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Abstract

The present study proposes a support vector machine (SVM)-based habitat model

linked with evolutionary optimisation to balance the impacts of generating hydro-

power on the downstream river habitats. This method was applied in the Rajaei reser-

voir and Tajan River basin in Iran to mitigate the environmental impacts of

hydropower plants. SVM model classified the habitat suitability at downstream river in

which a sigmoid function considering different slopes was applied. The Nash–Sutcliffe

efficiency coefficient as the evaluation index of the habitat model is 0.8, which implies

the SVM model is robust to simulate physical habitats. Hydraulic simulation demon-

strated that depth and velocity change from zero to 1.79 m and zero to 1.82 m/s,

respectively. Most suitable river flow is 7 m3/s downstream of Rajaei reservoir. Five

evolutionary algorithms were used to balance environmental impacts with generating

hydropower. Finally, a fuzzy technique for order of preference by similarity to ideal

solution (FTOPSIS) selected the best optimal solution in the Rajaei reservoir. Based on

optimisation results, The simulated annealing (SA) algorithm was the best optimisation

method to balance generating hydropower and downstream ecological impacts, in

which average habitat suitability is more than 90% of average habitat suitability in the

natural flow, while reliability of generating hydropower is 38%. Moreover, SA is able to

minimise the average difference between habitat suitability in the optimal release and

the natural flow properly. Using the proposed method is recommendable to mitigate

the potential impacts of generating hydropower on the downstream river habitats.
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1 | INTRODUCTION

The role of hydraulic structures, such as large dams for supply of

water and electricity demands has been addressed in the literature.

Due to increasing demands and a changing natural flow regime, river

habitats might be threatened (Pastor et al., 2014; Postel, 1998). Given

the importance of river ecosystems, the concept of an environmental

flow regime has been defined to protect river habitats (Tharme, 2003).

In other words, environmental flow has been defined as the required

instream flow, which is able to protect the ecological sustainability of
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the river habitats. Different approaches have been developed to

assess environmental flow regimes (Anderson et al., 2019). Instream

flow incremental methodology (IFIM) is a known and popular method

to assess environmental flow regime, which has been broadly

addressed in the literature (e.g., Operacz et al., 2018; Pastor

et al., 2014). A key component of the IFIM is physical habitat simula-

tion developed by PHABSIM software which might be usable to

assess environmental flow directly (Choi et al., 2019). Some studies

have highlighted the importance of meso-habitats as well

(Wegscheider et al., 2020).

The original method of physical habitat simulation is the univari-

ate habitat method, which defines habitat suitability of depth, veloc-

ity, and substrate as the main physical factors. Then, it combines

suitability indices to compute a composite habitat suitability index

(Brown et al., 2000; Vadas Jr & Orth, 2001). However, this method

has been criticised due to its drawbacks in stimulating interactions

between physical factors in the habitat selection process by a fish

(Jorde et al., 2020; Noack et al., 2013). Multivariate physical habitat

models have been proposed to improve the accuracy of physical

habitat simulation. One of the known multivariate methods is the

fuzzy habitat approach that is able to use verbal fuzzy rules to simu-

late the physical habitat of streams (Schneider et al., 2017). One of

the main advantages of this method is the possibility of using

experts’ knowledge to define the fuzzy habitat rules. Conversely,

lack of sufficient ecological knowledge on many species may be a

disadvantage for this method. Lack of ecological knowledge may

make it impossible to develop the correct fuzzy habitat rules.

Improving physical habitat models is a fresh and required research

field in the current condition.

It seems that artificial intelligence methods might be usable for

assessing physical habitats (Sedighkia et al., 2022). Machine learning

(ML) methods have been developed to promote habitat simulation

using advanced computational methods (Recknagel, 2013). Generally,

supervised and unsupervised methods might be applicable in the ML

models (Ayodele, 2010). Supervised methods have been widely used

in ecological engineering, including classification and regression

models (e.g., Tabak et al., 2019; Thessen, 2016). Artificial neural net-

works are one of the strong tools to predict the ecological status of

the habitats that have been utilised to model aquatic habitats in the

literature (Fukuda et al., 2006; Park et al., 2003). Advantages of an

artificial neural network may be remarkable; they however perform as

a black box, which might be a serious weakness (Dumitru &

Maria, 2013). Hence, combining neural networks with fuzzy inference

systems (FISs) was another progressive step to improve ML methods.

One of the popular NFISs is the adaptive neuro fuzzy inference sys-

tem (ANFIS) that has been applied for forecasting systems (developed

by Jang, 1993). ANFIS has been utilised to predict composite physical

habitat suitability in the previous studies. Results demonstrated that

ML methods such as ANFIS might be robust to simulate the physical

habitat of streams (Choi et al., 2018; Im et al., 2018; Zhao

et al., 2013). One of the most important requirements for developing

regression methods such as neural networks is the availability of an

enriched data bank of microhabitat observations. However, it might

not be accessible in many case studies.

Support vector machines (SVM) have been developed to handle

pattern recognition problems. This method classifies data by mapping

data into a higher dimensional input space. In other words, an optimal

separating hyperplane is constructed in the space of available data

(Noble, 2006). SVM methods have been used in ecological modelling

in some cases. For example, it has been introduced as an acceptable

method to model the presence of macroinvertebrates in rivers (Hoang

et al., 2010). Moreover, it might be a proper tool to predict dissolved

oxygen (DO) in the rivers as well as a modelling tool for the ecological

niches (Drake et al., 2006; Heddam & Kisi, 2018). Furthermore, it is

applicable to prioritise river restoration stages linked with hydrological

models, such as the soil and water assessment tool (SWAT) (Fan

et al., 2018). Due to the weaknesses of univariate habitat models (dis-

cussed by Railsback, 2016), utilising novel methods, such as SVM

might be effective in improving the environmental assessment of river

habitats.

The large dams are highly important for supplying water and elec-

tricity demands (Raso et al., 2020). Hence, the optimal operation of

the reservoirs has been highlighted in the literature from several years

ago (reviewed by Dobson et al., 2019). Linear programming, non-linear

programming, dynamic programming, and evolutionary optimisation

have been utilised in the optimal operation for generating hydro-

power. However, the last method has been recommended as an effi-

cient and applicable method to optimise the operation of reservoirs

(Jahandideh-Tehrani et al., 2019). Many previous studies addressed

the application of evolutionary optimisation in the operation models

of reservoirs (e.g., Kumar & Yadav, 2018). Some previous studies

added environmental values to the optimal operation of the hydro-

power plants or reservoirs (Sedighkia et al., 2021). However, it is

needed to apply a wide range of habitat-based methods combined

with evolutionary optimisation models for overcoming current envi-

ronmental challenges in the management of generating hydropower

in different case studies.

Due to the highlighted research gap, the present study proposes

a novel combined method in which the SVM method for classifying

physical habitats of streams and evolutionary optimisation are linked

to mitigate the environmental impacts of generating hydropower in

large dams. In other words, we developed a physical habitat model

based on the observed suitability of microhabitats in a case study.

Then, the generated SVM model was used to develop the ecological

impact function. Finally, the ecological impact function was applied to

the structure of the generating hydropower optimisation. The pro-

posed method might open new windows for applying the ecological

operation of hydropower plants to mitigating the potential impacts on

the river ecosystem. This method is highly applicable for cases in

which extensive ecological field data is not available.

2 | APPLICATION AND METHODOLOGY

2.1 | Study area

The proposed method was implemented in the Tajan River basin in

Iran, in which a large dam is responsible for generating hydropower.
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This river, which is a valuable aquatic habitat, originates from the

upstream mountains of Mazandaran Province. The Rajaei reservoir

has been constructed upstream, which is crucially important for gen-

erating hydropower in the study area. Figure 1 displays the location of

the reservoir and relevant river habitats downstream. Due to the

changing natural flow by the hydropower plant, the environmental

advocates are highly concerned regarding damaging suitable habitats

for aquatic species, which might lead to extensive and irreversible

damages to the environmental values of the study area. It is needed

to have a brief review on technical characteristics of the reservoir and

hydropower plant. The minimum discharge of a hydropower plant is

3 m3/s and the design discharge is 15 m3/s. Based on the available

F IGURE 1 Land use, location of the Rajaei reservoir and river network map of Tajan basin. [Color figure can be viewed at
wileyonlinelibrary.com]
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information, the installed capacity is 13.5 MV. Two effective parame-

ters of the reservoir, which should be used in the optimisation model

are capacity of the reservoir and minimum operation storage. In the

Rajaei reservoir, capacity of the reservoir and the minimum operation

storage are 160 MCM and 15 MCM, respectively.

2.2 | Field studies and data collection

The field studies include two stages. At the first stage, the fish obser-

vations in microhabitats have been carried out through long-term field

observation in the study area. Different methods are usable to

observe the fish in river habitats, classified as direct and indirect

methods. Direct methods observe a fish in the actual habitat, such as

video telemetry method. In contrast, indirect methods might carry out

sampling of the fish with different instruments. One of the known

indirect methods is electrofishing, which is able to collect samples in

different river habitats (Harby et al., 2004). Each method might have

advantages and drawbacks that should be considered before making a

choice. We selected electrofishing in the present study due to higher

turbidity in some streams, which means using a direct method, such as

video telemetry was not possible. We reduced the voltage for the

recovery of the aquatic species. Based on recommendations from the

previous studies, 80% of data was used to train the SVM model, and

20% was applied to test the reliability and robustness of the habitat

model. Moreover, velocity and depth were measured by a propeller

and a metal ruler in the sampling process simultaneously (Harby

et al., 2004). It should be noted that the downstream river was

walkable. Hence, all the measurements were possible. In the present

study, the SVM model was developed based on the presence method

which means if the target species was observed in a sample, it could

be considered as the suitable habitat and vice versa. The second stage

of the field studies was the surveying process of the cross-sections in

the downstream representative reach and the measurement of depth,

velocity, and discharge in different cross sections to calibrate and vali-

date the two-dimensional hydraulic model.

Data types and sources, collection period, and detailed procedure

for collecting or measuring data should be clearly explained, which is

helpful for using the proposed method in future research works. We

used two main data types in the present study including hydrological

data and ecological data. Ecological data was collected based on field

measurements using the described method in the previous paragraph.

We applied the electrofishing method to sample the selected target

species, of which two categories were defined. These categories were

considered the criteria for defining habitat suitability. If the target spe-

cies (adult) was available in the sample, it would be defined as suitable

habitats. In contrast, if the number of target species was zero in the

sample, the habitat would be unsuitable.

Moreover, physical parameters such as depth and velocity were

measured in each sampling point. Field measurement was carried out

at 637 points in the Tajan River of which some points (less than 15%)

were deleted due to low water quality. In fact, we measured water

quality by considering DO as the main water quality index at each

point as well. The purpose of this study is to focus on physical habitat

suitability, which means the suitability of water quality should be the

same at all sampled points. Hence, we removed points in which DO

F IGURE 2 Flowchart of support vector machine habitat model. [Color figure can be viewed at wileyonlinelibrary.com]
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was less than the required threshold for living the target species. Rest

of points were applied to develop the SVM habitat model, of which

80% and 20% of the points were used for the training and testing pro-

cess of the habitat model respectively. It should be noted that using

80% for the training process is a recommended method to develop

ML models. Thus, we utilised this method in this study as well. Ecolog-

ical data (i.e., sampling points of fish habitat) was carried out in four

seasons for considering potential effects of changing seasons on the

habitat suitability. In other words, many fish habitats were sampled in

a year in four different months (1 month in each season).

Another type of used data is hydrological data. The main required

hydrological data in this study was the inflow of the reservoir. Due to

the availability of a hydrometric station upstream of Rajaei reservoir,

long-term data for 20 years was collected from the hydrometric sta-

tion. Then, the inflow of the average year was generated by averaging

daily flow. In other words, we applied a daily scale to the optimisation

of reservoir operation, in which 365 days were simulated as an aver-

age year of long-term recorded inflows. Other required data, such as

hydropower plant features, was obtained from available technical

reports of the regional water authority.

2.3 | Physical habitat model

SVM is a computer algorithm that trains a model to label objects.

Figure 2 displays its flow chart in the present study to show how this

model is usable to classify river habitats. This figure indicates that we

use the depth and velocity as the inputs to the SVM habitat model. It

should be noted that all the recorded microhabitats have been sam-

pled in relatively similar bed particle size (gravel bed). Hence, it was

possible to ignore the impact of the substrate to classify habitat suit-

ability. Moreover, the representative reach had a gravel bed, which

means using the SVM habitat model was reasonable to simulate phys-

ical habitats. We applied the kernel function to assess habitats. Differ-

ent types of kernel functions might be utilisable to develop an SVM

model. We utilised the sigmoid function in the following form, as dis-

played in Equation (1)

G¼ tanh g:D:Vþ cð Þ ð1Þ

where D and V are variables, c is the intercept, which was considered

a constant �1 and g is the slope. It should be noted that variation in

slope might be significantly effective on the results of the SVM habi-

tat model. Thus, we considered different values of slope, including

0.1, 0.2, 0.5, 0.8, and 1, for evaluating the optimal performance of the

SVM method to simulate a physical habitat. In other words, we

F IGURE 3 Methodology for
2D hydraulic modelling by HEC-
RAS 2D.

TABLE 1 Evolutionary algorithms used in the present study.

Algorithms Short description Reference

Genetic

algorithm

Developed based on Darwin's

theory of evolution

using operators such as

mutation, crossover and

selection

Whitley, 1994

Particle swarm

optimisation

Motivated by swarm's

intelligent of the organisms

Eberhart and

Kennedy,

1995

Simulated

annealing

algorithm

Firefly

algorithm

inspired by the flashing

behaviour of fireflies

Fister

et al., 2013

Imperialist

competitive

algorithm

the social counterpart of

genetic algorithms

Atashpaz-

Gargari &

Lucas, 2007

TABLE 2 Results of using FTOPSIS.

Algorithm D- D+ CC Rank

GA 2.4390 0.8514 0.7412 2

ICA 2.2311 1.0311 0.6839 4

FF 1.5814 0.6301 0.7151 3

SA 2.5017 0.7585 0.7674 1

PSO 1.9746 1.2783 0.6070 5

SEDIGHKIA and DATTA 5
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developed five SVM habitat models. In fact, five SVM models were

developed including (Model 1, g = 0.1), (Model 2, g = 0.2), (Model

3, g = 0.5), (Model 4, g = 0.8), and (Model 5, g = 1). Several program-

ming packages are available for using the SVM method in data classifi-

cation. Among available packages, MATLAB is one of the popular

options due to the availability of many functions in the library and its

user-friendly environment, which is available in many universities and

consulting engineers for use by scholars. In this study, we imported

the outputs of the HEC-RAS two-dimensional (2D) to MATLAB for

implementing the SVM method.

The Nash–Sutcliffe efficiency (NSE) coefficient was applied to

assess and compare the predictive power of the SVM models (more

details on this index by McCuen et al., 2006). Equation (2) displays the

definition of NSE in the present study, where MHS is modelled habi-

tat suitability and OHS is observed habitat suitability.

NSE¼1�
PT
t¼1

MHSt�OHStð Þ2

PT
t¼1

OHSt�OHSmð Þ2
ð2Þ

Moreover, we used a 2D hydraulic model to simulate the distri-

bution of depth and velocity in the representative reach. Different

hydraulic models are available to simulate hydraulic features. HEC-

RAS 2D was applied in the present study as one of the applicable

options to simulate the hydraulic characteristics of rivers. Several

previous studies corroborated its performance to simulate depth and

velocity in the main channel and floodplain of rivers (Horritt &

Bates, 2002). This model has been successfully utilised to simulate

hydraulic habitats, which demonstrated its efficiency for simulating

physical habitats. More details on using HEC-RAS 2D to simulate

habitat hydraulic addresses have been in the literature (Papaioannou

et al., 2020). However, Figure 3 shows the workflow of HEC-RAS

2D for simulating depth and velocity distribution in this study. It

should be noted that a verification process of the outputs of 2D

hydraulic models is necessary to generate reliable results. Due to

measuring discharge, depth, and velocity at some points during eco-

logical field studies, it was possible to apply these points in the veri-

fication process of HEC-RAS 2D as well. In fact, we selected

roughness (Manning coefficient) as the calibration parameter of the

hydraulic model. Several trial and error steps were carried out to

obtain the best results. In the results of the research work, the out-

comes of the verification process will be displayed. The outputs of

the 2D physical habitat simulation were applied to develop the

weighted usable area (WUA) function as described in the literature

(Stamou et al., 2018).

2.4 | Optimisation model

Equation (3) displays the objective function in which two terms are

available, including minimising difference between power production

(pp) and installed capacity of generating hydropower (PPC) and mini-

mising the WUA in optimal release for generating hydropower and

the natural flow. In other words, this function is able to balance the

requirements for generating hydropower and environmental require-

ments in the downstream river habitats. Natural weighted usable area

is natural WUA, and optimal weighted usable area is optimal WUA,

which could be computed by the developed WUA function through

habitat simulation by the SVM method.

Minimize OFð Þ¼
XT
t¼1

OWUAt�NWUAt

NWUAt

� �2

þ ppt�PPC
PPC

� �2

þP1tþP2tþP3t

ð3Þ

It should be noted that power production is mainly dependent on

the discharge and available head in the reservoir. Thus, these two fac-

tors were updated in the optimisation at each time step. Adding con-

straints of the reservoir management, including constraints on storage

and release for generating hydropower is necessary as follows:

1. Storage in the reservoir should not be less than the minimum oper-

ational storage and should not be more than the maximum possible

storage in the reservoir.

2. Downstream release should not be less than the minimum permit-

ted discharge for the power plant.
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F IGURE 4 Verification of HEC-RAS 2D results (Up: depth, down:
velocity). [Color figure can be viewed at wileyonlinelibrary.com]
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The penalty function method is widely used to convert a con-

strained optimisation to an unconstrained one, and it has been applied

in many studies (e.g., Ehteram et al., 2018). We considered three

penalty functions in the optimisation model, including minimum oper-

ational storage, maximum possible storage, and minimum permitted

flow to downstream, as displayed in Equations (4)–(6). These penalty

F IGURE 5 Training and testing process of SVM model ((a): training data, (b): testing data, (c) to (g) are different models including Model 1 to
Model 5). [Color figure can be viewed at wileyonlinelibrary.com]
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functions would increase reservoir operation penalty when con-

straints are violated.

ifSt > Smax ! P1¼ c1
St�Smax

Smax

� �2

ð4Þ

ifSt < Smin ! P2¼ c2
Smin�St
Smin

� �2

ð5Þ

if QDt <Qmin !P3¼ c3
Qmin�Rt

Qmin

� �2

ð6Þ

It is also required to define overflow and update storage in the

optimisation model. Thus, Equations (7) and (8) display the overflow

and storage in the optimisation model where Et is evaporation, At is

reservoir area, It is inflow, Ft is overflow, Rt is the release for demand,

Rt is the downstream release, and St is storage in each time step.

Stþ1 ¼ Stþ It�Rt� Et�At

1000

� �
,t¼1,2,…,T ð7Þ

if Stþ It� Et�At

1000

� �� �
≥ Smax ! Ft ¼ Stþ It� Et�At

1000

� �
�Smax

if Stþ It� Et�At

1000

� �� �
< Smax ! Ft ¼0

8>>><
>>>:

ð8Þ

Five evolutionary algorithms were applied to optimise the generat-

ing hydropower operation, as displayed in Table 1. More details regard-

ing each optimisation algorithm are available in the cited references.

Each optimisation model needs some indices to measure the per-

formance of the model. In the present study, three indices were

selected for this purpose as follows: One index was selected to mea-

sure how the optimisation model is able to generate hydropower reli-

ably. Moreover, two indices were selected to evaluate the

performance of the model in terms of habitat suitability. AVS evaluates

the average habitat suitability compared with natural flow, and the

RMSE (optimisation model) was selected to evaluate how the optimi-

sation model is able to emulate the natural suitability in the simulated

period. It should be noted that an average year based on long-term

hydrological analysis was simulated in the case study on a daily scale.

RIHydropower ¼
PT
t¼1

OPt

PPC �T ð9Þ

AVS¼Average habitat suitability in the optimal release
verage habitat suitability in the natural release

ð10Þ

RMSE optimization modelð Þhabitat suitability ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1

NWUAt�OWUAtð Þ2

T

vuuut

ð11Þ

The fuzzy technique for order of preference by similarity to ideal

solution (FTOPSIS) is a known decision making system to rank the

available solutions for a problem based on the defined criteria (more

details by N�ad�aban et al., 2016). In the present study, the goal of the

process was to select the best algorithm. The criteria include Equa-

tions (9)–(11), and the candidates are mentioned algorithms in

Table 2.

F IGURE 6 NSE for different developed SVM models. [Color
figure can be viewed at wileyonlinelibrary.com]

F IGURE 7 Habitat suitability distribution map in
flow = 5.03 m3/s as sample of habitat simulations by 2D model.
[Color figure can be viewed at wileyonlinelibrary.com]
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3 | RESULTS

In the first stage, the results of the verification of the 2D hydraulic

model should be presented. Figure 4 displays the verification results

of the hydraulic model. Results indicate that the developed hydraulic

model is reliable, and the differences between observed values and

simulated values are not considerable, and it is on average less than

10%. In the next stage, it is required to present and discuss the testing

process of the SVM physical habitat model. Figure 5a displays training

data to develop the SVM habitat model, which demonstrates different

microhabitats were sampled for the SVM model. Figure 5b displays

actual recorded data in microhabitats to test the habitat model in

which velocity, depth, and suitability class of each microhabitats are

known. Red circles indicate unsuitable habitats, while blue circles

show usable physical habitat for the target species. It sounds that

depth and velocity affect habitat suitability simultaneously, while the

role of velocity is more considerable. However, it is not possible to

determine a clear border between usable and unsuitable habitats.

Hence, the role of the SVM method to classify habitats is remarkable.

Figure 5 also shows the assessment of habitat suitability by dif-

ferent habitat models. It should be noted that no model is perfect for

classifying the river habitat perfectly. However, the accurate assess-

ment of the performance of the habitat models needs applying to the

NSE index. Figure 6 displays the NSE of different models. As a result,

Model 3 has the highest NSE compared with other models, which

means this model is able to generate the best results, while Model 5 is

the weakest model for classifying habitats. The model 1 is not able to

classify microhabitats at the boundary of usable and unsuitable habi-

tat properly, while Model 3 has better performance in this regard.

Hence, the Model 3 was selected to develop the WUA function. Sev-

eral rates of flow based on hydrological analysis were simulated to

define the WUA function. A sample of the simulation is shown in

Figure 7, in which depth and velocity distributions by the 2D hydraulic

model and classified habitats by Model 3 are observable. Figure 8

shows the developed WUA function in the case study, which was

applied in the optimisation model of the reservoir.

In the next step, it is required to present the result of the optimi-

sation in the case study. Figure 9 shows the measurement indices for

different evolutionary algorithms. It seems that the performance of

different algorithms is similar in some aspects. However, their perfor-

mance is not similar for all the indices. The most reliable method to

select the best algorithm for balancing environmental requirements

and generating hydropower is to apply a decision-making method as

presented in the previous section. Table 2 displays the results of using

the FTOPSIS method to select the best algorithm. According to the

results, SA is the best method for optimising the generating of hydro-

power considering environmental degradations downstream.

Figure 10 displays the full result of the SA algorithm in the case study.

4 | DISCUSSION

It is essential to discuss why applying the SVM method should be

highlighted in the river habitat analysis. Conventional methods of

physical habitat simulation proposed by PHABSIM or other similar

packages, such as SEFA (Payne & Jowett, 2013) are not able to simu-

late physical habitat correctly due to an inability to simulate interac-

tions between parameters. Hence, the univariate method must be

excluded for further studies. On the other hand, the Mamdani fuzzy

approach is another option for habitat hydraulic simulation. This

method is able to generate more accurate results compared with the

univariate methods. However, either a lack of sufficient regional

F IGURE 8 Normalised weighted usable area curve in simulated reach. [Color figure can be viewed at wileyonlinelibrary.com]
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ecological information or a lack of experienced ecologists is a real

challenge to utilising this method for assessing river habitats. ML

methods might be reliable for physical habitat simulation. However,

data collection might be a hindrance for applying ML methods. Two

general methods, including regression and classification models, are

available to simulate habitats. Regression methods, such as ANN or

ANFIS may be robust to simulate habitats. However, extensive field

studies are one of the prerequisites for developing an efficient and

robust neural network, which means neural networks might not be

usable in all the case studies. Hence, classification methods might be

applicable to simulate physical habitats for case studies in which

extensive field studies are not possible. In other words, robust classifi-

cation methods such as SVM not only have the advantage of ML

methods but also, they are usable with limited field studies. Thus, we

recommend utilising the SVM method to classify physical habitat in

future studies.

A full discussion on the technical and computational aspects of

the developed method might be helpful for the readers. The present

study highlighted the application of combined models in the manage-

ment of hydropower plants, in which ecological functions could be

used in the structure of the optimisation model. It should be noted

that previous studies did not apply the ecological impact function in

the context of operation optimisation directly, which might be signifi-

cant in the present study. In fact, the proposed method could be help-

ful to improve the environmental degradation studies in the hydraulic

structures. In the current condition, increasing population is a chal-

lenge that might exacerbate the threats of the river ecosystems due

to more need for generating hydropower or water supply. This

method could be applied to the water supply problems as well. More-

over, climate change is a serious challenge that might increase the

extreme events in the river basins, such as severe droughts. It is a seri-

ous need to balance the environmental requirements and humans'

needs, especially in droughts. The proposed method is useful in this

regard. However, each method might have some limitations, which

should be noticed in the applications. In the present study, we focused

on the physical habitat due to the importance of physical factors in

the case study. However, water quality might be a challenge in many

cases. Hence, it is needed to improve the proposed method in future

studies by adding water quality factors to the selection process of the

aquatic species. Moreover, we highlighted a target species in this

study. However, it might be needed to highlight several species in

other case studies. Thus, it is recommendable to focus on several spe-

cies in future studies. A dam might be multipurpose, which means

other purposes, such as flood control or water supply might be impor-

tant as well. Thus, adding other factors to the optimisation model is

recommendable for cases in which several aims are needed to be

defined in the operation of the reservoir.

The computational aspects should be discussed as well. One of

the important issues for applying complex methods, such as a pro-

posed method in this study is computational complexities. According

to the literature, high computational time and needed memory might

be considered as the complexities in the optimisation methods. It

should be noted that complex methods might not be popular among

the engineers due to covering a long-term period or numerous simula-

tions in the real projects. However, many developed computational

methods are highly complex, which might diminish their applicability.

A significant advantage of the proposed method is its low computa-

tional complexities due to the indirect application of the ML method

in the optimisation model. In fact, direct application of ML methods

such as ANFIS models might increase the computational cost of the

model considerably. The proposed method is able to reduce the com-

putational costs, while several robust and complex methods are uti-

lised in the simulation process. Another important computational

issue is why we applied a single objective optimisation in the present

study. Based on the developed objective function, two objectives

have been defined in the model simultaneously. At first glance, using

multi-objective optimisation might be reasonable. However, it might

increase the computational complexities, which might limit the appli-

cation of the method. Moreover, a limited number of multi-objective

methods have been developed for the optimisation process in the
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F IGURE 9 Performance of different optimisation algorithms.
[Color figure can be viewed at wileyonlinelibrary.com]
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literature. However, many single-objective algorithms have been

developed in the previous studies. It should be noted that one of the

shortcomings of all the evolutionary optimisation methods is their

inability to guarantee global optimisation. Thus, utilising several

methods in the optimisation is very critical. The proposed method is

advantageous in this regard due to using several optimisation

methods and selecting the best method by a decision making system.

Apart from general discussion on the developed mechanism and

strengths or drawbacks of the method, it is required to discuss the

technical aspects with a focus on the case study. Based on an initial

habitat survey in the Tajan River, physical habitat loss is an environ-

mental challenge, which means focusing on physical habitat suitability

is a serious need. Currently, low water quality is not a challenge,

which implies developing an SVM model with a focus on physical hab-

itat loss could be enough to overcome the challenges. However, it

might be changed in the future due to the quick development of

urban and agricultural areas in the Tajan River basin. Furthermore,

water quality might be a challenge in other cases. Hence, adding water

quality factors to the SVM model might be needed in the future. The

role of Rajaei reservoir in supplying electricity demand is considerable

due to the location of the river in terms of weather conditions. In fact,

most areas of Iran are located in arid and semi-arid areas. However,

three major regions in the northern region are located in wet condi-

tions, including the Tajan River basin. Hence, this river basin is highly

potential for generating hydropower especially for Mazandaran prov-

ince due to its high population. The present study demonstrated that

there are serious concerns for downstream environmental impacts of

generating hydropower. Based on the displayed results, the maximum

flow velocity at Q = 5 m3/s is considerable, which means increasing

river flow would increase the energy consumption by the fish for

swimming upstream. Moreover, results of the SVM model indicate

that some areas in downstream river habitats are unsuitable even at

F IGURE 10 Optimal solution by SA
method as the selected solution. [Color
figure can be viewed at
wileyonlinelibrary.com]
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lower river flows. Obviously, unsuitable areas will be increased in high

flows due to more energy consumption as a consequence of increas-

ing flow velocity. Thus, environmental managers should be cautious

regarding generating hydropower. This study proposed an average

optimal plan for generating hydropower, in which hydropower pro-

duction on some days of the year has been considerably reduced to

protect downstream physical habitats. Fortunately, the proposed

regime of release is able to protect the physical habitats of the fish

very well because the RMSE is very low by the best method, which

means the natural physical habitat loss and optimal physical habitat

loss are close. Thus, we can claim that the proposed method for pro-

tecting downstream river habitats of the Tajan River is reliable. How-

ever, it reduces the maximum hydropower production remarkably. In

other words, generating hydropower should be inevitably restricted.

Some current initial habitat surveys downstream of the Rajaei reser-

voir indicate that the population of the target species has decreased

compared with the available data before construction of the Rajaei

dam. Another important issue which should be discussed is the per-

formance of the SVM model in the Tajan River. Based on the evalua-

tion index (NSE), the model is highly reliable to simulate physical

habitats, which demonstrates some important points. First, the impact

of physical parameters is important in this river, and they are impor-

tant drivers to select habitats by the target species. In other words,

the robust performance of the model corroborates the results of the

initial habitat surveys, in which physical parameters were only identi-

fied as key factors for simulating fish habitats. If other parameters,

such as water quality, were very effective on habitat selection, the

results of the SVM model could not be acceptable due to eliminating

these parameters in the model.

Based on the outputs of the present study, it is recommendable

to change the management plan of the Rajaei reservoir for minimising

downstream environmental impacts. Currently, the managers control

release to maximise generating power without considering environ-

mental impacts. However, this study demonstrated that 38% of the

maximum possible power could be averagely generated due to poten-

tial environmental impacts. Hence, other sources of generating power

should be considered in the management plan for power. Due to the

possibility of using other types of renewable energy in the case study,

it is recommended to use them, such as wind power plants, in the

future to compensate for reduced generated power by Rajaei

reservoir.

5 | CONCLUSION

The present study developed a SVM habitat model linked with the

optimisation of generating hydropower to mitigate the environmental

impacts of the hydropower plants on the downstream river habitats.

The SVM method was used to classify the physical habitats in rivers,

in which depth and velocity were the inputs and suitability classes,

including usable and unsuitable habitats, were the outputs of the

model. The developed ecological impacts function through the SVM

habitat model was applied in the structure of the optimisation model

of generating hydropower. Several evolutionary algorithms were

applied in the optimisation process. Based on the results of the case

study, the SVM method is robust for simulating habitats in the river.

Moreover, simulated annealing is the best optimisation algorithm to

optimise the operation of the hydropower plant. Limitations and

future scope should be highlighted as well. This study focused on

physical habitat suitability by SVM method due to the requirements

of the case study. However, other parameters, such as water quality,

should be added to the model, if low water quality is an environmental

challenge. One of the important future scopes is to add all effective

abiotic factors to the model to investigate the response of habitats

and potential environmental impacts of hydropower plants.
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