showed

that expression of these genes was significantly associated (P< 0.001) with time point (the

year that mosquito population acquired wMel). Post-hoc analysis revealed that the median

gene expression (counts per million) in Aae.wMel2017 mosquitoes was significantly higher

than those originating from the earlier releases (P< 0.001; S2 Table).

Upregulated DEGs with the highest fold change belong to immune

response

Immune function genes, genes associated with stress response and non-coding genes com-

prised the 10 most upregulated genes, with the highest fold change values in comparisons

involving Wolbachia-infected from all release populations versus uninfected mosquitoes.

Among these, the majority (70–80%, depending on release history) were immune genes (Fig

5). Three immune genes were significantly upregulated in all wMel-infected mosquito popula-

tions, irrespective of release year. These were CTLGA8 (LOC5575053), alpha-2-macroglobulin

(LOC23687443) and leucine-rich repeat-containing protein 40-like (LOC110677030). There

were 7, 8 and 8 DEGs related to immune response in mosquitoes from Aae.wMel2011, Aae.

wMel2013/2014 and Aae.wMel2017, respectively. The topmost upregulated gene in Aae.wMel2011

and Aae.wMel2013/2014 mosquitoes was the transferrin gene (LOC5579417), with this gene

being the second-most upregulated in Aae.wMel2017 mosquitoes. Interestingly, this gene was

upregulated in all mosquito samples from Wolbachia-infected populations, across all years of

release, compared to uninfected mosquitoes. Two out of three remaining topmost upregulated

genes of Aae.wMel2011 mosquitoes were CLIP (LOC5578693) and leucine-rich repeat

(LOC5575814), both pathogen recognition receptor (PRR) molecules that are important for

Table 1. Aedes aegypti collected in April 2019 from Cairns, Queensland, Australia, for mosquito transcriptome sequencing.

Suburb Release datea No. sample sites No. mosquitoes No. pools

Gordonvale January 2011 10 50 10

Yorkeys Knob January 2011 2 10 2

Edge Hill January 2013 8 40 8

Parramatta Park January 2013 1 5 1

Cairns North August 2014 1 5 1

Bungalow July 2014 1 5 1

Cairns North March 2017 3 15 3

Parramatta Park March 2017 2 10 2

Caravonica No release 5 25 5

aDate when releases of Wolbachia-infected Ae. aegypti commenced in the suburb.

https://doi.org/10.1371/journal.pntd.0011222.t001
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immune function. The other was arrestin C-terminal-like domain-containing protein 3

(LOC5570224) which plays a role in regulation of the olfactory system. Similarly, Aae.

wMel2013/2014 and Aae.wMel2017 mosquitoes also showed two PRRs each including

LOC5575053 and LOC110677006 in the earlier, and LOC5570871 and LOC5576315 in the

later release. Additionally, mosquitoes from these releases showed differential expression of

Fig 2. Heatmap of normalised read counts of differentially expressed genes (DEGs) showing clustering of transcriptomic response in wMel

Wolbachia-infected Aedes aegypti from locations with different release years versus uninfected Ae. aegypti. Hierarchical clustering was

performed using the complete linkage method and the distances between columns were computed by the Euclidean method (http://www.

heatmapper.ca/expression/). Acronyms for the individual mosquito pool identifiers on the X-axis denote suburb names (CA = Caravonica,

GO = Gordonvale, YK = Yorkeys Knob, EH = Edge Hill, BU = Bungalow, PP = Parramatta Park, and CN = Cairns North).

https://doi.org/10.1371/journal.pntd.0011222.g002
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putative defense protein 1 (LOC5572918) and a negative regulator of translation

(LOC5569955). Altogether, four genes (2011: LOC5567033, LOC5566857; 2013–14:

LOC110673980; and 2017: LOC5563952) out of the 10 topmost upregulated genes across all

three mosquito groups are regarded as involved in stress response whilst two genes were non-

coding (Fig 5).

Topmost downregulated genes belong to non-coding RNAs, cell

proliferation and host behaviour

The highest fold downregulated gene categories included non-coding RNAs, genes involved in

cell replication, and host behaviour related genes (Fig 6). Unlike upregulated genes with high-

est fold changes mentioned above, none of the downregulated genes were common to mosqui-

toes from all three Wolbachia release histories. However, four downregulated DEGs common

to Aae.wMel2011 and Aae.wMel2013/2014 mosquitoes were CFI06_mgr02, LOC5574234,

LOC5576517 and LOC5572259. Aae.wMel2011 had the majority (6/10) of downregulated genes

with the highest fold change in either non-coding RNA genes (LOC110676610,

LOC110679144, LOC5574600, LOC110676459) or uncharacterized genes (LOC5572259,

LOC5568345). Three out of 10 topmost downregulated genes with highest fold change from

Aae.wMel2013/2014 were either ncRNA or uncharacterized proteins. Genes that were downregu-

lated with highest fold change in Aae.wMel2017 mosquitoes were unique except for histone-

lysine N-methyltransferase Suv4-20 (LOC5569935) which was shared with Aae.wMel2013/2014

mosquitoes. Some of these genes included three ncRNA genes (LOC110679860, LOC5564187,

LOC5563860), a neurotransmitter gene (LOC23687658), a gene responsible for promotion of

micropinocytosis (LOC110674232) and three genes playing a role in cell replication. No single

gene was observed to be significantly downregulated in all Wolbachia-infected mosquito sam-

ples, from across all years, versus uninfected samples.

wMel is associated with upregulation of pathways related to immunity,

amino acid and lipid metabolism, and behaviour, across all mosquito

release time points

Gene ontology (GO) analysis performed using the DAVID bioinformatics tool [43] revealed

that 357 upregulated genes common to all releases resulted in six significantly enriched (Fish-

er’s exact P< 0.05) biological processes including innate immune response (GO:0045087),

fatty acid biosynthetic process (GO:0006633), phototransduction (GO:0007602), defense

response to bacterium (GO:0042742), visual perception (GO:0007601) and urea cycle

(GO:0000050) (Fig 7). Moreover, two cellular locations comprising extracellular space

(GO:0005615) and extracellular region (GO:0005576) were significantly enriched at the same

Table 2. Number of DEGs (absolute fold change ±2 and adjusted P-value (false discovery rate (FDR))� 0.05) in mosquitoes from populations with different wMel

release years versus Wolbachia-uninfected mosquitoes.

Aae.wMel2011 Aae.wMel2013/2014 Aae.wMel2017

Upregulated 512 486 1154

Downregulated 84 71 509

Total 597a 557b 1664a, b

a Chi square (number of DEGs in Aae.wMel2011 vs Aae.wMel2017) P< 0.001
bChi-square (number of DEGs in Aae.wMel2013/2014 vs Aae.wMel2017) P < 0.001. Comparisons between Aae.wMel2011 and Aae.wMel2013/2014 were not significantly

different (Chi square P > 0.05).

https://doi.org/10.1371/journal.pntd.0011222.t002
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cut-off criterion. Molecular functions, namely serine-type endopeptidase activity

(GO:0004252) and endopeptidase inhibitor activity (GO:0004866) were significantly enriched

(Fisher’s exact P< 0.05).

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis

(FDR< 0.05) of these proteins further revealed that metabolic pathways (aag01100), glycine,

serine and threonine metabolism (aag00260), biosynthesis of amino acids (aag01230), arginine

biosynthesis (aag00220), tyrosine metabolism (aag00350), arginine and proline metabolism

(aag00330), caffeine metabolism (aag00232), carbon metabolism (aag01200) and phototrans-

duction–fly (aag04745) were upregulated (see S3 Table for enrichment analysis data).

Uniquely upregulated DEGs in Aae.wMel2017 mosquitoes are involved in

stress response, membrane transport and iron metabolism

Following the observation of higher levels of DEGs in the Aae.wMel2017 mosquitoes versus

other release histories, we explored what types of genes were present in this group, starting

with upregulated genes. For this purpose, first we evaluated upregulated DEGs (n = 594)

unique to Aae.wMel2017 mosquitoes. Three GO terms of biological process, namely sodium

ion transport (GO:0006814), ion transport (GO:0006811) and metabolic process

(GO:0008152), were significantly enriched at Fisher’s exact P< 0.05. Moreover, four GO

Fig 3. Principal component analysis (PCA) of gene expression in Wolbachia-infected mosquitoes (green shading)

originating from different release histories: A) Aae.wMel2017 vs uninfected; B) Aae.wMel2013/2014 vs uninfected;

and C) Aae.wMel2011 vs uninfected. Uninfected mosquitoes (yellow shading) were from the suburb of Caravonica

where releases of Wolbachia-infected mosquitoes had not been conducted up until the time of our collections in April

2019. Acronyms for the individual mosquito pool identifiers denote suburb names (CA = Caravonica,

GO = Gordonvale, YK = Yorkeys Knob, EH = Edge Hill, BU = Bungalow, PP = Parramatta Park, and CN = Cairns

North).

https://doi.org/10.1371/journal.pntd.0011222.g003

Fig 4. Numbers of shared and uniquely (A) upregulated and (B) downregulated genes in mosquitoes from populations with different wMel release histories.

https://doi.org/10.1371/journal.pntd.0011222.g004
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terms of cellular locations: integral component of membrane (GO:0016021), extracellular

region (GO:0005576), gap junction (GO:0005921) and extracellular space (GO:0005615) were

also significantly enriched. Cytochrome-c oxidase activity (GO:0004129), oxidoreductase

activity (GO:0016491), monooxygenase activity (GO:0004497), oxidoreductase activity, acting

on paired donors, with incorporation or reduction of molecular oxygen (GO:0016705), iron

ion binding (GO:0005506), serine-type endopeptidase activity (GO:0004252), heme binding

(GO:0020037), transporter activity (GO:0005215), phosphopantetheine binding (GO:0031177)

and hydrolase activity (GO:0016787) were among the significantly enriched molecular

functions.

KEGG enrichment (FDR < 0.05) indicated several pathways that were significantly

enriched in Aae.wMel2017 mosquitoes, but not the other release years. Starch and sucrose

metabolism (aag00500), other glycan degradation (aag00511), glyoxylate and dicarboxylate

metabolism (aag00630), glycine, serine, and threonine metabolism (aag00260), oxidative phos-

phorylation (aag00190), glycolysis / gluconeogenesis (aag00010), galactose metabolism

(aag00052), amino sugar and nucleotide sugar metabolism (aag00520) and lysosome

(aag04142) were among the uniquely enriched pathways. Moreover, additional genes of

KEGG pathways such as biosynthesis of amino acids (aag01230), carbon metabolism

(aag01200) and metabolic pathways (aag01100) were also identified during KEGG pathway

enrichment analysis.

Fig 5. The top 10 upregulated genes with highest fold difference between Wolbachia-infected and uninfected Aedes aegypti, according to release year.

The type of upregulated gene (immune genes, stress response, ncRNA, and behaviour) is shown.

https://doi.org/10.1371/journal.pntd.0011222.g005
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Downregulated DEGs in Aae.wMel2011 mosquitoes are related to DNA

replication

Eighty-four downregulated DEGs were uploaded for GO analysis using the DAVID bioinfor-

matics tool. Nucleosome assembly was the only GO term pertaining to biological processes

that was significantly enriched (Fisher’s exact P< 0.05). Two GO terms, Nucleus

(GO:0005634) and nucleosome (GO:0000786), were the significantly enriched cellular loca-

tions at Fisher’s exact P< 0.05. None of the GO terms classified as molecular functions

(GO:0003677: DNA binding) were significantly enriched (Fisher exact P> 0.05). Three func-

tional annotation clusters resulted from a DAVID cluster analysis, in which the first cluster

had three GO terms (GO:0005634: nucleus, GO:0000786: nucleosome and GO:0003677: DNA

binding), four UNIPROT keywords (DNA-binding, nucleosome core, chromosome, and

nucleus) and an InterPro term (IPR009072: histone-fold). The second cluster included one

GO term (GO:0008270: zinc ion binding) and two InterPro terms (IPR011011: Zinc finger,

FYVE/PHD-type and IPR013083: Zinc finger, RING/FYVE/PHD-type). The third cluster was

included with three UniProt keywords: transmembrane helix, transmembrane and membrane;

one GO term: GO:0016021: integral component of membrane.

Fig 6. Topmost downregulated genes with highest fold difference between Wolbachia-infected and uninfected Aedes aegypti, according to release

year. The type of downregulated gene (cell proliferation, stress response, behaviour, neurotransmitter activity, ncRNA, and uncharacterised) is shown.

https://doi.org/10.1371/journal.pntd.0011222.g006

PLOS NEGLECTED TROPICAL DISEASES Gene expression in Australian field populations of Wolbachia-infected Aedes aegypti

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0011222 March 29, 2023 12 / 23

https://doi.org/10.1371/journal.pntd.0011222.g006
https://doi.org/10.1371/journal.pntd.0011222


A considerable number (36/84) of genes were unmapped to the DAVID cloud map gene

IDs. Among these unmapped genes, 16 were non-coding RNA genes (S4 Table) and three

were uncharacterized, while information for the rest is given in the S5 Table.

Downregulated DEGs in Aae.wMel2013/2014 and Aae.wMel2017 mosquitoes

are related to multicellular organism development

When considering Aae.wMel2013/2014, there were 71 downregulated DEGs, among which 26

genes (36.6%) of the Gene IDs were not identified in the DAVID cloud map. There was a sin-

gle biological process significantly enriched at Fisher’s exact P< 0.05: multicellular organismal

process (GO:0032501). None of the cellular locations or molecular processes were significantly

enriched. DAVID pathway enrichment analysis identified four KEGG pathways that were

enriched: notch signalling pathway (aag04330), lysine degradation (aag00310), dorso-ventral

axis formation (aag04320) and Wnt signalling pathway (aag04310). However, none of these

were enriched at Fisher’s P< 0.05. There were three annotation clusters that were enriched at

a score > 0.5 in DAVID functional annotation clustering. The first cluster included three Uni-

Prot keywords (Receptor, Transducer and G-protein coupled receptor) and two InterPro pro-

tein families (IPR000276: G protein-coupled receptor, rhodopsin-like, IPR017452: GPCR,

rhodopsin-like, 7TM). The second cluster included one GO term (GO:0016021 integral com-

ponent of membrane) and three UniProt key words (transmembrane helix, transmembrane

and membrane). Two UniProt keywords (DNA-binding and nucleus) and one GO term

(GO:0005634 nucleus) comprised the third cluster. Genes that were not mapped to DAVID

cloud map were manually checked using an NCBI Gene search (S6 Table). Eleven out of 26

were ncRNA (S4 Table). Three genes were uncharacterized (LOC110674591, LOC110674325

and LOC110680306), while six out of remaining 12 genes were transcription factors

(LOC110675182, LOC110678581, LOC110675146, LOC110678585, LOC110676930 and

LOC110674313).

Fig 7. Gene ontology analysis of upregulated differentially expressed genes common to all Wolbachia-infected Aedes aegypti versus

uninfected mosquitoes. The number next to each bar refers to the number of genes involved in the biological process, molecular

function or cellular location.

https://doi.org/10.1371/journal.pntd.0011222.g007
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Among 509 DEGs observed in Aae.wMel2017 mosquitoes, 405 downregulated DEGs were

significantly enriched for 12 biological processes and 10 molecular functions in DAVID bioin-

formatics analysis (S1 Box). Moreover, cellular locations such as nucleus (GO:0005634), nucle-

osome (GO:0000786), MCM complex (GO:0042555) and origin recognition complex

(GO:0000808) were significantly enriched at Fisher’s exact P< 0.05. Genes that were not

mapped to DAVID cloud map were manually checked using an NCBI Gene search (S7 Table).

There were 104 downregulated DEGs that were not mapped to the DAVID cloud map, among

which 34 were ncRNA (S4 Table) and 11 were uncharacterised (LOC110676333,

LOC110678663, LOC110674783, LOC110678024, LOC110681172, LOC110680396,

LOC110681054, LOC110681485, LOC110676281, LOC110676629, LOC110675455 and

LOC110679465). The other DEGs were basically related to immune response, cell proliferation

and development (S7 Table). KEGG mapper results identified 12 and 58 pathways connected

to downregulated DEGs in Aae.wMel2013/2014 and Aae.wMel2017 mosquitoes.

Discussion

Our transcriptome analysis has identified DEGs in wMel-infected Ae. aegypti descended from

mosquitoes released in Cairns, Australia, in 2011, 2013–14 and 2017. We found that there was

a significantly higher number of DEGs in Aae.wMel2017 mosquitoes compared with Aae.

wMel2011 and Aae.wMel2013/2014 mosquitoes. There are several potential explanations for the

difference between years. The results of the quantitative PCR analysis suggest that it is likely

not associated with overall Wolbachia density within mosquitoes. It could be due to intrinsic

differences between sets of populations, but it is also plausible that expression in subsets of

genes has become attenuated as the mosquito undergoes evolutionary changes over time in

response to Wolbachia infection [25]. Previous studies have demonstrated the attenuation of

Wolbachia-mediated phenotypes (particularly CI, fecundity and fitness effects) in Drosophila
spp. infected with the virulent “popcorn” strain of Wolbachia [44,45], although most traits

associated with wMel appear to be stable at the level of the phenotype [26]. Our data do not

allow us to distinguish between competing hypotheses to explain the difference in gene expres-

sion between Aae.wMel2017 mosquitoes and those from earlier releases. However, if co-evolu-

tion of Wolbachia and mosquito selects for attenuated gene expression over time, we might

predict a similar pattern will be observed in the 2017 release populations in Australia over the

next few years, and in other releases globally in the future.

The DEGs that we have identified may give insight into how Wolbachia infection is main-

tained in the mosquito, and potentially the virus-blocking response so useful for arbovirus bio-

control. If the virus blocking phenotype is underpinned by the expression of a gene, or set of

genes, rather than structural modifications to host cells by Wolbachia, this is more likely to be

differentially expressed in all release groups (i.e. the common DEGs) than are other genes.

Although we were unable to directly test virus blocking in the release populations studied here,

we focus on characterising the DEGs common to all the release groups as they may reveal

clues to this important phenotype. As Aae.wMel2017 mosquitoes had significantly higher num-

bers of both up- and down-regulated DEGs compared with the other release years, the gene

expression changes in that group will also be discussed to help understand this observation

which may be related to ongoing host evolution of Wolbachia mediated effects [27].

Broadly, DEGs common to all release years were categorized into immune responses, meta-

bolic changes, and cell proliferation gene-function groups. Innate immune priming is one pos-

sible mechanism of viral blocking by Wolbachia infected mosquitoes [32], with protection

provided to the insect by pre-activation or upregulation of antimicrobial encoding genes [30].

There are four types of genes that are involved in immune responses in mosquitoes: pattern
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recognition receptors (PRRs), activation of immune signalling, immune effector mechanisms

and immune modulation by the regulation of mosquito homeostasis [46]. In this study, the

genes responsible for pathogen recognition, such as CTLGA8, alpha-2-macroglobulin and leu-

cine-rich repeat-containing protein 40-like were among the top 10 differentially expressed

genes with highest fold change. Similar findings were previously identified in a study on gene

expression in Anopheles gambiae cells during Wolbachia infection [47]. We also identified

antimicrobial peptides such as defensin-C (S3 Table), two PRRs such as gram-negative bacte-

ria-binding protein 1(GNBP1), peptidoglycan-recognition protein 2 (PGRP1) and one other

gene (uncharacterized protein LOC5577955 and isoform X1) that are related to Toll and IMD

pathway to be significantly upregulated in all wMel-infected Ae. aegypti [10,32].

We also found the iron binding protein transferrin 1, which is suggested to have functions in

iron metabolism and immune function [48], was the upregulated DEG with either highest or sec-

ond highest fold change in the mosquitoes from all release histories. Transferrin-1 gene upregula-

tion in response to Wolbachia infection in mosquitoes has been previously reported [32,49],

while iron dependence of Wolbachia on different host species has also been identified [50–52].

This iron sequestration from the host has also been suggested as a pathogen blocking mechanism

via alteration of iron binding during DENV and Zika virus infection of Ae. aegypti [53].

The upregulation of lysozyme genes that degrade pathogens was also evident in our study.

It has previously been shown that DENV infection triggers autophagy which initiates lyso-

somal degradation of the virus [54]. Autophagy is a conserved mechanism that degrades cellu-

lar components to maintain tissue homeostasis [55], and has been reported in other dipterans

[56–58]. Altogether, our study indicates that many immune components including PRRs, sig-

nalling pathways and immune effectors are significantly altered in gene expression in mosqui-

toes infected with wMel, and this response is conserved at least 8 years after initial invasion of

the endosymbiont into natural populations.

Competition for host cellular resources has been suggested as another mechanism of virus

blocking induced by Wolbachia infection [30,37,38], as Wolbachia is dependent on the mos-

quito cell for lipid and amino acid biosynthesis [29]. In our study, we also observed the upre-

gulation of genes related to fatty acid metabolism including fatty acid synthase, elongation of

very long chain fatty acids protein 4 and 7, and acyl-CoA Delta (11) desaturase isoform X2 as

well as myeloid differentiation 2-related lipid recognition protein. When considering DEGs of

amino acid metabolism, our study revealed that all wMel-infected Ae. aegypti had significantly

upregulated glycine, serine and threonine metabolism (aag00260), biosynthesis of amino acids

(aag01230), arginine biosynthesis (aag00220), tyrosine metabolism (aag00350), arginine and

proline metabolism (aag00330). It has been previously demonstrated that cysteine, glutamate,

glutamine, proline, serine and threonine are used as energy sources by wMel [59], and Ae.
aegypti fecundity and egg viability was affected by competition with Wolbachia for amino

acids [37]. In another study, leucine, tryptophan, methionine, valine, histidine, lysine, phenyl-

alanine, arginine, asparagine and threonine were found to be essential for successful egg pro-

duction while cysteine, glycine and isoleucine were considered semi-essential for egg

production [60]. Overall, upregulation of the genes related to amino acid metabolism in all

wMel-infected Ae. aegypti in our study supports previous studies which have shown the effects

of Wolbachia infection on insect host physiology and metabolism, particularly in Ae. aegypti
transinfected with the wMelPop strain [37].

KEGG BRITE hierarchical clustering of DEGs upregulated in wMel infected mosquitoes

from all years indicated that some genes responsible for membrane trafficking (S3 Table) were

upregulated. Those genes were low density lipoprotein receptor adapter protein 1-A which is

involved in clathrin-mediated endocytosis, perlucin-like protein a C-lectin receptor which is

involved in phagocytosis, and glutamyl aminopeptidase, an endoplasmic reticulum (ER)-Golgi
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intermediate compartment (ERGIC) protein which is involved in ER-Golgi transport forward

pathways. These changes suggest a dysregulation of membrane proteins due to Wolbachia,

which could contribute to impaired viral entry and replication [61,62]

Our analysis identified that some downregulated genes were related to cell proliferation

including transcription and translation and, additionally, organism development. We identi-

fied that there were some commonly affected pathways in the Aae.wMel2013/2014 and Aae.

wMel2017 mosquitoes. Those included Notch signalling, Wnt signalling and mTOR pathways

(S1 Box). Notably, there was a significantly higher number of genes downregulated in Aae.

wMel2017 than Aae.wMel2011 and Aae.wMel2013/2014 mosquitoes. Specifically, Aae.wMel2017

mosquitoes showed downregulation of pathways that control cell replication. These observa-

tions may be tied to Wolbachia’s reliance on the host cell, for example its manipulation of the

cytoskeleton, to achieve successful replication [29]. A previous study has also observed the

involvement of cell replication pathways and Notch signalling in wMel-infected mosquitoes

when subjected to selection on dengue virus-blocking [63].

Several non-coding RNAs (ncRNAs) appeared among the top-most up- and down-regu-

lated DEGs. It is increasingly appreciated that long ncRNAs are important in various biological

processes including, but not limited to, cell differentiation, epigenetic and non-epigenetic

based gene regulation, involvement in the defence system, responses to stimuli and stress

response, viral replication and antiviral defence [64–70]. Our study also identified ncRNA

loc110674601, which is significantly aligned with Arginine-glutamic acid dipeptide repeats

protein (blastn alignment not shown). This protein plays a role as a transcriptional repressor

during mouse development and in the control of cell survival [71]. Loc110673988

(AAEL022454) was among the top 10 upregulated DEG in Aae.wMel2017. A previous study

has indicated that this gene is involved in mosquito cellular immunity [72]. There were eight

ncRNA among the topmost downregulated genes. Importantly, the downregulated genes with

highest fold change in Aae.wMel2011 (LOC110676610) and Aae.wMel2017 (LOC110679860:

ncRNA) were ncRNAs. Our data suggest that long ncRNAs may play hitherto unappreciated

roles in the ability of Wolbachia to successfully colonise the mosquito host.

It important to note that whilst every effort was made to sample as many locations as possi-

ble in our study, only approximately half of the traps contained sufficient numbers of Ae.
aegypti to include in our analysis. This limited our ability to compare gene expression differ-

ences between mosquitoes in geographically separate suburbs for a given release date. Further-

more, although we show different gene expression profiles between different release dates,

future sampling should be conducted in other global release locations, such as Yogyakarta [16]

or Kuala Lumpur [9], to examine whether geographically separate local release sites show geo-

graphical and temporal differences in gene expression.

Conclusions

There is a general decrease in the number of DEGs as a result of wMel Wolbachia infection

with time post-release. However, wMel infection is characterized by a prolonged transcrip-

tomic signature with respect to upregulated genes (up to 8 years) while downregulated gene

signatures were partially fixed until 5–6 years. Upregulated genes and pathways in the host

associated with wMel infection were mainly related to immunity and metabolism (especially

amino acid and lipid metabolism), while downregulated genes were related to reproduction

and organism development. This fixed gene signature comprises transcriptomic alterations in

immunity, stress response, behavior and metabolic changes. There were also effects on genes

associated with host reproduction which were strongest in the most recent releases but not evi-

dent after 8 years.
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Materials and methods

Sample collection, RNA extraction and cDNA library preparation

Aedes aegypti eggs were collected from the Cairns suburbs of Caravonica, Gordonvale, Yorkeys

Knob, Edge Hill, Parramatta Park, Bungalow and Cairns North in April 2019 (Fig 1 and

Table 1). At the time of sampling, Caravonica was one of the few remaining locations in the

Cairns region with Wolbachia-free Ae. aegypti.
Field-collected eggs were reared under standard insectary conditions as described by

Huang et al. [24]. Post emergence, adult mosquitoes were maintained on 15% honey water as a

nutrient source. On day 4 post emergence, they were anaesthetised on wet ice and sorted by

species and sex. Females were washed in absolute EtOH before being placed in RNALater

(Qiagen) and stored at -80˚C.

RNA was extracted from pools of 5 females using an RNeasy Mini kit (Qiagen) by first

homogenizing them using a plastic pestle in 600 μL of lysis buffer in a 1.5 mL microfuge tube.

RNA was then extracted following the manufacturer’s recommended method and the presence

of Wolbachia in the pool tested using previously outlined methods [24]. The RNA was ana-

lysed on a TapeStation and quality assessed by determination of the RNA integrity number

(RIN). Samples with RIN scores less than 7.8 were excluded from further analysis. A polyade-

nylated fraction was purified from the total RNA (1 μg) using the NEBNext Poly(A) mRNA

Magnetic Isolation Module (New England Biolabs). This fraction was used to construct cDNA

library using a previously described method [73]. Briefly, poly(A) RNA (2–5 ng) was converted

to cDNA using the Protoscript II kit (New England Biolabs) and a supplied mix of random

hexamer and d(T)23VN primers, followed by conversion to double-stranded cDNA using a

cocktail of RNase H, DNA ligase and DNA polymerase I (New England Biolabs). The product

was used to construct a barcoded cDNA library using the Nextera XT system (Illumina) which

was sequenced on NovaSeq 6000 at the Australian Genome Research Facility (AGRF), generat-

ing paired 2x 150 nt reads. A total of approximately 60 million reads was obtained for each

sample. Reads are available from the NCBI Short Read Archive under Accession Number

PRJNA867516.

Bioinformatic analysis

Raw transcriptomic data (616.51Gb) was uploaded to Galaxy [74] Australia cloud and sub-

jected to quality control using fastqc tool [75]. Reads from four lanes were merged using con-

catenate tail-to-head (cat) as per R1 and R2 and then trimmed and adaptor sequences were

removed. Reads with quality Phread score < 30 and read length< 50 were excluded using the

Trim Galore tool. Next, the Ae. aegypti reference genome GCF_002204515.2 was downloaded

from NCBI and mapped to the trimmed sequence pairs using Hisat2. Gene expression was

quantified using the feature counts tool. Differentially expressed genes were then identified

using DESeq2 (FDR < 0.05 and absolute fold change ± 2) by comparing gene expression of

wMel Ae. aegypti released at different times (2011, 2013–14 and 2017) against wild type Ae.
aegypti. Downstream analysis of upregulated genes was performed after comparing gene lists

using Venny 2.1.0- BioinfoGP. Gene ontology (GO) analysis was performed using the DAVID

bioinformatics tool, with GO terms identified to be significantly enriched using Fisher’s exact

P-value< 0.05 [43].

Upregulated DEGs that were common to all wMel Ae. aegypti populations were input into

KEGG mapper (https://www.genome.jp/kegg/tool/map_pathway2.html) to identify altered

gene expression pathways. Downstream analysis of downregulated genes was performed

according to the mosquito release year with KEGG mapper and DAVID bioinformatics tool.
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Any DEG that was not identified by the DAVID bioinformatics cloud map was characterised

manually by searching either NCBI or VectorBase gene search, or protein/nucleotide blast.

Principal Components Analysis (PCA) was performed using PCAGO [76], an R-based

interactive tool using DESeq2-rlog normalised counts to visualise clustering of samples. Nor-

mality of gene expression values were assessed by the Shapiro-Wilks test, as implemented in

SPSS software [77]. As expected, gene expression values (counts per million-CPM) were not

normally distributed. Thus, the non-parametric Kruskal-Wallis test was used to check relation-

ships between gene expression and timepoint of release, as implemented in SPSS using a P-

value of< 0.05 to determine statistical significance.

Quantification of Wolbachia in Ae. aegypti
To ensure that the differences observed above were due to gene regulation to attenuate a costly

immune and/or metabolic detoxoxification response and not due to changes in Wolbachia
density, the wMel in Ae. aegypti collected from 2013–14 and 2017 release locations was quanti-

fied using the quantitative PCR developed by Lee et al. [42]. The Wolbachia density was ana-

lysed using a Mann-Whitney U test in GraphPad Prism Version 9.1.0 [78].
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S1 Fig. Density of Wolbachia in Aedes aegypti descended from mosquitoes released in the

Cairns region of northern Australia in 2013–14 and 2017. Each dot is an individual mos-

quito, and bars and whiskers are medians and 95% confidence intervals, respectively. There

was no significant difference (P> 0.05; Mann-Whitney U test) in Wolbachia density between

the years.
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S1 Box. Significantly enriched GO terms pertaining to biological processes and molecular
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