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Using size‑weight relationships 
to estimate biomass of heavily 
targeted aquarium corals 
by Australia’s coral harvest fisheries
Kai I. Pacey 1*, Ciemon F. Caballes 1,2 & Morgan S. Pratchett 1

Coral reefs are highly threatened environs subject to ongoing unprecedented degradation as a result 
of anthropogenic activities. Given the existential threat to coral reef ecosystems, extractive industries 
that make use of coral reef resources, are facing significant public and political pressure to quantify 
and justify their environmental impact. In Australia, hundreds of thousands of live scleractinian 
(hard) corals are harvested annually directly from the wild to supply the growing international marine 
aquarium trade. Many of the most popular and high value aquarium corals are believed to be slow 
growing, which would make them particularly vulnerable to over-fishing. Corals present a number of 
unique challenges for fisheries management, not least of which, is the marked variation in the size of 
corals, which may be harvested in whole or in part. This issue is further compounded because harvest 
limits are typically weight-based, but there is very limited information on the standing biomass 
of corals in targeted stocks. Herein, we describe size-weight relationships for some of Australia’s 
most heavily targeted coral species (Catalaphyllia jardinei, Duncanopsammia axifuga, Euphyllia 
glabrescens, Homophyllia cf. australis, Micromussa lordhowensis, Trachyphyllia geoffroyi), which allows 
estimation of standing biomass from transect surveys. This work represents an important first step 
in the development of ecologically sound management strategies by bridging the gap between catch 
reporting and stock assessments.

Marine aquarium fisheries supply an international trade involving the collection and sale of millions of live 
organisms1, many of which are collected from the wild in countries such as Indonesia, Fiji, and Australia1,2. Coral 
harvest fisheries supply a major component of the aquarium trade in the form of live aquarium coral specimens, 
the vast majority of which are destined for home or public aquaria2,3. Coral harvesting for the marine aquarium 
trade is highly selective, and involves hand collection of select coral colonies or fragments4,5. Therefore, the 
direct and independent ecological impacts of coral harvest fisheries are generally regarded as very minor (e.g., 
see Harriott4), especially compared to the myriad of large-scale disturbances (e.g., outbreaks of coral predators 
and climate-induced bleaching) that are affecting wild coral stocks. However, the widespread and accelerating 
degradation of coral reef ecosystems6,7 and coastal modification8,9 may undermine the sustainability of coral 
harvest fisheries. In light of the already concerning state of coral reef environments globally, industries that access 
or use coral reef environments, such coral harvest fisheries, and the governmental and intergovernmental bodies 
that manage them, are currently experiencing significant and increasing public, economic, and political pressure 
to deliver scientifically defensible and ecologically relevant management policies10–12.

All hard corals are listed in Online Appendix II of the Convention on the International Trade in Endangered 
Species (CITES), and strict stipulations must be met for the trade of listed wildlife to be considered legal in all 
184 signatory countries. To supply the growing international demand for live aquarium coral species, hundreds 
of thousands of coral pieces are traded annually valued at millions of dollars. Wood et al.1 examined global 
import reports from the CITES trade database, noting marked increases in the volume of trade from ~ 600,000 
pieces in 2000 to ~ 990,000 pieces in 2010, peaking at > 1,500,000 pieces in 2007 (see also Rhyne et al.5, Dee 
et al.3). International trade in live corals further increased in 2016–201813. Prior to 2018, Indonesia and Fiji were 
the largest exporters of hard (order Scleractinia) corals (i.e., accounting for 70.0% and 10.3% of global exports, 
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respectively1), but both these countries imposed significant constraints on wild coral harvesting (in 2017–2018) 
due to concerns of overharvesting, which significantly changed the nature of global coral trade.

Environmental concerns regarding coral harvest fisheries have mostly focused on the potential for localized 
depletion of highly vulnerable or heavily targeted coral species4,14. Many of the most heavily targeted coral spe-
cies have large fleshy polyps (often referred to as Large Polyp Stony corals; LPS corals), which are presumed to 
be slow growing and long lived14. Despite a lack of relevant biological information for many of these species, it 
is presumed that such species will be highly vulnerable to over-fishing2,14. Particular concern also exists where 
fisheries exploitation is compounded by rapid and accelerating environmental change14.

In Australia, commercial coral harvest fisheries are managed at the state/territory level with major fisheries in 
Queensland (Queensland Coral Fishery; QCF), Western Australia (Western Australian Marine Aquarium Fish 
Managed Fishery; WAMAFMF), and the Northern Territory (Northern Territory Aquarium Fishery; NTAF). The 
QCF operates over a total area of 24,000 km2 in permitted zones of the Great Barrier Reef Marine Park (GBRMP). 
The QCF has the largest annual Total Allowable Commercial Catch (TACC) of all Australian coral fisheries at 
200 t, which is split between 60 t of ‘specialty’ or LPS corals and 140 t of ‘other’ corals; which includes branching 
taxa such as the Acroporidae15. Concerns have previously been raised regarding the potential for the localised 
depletion of specific coral species in areas of concentrated fishing activity16, combined with the threat posed by 
extrinsic disturbances such as cyclones, outbreaks of crown-of-thorns starfish and mass coral bleaching15,17,18. The 
WAMAFMF is the second largest coral fishery. It is a low volume and high value fishery that operates over a total 
gazetted area of 20,781 km2 along Australia’s west coast, with a TACC of 15 t for hard and soft corals. The NTAF 
operates in all inland, estuarine, and marine waters to the outer boundary of the Australian Fishing Zone (AFZ) 
in NT waters, incorporating an area of 523,946 km2 of marine habitat. This fishery has the only taxon-specific 
quota levels, typically assigning 80 kg for individual species, and 160 kg for species groups.

A recent re-assessment of the QCF19, as part of the necessary process of seeking Wildlife Trade Operation 
(WTO) approval from CITES, has highlighted the growth in this fishery and the continued prominence of LPS 
corals since the last comprehensive assessments of global import and export trends in the trade of ornamental 
corals1,5. This re-assessment examined QCF catch trends from the 2006/2007 to 2019/2020 financial years, with 
a similar re-assessment now underway for the WAMAFMF and NTAF as WTO approval expires in late 2022. 
Importantly, while Acropora corals form a major and increasingly large proportion of the QCF coral harvest19, 
LPS species remain an important component both in volume and economic contribution1. The three major LPS 
coral families (Lobophylliidae, Merulinidae, Euphylliidae) together accounted for ~ 41% of the QCF’s total catch 
composition in the 2019–2020 financial year. Furthermore, there are 6 species that are of particular economic, 
biological, and ecological interest, namely Homophyllia cf. australis (Milne Edwards & Haime, 1848; Lobophyllia), 
Micromussa lordhowensis (Veron & Pichon, 1982; Lobophylliidae), Catalaphyllia jardinei (Saville-Kent, 1893; 
Merulinidae), Trachyphyllia geoffroyi (Audouin, 1826; Merulinidae), Euphyllia glabrescens (Chamisso & Eysen-
hardt, 1821; Euphyllidae), and Duncanopsammia axifuga (Milne Edwards & Haime, 1848; Dendrophylliidae). 
Together, these species accounted for over 35% of 2019–2020 total catch composition for the QCF, representing 
a total of 14.2 t or 317,718 coral pieces19. The Ecological Risk Assessment category for some of these heavily 
targeted LPS corals has recently been upgraded in the Queensland Coral Fishery, with H. cf. australis and M. 
lordhowensis now considered to be at “extreme” risk of experiencing an “undesirable event” as a result of fishery 
actions, while E. glabrescens and T. geoffroyi were upgraded to the “high risk” category20.

There are uncertainties regarding the sustainability of harvest levels and harvest limits for Australian coral 
harvest fisheries19, mainly because the status and trends for targeted coral species and stocks are largely unknown. 
Harvest logs for these fisheries are currently reported in terms of weight, however, it can be difficult to understand 
the ecological relevance of recorded catch from this metric alone. Fundamentally, most existing accessible data on 
the abundance of harvested coral species based on either coral cover or colony densities (e.g., those outlined in 
Mellin et al.21) are not useful for establishing the ecological context of weight-based harvest limits. Additionally, 
some corals are collected as fragments as opposed to entire individuals, causing further difficulties if attempting 
to utilise coral cover or abundance data for fisheries monitoring. Instead, estimates of harvestable or ‘standing’ 
biomass would provide a better unit of quantification for assessment of coral harvest quotas and the ecological 
impact of harvesting22. To bridge this gap between harvest and ecological impact, Longenecker et al.23 utilised 
size-weight relationships to estimate standing biomass of Acropora corals, suggesting that establishing these 
relationships in other corals is likely to be a viable approach that can provide managers with a relatively simple 
methodology able to place fisheries harvests into an ecological context (see also Pacey et al.24).

To facilitate improved management of Australia’s coral harvest fisheries (and perhaps internationally), this 
study modelled the relationship between maximum diameter and coral weight for six key LPS coral species: 
Catalaphyllia jardinei, Duncanopsammia axifuga, Euphyllia glabrescens, Homophyllia cf. australis, Micromussa 
lordhowensis, and Trachyphyllia geoffroyi. Aside from providing a mechanism to calculate standing biomass of 
these coral species, establishing size-weight relationships for these corals will provide an opportunity to assess 
previously unexamined biological characteristics of these species relating to these described relationships, such 
as whether these corals exhibit isometric or allometric growth patterns. Moreover, size-weight information is 
combined with in situ video transects to demonstrate the utility of this method for estimating standing biomass 
of individual corals.

Results
Size and weight trends.  A total of 2548 corals were measured across the six study species: Catalaphyllia 
jardinei (n = 43), Duncanopsammia axifuga (n = 219), Euphyllia glabrescens (n = 265), Homophyllia cf. australis 
(n = 436), Micromussa lordhowensis (n = 685), Trachyphyllia geoffroyi (n = 900). The majority of coral pieces were 
collected in Queensland (1,986 corals; ~ 78%), with ~ 21% (536) corals collected in Western Australia and ~ 1% 
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(26) corals sampled in the Northern Territory. Due to uncertainties in taxonomy and range for the corals Homo-
phyllia cf. australis and Micromussa lordhowensis, only corals from QLD were used to model data (Table 1).

Australian coral fisheries tend to harvest small pieces or colonies of LPS corals, as shown by the mean diameter 
and weight of corals provided for the current study. M. lordhowensis corals had the highest average weight and 
diameter, followed by D. axifuga, T. geoffroyi, E. glabrescens, C. jardinei, with H. cf. australis having the lowest 
average weight (Table 1). There was substantial statistical evidence to suggest that all coral species differed in 
weight (Bayesian ANOVA pairwise comparison, P < 0.01), with the exception of C. jardinei and E. glabrescens 
(Bayesian ANOVA pairwise comparison, P = 0.341). Similarly, there was strong evidence to suggest a difference 
in average diameter between all corals (Bayesian ANOVA pairwise comparison, P < 0.01), again with the excep-
tion of C. jardinei and E. glabrescens (Bayesian ANOVA pairwise comparison, P = 0.308). For corals which were 
sampled from multiple states (D. axifuga, E glabrescens, T. geoffroyi), there was significant evidence (Bayesian 
ANOVA pairwise comparison, P < 0.01) to suggest that all samples differed between states in terms of weight. 
Coral weight samples from QLD were significantly lower than those from WA for D. axifuga. For E. glabrescens, 
weight (g) of samples from the NT were lowest, followed by QLD, with WA being on average higher, all states 
being significantly different to each other. For T. geofroyi, corals sampled from QLD had significantly higher 
weight than those from Western Australia. For maximum diameter (cm), samples from the NT were significantly 
lower than samples from both QLD and WA, but QLD and WA were also statistically different. For T. geffroyi, the 
maximum diameter of samples from QLD was higher than samples collected from Western Australia.

Size–weight relationships.  The relationship between size and weight for all individual species was well 
represented by a normally distributed non-linear power formula, which outperformed the alternative linear 
and exponential functions (LOO, closest elpd_diff = − 348.8, se_diff = 19.7 for the linear alternative). However, 
the relationship between size and weight was statistically different among coral species (Pairwise comparison 
on ‘c’ parameter for ANCOVA type model, 95% HDP interval, median point estimate) with the exception of C. 
jardinei and E. glabrescens, which were the only two species which did not significantly differ in the ‘c’ param-
eter species coefficient (P > 1 = 0.50; Fig. 1). All species therefore exhibit fundamental differences in their size to 
weight relationship over the measured diameter ranges. The contrast between Homophyllia cf. australis and Tra-
chyphyllia geoffroyi was the only other contrast that did not receive a 0 or 1 probability; however, their posterior 
probability value is still considered highly significant (P > 1 = 0.99). From a fisheries perspective, this means that 
all species should be assessed and considered separately in terms of their size-weight relationship to properly 
estimate biomass and place the fisheries impact of each species into an appropriate, relevant, ecological context. 

Table 1.   Coral pieces used to construct size-weight models showing the state that the samples were obtained 
from, number (n), mean ± SE, minimum (min) and maximum (max) value of samples by (a) coral weight 
(g), and (b) coral diameter (cm) for each species (Catalaphyllia jardinei, Duncanopsammia axifuga, Euphyllia 
glabrescens, Homophyllia cf. australis, Micromussa lordhowensis, Trachyphyllia geoffroyi). *Some evidence 
to suggest E. glabrescens may represent different species across states (based on tentacle morphology, tank 
compatibility, planulation time, and size).

Species State n Mean ± SE Min Max

(a) Weight (g)

 Catalaphyllia jardinei QLD 43 166.19 ± 33.97 17 985

 Duncanopsammia axifuga
WA 172 258.28 ± 25.55 10 2750

QLD 47 126.06 ± 15.05 17 483

 Euphyllia glabrescens*

WA 191 202.02 ± 18.67 6 1530

QLD 48 130.87 ± 22.47 16 948

NT 26 24.96 ± 2.48 5 53

 Homophyllia cf. australis QLD 436 72.88 ± 2.12 8 448

 Micromussa lordhowensis QLD 685 314.06 ± 11.26 10 1952

 Trachyphyllia geoffroyi
QLD 727 249.95 ± 7.85 8 1695

WA 173 93.60 ± 5.76 8 1695

(b) Diameter (cm)

 Catalaphyllia jardinei QLD 43 7.52 ± 0.46 3.90 13.40

 Duncanopsammia axifuga
WA 172 11.20 ± 0.37 2.60 30.50

QLD 47 10.27 ± 0.54 4.50 20.70

 Euphyllia glabrescens*

WA 191 8.32 ± 0.25 2.10 19.20

QLD 48 7.67 ± 0.46 3.20 17.60

NT 26 4.28 ± 0.22 2.00 6.30

 Homophyllia cf. australis QLD 436 5.76 ± 0.05 2.50 9.75

 Micromussa lordhowensis QLD 685 11.48 ± 0.16 3.44 25.60

 Trachyphyllia geoffroyi
QLD 727 9.20 ± 0.08 2.80 19.29

WA 173 6.96 ± 0.10 3.70 10.60
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Following this finding, the decision was made to model all species separately using an intercept only ‘a’ and ‘b’ 
parameter approach.

The relationship between coral diameter and weight as modelled in the current instance was able to account 
for the majority of variation in data across all species, with R2 values ranging from 0.63 (C. jardinei) to 0.90 (D. 
axifuga) (Fig. 2). The size-weight equation (broken grey line) was well estimated using the intercept only param-
eter approach, following the statistical model line (coloured line) and staying within the 95% confidence band in 
most instances, with the exception of C. jardinei. In the instance of the model line and the estimated equation, 
both appear to represent somewhat of an underestimate. This reflects greater error on the ‘a’ and ‘b’ non-linear 
intercept parameters, most likely resulting from sample size limitations.

Model and equation lines typically bisect the major cluster of samples (e.g., H. cf. australis, M. micromussa), 
although there is evidence of underestimation in the higher maximum diameter range for some species (e.g., M. 
micromussa, T. geoffroyi). By all indications in the current study, all selected coral species with the exception of 
C. jardinei (2.73 ± 0.35 S.E., 95% CI 2.14–3.18, P < 3 = 0.22) appear to exhibit allometric growth, with exponents 
for all species falling below ~ 3 (P < 3 = 1) (Fig. 2).

Biomass per unit area estimation.  Across all 204 transects conducted in both Queensland and West-
ern Australia, Catalaphyllia jardinei had the highest average biomass per unit area (g·m−2), followed by Dun-
canopsammia axifuga, Euphyllia glabrescens, Micromussa lordhowensis, Trachyphyllia geoffroyi, and Homophyllia 
australis (Table  2). As expected, when considering the described exponential size-weight relationship, larger 
corals contribute disproportionately to coral transect biomass per unit area. This is indicated by the considerable 
deviation between the sample and population means for C. jardinei and D. axifuga as shown by standard error 
values and comparison of mean to median values (Table 2). C. jardinei in particular had some relatively extreme 
estimates, with a maximum biomass per unit area value of 33,745.09  g·m2 for one transect resulting from a 
concentration of large specimens (18 corals > 50 cm), with one coral having a maximum diameter of 90.67 cm.

For species where a sufficient number of transects were available for between-state comparison of biomass 
(i.e., Euphyllia glabrecens and Trachyphyllia geoffroyi), only T. geoffroyi was found to be significantly different 
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Figure 1.   By species (Catalaphyllia jardinei, Duncanopsammia axifuga, Euphyllia glabrescens, Homophyllia cf. 
australis, Micromussa lordhowensis, Trachyphyllia geoffroyi) pairwise comparison of species coefficient estimate 
on the non-linear ‘c’ parameter, where blue bars represent 95% C.I. (credible interval), black point represents 
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5–95% interval indicate statistical significance.
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(Bayesian ANOVA pairwise comparison, P = 1), with transects from Western Australia on average containing 
significantly lower biomass per unit area. Similarly, the average diameter of E. glabrescens was found to be sig-
nificantly different (P = 1) between regions, with a smaller average size observed for samples from Queensland.

Discussion
Establishing size-weight relationships for heavily targeted coral species is an important first step towards inform-
ing sustainable harvest limits19. Placing coral harvests into an ecological context is a core requirement for imple-
menting a defensible stock assessment strategy, and this need is particularly critical given escalating disturbances 
and widespread reports of coral loss7,17,25. Using these relationships, managers can now easily sample and calculate 
biomass per unit area. It is important to point out that all sites sampled in our study represent fished locations, 
and there is no information available to test whether standing biomass has declined due to sustained coral har-
vesting at these locations. While these data may now provide a critical baseline for assessing the future effects of 
ongoing fishing, it is also important to sample at comparable locations where fishing is not permitted or has not 
occurred (where possible), to test for potential effects of recent and historical harvesting.

Biomass per unit area data presented herein highlights the highly patchy abundance and biomass of tar-
geted coral species14, which is evident based on the often vastly different mean and median values (Table 2). 
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Figure 2.   Modelled relationship between maximum diameter (cm) and coral weight (g) for the species: (a) 
Catalaphyllia jardinei, (b) Duncanopsammia axifuga, (c) Euphyllia glabrescens, (d) Homophyllia cf. australis, (e) 
Micromussa lordhowensis, (f) Trachyphyllia geoffroyi. Probability band of the model (0.95) is indicated by the 
coloured bands surrounding model line, while grey dots indicate individual datapoints, and dashed grey model 
line represents the displayed approximated power relationship equation. For a full list of non-linear parameter 
constant estimates, SE, and High Density Intervals see Online Appendix A.
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Examining biomass per unit area estimates for C. jardinei for example, which returned some of the highest 
biomass estimates, the 33.75 kg·m−2 maximum estimate from a transect stands as an extreme outlier, with 12 of 
the 16 other transects being below 0.2 kg·m−2. This indicates the challenges of managing species that occur in 
patchily distributed concentrations, particularly in a management area the size of the QCF. It is also important 
to note, these estimates are generated only on transects where the target species occurred, and therefore, should 
technically not be considered as an overall estimate of standing biomass. While the estimation of size-weight 
relationships is a step towards a standing biomass estimate, many challenges remain in terms of sampling or 
reliably predicting the occurrence of these patchily distributed species. Bruckner et al.14 attempted to overcome 
this management challenge in a major coral fishery region of Indonesia by categorising and sampling corals 
(in terms of coral numbers) in defined habitat types, and then extrapolating to estimated habitat area based on 
visual surveys and available data. This approach, utilising size-weight relationship derived biomass per unit area 
estimates (instead of coral numbers), may be a viable method for the QCF, however much more information is 
needed to understand the habitat associations (e.g., nearshore to offshore), and environmental gradients that 
influence the size and abundance of individual corals. Fundamentally, it is also clear that much more data is 
required to effectively assess the standing biomass of aquarium corals in the very large area of operation avail-
able to Australian coral fisheries.

These corals are found in a range of environments, and it is important to consider available information on 
life history if attempting to use coral size-weight relationships to inform management strategies via standing 
biomass estimation. All corals in this study can be found as free living corals (at least post-settlement) in soft-
sediment, inter-reefal habitats, from which they are typically harvested by commercial collectors19. However, 
only four of the 6 species are colonial (C. jardinei, D. axifuga, E. glabrescens, M. lordhowensis) while the remain-
ing two species (H. cf. australis and T. geoffroyi) are more typically monostomatous or solitary. As indicated in 
previous work24, if larger colonial corals were to be fragmented during harvesting instead of removed entirely, 
fishery impacts would likely be lessened24. Given the power relationship between coral maximum diameter and 
weight, larger corals contribute disproportionately to the total available biomass of each species in a given area. 
The potential environmental benefit of leaving larger colonies (at least partially) intact is not limited to impacts 
on standing biomass, as this practice would likely be demographically beneficial given the greater reproductive 
potential (i.e., fecundity) of larger colonies, which also do not need to overcome barriers to replenishment of 
populations associated with new recruits (i.e., high mortality during and post-settlement26). This conclusion was 
drawn largely from data on branching taxa (e.g., Acropora), which are relatively resilient to fragmentation and 
commonly undergo fragmentation as a result of natural processes27–29. D. axifuga can be considered to exhibit a 
relatively similar branching growth form, however, the growth form of E. glabrescens and C. jardinei changes with 
size, moving from small discrete polyps to large phaceloid and flabello-meandroid colonies, respectively19. While 
larger colonies of E. glabrescens and C. jardinei may be relatively resilient to harvesting via fragmentation, the 
same may not be true for smaller colonies, or species with massive growth forms such as M. lordhowensis. Typi-
cally, for each species, the average reported weight was quite low, coinciding with the lower end of the sampled 

Table 2.   The (a) average transect biomass per unit area (g m2) and (b) maximum diameter (cm) of corals 
recorded on transects, including state that the sample was obtained from, number of transects (n), mean ± SE, 
median, minimum (min) and maximum (max) value, by species.

Species State n Mean ± SE Median Min Max

(a) Biomass (g·m2)

 Catalaphyllia jardinei QLD 16 6406.00 ± 2985.86 38.00 0.23 33,745.09

 Duncanopsammia axifuga
WA 31 102.29 ± 50.45 8.87 0.26 1462.80

QLD 2 5.48 ± 5.10 5.48 0.38 10.58

 Euphyllia glabrescens
WA 27 17.44 ± 8.08 5.63 0.18 216.62

QLD 18 60.05 ± 27.69 3.87 0.01 471.65

 Homphyllia cf. australis QLD 45 6.01 ± 1.38 3.23 0.27 49.28

 Micromussa lordhowensis QLD 18 10.20 ± 2.61 7.28 0.48 46.58

 Trachyphyllia geoffroyi
WA 29 4.31 ± 0.84 2.21 0.10 20.00

QLD 18 16.28 ± 2.40 4.76 1.69 37.53

(b) Diameter (cm)

 Catalaphyllia jardinei QLD 16 14.10 ± 2.76 8.25 2.79 40.60

 Duncanopsammia axifuga
WA 31 10.20 ± 1.01 8.28 4.29 27.70

QLD 2 8.94 ± 3.77 8.94 5.17 12.70

 Euphyllia glabrescens
WA 27 11.70 ± 1.56 10.2 1.00 24.80

QLD 18 6.37 ± 0.54 5.72 3.02 15.40

 Homphyllia cf. australis QLD 45 4.12 ± 0.17 3.80 2.52 7.01

 Micromussa lordhowensis QLD 18 9.29 ± 1.00 8.08 3.50 20.00

 Trachyphyllia geoffroyi
WA 29 5.49 ± 0.38 5.04 3.76 10.10

QLD 18 5.04 ± 0.23 5.14 1.64 7.41
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maximum diameter range. For colonial species, the harvested smaller maximum diameters (if fragments) are 
ideal from an ecological perspective as this will have the least impact possible on standing biomass, and may also 
leave a potentially mature breeding colony intact. Ultimately, in light of these considerations, the development of 
uniform and standardised industry-wide harvest guidelines to balance economic and ecological outcomes may 
be necessary. The development of these guidelines would require consultation with commercial harvesters, as 
well as considerable additional work in measuring ecological impacts and better understanding the cost of these 
impacts from an economic perspective. Conversely, if whole colonies are collected, which is necessarily the case 
for solitary species such as H. cf. australis and T. geoffroyi (and potentially smaller colonies of other species such 
as E. glabrescens and C. jardinei); smaller colonies may be collected before they reach sexual maturity, hinder-
ing their ability to contribute to population replenishment. Therefore, collection of small fragments should be 
encouraged for colonial species; while for monostomatous species where this is not possible, introduction of a 
minimum harvest size based on sexual maturity should be considered.

Additionally, the need for further consideration of the selectivity of ornamental coral harvest fisheries3,4,30 
when assessing standing biomass is evident. Due to various desirable traits, the majority of available biomass may 
not be targeted by collectors. As emphasised in this study, the focus on smaller corals is indicative of the trend 
towards collection of most of these species at the lower portion of their size range, at least compared to some of 
the maximum sizes recorded on transects (e.g., see Tables 1 and 2, section b). However, it is also important to 
consider that transects were conducted in areas subject to commercial collection and are likely to skew results and 
prevent clear conclusions relating to size selectivity. Sampling of unfished populations (i.e., any residing outside 
of permitted fishing zones) and/or spatial and temporal matching of catch data and transect data across a larger 
sample of operators will be required to properly address industry size selectivity trends. For instance, only 17.5% 
of C. jardinei corals measured on transects fell within the diameter range represented by data obtained from col-
lectors, with 81.9% of corals measured on transects exceeding this range. If it is viable to collect fragments from 
larger colonies (which does appear to be the case for some corals such as C. jardinei), then a larger proportion 
of standing biomass outside of this size range could be targeted by fishers. As an additional consideration, only 
desirable colour morphs of these corals will be harvested, and due to lack of appropriate data, the prevalence 
of these morphs remains unclear. H. cf. australis and M. lordhowensis for example often occur in brown colour 
morphs, which are far less popular in markets where certain aesthetic qualities (e.g., specific, eye-catching colours 
or combinations of colours) are desired, such as the ornamental aquarium industry. Even without delving into 
further considerations such as heritability of phenotypic traits, management conclusions drawn from standing 
biomass estimates may be ineffective in the absence of efforts to account for selectivity in this fishery.

The relationship between size and weight was found to differ between all corals, with the exception of C. jar-
dinei and E. glabrescens. There can be some moderate similarity in skeletal structure between these two species, 
particularly between small colonies, reflecting the similar maximum diameter range of sampling in the current 
study. Subsequently, inherent physiological constraints may be imposed on corals that prevent the maintenance 
of growth rates between corals of smaller and larger sizes, for example, as the surface area to volume ratio declines 
with growth31. In the current study, all corals, with the exception of C. jardinei, showed evidence of allometric 
growth, as exhibited by an estimated exponent value different to 3. Sample size for C. jardinei was greatly limited, 
as this species typically forms extensive beds, and are rarely brought to facilities as whole colonies. Therefore, the 
lack of evidence for allometric growth may reflect higher error for the species coefficient parameter due to the 
comparatively small sample size for this species. This suggests that mass would not increase consistently with 
changes in colony size in 3 dimensions31, which seems likely considering the change in exhibited form described 
for E. glabrescens and C. jardinei previously. In the current context, this indicates that the estimated ‘a’ and ‘b’ 
constants are likely to vary as the sample range increases, reflecting the changes in the size-weight relationship 
between smaller and larger samples of these species. Therefore, ideally, these models should incorporate data 
that reflect the maximum diameter range of the species in the region of application to allow increased accuracy 
of biomass estimation. To achieve this will require additional fishery-independent sampling, as large colonies 
are rarely collected whole, though may be collected as fragments depending on the species. Sampling may be 
challenging for some species given the difficulty of physically collecting and replacing large whole colonies, par-
ticularly for inter-reefal species such as M. lordhowensis, which can occur in deep, soft sediment habitat, subject to 
strong currents. Importantly, obtaining ex situ or in situ growth rate data should be considered a priority for the 
management of heavily targeted species. This data is likely to be another necessary component (in conjunction 
with size-weight relationships) of any stock assessment model developed for LPS corals, and may also eliminate 
the need to collect large sample colonies to improve estimated size-weight relationships.

The disproportionate focus on smaller corals (i.e., corals in the current study averaged between 4.28 and 
11.48 cm in maximum diameter) is likely to lead to an underestimation of weight in corals at greater diameters 
when used as inputs for size-weight models. This may explain the apparent minor underestimation observed 
in some species (e.g., M. micromussa, T. geoffroyi). In the current context, this represents an added level of 
conservatism with estimates obtained from these equations. While the relationship between size and weight 
was particularly strong for some species, (mainly D. axifuga and T. geoffroyi), for other species, such as M. 
lordhowensis, growth curves tended towards underestimation at larger diameter values. As the mass of a coral is 
reflective of the amount of carbonate skeleton that has been deposited32, the coral skeleton may increase dispro-
portionately to coral diameter if or when corals start growing vertically. For example, in massive corals such as 
M. lordhowensis, vertical growth (i.e., skeletal thickening) is often very negligible among smaller colonies, with 
thickening of the coral skeleton only becoming apparent once the coral has reached a threshold size in terms of 
horizontal planar area. Additional fisheries-independent sampling outside of the relatively narrow size range of 
harvested colonies will be required to address this source of error in future applications. Ecological context in 
the form of fishery independent data on stock size and structure is essential for effective management, especially 
in ensuring that exploitation levels are sustainable and appropriate limits are in place. Coral harvest fisheries 
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offer managers an ecologically and biologically unique challenge, as the implementation of standard fisheries 
management techniques and frameworks is hampered by their coloniality and unique biology, as well as a gen-
eral lack of relevant data for assessing standing biomass and population turnover, not to mention the evolving 
taxonomy of scleractinian corals33. Similarly, fishery-related management challenges such as the extreme selec-
tivity in terms of targeted size-ranges and colour-morphs, plus the potentially vast difference in the impact of 
various collection strategies (i.e., whole colony collection vs fragmentation during collection) also complicates 
the application of typical fisheries stock assessment frameworks. The relationships and equations established in 
the current work offer an important first step for coral fisheries globally by laying the groundwork for a defen-
sible, ecologically sound management strategy through estimation of standing biomass, thus bridging the gap 
between weight-based quotas and potential environmental impacts of ongoing harvesting. It is important to 
note that the species selected for the current work do not represent the extent of heavily targeted LPS corals. For 
example, Fimbriaphyllia ancora (Veron & Pichon, 1980), Fimbriaphyllia paraancora (Veron, 1990), Cycloseris 
cyclolites (Lamark, 1815), and Acanthophyllia deshayesiana (Michelin, 1850) are examples of other heavily tar-
geted corals of potential environmental concern19, and management would also benefit from the estimation of 
size-weight relationships for these species. Moving forward, the next challenge for the coral harvest fisheries will 
be to comprehensively document and track the standing biomass of heavily targeted and highly vulnerable coral 
stocks, explicitly accounting for fisheries effects and also non-fisheries threats, especially global climate change.

Methods
Data collection.  The size-weight relationships of six coral species (Catalaphyllia jardinei, Duncanopsammia 
axifuga, Euphyllia glabrescens, Homophyllia cf. australis, Micromussa lordhowensis, and Trachyphyllia geoffroyi; 
see Fig. 3) was investigated using coral pieces provided by commercial collectors between March 2016 and July 
2020. Samples were collected from Queensland, Western Australia, and the Northern Territory. Collection is 
typically far more geographically focused in the latter two states, and so locations were supposed to represent the 
major areas of operation in each state. Species selected for this study were prioritised based on their importance 
to coral fisheries exports across Western Australia, Northern Territory, and Queensland; and the perceived risk 
to these species in terms of overfishing and/or fishery independent threats (as identified in Pratchett et al.15).

Data used to generate size-weight relationship models for each species was collected in collaboration with 
fishery operators. The maximum diameter and perpendicular diameter of each coral was recorded to the near-
est millimetre using callipers, or a ruler for larger corals, while weight was recorded to the nearest gram using 
an electronic scale. Corals were left to drain freely for 2–5 min prior to processing. Samples were mostly intact 
whole coral colonies (25 fragments total, < 0.01% of total sample size), with excess substrate removed prior to 
weighing. Care was taken to also remove excess water prior to weighing of corals. In addition to size and weight 
measurements, site, region, and state from which the sample was obtained was also recorded.

Figure 3.   LPS (Large Polyp Stony) corals targeted for commercial collection used in the current study, namely; 
(A) Catalaphyllia jardinei, (B) Duncanopsammia axifuga (C) Euphyllia glabrescens (D) Homophyllia cf. australis, 
(E) Micromussa lordhowensis, (F) Trachyphyllia geoffroyi.
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To demonstrate the utility of modelled size-weight relationships, we estimated the standing biomass of the six 
focal species (Catalaphyllia jardinei, Duncanopsammia axifuga, Euphyllia glabrescens, Homophyllia cf. australis, 
Micromussa lordhowensis, and Trachyphyllia geoffroyi) across a total of 204 video transects conducted in two states 
(QLD, WA) across six locations (Cairns, Dampier, Exmouth, Karratha, Mackay, Southern Great Barrier Reef), 
15 reefs, and 34 sites. Video transect surveys were conducted on SCUBA using a 50-m transect tape deployed 
along a depth contour ranging from 0 to 20.9 m. A GoPro Hero 7 mounted on a camera jig was used to record 
the substrate along each depth contour. The camera jig was made using 1.2. × 1.0 m PVC conduit pipes, with the 
camera mounted on the 1.2 m pipe perpendicular to the 1 m piece in a ‘T’ configuration. The end of the 1 m pipe 
was placed on, or as close as practicable to the transect line and/or coral while swimming from one end of the 
transect line to the other (giving recorded belt transects a dimension of 50 × 1 m). Care was taken to maintain 
camera angle, as well as avoid damage to corals and other benthic biota during surveys.

Processing and analyses.  A Bayesian non-linear regression approach was used to model the relationship 
between maximum coral colony diameter in cm (D) and weight in g (W) within a gaussian distribution (see 
Eq. 1). In this approach, the non-linear predictor (‘η ’) for the primary parameter ‘ µ ’ can be described following 
Eq. (2), with the covariate (‘D’, i.e., maximum diameter in cm) and the nonlinear parameters ‘a’ and ‘b’, each of 
which represent an intercept-only predictor parameter and are therefore calculated as constants. The term ‘f ’ 
defines the structure of the user supplied function (Eq. 3), which in this case is a two-factor power function. Size-
weight relationships have been well described by power functions in corals previously23,24, where coral weight 
(in the current case defined as ‘W’, g) is equal to a constant scaling factor (‘a’) multiplied by the corresponding 
coral diameter (‘D’, cm), to the power of a constant exponent (‘b’). For further explanation of the distributional 
non-linear modelling approach utilised in this study, see Bürkner34.

Bayesian statistical inference was performed via the Hamiltonian Monte Carlo algorithm and its extension 
No-U-Turn Sampler (NUTS) using the statistical software Stan to model non-linear relationships, estimate the 
parameters of the user supplied power function, and investigate biomass estimation results. This was accom-
plished using the ‘brm’ function within the R35 (ver 4.1.3) package ‘brms’36. Efficient approximate leave-one-out 
(LOO) cross validation for Bayesian models via Pareto smoothed importance sampling (PSIS)37 was conducted 
to establish the validity of the non-linear power size-weight model and its predictive capacity using the function 
‘loo’ within the package ‘brms’.

Alternative models (e.g., linear, non-linear exponential) were investigated visually using the ‘geom_smooth’ 
function (method loess) in the package ggplot238 with decisions validated using the ‘loo’ function. Previous work 
describing size-weight relationships in corals15 was used to inform the initial values of set priors, with further 
modification of these priors applied where necessary during model validation. A Bayesian ANOVA (utilising 
median values) and pairwise comparisons were used to assess statistical difference in weight (g) and biomass per 
unit area (g m2) and maximum diameter (cm) between species. To further compare the size-weight relationship 
between species, a lognormally distributed ANCOVA-type model was used. A pairwise comparison approach 
was utilised to compare the differences at the ‘c’ non-linear parameter, with further investigation of one-sided 
posterior probability conducted using the package ‘emmeans’. For a full list of priors see Online Appendix B.

To measure the size of each target coral recorded during video transect surveys, video frames were captured 
and analysed using the ‘set scale’ and ‘measure’ tools in the software ImageJ39. The camera jig was used to set the 
scale of captured frames for measurement when the 1-m conduit was over or directly next to the target coral 
colony. A maximum colony length and colony width was then recorded for each coral. The biomass in grams of 
each coral was then estimated via the relevant species-specific size-weight relationship model equation derived 
from the estimated parameters of the user supplied function (Eq. 2). To convert transect biomass estimate data 
into a biomass per unit area estimate, biomass for each growth form group was averaged to the transect level 
and divided by total transect area (50 m × 1 m).

Data availability
Restrictions apply to the availability of these data as it contains information obtained from third party sources 
(i.e., fishery operators) considered to be of a commercially sensitive nature, and so is not publicly available.

Received: 25 September 2022; Accepted: 18 January 2023

References
	 1.	 Wood, E., Malsch, K. & Miller, J. International trade in hard corals: review of management, sustainability and trends. in Proc. 12th 

ICRS Cairns, Aus, 9–13 July 2012 (2012).
	 2.	 Rhyne, A. L., Tlusty, M. F. & Kaufman, L. Is sustainable exploitation of coral reefs possible? A view from the standpoint of the 

marine aquarium trade. Curr. Opin. Environ. Sustain. 7, 101–107 (2014).
	 3.	 Dee, L. E., Horii, S. S. & Thornhill, D. J. Conservation and management of ornamental coral reef wildlife: Successes, shortcomings, 

and future directions. Biol. Conserv. 169, 225–237 (2014).
	 4.	 Harriott, V. J. The Sustainability of Queensland’s Coral Harvest Fishery. (CRC Reef Research Centre, 2001).

(1)Wi ∼ N(µi , σi)

(2)ηµ = f (D, a, b)

(3)f = aDb



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:1448  | https://doi.org/10.1038/s41598-023-28447-w

www.nature.com/scientificreports/

	 5.	 Rhyne, A. L., Tlusty, M. F. & Kaufman, L. Long-term trends of coral imports into the United States indicate future opportunities 
for ecosystem and societal benefits. Conserv. Lett. 5, 478–485 (2012).

	 6.	 Bruno, J. F. & Valdivia, A. Coral reef degradation is not correlated with local human population density. Sci. Rep. 6, 29778 (2016).
	 7.	 Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373 (2017).
	 8.	 Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis. Mar. Pollut. Bull. 50, 

125–146 (2005).
	 9.	 Wear, S. L. Missing the boat: Critical threats to coral reefs are neglected at global scale. Mar. Policy 74, 153–157 (2016).
	10.	 Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at risk revisited. (World Resources Institute, 2011).
	11.	 Hughes, T. P. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265, 1547–1551 (1994).
	12.	 Negri, A. P., Smith, L. D., Webster, N. S. & Heyward, A. J. Understanding ship-grounding impacts on a coral reef: Potential effects 

of anti-foulant paint contamination on coral recruitment. Mar. Pollut. Bull. 44, 111–117 (2002).
	13.	 Food and Agriculture Organization of the United Nations & Pavitt, A. , Malsch, K. , King, E. , Chevalier, A. , Kachelriess, D. , 

Vannuccini, S. , Friedman K. CITES and the sea: Trade in commercially exploited CITES-listed marine species. (Food & Agriculture 
Org., 2021).

	14.	 Bruckner, A. W. & Borneman, E. H. Developing a sustainable harvest regime for Indonesia’s stony coral fishery with application 
to other coral exporting countries. in vol. 1692 1697 (Proceedings of 10th International Coral Reef Symposium, 2006).

	15.	 Pratchett, M. S. et al. Vulnerability of commercially harvested corals to fisheries exploitation versus environmental pressures. https://​
www.​frdc.​com.​au/​sites/​defau​lt/​files/​produ​cts/​2014-​029-​DLD.​pdf FRDC (2020).

	16.	 Jones, A. M. Raiding the coral nurseries?. Diversity 3, 466–482 (2011).
	17.	 De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27-year decline of coral cover on the Great Barrier Reef and its 

causes. Proc. Natl. Acad. Sci. 109, 17995–17999 (2012).
	18.	 Pratchett, M. S. et al. Bleaching susceptibility of aquarium corals collected across northern Australia. Coral Reefs 39, 663–673 

(2020).
	19.	 DAWE. Expert advice for the assessment of Australian coral fisheries – Queensland Coral Fishery 2006–2007 to 2019–2020 . https://​

www.​agric​ulture.​gov.​au/​sites/​defau​lt/​files/​docum​ents/​qld-​coral-​expert-​advice-​asses​sment-​austr​alian-​coral-​fishe​ries-​2021.​pdf 
(2021).

	20.	 Morton, J., Jacobsen, I. & Dedini, E. Queensland Coral Fishery Ecological Risk Assessment Update [Phase 1]. (2022).
	21.	 Mellin, C. et al. A standardised national assessment of the state of coral and rocky reef biodiversity. https://​www.​nespm​arine.​edu.​au/​

system/​files/​Mellin%​20et%​20al_​D5_​SS3_A%​20sta​ndard​ised%​20nat​ional%​20ass​essme​nt%​20of%​20the%​20sta​te%​20of%​20cor​al_​
Aug_​21.​pdf Rep Nat. Enviro. Sci. Prog. MBH, UTAS (2021).

	22.	 Ross, M. A. A quantitative study of the stony coral fishery in Cebu Philippines. Mar. Ecol. 5, 75–91 (1984).
	23.	 Longenecker, K., Bolick, H. & Langston, R. Estimating sustainable live-coral harvest at Kamiali wildlife management area Papua 

New Guinea. PLoS ONE 10, e0140026 (2015).
	24.	 Pacey, K. I., Caballes, C. F. & Pratchett, M. S. Size-weight relationships for estimating harvestable biomass of Acropora corals on 

Australia’s Great Barrier Reef. Mar. Environ. Res. 177, 105633 (2022).
	25.	 Mellin, C. et al. Spatial resilience of the Great Barrier Reef under cumulative disturbance impacts. Glob. Change Biol. 25, 2431–2445 

(2019).
	26.	 Penin, L. et al. Early post-settlement mortality and the structure of coral assemblages. Mar. Ecol. Prog. Ser. 408, 55–64 (2010).
	27.	 Lirman, D. Fragmentation in the branching coral Acropora palmata (Lamarck): Growth, survivorship, and reproduction of colonies 

and fragments. J. Exp. Mar. Biol. Ecol. 251, 41–57 (2000).
	28.	 Smith, L. D. & Hughes, T. P. An experimental assessment of survival, re-attachment and fecundity of coral fragments. J. Exp. Mar. 

Biol. Ecol. 235, 147–164 (1999).
	29.	 Wallace, C. C. Reproduction, recruitment and fragmentation in nine sympatric species of the coral genus Acropora. Mar. Biol. 88, 

217–233 (1985).
	30.	 Harriott, V. J. Can corals be harvested sustainably?. Ambio 32, 130–133 (2003).
	31.	 Dornelas, M., Madin, J. S., Baird, A. H. & Connolly, S. R. Allometric growth in reef-building corals. Proc. R. Soc. B Biol. Sci. 284, 

20170053 (2017).
	32.	 Pratchett, M. S. et al. Spatial, Temporal and Taxonomic Variation in Coral Growth—Implications for the Structure and Function of 

Coral Reef Ecosystems. in Oceanography and Marine Biology (eds. Hughes, R. N., Hughes, D. J., Smith, I. P. & Dale, A. C.) 224–305 
(CRC Press, 2015).

	33.	 Cowman, P. F. et al. An enhanced target-enrichment bait set for Hexacorallia provides phylogenomic resolution of the staghorn 
corals (Acroporidae) and close relatives. Mol. Phylogenet. Evol. 153, 106944 (2020).

	34.	 Bürkner, P.-C. Bayesian Distributional Non-Linear Multilevel Modeling with the R Package brms. arXiv preprint: 1705.11123 
(2017).

	35.	 R. Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2022).
	36.	 Bürkner, P.-C. brms: An R Package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
	37.	 Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. 

Comput. 27, 1413–1432 (2017).
	38.	 Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer Cham, 2016).
	39.	 Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of Image Analysis. Nat. Methods 9, 671–675 

(2012).

Acknowledgements
The authors are grateful to Cairns Marine and Ultra Coral Australia for supporting and facilitating this research. 
We also thank the following people for assisting with coral measurements and transect analyses: Vanessa Mess-
mer, Cassandra Thompson, Ashton Pratchett, Uzma Shah, Shane Anderson, Brianna Marshall, Jonathan Barton, 
Ernie Nebit, Nicolas Briggs, Peter Doll and all the crew members at the facilities in Cairns and Mackay. We 
respectfully acknowledge the Traditional Custodians of the land and sea on which this work was conducted, as 
well as Elders past and present.

Author contributions
K.I.P.: writing—original draft, writing—review and editing, formal analysis, visualization, investigation, method-
ology. C.F.C.: writing—review and editing, supervision, investigation, methodology, validation. M.S.P.: conceptu-
alization, writing—review and editing, methodology, supervision, investigation, resources, funding acquisition.

Competing interests 
The authors declare no competing interests.

https://www.frdc.com.au/sites/default/files/products/2014-029-DLD.pdf
https://www.frdc.com.au/sites/default/files/products/2014-029-DLD.pdf
https://www.agriculture.gov.au/sites/default/files/documents/qld-coral-expert-advice-assessment-australian-coral-fisheries-2021.pdf
https://www.agriculture.gov.au/sites/default/files/documents/qld-coral-expert-advice-assessment-australian-coral-fisheries-2021.pdf
https://www.nespmarine.edu.au/system/files/Mellin%20et%20al_D5_SS3_A%20standardised%20national%20assessment%20of%20the%20state%20of%20coral_Aug_21.pdf
https://www.nespmarine.edu.au/system/files/Mellin%20et%20al_D5_SS3_A%20standardised%20national%20assessment%20of%20the%20state%20of%20coral_Aug_21.pdf
https://www.nespmarine.edu.au/system/files/Mellin%20et%20al_D5_SS3_A%20standardised%20national%20assessment%20of%20the%20state%20of%20coral_Aug_21.pdf


11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1448  | https://doi.org/10.1038/s41598-023-28447-w

www.nature.com/scientificreports/

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​28447-w.

Correspondence and requests for materials should be addressed to K.I.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-28447-w
https://doi.org/10.1038/s41598-023-28447-w
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Using size-weight relationships to estimate biomass of heavily targeted aquarium corals by Australia’s coral harvest fisheries
	Results
	Size and weight trends. 
	Size–weight relationships. 
	Biomass per unit area estimation. 

	Discussion
	Methods
	Data collection. 
	Processing and analyses. 

	References
	Acknowledgements


