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Introduction: Wearable sensors have shown promise as a non-intrusive method for collecting biomarkers that may 
correlate with levels of elevated stress. Stressors cause a variety of biological responses, and these physiological 
reactions can be measured using biomarkers including Heart Rate Variability (HRV), Electrodermal Activity 
(EDA) and Heart Rate (HR) that represent the stress response from the Hypothalamic-Pituitary-Adrenal (HPA) 
axis, the Autonomic Nervous System (ANS), and the immune system. While Cortisol response magnitude remains 
the gold standard indicator for stress assessment [1], recent advances in wearable technologies have resulted in 
the availability of a number of consumer devices capable of recording HRV, EDA and HR sensor biomarkers, 
amongst other signals. At the same time, researchers have been applying machine learning techniques to the 
recorded biomarkers in order to build models that may be able to predict elevated levels of stress.
Objective: The aim of this review is to provide an overview of machine learning techniques utilized in prior 
research with a specific focus on model generalization when using these public datasets as training data. We also 
shed light on the challenges and opportunities that machine learning-enabled stress monitoring and detection 
face.
Methods: This study reviewed published works contributing and/or using public datasets designed for detecting 
stress and their associated machine learning methods. The electronic databases of Google Scholar, Crossref, DOAJ 
and PubMed were searched for relevant articles and a total of 33 articles were identified and included in the 
final analysis. The reviewed works were synthesized into three categories of publicly available stress datasets, 
machine learning techniques applied using those, and future research directions. For the machine learning studies 
reviewed, we provide an analysis of their approach to results validation and model generalization. The quality 
assessment of the included studies was conducted in accordance with the IJMEDI checklist [2].
Results: A number of public datasets were identified that are labeled for stress detection. These datasets were 
most commonly produced from sensor biomarker data recorded using the Empatica E4 device, a well-studied, 
medical-grade wrist-worn wearable that provides sensor biomarkers most notable to correlate with elevated 
levels of stress. Most of the reviewed datasets contain less than twenty-four hours of data, and the varied 
experimental conditions and labeling methodologies potentially limit their ability to generalize for unseen data. 
In addition, we discuss that previous works show shortcomings in areas such as their labeling protocols, lack of 
statistical power, validity of stress biomarkers, and model generalization ability.
Conclusion: Health tracking and monitoring using wearable devices is growing in popularity, while the 
generalization of existing machine learning models still requires further study, and research in this area will 
continue to provide improvements as newer and more substantial datasets become available.
1. Introduction

Stress can be defined as the body’s psychological and physiologi-
cal response to physical, emotional or mental strain. Such change in 
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the environment elicits the activation of a cascade of biological re-
sponses (stress response) in the brain and in the body [1,3]. The stress 
response serves an important evolutionary role of helping the adapta-
tion of the organism to the dynamically changing external and internal 
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environment. This is achieved through mobilization of energy and its 
appropriate redistribution to organs that most immediately serve the 
adaptational response. At present, a universally recognized standard 
for stress evaluation remains outstanding [4], further compounded with 
the need for a comprehensive framework for investigating how organ-
isms function in and adapt to constantly changing environments [5]. 
In the context of this paper and its reviewed studies, stress is consid-
ered as a binary condition for prediction. The data in a number of these 
studies [6,7] was labeled with binary stressed or non-stressed time pe-
riods, and models trained on these datasets resulted in classifiers that 
would predict an observation as either stressed or not-stressed, while 
the other datasets [8] utilized a daily stress inventory score [9] and 
one dataset [10] was labeled through observer scoring (0 to 1, low to 
high). A single study by Siirtola et al. [11] investigated and compared 
models trained as classifiers to models trained as a regression, where a 
threshold was established by analyzing the obtained continuous predic-
tion values study subject-wise to obtain a balanced accuracy rate is as 
high as possible. In the studies reviewed, no single thresholding method 
could be determined that can generalize well across models.

Interestingly, a growing number of studies are examining the effects 
of training machine learning models on biomarker data collected in a 
study setting compared to daily life scenarios [12], with further stud-
ies examining the effect of context when both training and evaluating 
predictive power [13]. While the majority of studies in this review ap-
proached the training of machine learning models for stress detection as 
a single time-series dataset, more studies are evaluating the potential of 
person-specific models [14] compared to generic non-specific models, 
with person-specific models showing great promise as powerful predic-
tors of stress.

Wearable devices for personal health monitoring and tracking have 
gained significant popularity and technical sophistication since the re-
lease of the first Fitbit [15] in 2009 and Empatica Embrace model in 
2016 [16]. Recently, more advanced devices including Empatica’s E4 
[16] have been developed that are capable of measuring a wide variety 
of physiological signals. Peake et al. [17] performed a critical review 
of available wearable devices for providing bio-feedback, monitoring 
stress, and sleep with a critical review of their technical characteristics, 
reliability and validation. Continuous measurement of the physiological 
signals recorded using wearables enables researchers to extract useful 
information from these devices to potentially detect and monitor a vari-
ety of health-related events such as seizures [18–20], dehydration [21], 
cognitive load [22], physical activity [23], emotions [24] and specifi-
cally related to this review, stress [11,13,14,22,25–33].

A number of previous survey articles have studied the topics of 
stress detection using wearable devices [34] and machine learning [35]. 
In particular, in [34], Samson and Koh have surveyed various stress 
biomarkers and their measurement tools including wearables for sali-
vary and electrochemical detection. However, they have not discussed 
how machine learning can be used to help with stress detection and 
measurements. In [35], Gedam and Paul have surveyed works that have 
performed stress detection using wearable sensors measuring Electro-
cardiogram (ECG), Electroencephalography (EEG), and Photoplethys-
mography (PPG) signals and surveyed machine learning techniques for 
that. However, in this paper, we systematically review studies that have 
mainly used biomarker data from medical-grade wearable devices avail-
able to the consumer, due to the growing popularity of personal health 
monitoring, different to those used in [35].

In addition, the previous reviews have not addressed a number of 
important points such as the statistical power [36] of the training data 
used or their labeling protocols, and how it may affect machine learn-
ing model performance. Neither have they considered machine learning 
model generalization, where models built on any of the available public 
stress datasets are capable of accurately measuring stress when applied 
on a new dataset, or applied on datasets recorded under different con-
ditions including experimental set-up, session duration, and labeling 
2

methodology.
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Towards addressing these questions, we first explore the current 
state of stress detection and measurement using medical-grade wear-
able devices that are available to the consumer. We further explore the 
available public datasets built using sensor data recorded from these de-
vices, and investigate the approaches utilized, and detection accuracy 
scores attained for machine learning models trained on these datasets. 
Finally, we discuss the generalization ability and limitations of these 
machine learning models, in order to understand the current state of 
using wearable devices for accurately measuring stress response and fu-
ture directions.

2. Methods

2.1. Research questions

The main aim of this work is to provide an overview of the current 
state of stress detection using machine learning techniques by using the 
IJMEDI checklist to assess the quality of the included literature, and 
specifically the generalization ability of models trained on public stress 
biomarker datasets and the potential reproducibility of their findings 
and results. Thus, our research questions can be formulated as follows:

• RQ1: Which machine learning algorithms and techniques are be-
ing utilized and trained on publicly available stress biomarker 
datasets?

• RQ2: What accuracy metrics are reported and how are these find-
ings being validated? Are the findings reproducible and does the 
methods utilized show promise towards model generalization?

Answering these questions will aid in getting a better understanding of 
the most current and accurate machine learning models available for 
predicting stress using wearable devices, and assist towards building a 
model capable of generalization on new, unseen data.

2.2. Search strategy

We reviewed key published works (Fig. 1) between 2012 and 2022 
on publicly available datasets related to stress, and more specifically, 
recorded using wearable devices; and measuring and predicting stress 
response using machine learning. The electronic databases of Google 
Scholar, Crossref, DOAJ and PubMed were searched for relevant arti-
cles using the keywords stress, machine learning and wearable in title or 
abstract, and a total of 973 papers were identified. Duplicates were 
identified, and 16 were found and removed, leaving the number of 
considered papers for the subsequent phases at 957. Abstracts were 
scanned and irrelevant papers were excluded, including papers where 
the full text was not available. A small number of papers, in which 
the focus was stress in animals or psychiatry, were excluded. Stud-
ies using devices that are generally considered as health-trackers, or 
lifestyle monitors were also excluded, as were studies performed solely 
using devices that would not generally be considered a wearable device, 
such as EEG or chest-worn monitors. We further limited this review to 
machine learning models trained on, and devices that are capable of, 
recording multiple biomarkers that are known to be robust indicators 
of elevated levels of stress, i.e. HRV, EDA, HR, Inter-beat Interval (IBI) 
[34]. Finally, papers where key machine learning techniques including 
feature-engineering and model validation techniques were not detailed, 
were also removed. As a result, a total of 33 papers were chosen for the 
systematic review process, grouped by the high-level topics of: Datasets, 
Machine Learning for Stress Detection and Future Research and Open Prob-

lems. Table 1 details the papers included in this review.

2.3. Assessment of the quality of the studies

Two reviewers (Vos and Azghadi) used the IJMEDI checklist [2] to 
evaluate the quality of the included studies independently. The IJMEDI 

checklist is a quality assessment tool for medical artificial intelligence 
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Fig. 1. Article screening process and the intermediate counts.
studies proposed by the IJMEDI, which aims to distinguish high-quality 
machine learning studies from simple medical data-mining studies. 
Six dimensions are included as 30 questions in the checklist: prob-
lem and data understanding, data preparation, modeling, validation, 
and deployment. Each question can be answered as OK (adequately 
addressed), mR (sufficient but improvable), and MR (inadequately ad-
dressed). In high-priority items, OK, mR and MR were assigned the 
scores of 0, 1, and 2, respectively, whereas in low priority items, the 
scores were halved. The maximum possible score was 50 points, with 
study quality was divided into low (0–19.5), medium (20–34.5), and 
high (35–50).

3. Results

3.1. Wearable devices for stress measurement

Advances in hardware such as component miniaturization have en-
abled more technological features to be embedded into ever shrink-
ing devices at lower cost. However, adoption is clearly a challenge 
that demands the collaborative attention of healthcare providers, hard-
ware and software engineers, data scientists, policy-makers, cognitive 
neuroscientists, device engineers and materials scientists, among other 
specializations [52]. From the initial Fitbit device launched in 2009, 
through to the Empatica E4 and the latest Oura Ring 3, significant 
improvements have been realized in both base features, as well as ca-
pabilities specifically related to the monitoring of, and promise to assist 
in improving, the user’s overall health.

There are a wide variety of wearable devices in the market [17]
used for health monitoring, including both medical-grade devices 
(Empatica Embrace Plus, Empatica E4, NOWATCH, Oura Ring) and 
consumer-oriented devices (Apple iWatch, Fitbit, Garmin, Samsung 
Gear). Consumer-oriented devices generally provide web-based plat-
forms and smartphone applications for reporting various health statis-
tics and levels of stress, with no ability to extract raw biomarker sensor 
recordings for scientific study, in contrast to medical-grade devices, 
such as the Empatica range, that provides full biomarker data down-
load and additional support for researchers to properly utilize the raw 
3

signals directly for study.
However, in this review, our focus was limited to devices that are 
capable of stand-alone monitoring, without the need for an additional 
harness or pairing with a secondary device (worn on the wrist, finger 
or arm), as this would limit the usefulness for study outside of a stricter 
laboratory setting. Table 2 provides a non-exhaustive list of well-known 
wearable devices potentially capable of tracking and monitoring stress.

Siirtola [53] performed a study on smart watches reporting stress 
using a single biomarker (HR) and concluded that to be sufficient for 
detecting stress. Farrow et al. [54] concluded that EDA is a robust, re-
liable, non-subjective psycho-physiological biomarker of psychological 
stress within subjects, but not always between. Greco et al. [32] con-
cluded that using only the EDA biomarker is sufficient for accurately 
predicting stress. The validity of sensor biomarkers is an open research 
question, discussed in detail in Section 4.1. Devices reporting stress 
based on only a single biomarker (typically HR or HRV) were there-
for excluded.

The studies included in this review predominantly utilized datasets 
that are publicly available and therefor available to other researchers, 
and of these, the predominant wearable device utilized was the Empat-
ica E4. Patient privacy when utilizing public health data for wearable 
research remains a concern, and Differential Privacy (DP) has emerged 
as a proficient technique to publish privacy sensitive data, including 
data from wearable devices. Saifuzzaman et al. [55] conducted a Sys-
tematic Literature Review to identify, select and critically appraise 
research in DP to understand the different techniques available in wear-
able data publishing, and proposed a number of solutions for protect-
ing patient privacy. Of the public datasets reviewed and included in 
this study, all patient identifiable information were excluded from the 
datasets.

Additionally, the measurement of stress in people with mental dis-
orders or intellectual disabilities is of growing interest. Simons et al. 
[56] presented a specific protocol for studying patterns of physiologi-
cal stress in patients with challenging behavior. However, in this review 
we found the vast majority of current studies were performed using data 
captured from predominantly healthy subjects, screened for a number 
of health conditions prior to inclusion. Table 3 lists the studies included 

in this review where health screening was explicitly noted in the study, 
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Table 1

Studies included in this review.

Topic Reference Paper Date

Data Sets [7] The swell knowledge work dataset for stress and user modeling research 2015

Data Sets [6] Introducing WESAD, a multimodal dataset for wearable stress and affect detection 2018

Data Sets [10] AffectiveROAD system and database to assess driver’s attention 2018

Data Sets [22] Datasets for cognitive load inference using wearable sensors and psychological traits 2020

Data Sets [8] Multilevel monitoring of activity and sleep in healthy people 2020

Data Sets [37] K-emocon, a multimodal sensor dataset for continuous emotion recognition in naturalistic 
conversations

2020

Data Sets [38] Toadstool: A dataset for training emotional intelligent machines playing super mario bros 2020

Data Sets [39] Comparison of machine learning techniques for psycho-physiological stress detection 2022

Machine Learning [40] Comparison of machine learning techniques for psycho-physiological stress detection 2016

Machine Learning [13] Monitoring stress with a wrist device using context 2017

Machine Learning [29] Continuous stress detection using wearable sensors in real life: Algorithmic programming contest 
case study

2019

Machine Learning [25] Objective Measurement of Physician Stress in the Emergency Department Using a Wearable Sensor 2020

Machine Learning [30] Stress Detection from Multimodal Wearable Sensor Data 2020

Machine Learning [33] Detection and Characterization of Physical Activity and Psychological Stress from Wristband Data 2020

Machine Learning [41] Evaluating the Reproducibility of Physiological Stress Detection Models 2020

Machine Learning [23] Deep neural networks for human activity recognition with wearable sensors: Leave-one- subject-out 
cross-validation for model selection

2020

Machine Learning [42] Predicting stress in teens from wearable device data using machine learning methods 2020

Machine Learning [11] Comparison of regression and classification models for user-independent and personal stress 
detection

2020

Machine Learning [22] Datasets for cognitive load inference using wearable sensors and psychological traits 2020

Machine Learning [43] Cognitive Training and Stress Detection in MCI Frail Older People Through Wearable Sensors and 
Machine Learning

2020

Machine Learning [12] How Laboratory Experiments Can Be Exploited for Monitoring Stress in the Wild: A Bridge Between 
Laboratory and Daily Life

2020

Machine Learning [44] Machine Learning Ranks ECG as an Optimal Wearable Biosignal for Assessing Driving Stress 2020

Machine Learning [45] Stress Detection by Machine Learning and Wearable Sensors 2021

Machine Learning [46] HRV Features as Viable Physiological Markers for Stress Detection Using Wearable Devices 2021

Machine Learning [28] A Sensitivity Analysis of Biophysiological Responses of Stress for Wearable Sensors in Connected 
Health

2022

Machine Learning [27] An Advanced Stress Detection Approach based on Processing Data from Wearable Wrist Devices 2021

Machine Learning [35] A review on mental stress detection using wearable sensors and machine learning techniques 2021

Machine Learning [32] Acute stress state classification based on electrodermal activity modeling 2021

Machine Learning [47] Advancing Stress Detection Methodology with Deep Learning Techniques Targeting UX Evaluation 
in AAL Scenarios

2021

Machine Learning [48] A Conditional GAN for Generating Time Series Data for Stress Detection in Wearable Physiological 
Sensor Data

2022

Machine Learning [49] Exploring Unsupervised Machine Learning Classification Methods for Physiological Stress Detection 2022

Future Research [50] The quantified self: Fundamental disruption in big data science and biological discovery 2013

Future Research [51] Deriving a cortisol-related stress indicator from wearable skin conductance measurements: 
Quantitative model experimental validation

2020
or where a dataset was utilized that was built using biomarker data 
from subjects screened for inclusion based on reported health status.

3.2. Wearable device datasets for stress measurement

A number of datasets are publicly available containing sensor data 
recorded using a variety of devices matching our inclusion criteria, 
as detailed in Table 4. The reviewed datasets contain the biomarkers 
predominantly utilized for stress detection, specifically EDA and HR sig-
nals. Apart from the Toadstool dataset, all recorded sessions exceed 60 
minutes. The AffectiveROAD and Toadstool datasets contain biomarkers 
for a relatively small sample size of 10 subjects each, and small sample 
sizes of 25 subjects or less is a common feature of all public datasets 
4

reviewed. The largest public dataset included for review, Stress-Predict 
[39], contains biomarker data recorded using an Empatica E4 device 
for 35 test subjects.

Labeling of the included datasets were performed using one of two 
methods: (i) periodic, where specific time frames during the experiment 
were either labeled as stressed or non-stressed, while the test subject 
was placed under that perceived condition (a stressful test or action, 
or non-stressed, restful period), or (ii) scored as experiencing stress or 
no stress during a particular period, either by completing a self-scoring 
evaluation, or by an observer who perceived a level of stress by observ-
ing the emotional reaction of the subject during that period.

The American Psychological Association defines three types of stress 
- Acute, Episodic Acute and Chronic, further divided into Absolute Stres-

sors (stressors that everyone exposed to them would interpret as being 
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Table 2

Wearable devices for health tracking and monitoring.

Device Release Year Type Sensors Battery Life

NOWATCH 2023 Wrist HR, TEMP, SpO2, EDA 2 Weeks
Empatica Embrace Plus 2022 Wrist EDA, ACC, TEMP, PR, PRV, ACC 1 Week
Fitbit Sense 2 2022 Wrist HR, TEMP, SpO2, EDA 6 Days
Oura Ring 3 2021 Finger HR, TEMP, SpO2, EDA 1 Week
Samsung Galaxy Watch 3 2020 Wrist BVP, HR, ACC 48 Hours
Apple Watch 7 2019 Wrist HR, ACC, SpO2 18 Hours
Fossil Gen 5 2019 Wrist BVP, HR, ACC 24 Hours
Garmin Fenix 6X Pro 2019 Wrist BVP, HR, ACC, SpO2 21 Days
Polar OH1 2019 Arm BVP, ACC 12 Hours
Fitbit Charge 3 2018 Wrist HR, ACC 1 Week
Garmin VivoActive 3 2018 Wrist HR, ACC 1 Week
Study Watch 2017 Wrist HR, TEMP, EDA 1 Week
Moodmetric 2017 Finger EDA 1 Week
Empatica E4 2015 Wrist HR, TEMP, SpO2, EDA, ACC, IBI 48 Hours
Sony SmartBand 2 2015 Wrist BVP, HR, ACC 10 Hours
Samsung Gear Live 2014 Wrist BVP, HR, ACC 24 Hours
Philips DTI-2 2014 Wrist EDA, ACC, TEMP 30 Hours

ACC - accelerometer, BVP - Blood volume pulse, EDA - Electrodermal activity.
HR - Heart rate, IBI - Inter-beat Interval, PR - Pulse rate.
PRV - Pulse rate variability, SpO2 - Oxygen saturation, TEMP - Temperature.

Table 3

Reported health screening criteria of reviewed studies.

Paper Dataset Healthy Pregnancy Smoking Caffeine Alcohol Mental Disorders Cardiovascular Disease

[28] WESAD ∙ ∙ ∙ ∙ ∙
[14] WESAD ∙ ∙ ∙ ∙ ∙
[43] Custom ∙ ∙
[48] Custom ∙
[6] WESAD ∙ ∙ ∙ ∙ ∙
[47] WESAD ∙ ∙ ∙ ∙ ∙
[27] WESAD ∙ ∙ ∙ ∙ ∙
[32] Custom ∙ ∙ ∙ ∙
[30] WESAD ∙ ∙ ∙ ∙ ∙
[26] Custom ∙ ∙
[49] SWELL ∙ ∙
[45] WESAD ∙ ∙ ∙ ∙ ∙

Table 4

Summary of reviewed public wearable device stress-related datasets.

Dataset Year Subjects Female Male Duration Biomarkers Devices Labeling/Scoring

SWELL 2014 25 8 17 138 min EDA, HRV, ECG Facial expression, body 
postures, Mobi

Periodic: Neutral, Time 
Pressure, Interruptions

Neurological Status 2017 20 31 min ACC,EDA, TEMP, HR, SPO2 Empatica E4 Periodic: Relax, Physical 
Stress, Emotional Stress, Relax, 
Emotional Stress, Relax

WESAD 2018 15 3 12 120 min ACC, EDA, BVP, IBI, HR, 
TEMP, ECG, EMG, RESP

RespiBAN, Empatica E4 Periodic: Preparation, Baseline, 
Amusement, Stress, 
Meditation, Recovery

AffectiveROAD 2018 10 5 5 118 min EDA, HR, TEMP Empatica and Zephyr 
BioHarness 3.0 chest belt

Scored by observer

Toadstool 2020 10 5 5 50 min ACC, EDA, BVP, IBI, HR, 
TEMP

Empatica E4 Periodic: Game play under 
time pressure

MMASH 2020 22 24 hrs ACC, EDA, BVP, IBI, HR, 
TEMP, Cortisol

Empatica E4 Daily Stress Inventory value 
(DSI)

K-EmoCon 2020 32 12 20 120 min ACC, EDA, BVP, IBI, HR, 
TEMP, EEG

Empatica E4, Polar H7 
Bluetooth Heart Rate Sensor, 
NeuroSky MindWave Headset

Self-report and observer 
scoring

Stress-Predict 2022 35 60 mins BVP, HR, RR Empatica E4 Periodic
5
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Table 5

Summary of reviewed studies and study stressors types applied.

Paper Dataset Time Stress Anticipatory Stress Situational Stress Encounter Stress

Ehrhart 2022 [48] Custom ∙ ∙
Iqbal 2022 [49] SWELL ∙ ∙
Iqbal 2021 [28] WESAD ∙ ∙ ∙ ∙
Liapis 2021 [47] WESAD ∙ ∙ ∙ ∙
Alshamrani 2021 [27] WESAD ∙ ∙ ∙ ∙
Greco 2021 [32] Custom ∙ ∙ ∙
Garg 2021 [45] WESAD ∙ ∙ ∙ ∙
Delmastro 2020 [43] Custom ∙ ∙
Indikawati 2020 [30] WESAD ∙ ∙ ∙ ∙
Gjoreski 2020 [22] Custom ∙ ∙
Sevil 2020 [33] Custom ∙ ∙ ∙ ∙
Kaczor 2020 [25] Custom ∙ ∙ ∙ ∙
Han 2020 [31] Custom ∙ ∙ ∙ ∙
Jin 2020 [42] Custom ∙ ∙ ∙ ∙
Can 2020 [12] Custom ∙ ∙ ∙ ∙
Nkurikiyeyezu 2019 [14] WESAD ∙ ∙ ∙ ∙
Can 2019 [29] Custom ∙ ∙ ∙
Schmidt 2018 [6] WESAD ∙ ∙ ∙ ∙
Smets 2016 [26] Custom ∙ ∙
stressful) and Relative Stressors (stressors that only some exposed to 
them would interpret as being stressful). Albrecht [57] further defined 
four common types of stress, namely Time Stress, Anticipatory Stress 
(concerns about future events), Situational Stress (situations that you 
have no control over) and Encounter Stress (worry about interacting 
with a certain person or group of people).

Table 5 provides a summary of the types of stressors applied during 
each study reviewed in this paper, as defined by Albrecht [57], with 
a number of studies including all four types within their study setting 
and protocol. All studies involved cognitive or work-related tasks un-
der pressure, and as noted in Table 3, study subjects were screened for 
known health conditions in virtually all studies. Of the studies reviewed, 
three collected stress biomarker data during normal life conditions.

Jin et al. [42] provided Empatica E4 devices to study subjects af-
ter device use training, allowing subjects to utilize the device event 
marker to indicate periods during the day when they felt moderate to 
high levels of stress. Kaczor et al. [25] performed a similar study in an 
healthcare emergency department, while Can et al. [12] investigated 
the predictive performance of models trained under laboratory condi-
tions when predicting on data collected in normal life conditions, and 
found that models trained on data recorded during laboratory sessions 
outperformed models trained on data collected during normal daily life 
conditions, when predicting for daily life conditions. This particular 
study [12] is of importance to researchers interested in building mod-
els from study data, for use on patient data collected during normal life 
conditions.

3.3. Machine learning algorithms and techniques for stress measurement 
using wearable data

Reviewing the literature, we found several machine learning tech-
niques applied to detect elevated levels of stress using wearable devices. 
Table 6 lists the papers reviewed and the machine learning algorithms 
utilized. In the following subsections, we provide a discussion on the 
different steps of the machine learning pipelines utilized, and analyze 
how previous works have performed those steps, noting their strengths 
and limitations.

3.3.1. Pre-processing

Electronic sensors used in wearable devices for recording biomarkers 
differ widely, and subsequently operate and record on different sam-
pling frequencies. For the Empatica E4, for instance, the EDA signal is 
sampled at 4 Hz, while the HR signal is sampled at 1 Hz. Recorded ses-
sion data for both sensors will therefor differ in length, and researchers 
6

will have to pre-process the sensor data by down-sampling the EDA 
signal to 1 Hz to ensure a like for like timestamp match with the HR 
signal, and subsequently any stress metric label for the exact time pe-
riod. In the studies reviewed, [14,22,30,42,48] specifically noted that 
down-sampling was applied on data used within their experiments.

Due to varying experimental protocols and the ease of collection of 
non-stress samples, data is likely to be unbalanced with more non-stress 
samples versus stressed samples present in any given dataset. There-
fore, another usual pre-processing step performed on wearable stress 
data is class balancing that can be done in different ways. For instance, 
Nkurikiyeyezu et al. [14] balanced the recorded sensor data by ran-
domly discarding some samples from the majority (non-stressed) class, 
and further applied logarithmic, square root, and Yeo-Johnson transfor-
mations to ensure a Gaussian distribution, as required by their use of a 
linear regression model. Can et al. [29] also performed class-balancing 
through random down-sampling of the majority class (non-stressed ob-
servations) to match the minority class (stressed observations).

As noted in Table 7, neither up-sampling nor down-sampling tech-
niques showed a substantial difference or improvement in predictive 
power, and this may be due to the lack of a proven strategy employed 
when selecting which observations to discard, potentially causing in-
formation loss [58] of important biomarker data during the sampling 
process. Class balancing techniques all have varied benefits and risks, 
as noted in Table 7, and to this extent, a number of methods have 
been proposed to improve class-balancing re-sampling techniques. Deng 
et al. [59] proposed a unified approach for multivariate time series 
classification when data is imbalanced, while Lee et al. [60] used a 
semi-supervised technique known as Active Learning to mitigate the 
effect of imbalanced class labels. Jiang et al. [61] proposed a new over-
sampling method based on the classification contribution degree to deal 
with a number of shortcomings when using SMOTE (Synthetic Minor-
ity Oversampling Technique) [62], such as oversampling from noisy 
points. A notable drawback of reliance on class balancing when dealing 
with highly imbalanced datasets such as the stress biomarker datasets 
included in this study, where the stressed period is generally the mi-
nority class, is reproducibility and generalizability on new, unseen data 
that may contain significant outliers and a different class distribution, 
depending on the study setting and protocol used during biomarker 
recording. Further research is required to identify robust techniques for 
dealing with these class imbalances in physiological biomarker datasets.

Differences in data range, units and scale can be problematic for 
some machine learning algorithms and standardization is usually ap-
plied to scale the data to have a mean of 0 and a standard deviation of 1. 
Similarly, the goal of normalization is to change the values of numeric 
columns in the dataset to a common scale, without distorting differences 

in the ranges of values. In the context of stress detection, normaliza-
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Table 6

Summary of the machine learning models reviewed.

Paper Year Model Dataset Accuracy Subjects Features Cross Validation Window

[26] 2016 Bayesian networks Custom 84.60% 20 22 LOSO 30 s, 29 s overlap
[13] 2017 SVM Custom 71.00% 5 6 LOSO 6 min
[6] 2018 Random Forest, LDA, AdaBoost WESAD 93.00% 15 82 LOSO 0.25 s, 5 s, 60 s
[29] 2019 Neural Network, Random Forest Custom 97.92% 21 17 10-Fold 2 min, 20 min
[14] 2019 Random Forest, ExtraTrees WESAD, SWELL 93.90% 15, 25 94 10-Fold 5 min, 10 min
[11] 2020 Bagged tree based ensemble AffectiveROAD 82.30% 9 119 LOSO 60 s, 0.5 s overlap
[22] 2020 XGBoost Snake, CogLoad 82.00% 23,23 44 LOSO
[33] 2020 LDA Custom 98.30% 24 2216 10-Fold
[25] 2020 Naive Bays Custom 64.50% 8 30 10-Fold 20 min
[31] 2020 K-nearest-neighbor Custom 94.55% 17 25 10-Fold 60 s
[42] 2020 Random Forest Custom 89.40% 8 756 10-Fold
[30] 2020 RF WESAD 92.00% 15 4 60/40 Split 0.25 s
[44] 2020 Ensemble SRAD 75.02% 17 6
[12] 2020 Random Forest Custom 74.61% 14 2 10-Fold
[43] 2020 Adaboost Custom 85.30% 9 10 10-Fold
[28] 2021 Logistic Regression WESAD 85.71% 14 5 14-Fold 60 s
[32] 2021 SVM, RF Custom 94.62% 65 14 LOSO
[27] 2021 Neural Network WESAD 85.00% 15 14 LOSO
[45] 2021 RF WESAD 83.34% 15 5 LOSO 10 s
[46] 2021 Gradient Boosting SRAD 79.00% 17 7
[47] 2021 Neural Network WESAD 97.40% 15 36 UX Dataset
[49] 2022 Random Forest SRAD, SWELL 65.6%, 75% 17, 25 2 70/30 Split
[48] 2022 Neural Network Custom 72.62% 35 Test on unseen 16 s

Table 7

Class balancing methods employed in reviewed studies.

Paper Class Balancing Accuracy Benefit Risk

[33] ADASYN [63] 98.30% Reduces bias [63] Generates minority outliers [64]
[29] Upsampling of Minority Class 97.92% Simple implementation [64] Promotes overfitting [65]
[14] Downsampling of Majority Class 93.90% Simple implementation [64] Information loss [58]
[42] Random Sampling [58] 89.40% Reduces bias [63] Explainability
[43] SMOTE [62] 85.30% Surpasses random sampling methods [66] Introduces noise, Overgeneralization [61]
[12] Downsampling of Majority Class 74.61% Simple implementation [64] Information loss [58]
[48] Data Augmentation 72.62% Can reduce bias [67] Explainability
tion and standardization were utilized by [14,22,28,33,46], with [22]
experimenting on both raw and standardized data, and finding that 
standardization offered improved predictive performance across all 10 
machine learning algorithms tested. Another usual pre-processing step 
on biomedical signals such as stress-related biomarkers collected by 
wearable devices is filtering. This is done to reduce outliers and any 
potential noise. For instance, [6] applied a 5 Hz low-pass filter on the 
raw EDA signal, [28] applied a high-pass filter on the raw EDA signal, 
while [14,27,31] applied a 4 Hz fourth-order Butterworth low-pass fil-
ter, followed by a moving average filter, to reduce outliers and remove 
noise from EDA sensor signals.

3.3.2. Feature-engineering

A common technique for extracting useful features representing 
physiological time series data, is to summarize the changing features 
of the existing data using summary statistics. Guo et al. [68] performed 
a study to evaluate summary statistics as features for clinical prediction 
tasks, and found that commonly used combinations of summary statis-
tics such as [min, max, mean] and [min, max, mean, standard deviation 
(std)] achieved good prediction results in most cases. However, they re-
ported that skew and kurtosis, which reflect the shape of a distribution, 
performed poorly when used individually as features for prediction, but 
appeared frequently in the optimal combinations, indicating that they 
can play a role as supplemental information.

The techniques noted by Guo et al. [68] were frequently applied 
in the stress detection studies reviewed. Fourteen of the reviewed ap-
proaches [6,11–14,26,28,29,31–33,44–46] utilized summary statistics 
of biomarkers using a sliding-window approach, ranging from 0.25 sec-
onds in one experiment up to 20 minutes in others, with varying degrees 
of success. In [69], the author noted summary windows of 30 and 60 
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seconds are most often utilized, based on the hypothesis that this fac-
tor correlates with physiological response. Can et al. [29] decomposed 
the phasic and tonic components of the EDA signal using a convex op-
timization approach, as the tonic component includes more long-term 
slow changes, whereas phasic components include faster (event-related) 
changes. Both [29] and [22] found that sliding windows ranging be-
tween 10 and 17.5 minutes produced better detection accuracy, with 
[29] further noting that different machine learning algorithms relied 
on different window sizes, an important factor to consider for future 
research.

Jin et al. [42] used the tsfresh Python library to automatically gen-
erate 4536 features off their existing data and applied a Random Forest 
model as machine learning approach. To evaluate the performance of 
such a large number of features, the results were grouped around the 
key biomarkers (i.e. HR, EDA, TEMP), from which the features were 
engineered. Gjoreski et al. [13] used greedy step-wise selection to iden-
tify the top features considered most useful for their specific machine 
learning model, and further noted that when sensor-specific features are 
used, PPG-based features achieved higher predictive accuracy results, 
followed by the IBI and HR-based features. Iqbal et al. [28] found fea-
tures based on HR and respiratory rate to be the most important, while 
Dalmeida et al. [46] focused their research specifically on HRV as a vi-
able biomarker, and found HRV features to constitute good markers for 
stress detection.

3.3.3. Algorithm selection

Of the 23 machine learning based stress detection studies reviewed, 
we noted the use of 16 different algorithms, including combinations 
of Logistic Regression (LR), Support Vector Machines (SVM), Decision 
Trees (DT), Random Forests (RF), Bayesian Networks (BN), Princi-
pal Component Analysis (PCA), Linear Discriminant Analysis (LDA), 

k-Nearest Neighbor (kNN), Multi-layer Perceptron (MLP), Multi-task 
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Fig. 2. Accuracy based on labeling method included in study.
learning (MTL), Adaboost, Naive Bayes (NB), Bagging, Gradient Boost-
ing (GB) and Neural Networks (NN). Of these, SVM, RF and kNN were 
the most commonly used for stress detection, with tree-based models 
such as RF and GB generally delivering better predictive performance 
on supervised binary classification objectives.

A standard approach consists of selecting a small number of algo-
rithms that may be suitable for the problem, train each and select the 
best performing model based on their final predictive accuracy. [14]
experimented on a single method (Random Forest) while [53] used 
13 different algorithms to test the predictive accuracy of classification 
based models versus regression type models for predicting elevated 
levels of stress, of which Bagged Trees performed the best. Similarly, 
[6,13,25,26,29,31] utilized 5 to 7 different algorithms and compared 
the stress prediction accuracy of each, with the highest performing mod-
els listed in Table 6. Iqbal et al. [49] compared the performance of 7 
supervised methods to 7 unsupervised methods and concluded that a 
careful selection of classification models is required when aiming to de-
velop an accurate stress detection system, with unsupervised machine 
learning classifiers showing good performance in terms of classification 
accuracy.

Additionally, the predictions from a set of algorithms can be com-
bined based on averaging, weighted-averaging or voting, to produce 
a final prediction (commonly known as model ensembling). This tech-
nique was specifically noted in experiments done by Gjoreski et al. [13], 
Kaczor et al. [25] and Elgendi et al. [44].

3.3.4. Hyperparameter optimization

Hyperparameters can be defined as the different parameter values 
used to control the learning process of a machine learning algorithm, 
and can have a significant effect on their performance. Hyperparam-
eter optimization is the process of finding the right combination of 
algorithm parameter values to achieve maximum performance on the 
given dataset. Examples of hyperparameters are the number of estima-
tors (trees) and maximum tree depth in the Random Forest algorithm. 
Due to the large number of parameters that require tuning in different 
algorithms, automated methods [70] have been developed to scan the 
full parameter search space in a reasonable amount of time to determine 
the optimal combination.

Of the stress-related studies reviewed, we noted [26] restricted the 
hyperparameter of the estimators count used in their Random Forest 
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model to 20, while [42] performed a grid search with estimators set at 
500. In [14], the authors used 1,000 estimators while limiting the tree 
depth to 2, in order to limit the possibility of over-fitting. For the de-
cision tree classification algorithms used by [6], information gain was 
used to measure the quality of splitting decision nodes, and the min-
imum number of samples required to split a node was set to 20. The 
number of base estimators was set to 100 for both of their utilized al-
gorithms (Random Forest and AdaBoost). In another study, Han et al. 
[31] did not specifically optimize hyperparameters, but built several 
kNN models with different parameter values for k (1, 3, 5, 7, 9) and se-
lected the best performing model from those. Sevil et al. [33] utilized 
Bayesian optimization techniques for feature-selection.

Unlike the aforementioned works, Gjoreski et al. [22] tuned their 
model parameters by randomly sampling from distributions predefined 
by an expert. The models were then trained with the specific param-
eters and evaluated using cross-validation on the training data. The 
best performing model from the cross-validation was used to classify 
the test data. A systematic, well-defined hyperparameter optimization 
approach is crucial to improve the reproducibility of scientific studies 
and ensures that machine learning algorithms are tailored to the prob-
lem at hand. As noted by Can et al. [29], the performance of machine 
learning models may be dependent on an optimal selection of window 
size when generating summary statistics to engineer features, and this 
needs consideration when selecting hyperparameters for optimal pre-
dictive performance.

3.3.5. Model training and validation

An important requirement when developing supervised machine 
learning algorithms is to have valid labeled data. In the case of stress 
measurement, we found three main methods employed for labeling ele-
vated levels of stress. These include (i) specific stress/no-stress periods 
marked during an experimental recording session [6,7,25,27,29–33,38,
39,43–49]; (ii) self-reporting via questionnaires [8,12,13,22,26,28,37]; 
and (iii) labeling by a third-party observer, who observes subjects’ re-
sponse to a situation and numerically scores/grades the level of stress 
observed [10,11,37,42]. Fig. 2 details the studies reviewed for each 
year, with reported accuracy rates by labeling method. Periodic labeling 
was the most commonly used labeling technique and provided consis-
tently higher accuracy rates as reported by each study, compared to 
self-scoring and scoring by a third-party.

As highlighted in Table 6, the best performing models from each ex-

periment achieved at least 64.5% test accuracy, with [6,14,30–33,47]
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Fig. 3. Accuracy based on number of subjects included in study. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)
reporting binary classification test accuracy rates of over 90%, using 
datasets labeled with specific, marked stress/no-stress periods. It should 
be noted that as stress is a physiological response, predictive accuracy 
in these experiments measures a predictive correlation between the in-
cluded features (biomarkers) against a labeled metric at the same point 
in time (stressed versus non-stressed). Siirtola et al. [53] attempted 
to model how high this relationship is (using a regression algorithm 
instead of classification), while Umematsu et al. [71] focused on the 
problem of forecasting future episodes of stress, rather than measuring 
levels of stress on previously recorded data.

Cross-validation is a re-sampling procedure used to evaluate ma-
chine learning models on a limited data sample. The purpose of cross–
validation is to test the ability of a machine learning model to pre-
dict with high accuracy on new, unseen data. It is also used to flag 
problems like over-fitting or selection bias, and gives insights on how 
well the model will generalize to an independent dataset. Among the 
studies reviewed, [6,11,13,22,26,27,32,45] utilized Leave One Subject 
Out (LOSO) cross-validation, while [12,14,25,28,29,31,33,42,43] uti-
lized K-fold cross-validation with K=10. In addition, [22] utilized both 
LOSO and K-fold cross-validation, with K=5. All studies reviewed ap-
proached stress prediction as a binary classification problem apart from 
[53], where the problem type was defined as stress level measurement, 
rather than a binary stressed versus non-stressed problem. No definitive 
improvement in reported accuracy rates were noted when using LOSO 
cross-validation compared to K-fold cross-validation.

3.3.6. Performance analysis

A wide variety of metrics are available for measuring machine 
learning model performance, depending on the problem being solved, 
for example classification or regression type problems. The experi-
ments reviewed utilized and reported a number of different evaluation 
metrics including F-score [6,22,29,45,48,49], classification accuracy 
[12,13,25–33,43–46,48,49], Kappa [47], Area Under the Curve (AUC) 
[42,46] and Mean Absolute Error (MAE) [14]. For comparisons among 
the reviewed studies, here we only investigate their achieved classifica-
tion accuracy, if reported. Classification accuracy simply measures how 
often the classifier correctly predicts, i.e. what is the ratio of the number 
of correct predictions to the total number of predictions.

To determine classification accuracy, Kaczor et al. [25] divided their 
dataset into 3 classes: a pre-stress event vs post-stress event, baseline vs 
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pre-stress event, and baseline vs post-stress event, reporting a classifi-
cation accuracy rate of 90.4%. Can et al. [29] reported a binary classi-
fication accuracy rate of 97.92% using a custom (non-public) dataset, 
and Gjoreski et al. [22] reported a binary classification accuracy rate 
of 68.2% when applied on the CogLoad dataset and 82.3% when ap-
plied on the Snake dataset. Han et al. reported a binary accuracy rate of 
94.55%, while Nkurikiyeyezu et al. [14] and Schmidt et al. [6] reported 
binary classification accuracy rates of 93.9% and 93% respectively. Jin 
et al. [42] reported an AUC rate of 89.4% rather than an accuracy 
rate. AUC, unlike classification accuracy, is sensitive to class imbalance 
when there is a minority class. This implies that classification accuracy 
rates can be high even if the predictions for a minority class are mostly
wrong. This could lead to samples marked as non-stressed being classi-
fied mostly correctly and stressed samples (the minority class) predicted 
inaccurately, while still reporting an overall high accuracy rate.

Fig. 3 details the reported accuracy metrics achieved for the exper-
iments reviewed in this paper, based on the size of the dataset used 
in terms of individual test subjects. The highest reported accuracy rate 
of 98.30% was achieved by Sevil et al. [33] when using Linear Dis-
criminant Analysis (LDA) on a non-public dataset consisting of 24 test 
subjects, and validated using K-Fold cross-validation. Liapis et al. [47]
trained a Neural Network on the public WESAD dataset (15 subjects), 
and evaluated on a user-annotated dataset consisting of skin conductiv-
ity (SC) segments for 30 study participants, reporting an accuracy rate 
of 97.40%.

3.3.7. Study quality

The Supplementary File details the results of the IJMEDI quality as-
sessment. Table 8 summarizes the scores of each dimension and the 
total score in each study. The average score of the included studies was 
25.7 (range: 14–35). Most of the studies were of a medium quality, 
while one [72] were of a high quality. The majority of the studies had 
an obvious bias in the quality of problem understanding, data under-
standing and modeling dimensions. Fig. 4 shows the proportion of the 
different answers in the high and low priority items.

4. Discussion

In order to build a robust machine learning model capable of accu-
rately detecting stress, we consider four important requirements. These 

include (i) Sensor biomarker data needs to be valid and sufficiently 
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Table 8

Quality assessment scores of the 23 ML-based studies according to the IJMEDI checklist.

Problem 
Understanding (10)

Data 
Understanding (6)

Data 
Preparation (8)

Modeling (6) Validation (12) Deployment (8) Total (5) Generalization

Iqbal 2021 [28] 7 6 8 6 7 2 36
Nkurikiyeyezu 2019 [14] 6 3 8 6 8 2 33
Delmastro 2020 [43] 9 5 2 6 7 4 33
Gjoreski 2020 [22] 7 6 2 6 8 2 31
Ehrhart 2022 [48] 7 5 2 6 9 2 31 ∙
Schmidt 2018 [6] 7 5 1 6 8 3 30
Dalmeida 2021 [46] 6 4 4 6 8 2 30
Liapis 2021 [47] 7 4 2 6 9 2 30 ∙
Can 2019 [29] 7 4 2 6 7 3 29
Sevil 2020 [33] 5 4 4 6 7 2 28
Alshamrani 2021 [27] 7 5 4 5 5.5 1 27.5
Kaczor 2020 [25] 9 3 2 5 6 1 26
Jin 2020 [42] 6 3 2 6 7 2 26
Greco 2021 [32] 6 4 0 6 8 2 26 ∙
Indikawati 2020 [30] 7 5 2 6 5.5 0 25.5
Can 2020 [12] 7 4 2 6 5.5 1 25.5
Elgendi 2020 [44] 7 2 2 6 6 1 24
Gjoreski 2017 [13] 5 3 2 5 5.5 3 23.5
Smets 2016 [26] 6.5 5 0 5 5.5 1 23
Han 2020 [31] 6.5 4 0 5 5.5 0.5 21.5
Siirtola 2020 [11] 5 2 1 5 6 1 20
Iqbal 2022 [49] 6 2 0 6 5 0 19
Garg 2021 [45] 1 2 0 5 6 0 14

Fig. 4. Proportion of the different answers in the high- and low-priority items. OK = adequately addressed; mR = sufficient but improvable; MR = inadequately 

addressed.

varied to capture a wide spectrum of potential physiological stress re-
sponse; (ii) For supervised machine learning, this data needs to be 
accurately labeled where observations are marked as stressed or non-
stressed or a stress score range is given, to allow the model to learn from 
the data; (iii) Where a specific hypothesis is being tested, a sufficient 
level of statistical power is required [36,39,73–75], thereby ensuring 
results and findings can be considered statistically significant, and (iv) 
Model generalization occurs in order to apply the model on new, un-
seen data, with high accuracy. The discussion of this review is therefor 
focused on those four key requirements.

Having scored the machine learning studies included in this review 
using the IJMEDI checklist, we found only one study [72] of high qual-
ity, with the remaining studies being of medium quality, and a single 
study being of low quality [45]. Most studies scored well in problem, 
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data understanding and modeling domains. Data preparation and de-
ployment scores were notably low, as were scores for high priority items 
in the validation domain. Interestingly, there were no notable improve-
ment in study quality over time.

Five studies [14,22,43,48,72] scored over 30, being of medium to 
higher quality. Focusing on the modeling, validation and deployment 
domain scores of these eight studies, we note an improvement in quality 
over time for only the validation domain, indicating a lack of progress 
in the modeling domain and little focus on the deployment of models in 
real-life scenarios, including factors pertaining to sustainability, model 
bias and ethics. See Fig. 5.

4.1. Validity of sensor biomarkers

The datasets included in this study contain a variety of sensor 

biomarker data potentially useful in detecting elevated levels of stress 
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Fig. 5. Trend of higher-quality studies over time.
via HR, HRV and EDA signals, measured across a time interval. In ad-
dition, sweat sensing is at the forefront of wearable stress detection 
currently in development [34] and devices sensing sweat may hold 
great promise to quantify several biomarkers, namely Cortisol, to mon-
itor the levels of stress that an individual is experiencing.

However, [76] noted that at present, there is a lack of consensus on 
a standardized protocol or framework with which to test the validity 
of physiological signals measured by these devices and their derived 
parameters. It is also argued that sudden, short-lived stressors, such 
as being startled by the ringing of the phone, or possible habituation 
effects as a result of exposure to repeated information cannot be validly 
detected. Lier et al. [76] reported that physiological changes during 
a workday can be tracked by the Empatica E4 wearable against more 
major, sustained stressors.

In [77], the authors found the Empatica E4 to be suitable for psy-
chotherapy research focused on Inter-Beat Interval (IBI) and specific 
HRV measures, but failed to produce reliable EDA data and produced 
missing IBI data, especially when a subject is being more dynamic. This 
is confirmed by Ryan et al. [78] and Sevil et al. [33] that found the 
Empatica E4 can be severely compromised by motion artifact. This can 
result in a high percentage of missing data across all conditions ex-
cept seated and supine baselines, and questions the E4’s efficacy as an 
HRV measurement tool in most in-vivo conditions. This is further con-
firmed by Georgiou et al. [79] that found wearable devices can only be 
used as a surrogate for HRV at resting or mild exercise conditions, as 
their accuracy fades out with increasing exercise load, and Schuurmans 
et al. [80] who noted the potential of the Empatica E4 as a practical 
and valid tool for research on HR and HRV under non-movement con-
ditions. Seipaejaervi et al. [81] found that an HRV-based stress index 
mirrors responses of cortisol, and an HRV-based stress index may be 
used to quantify physiological responses to psychosocial stress across 
various health and age groups. In contrast, Greco et al. [32] found EDA 
to be a good marker of stress when features are engineered based on its 
phasic and tonic components.

In [11], the authors predominantly focused on comparing regres-
sion vs. classification models using the AffectiveROAD dataset [10]. 
This dataset contains sensor recordings for both left and right hands of 
the test subjects. To ensure consistent, comparable results, [11] utilized 
only data recorded from the right hand of each test subject, leaving the 
important question of sensor placement unanswered, and needing fur-
ther study to confirm whether sensor placement on the dominant versus 
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non-dominant hand of a test subject could potentially affect biomarker 
accuracy, and more importantly for this review, correlation with in-
creased levels of stress. Empatica note on their website [16] that newer 
studies have shown substantial differences in the EDA signal between 
the dominant and non-dominant hand.

4.2. Labeling protocol

In terms of labeling protocol and methodology, [11] questioned 
the accuracy of self-reporting of perceived levels of stress experienced, 
which was previously questioned by [82], who noted that study sub-
jects are less likely to report on states less socially desired. Accurate 
labeling of stressed/non-stressed periods in the sensor data is crucial 
to building a reliable and robust machine learning model. To achieve 
this, in the datasets reviewed in Table 4, two major labeling methods 
were used. The SWELL, Toadstool and WESAD datasets were recorded 
with specific intervals to denote stressed/non-stressed periods for la-
beling. In the AffectiveROAD, MMASH and K-EmoCon datasets, on the 
other hand, labeling was performed using self or observed stress indi-
cator scoring. An interesting observation is that where these datasets 
were utilized in reviewed machine learning models, the models trained 
on periodically-labeled data achieved significantly higher levels of de-
tection accuracy compared to the models trained using self or observed 
stress scoring. This is likely due to false negative reporting in the ques-
tionnaires, as noted by [82].

Stress is not a binary condition, and none of the studies reviewed 
noted specific methods for establishing thresholds within biomarkers to 
utilize as indicators of periods of high stress (low, moderate, high). Any 
potential thresholds established by the machine learning algorithms, 
(specifically tree-based methods) during training were not examined in 
detail to determine any potential time-varying dynamics between the 
biomarkers. Ghiasi et al. [83] proposed combining HRV and EDA corre-
lates as a single index, rather than treating each as separate indicators 
of ANS changes. They reported good results when validating this metric 
on two experimental protocols.

4.3. Lack of statistical power

Of the papers included in this review, six [14,26,28,43,44,46] specif-
ically included a hypothesis statement in their experiments. However, 
no power analysis were noted in any of the machine learning papers 
reviewed, regardless of hypothesis statement. It is common to design be-

havioral science experiments with a statistical power of 80% or higher 
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Fig. 6. Accuracy based on number of subjects included in study.
[73], which reduces the probability of encountering a Type II error by 
up to 20% [84]. Statistical power has three parts: effect size (a statisti-
cal measure), sample size (number of observations or participants) and 
significance (typically 0.05 [73]). Power analysis assists researchers in 
determining the smallest sample size suitable to detect the effect of a 
given experiment at a desired level of significance, as collecting larger 
samples are likely costlier and much harder. The use of machine learn-
ing in behavioral science experiments does not automatically negate the 
need for sufficient statistical power [36,75].

One of the recurrent questions psychology researchers ask is: “What 
is the minimum number of participants I must test?” [74]. The high num-
ber of participants required for an 80% powered study often surprises 
cognitive psychologists, because in their experience, replicable research 
can be done with a smaller number. For a long time, samples of 20–24 
participants were the norm in experimental psychology [74]. However, 
when applying a two-tailed power test with a correlation coefficient 
of 0.5 [73] and an assumed significance level of 𝛼 =0.05, we found 
that at least 34 test subjects would be required to achieve 80% power. 
Where correlation is notably less, for example stress biomarker corre-
lation with a periodic stress label, substantially more subjects could 
be required to achieve at least 80% statistical power. Iqbal et al. [39]
specifically performed a power analysis and similarly concluded that 
at least 34 test subjects would be required to achieve 80% statistical 
power, and built their Stress-Predict dataset using 35 test subjects.

Considering the small number of subjects contained in the datasets 
utilized in the experiments reviewed in this paper (Fig. 6), the statistical 
power of the experiments and subsequent conclusions reached on the 
accuracy achieved will be overshadowed, more so if these trained mod-
els were applied on new, unseen datasets (to confirm generalization). 
This holds true when the objective is to infer an unknown truth from 
the observed data, and hypothesis testing provides a specific framework 
whose inferential target is a binary truth (stressed vs. non-stressed). For 
example, whether an EDA biomarker from wearable device data pro-
vides a signal that correlates with an elevated level of stress. Li et al. 
[85] provides a detailed discussion and guidelines for choosing between 
the two strategies (hypothesis testing versus machine learning classifi-
cation) when designing an experiment that can assist researchers in 
choosing a strategy and when required, validate whether their sample 
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size contains sufficient power.
4.4. Lack of generalization

Interestingly, as shown in Fig. 6, there appears to be no obvious cor-
relation between the number of subjects included in the study with the 
reported accuracy rate. In virtually all the reviewed studies the number 
of subjects were less than 30. None of these studies apart from Mishra 
et al. [41] and Liapis et al. [47], tested generalization of the resulting 
models on a totally unseen, new dataset, to further validate the reported 
accuracy achieved in the experiments, when trained on a public dataset.

Fig. 6 further shows the calculated statistical power given a two-
tailed power test with a correlation coefficient of 0.5 [73], and an 
assumed significance level of 𝛼 =0.05 for each of the studies reviewed, 
based on the number of unique test subjects contained within each 
dataset when used for training and validation. Of these, datasets uti-
lized by Greco et al. [32] and Ehrhart et al. [48] achieved at least 
80% power by using non-public datasets while the public WESAD 
[6,14,27,28,30,45,47] and SWELL [14,49] datasets achieve 45% and 
70% power respectively, based on number of test subjects included.

The majority of studies in this review use a custom or public dataset 
to train their machine learning algorithms using time-series biomarker 
data within that dataset. These models are then evaluated using the 
test set of the same dataset, meaning the same experimental setup, 
and sometimes, different biomarker recordings of previously observed 
subjects during training. This cannot ensure generalizability of the de-
veloped model to other subjects or datasets. Recently some studies are 
evaluating the potential of person-specific models and their promise in 
improving generic stress detection models [14]. Of the studies reviews 
in this paper, and scored using the IJMEDI checklist [2], three studies 
[32,47,48] were found to likely achieve generalization (Table 8), based 
on model validation and the use of sufficiently large training datasets 
based on the number of individual study subjects included.

Focusing specifically on results reported when models are trained 
and evaluated on the most commonly used WESAD dataset (Table 6), 
we note that of those experiments reporting accuracy rates higher than 
90% [6,14,30,47], all included both EDA and HR (or HRV) biomark-
ers, while those excluding either the HR or EDA biomarkers [27,28,45]
consistently reported accuracy rates below 86%, irrespective of feature-
engineering or cross-validation technique applied. This observation is 
in line with findings by Schmidt et al. [6] who noted their reported 
highest accuracy rate of 93% dropped to 88.33% when excluding the 

HR biomarker during model training and validation. This may indi-
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Fig. 7. Reported accuracy based on dataset utilized over time.
cate that both EDA and HR (or derivatives including HRV) biomarkers 
play an equally important role in correlation with perceived elevated 
levels of stress and require further examination, considering the small 
sample of experiments reviewed. Additionally, when considering the 
advancement of machine learning technologies over the last decade, 
there appears to be no consistent increase in model performance or re-
ported accuracy over time (Fig. 7), indicating that model generalization 
with respect to stress detection and measurement using machine learn-
ing techniques remains a challenge.

4.5. Summary

The significant observations from this review are:

• Technological improvements in wearable devices have seen a rapid 
improvement in complexity, ease of use and affordability. This has 
helped many studies to record and analyze various physiological 
signals that can be used as biomarkers.

• Sensor biomarkers vary across the wearable devices reviewed, with 
questions remaining on whether all sensor data can be considered 
valid and accurate for use in stress detection and measurement, or 
which biomarkers are the best when measuring stress.

• Existing work has predominantly used small datasets acquired in a 
single experimental setup with varying labeling protocols, bringing 
into question the statistical power of these small datasets when 
used for both training and validation.

• In the studies reviewed, model validation was performed predomi-
nantly using LOSO or K-Fold cross-validation, with no further val-
idation on a completely new, unseen dataset recorded in different 
experimental conditions using new study participants, leaving the 
question of model generalization unanswered.

4.6. Challenges and future research directions

To achieve reliable machine learning models suitable for real-world 
monitoring of stress, three formidable challenges should be addressed.

• Varying experimental and labeling protocols influence stress mea-
surement and detection accuracy. To address this challenge, there 
exists the need for a definitive set of test guidelines when using 
wearable devices to record biomarker data, including appraisal and 
scoring methodology. In [86], the authors concluded that, the ap-
13

praisal process critically shapes an individual’s response to acute 
stress, while [87] detected lower EDA biomarker activity in re-
sponse to episodes of acute stress in caregivers of people with 
Autism Spectrum Disorder, a potential habituation to stress. These 
findings support the need for a proper understanding of when wear-
able devices can and should be used, and potential factors that 
could affect sensor accuracy.

• Measurement accuracy is a major challenge that can significantly 
affect wearable device data and consequently any stress measure-
ments. One of the main problems with current wearables is sig-
nificant motion artifacts, which may be reduced by measures for 
better and more stable placement of the device, or through placing 
the device on other parts of the body.

• Another significant challenge is the lack of large, diverse public 
datasets built from wearable sensor data that can be utilized to 
build machine learning models for predicting elevated levels of 
stress that generalize well to unseen data.

5. Conclusion

The main objective in automated stress detection and measurement 
is to develop a robust, highly accurate machine learning model that 
can generalizing well on new, unseen data. The review presented here 
synthesized the literature and presented important information about 
the previous studies concerned with stress prediction using wearable 
devices. In particular, we reviewed and analyzed the publicly avail-
able stress biomarker datasets used in numerous studies, the machine 
learning techniques applied, their advantages, limitations and ability to 
generalize on new, unseen data. We also summarized our point of view 
on challenges and opportunities in this emerging domain. We believe 
this review will advance knowledge in the general area of machine 
learning for stress detection using wearable devices, helping the re-
search efforts move one step closer to realizing effective stress detection 
and management technology.
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