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Abstract: Educational institutions play a significant role in the community spread of SARS-CoV-2 in
Victoria. Despite a series of social restrictions and preventive measures in educational institutions
implemented by the Victorian Government, confirmed cases among people under 20 years of age
accounted for more than a quarter of the total infections in the state. In this study, we investigated
the risk factors associated with COVID-19 infection within Victoria educational institutions using
an incremental deep learning recurrent neural network-gated recurrent unit (RNN-GRU) model.
The RNN-GRU model simulation was built based on three risk dimensions: (1) school-related risk
factors, (2) student-related community risk factors, and (3) general population risk factors. Our data
analysis showed that COVID-19 infection cases among people aged 10–19 years were higher than
those aged 0–9 years in the Victorian region in 2020–2022. Within the three dimensions, a significant
association was identified between school-initiated contact tracing (0.6110), vaccination policy for
students and teachers (0.6100), testing policy (0.6109), and face covering (0.6071) and prevention of
COVID-19 infection in educational settings. Furthermore, the study showed that different risk factors
have varying degrees of effectiveness in preventing COVID-19 infection for the 0–9 and 10–19 age
groups, such as state travel control (0.2743 vs. 0.3390), international travel control (0.2757 vs. 0.3357)
and school closure (0.2738 vs. 0.3323), etc. More preventive support is suggested for the younger
generation, especially for the 10–19 age group.

Keywords: COVID-19; epidemiology; infection control; educational facilities; artificial intelligence;
deep learning; neural networks

1. Introduction

A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
was identified in December 2019. Due to its high virulence and transmissibility, SARS-
CoV-2 spread rapidly around the world over the next two years. By 12 October 2022,
618 million confirmed cases and 6.5 million deaths had been reported worldwide [1]. The
first case of COVID-19 in Australia was identified in Victoria on 25 January 2020 and spread
significantly in the following years [2].

Available reports indicate that children and adolescents appear to be less susceptible
to COVID-19 infection [3,4]. Data from the early phase of the COVID-19 pandemic demon-
strate that infection among children aged 0–19 years accounted for 2% of the total number
of confirmed cases in China, 1.1% in England, and 1% in Italy in 2020. The number of
confirmed cases in the United States increased significantly from 2021, accounting for about
13.3% for the age group 0–18 years [3–6]. To prevent the spread of the virus, it is important
to adopt preventive behaviours such as wearing face masks, which have been shown to
be effective in suppressing transmission and flattening the pandemic curve [7–10]. These
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measures are crucial even after vaccination, as they can increase the suppressive effect [7].
In addition to preventive behaviours, increased testing is essential to prevent the spread
of the disease in society. This approach can improve case detection, isolation of infected
individuals, and contact tracing [11–13].

Since 2020, the Victoria government had implemented a series of social restrictions
and preventive policies for kindergartens, primary schools, colleges, and universities
to prevent COVID-19 infection among students [14]. Schooling in Victoria has changed
substantially in the past years, according to research from Monash University [15]. Despite
several restrictive measures, the infection rate among children and adolescents in Victoria
is still higher than in other areas. The proportion of confirmed cases in people aged under
20 years (25.78%) was more than a quarter of the total number of infections in Victoria
from 11 October 2020 to 10 October 2022 [16]. Educational facilities have been reported to
contribute significantly to the community transmission of virus, which thrives in populated
environments [17]. The reasons for the significantly higher COVID-19 infection rates in
Victoria remain unclear. Consequently, it is crucial to identify measures to prevent the
spread of the virus in the 0–19 age group, particularly in regions with higher infection rates.
A more detailed analysis is therefore needed to understand the local intensity and severity
of COVID-19 and its impact on children and adolescents within Victoria.

With the development of artificial intelligence techniques, deep learning methods
are frequently used to simulate epidemiology modelling. The performance of the deep
learning approach relies on training data to build the simulation model rather than a
pre-defined mathematical model, which avoids unrealistic artificial hypotheses and rules
affecting the model’s performance [18]. In this study, we propose an increment learning
Recurrent Neural Network-Gated Recurrent Unit (RNN-GRU) model to simulate COVID-
19 infection within educational facilities to determine the impact score of risk factors during
the infection process. The RNN-GRU is an ideal method to simulate the infection of COVID-
19 with a proven continuous learning ability during the training process, considering the
different COVID-19 variants. It also presents a reliable performance to avoid the problems
of gradient explosion and gradient disappearance in the normal RNN model [19] with a
lower computation complexity structure of Recurrent neural networks long short-term
memory (RNN-LSTM) [20].

Therefore, this study aims to (1) establish an incremental deep learning RNN-GRU
model to simulate COVID-19 infection within educational facilities and (2) examine the
impact score of risk factors within educational facilities to provide insight into preventive
strategies against COVID-19 infection for the Victoria area.

2. Materials and Methods
2.1. Study Area and Data Collection

This study was conducted in the greater Melbourne area, Victoria, Australia. Data
were assessed from multiple sources. The COVID-19 infection data was extracted from
the Victoria government website [16]. This publicly available dataset records all infection
case information from 11 March 2020 to 10 October 2022 in Victoria, and includes the date
diagnosed, age group, postcode, source of COVID-19 infection, and local government area.
The source of COVID-19 infection included four categories: travel overseas, contact with a
confirmed case, acquired in Australia, and under investigation. For this study, we analysed
all COVID-19 cases in patients aged 0–19 years in Victoria, approximately 240,668 in total, as
this age group represents a significant proportion of the student population in educational
institutions [21]. The government COVID-19 preventive policy data was sourced from
the Coronavirus Victoria website (https://www.coronavirus.vic.gov.au, accessed on 8
December 2022) and the COVID-19 Government response tracker [22,23]. The University of
Oxford created the COVID-19 Government response tracker, which has collected COVID-
19-related policies since 1st January 2020 and covers more than 180 countries. This study
utilised Victoria’s individual COVID-19 preventive policy indicator in the COVID-19
infection simulation model.

https://www.coronavirus.vic.gov.au
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2.2. Data Pre-Processing

To better simulate the COVID-19 infection among Victoria students within educational
facilities, the risk that could lead to infection of COVID-19 was categorised into three
dimensions: school-associated risk factors, student-related community risk factors, and
general population risk factors (Figure 1). It is worth noting that the Victoria Government
has implemented a different vaccination policy for the education sector compared to the
public [24,25]. All staff in the education sector must be fully vaccinated by 29 November
2022, and a community COVID-19 vaccination programme was launched to improve
the vaccination rate among students. Meanwhile, there is no mandatory vaccination
policy for the public [24]. Therefore, the vaccination status for the education sector only
reflects the vaccination policy and status within the education sector, while the mandatory
vaccination policy and the number of vaccinated populations in the general population are
risk factors used to measure the progress of vaccination for the public. The detailed risk
factor information is presented in Table 1.
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Figure 1. Risk factors classification for preventing COVID-19 infection among Victoria student
within education facilities. The school-associated risk factors for COVID-19 infection encompass
the various factors and policies in the school environment or initiated by the school that influence
the infection among students. The student-related community risk factors refer to the factors and
policies that affect the COVID-19 infection among student outside of school time but are still related to
students through students’ social gatherings and daily life outside of school time. Lastly, the general
population risk factors include total COVID-19 infection case and general government policies for
the public within the Victoria area.

Table 1. Data dictionary for risk factors of COVID-19 transmission within educational facilities.

Dimensions Risk Factors Description

School-associated risk factors
(Prevention strategies)

Facial covering Facial covering requirement
Testing policy Testing policy of a symptomatic person

Contact tracing School-initiated contact tracing following a
positive diagnosis

School closing School operation status: open or closed

Stay at home requirements The policy that instructs people to remain at home and
not leave for non-essential purposes
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Table 1. Cont.

Dimensions Risk Factors Description

School-associated risk factors
(Immunisation status for the
educational service sector)

Vaccination policy for student
and teacher

Policies for vaccine delivery of the educators in
primary and secondary schools, tertiary education
students, and staff

Vaccination status in
educational facilities

Vaccination status for the educators in primary and
secondary school, tertiary education students and staff

Student-related community
risk factors

Parent workplace closure Parent or relative’s workplace operation status: open
or closed

Public event cancellation
Public events cancelling status. This factor could lead
to a higher secondary infection within the
educational facilities

State travel control Restrictions on internal movement within the state
International travel control Restrictions on international travel

Restrictions on gatherings
Social gathering restriction level: limit the number of
people who can gather in one public place at a
given time

Public transport closing

Operation status: open or closed. Student commute to
school by public transport, which may infect them
with COVID-19 and lead a secondary transmission
within the educational facilities

General population risk factors

Daily infection number Daily infection number within the Victoria area
Daily effective reproduction number Spreadability of COVID-19
Public information campaigns COVID-19 public information campaign
Containment Health Index Government containment health policy index
Government Response Index Government COVID-19 Response Index
Stringency Index Social restriction level
Mandatory vaccination policy Mandatory vaccination policy for the general public
Population vaccinated number The number of vaccinated people in Victoria

For the data pre-processing, the patient data are grouped based on the diagnosis date,
age group, and other common attributes. The column-based data indicating the method of
COVID-19 acquisition and local government attributes are transformed into the row-based
data based on its unique attribute value. The data were further grouped into two separate
datasets for age groups 0–9 years and 10–19 years. The effective reproduction number (Rt)
analysis was estimated based on the daily infected cases. Rt measures the spreadability
of COVID-19 by using the number of human–human transmissions resulting from one
infected person [26]. An Rt of 1 means, on average, an infected person will only infect one
person. All Rt quantiles (Q0.025, Q0.5 and Q0.975) were also included. Each row in the
grouped data represents the COVID-19-infected situation for that day (Figure 2).

2.3. Incremental Deep Learning RNN-GRU Model

In this study, we proposed an incremental deep learning RNN-GRU model. The model
provides insight into the COVID-19 infection among Victoria’s students within educational
facilities and will determine the impact score of risk factors during COVID-19 infection.

The traditional machine learning training method randomly splits datasets into train-
ing and test sets. The training set is used to establish the model and is validated using
the testing set. We believe this splitting method is unsuitable for the COVID-19 infection
pattern. Firstly, according to the World Health Organization, because of the coronavirus
incubation period, symptoms may take up to 14 days to appear [27]. In order words, the
number of daily infections of each row in our dataset can impact the infection cases in the
following 14 consecutive days. Secondly, there are currently 13 SARS-CoV-2 variants in
circulation, including Alpha, Beta, Delta, Gamma, and Omicron. Researchers have proven
that the Delta and Omicron have increased infection rates and transmissibility [28,29].
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Therefore, the one-off training method is not ideal for creating training and test sets for the
COVID-19 infection simulation.
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Figure 2. Sample dataset for the COVID-19 infection simulation model. The dataset includes the
daily number of infections in that age group, the method of acquisition, the local government area,
the effective reproduction number (Rt), and the policy indicator, etc.

Therefore, in our proposal model, we have introduced an incremental batch learning
method (Figure 3). This method used two separate datasets to represent the age groups 0–9
and 10–19 years. Each dataset was assigned into N small batches randomly. Each batch has
included 14 consecutive days of records for model training, which can avoid the impact
of random selection in the traditional splitting method. The first batch was used to train
the model, and the next N-1 batch was used for the incremental deep learning process
to update model parameters. The incremental deep learning process repeated M times
to ensure each data point had been involved in the training process. Incremental deep
learning continuously updated model parameters to simulate the infection of COVID-19
dynamically. We created 256 small batches for our dataset in the proposed model to keep
the CPU at the full workload level.

Furthermore, the Recurrent Neural Network (RNN) is an ideal method to handle
sequential data and is able to memorise previous inputs and involve them in the next
model update iteration [30]. As one of the artificial neural networks, the RNN includes
three main layers (input layer, hidden layer, and output layer) to connect each other.
Each layer includes several neurons to process the data. The neurons are connected by
a weighted link, passing processed data from one neuron to another. In traditional deep
neural networks, feedback-forward neural networks and convolutional neural networks
(CNN) assume that output is independent of the previous input, while the output of RNNs
depends on the previous input within the same sequential data. The RNN has taken data
from previous input to influence the current input and output during the training process.
In this proposal model, we utilised Gated Recurrent Units (GRU) in the RNN to mitigate
the impact of short-term memory limits and vanishing gradient problems [19]. The GRU
structure contains a reset gate and an update gate. Its output is a combination of the
previous hidden state ht−1 and new information from the current input Xt. The reset gate
allows the network to retain or forget information from the previous hidden state ht−1 [20]
(Figure 4 and Table 2). The value of the reset gate is between 0 and 1, with values close
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to 0 indicating that the previous hidden state ht−1 should be forgotten, and values close
to 1 indicating that the previous hidden state ht−1 should be retained. The update gate
determines whether the proportion of new information from the current input Xt should
be passed to the hidden state.
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Table 2. Gate recurrent unit (GRU) formula.

GRU
Component Formula Function

Reset gate rt = σ(Wr ∗ [ht−1, Xt])
Sigmoid function will transfer value into range of 0 to 1 to decide

proportion of data for forget purpose

Update gate Zt = σ(Wz ∗ [ht−1, Xt])
Sigmoid function will transfer value into range of 0 to 1 to decide

proportion of data for update purpose

Output

∼
ht = tanh(W ∗ [rt ∗ ht−1, Xt])

ht = (1 − Zt) ∗ ht−1 + Zt ∗
∼
ht

Yt = σ(Wo ∗ ht)

Update output-based results from reset and update gate

2.4. RNN-GRU Model Performance Evaluation

To build the RNN-GRU model, the performance of the incremental batch learning
process was evaluated by the mean squared error (MSE) to determine the number of
repeated times for the incremental learning process.

MSE =
∑n

i=1 (Yi − Ŷi)
2

n

where Yi represents the observed number of COVID-19 cases in day i, while Ŷi is the
predicted number of COVID-19 cases in day i, and n is the total number of days.

To measure the simulation performance of the proposed RNN-GRU model, we have
compared it with several machine learning algorithms, which were trained by the tra-
ditional splitting method. The following performance indices were used to assess the
performance of the proposed model; mean absolute error (MAE), root mean squared error
(RMSE), and the coefficient of determination (R2).

MAE =
∑n

i=1
∣∣Yi − Ŷi

∣∣
n

RMSE =

√
∑n

i=1 (Yi − Ŷi)
2

n

The R2 was used to measure the fitness level of the actual value and predicted value.

R2 = 1 − ∑n
i=1 (Yi − Ŷi)

2

∑n
i=1 (Yi −

−
Y)

2

where Yi represents the observed number of COVID-19 cases in day i,
−
Y is the mean value

of actual COVID-19 cases, while Ŷi is the predicted number of COVID-19 cases in day i,
and n is the total number of days.

2.5. Impact Score Analysis for the Risk Factors

Despite great simulation ability of RNN-GRU model, there is not a comprehensive
understanding method to explain the results of neural networks [31]. To understand the
impact of risk factors in preventing the COVID-19 infection among students, we propose a
comprehensive impact score examination method in this study, the impact score index.

In the first step, for each risk factor feature xi in the test set Xtest, we perturb that
feature by using a random normal distribution (µ = 0 and σ = 0.2) to generate a new test
set Xperturb. For the second step, instead of adding noisy data through random normal
distribution, each risk factor xi will be randomly shuffled to generate a new test set Xshu f f le.
The effect of this perturbation or shuffling is defined by using RMSE. RMSE is a scale-
dependent measurement approach but is more sensitive to individual large forecast errors
than MAE [12]. In this study, each risk factor impact score is defined as follows:
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Impact Scorei =

√√√√ ∑n
i=1

(
Ŷiperturb or shu f f ling − Y

itest

)2

n

where Yitest is the predicted value based on the original test set Xtest, and Ŷiperturb or shu f f ling is
the new predicted value based on the new test set Xperturb or Xshu f f le.

To combine the results of the step 1 and 2, a weight attribute was assigned to
Impact Scoreperturb and Impact Scoreshu f f le which is defined as follows:

Total impact f actori = Wperturb ∗ Impact f actorperturb + (1 − W
perturb

) ∗ Impact f actorshu f f le

3. Results
3.1. Descriptive Summary

A total of 943 days’ COVID-19 data for age groups 0–9 and 10–19 in Victoria were
used in the study. Figure 5 presents the overall COVID-19 time series data for both age
groups in 2020, 2021, and 2022.
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In 2020, the daily confirmed COVID-19 cases for the age group 0–9 increased during
July and August, reaching a peak at 35 cases on 7 August 2020, while a steeper increase
was observed for the age group 10–19 during the same period peaking at 71 cases on 29
July 2020. For 2021, surges in COVID-19 infection mainly happened between September
and December, with the highest daily cases of 346 for the age group 0–9 on 20 October
2021 and 734 cases on 31 December 2021 for the age group 10–19. On the other hand,
daily confirmed COVID-19 cases presented a significant rise in early 2022, followed by
a decreasing trend until October 2022. The number of daily cases reached a record high
of 1932 and 3574 cases for age groups 0–9 and 10–19 years in 2022, respectively. Overall,
COVID-19 infection among people aged 10–19 years (130,323) was higher than among
those aged 0–9 years (110,345).

3.2. RNN-GRU Model Performance Evaluation

Figure 6 presents the RNN-GRU model training performance during the incremental
batch learning process. The infection of COVID-19 among Victoria students for age groups
0–9 and 10–19 has been simulated. With increasing training repeating times, the MSE has
decreased gradually for both age groups 0–9 and 10–19 (Figure 4). The MSE remains at
the same level after 20 times, which is below 0.001 level for both age groups. Therefore,
the proposed RNN-GRU model will establish by repeating incremental training of the
COVID-19 dataset 20 times.

To measure the simulation performance of the proposed RNN-GRU model, in this
study, we compared RNN-GRU model with several machine learning algorithms, which
were trained by the traditional splitting method. Table 3 presents a clear accuracy improve-
ment using the RNN-GRU model for age groups 0–9 and 10–19. Overall, the RNN-GRU
model has achieved the best results on all three merits and presents a clear improvement in
simulation accuracy.
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Figure 6. Mean Squared Error (MSE) for incremental batch learning method. The Mean Squared
Error (MSE) represents the simulation error of the model for the age groups 0–9 and 10–19, while the
training repetitions represent the number of repetitions of the training process used to determine the
number of training iterations in the simulation model.

Table 3. Results of model evaluation for groups 0–9 and 10–19.

Model
0–9 Years 10–19 Years

R2 RMSE MAE R2 RMSE MAE

RNN-GRU 0.9796 0.2777 0.0601 0.9796 0.2809 0.0634
Kernel Ridge 0.8649 0.3795 0.0965 0.9461 0.3256 0.0853

Ridge regression 0.7879 0.4249 0.1446 0.9244 0.3543 0.1130
Bayesian Ridge 0.7818 0.4279 0.1380 0.9223 0.3568 0.1202

Gradient Boosting Regressor 0.7538 0.4410 0.1622 0.9161 0.3637 0.1181
Lasso regression 0.7478 0.4437 0.1508 0.9156 0.3643 0.1241

ElasticNet 0.7415 0.4464 0.1524 0.8781 0.3992 0.1498
XG Boost Regressor 0.7409 0.4467 0.1512 0.8735 0.4029 0.1221

Random forest 0.3751 0.5567 0.2781 0.7233 0.4901 0.1963
Support vector regression 0.2311 0.5863 0.2956 0.7089 0.4963 0.2047

3.3. Impact Score Analysis for Risk Factors of COVID-19 within Educational Facilities

The RNN-GRU model has achieved a great simulation result compared with other
machine learning models. In our proposed comprehensive impact score examination
method, the Wperturb is set as 0.5. Table 4 presents the impact score of dimensions, while
Figure 7a,b present the impact score of the risk factor for age groups 0–9 and 10–19,
respectively. Of the three dimensions, the general population risk factors have achieved
the highest normalised impact score (38.12%) among age groups 0–9 and 10–19, followed
by the school-associated risk factors (33.29%). The general population risk factors and
school-associated risk factors were significantly higher than the student-related community
risk factors (28.59%) (Table 4). For the age groups 0–9 (Figure 7a), the contract tracing
(0.2771) that was initiated by the school has contributed the highest normalised impact
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score in school-associated risk factors, while the testing policy (0.3340) was the most critical
factor for age groups 10–19 (Figure 7b). The stay-at-home requirements have shown
minor effectiveness among both age groups (0.2727 and 0.332). Within the student-related
risk factors in the community, the significance of the risk factors presented between the
age groups 0–9 and 10–19 years is different. A different method than the stay-at-home
requirement, the restriction on gathering was designed to limit the number of people who
could gather in one public place at a given time. This has been found to be the most
influential risk factor in the age group 0–9, while it dropped to the least influential factor
in the age group 10–19. Meanwhile, the contributions of the state and international travel
control increased from the age group 0–9 to 10–19. Parent workplace and public transport
closure did not present clear impacts in the analysis. For the general population risk
factors, the public information campaigns showed the lowest contribution score in the age
group 0–9, while it jumped into the most influential risk factor in the age group 10–19. The
opposite change was found in the mandatory vaccination policy, and population vaccinated
risk factor. Both risk factors showed a significant contribution in the age group 0–9, while
the contribution in the age group 10–19 dropped rapidly. The containment health and
government response indexes did not clearly contribute to the impact score analysis.

Table 4. Impact score of dimensions for age groups 0–9 and 10–19.

Dimensions Risk Factors

Age Group Total

Group
0–9

Group
10–19

Sum of Risk
Factors

Sum of
Dimensions

School-associated risk factors
(Prevention strategies)

Contact tracing 0.2771 0.3340 0.6110 1

3.0372 (23.77%) 2
Testing policy 0.2734 0.3375 0.6109

Facial Coverings 0.2721 0.3350 0.6071
School closing 0.2738 0.3323 0.6061

Stay at home requirements 0.2716 0.3305 0.6022

School-associated risk factors
(Immunisation status for the

educational service sector)

Vaccination policy for student
and teacher 0.2758 0.3341 0.6100

1.2159 (9.52%) 2

Vaccination statue in
educational facilities 0.2727 0.3332 0.6059

Student-related community
risk factors

State travel control 0.2743 0.3390 0.6133

3.6534 (28.59%)

International travel controls 0.2757 0.3357 0.6114
Public event cancellation 0.2764 0.3337 0.6101

Restrictions on gatherings 0.2772 0.3308 0.6080
Public transport Closing 0.2748 0.3314 0.6063
Parent workplace closure 0.2720 0.3324 0.6043

General population
risk factors

Daily infection number 0.2755 0.3365 0.6121

4.8714 (38.12%)

Mandatory vaccination policy 0.2782 0.3319 0.6101
Stringency Index 0.2740 0.3359 0.6100

Public information campaigns 0.2720 0.3366 0.6086
Population Vaccinated 0.2766 0.3316 0.6082

Total Effective reproduction number 0.2728 0.3349 0.6077
Containment Health Index 0.2756 0.3319 0.6075

Government Response Index 0.2745 0.3327 0.6072
1 The risk factors within the dimension are in descending order based on total impact score; 2 Normalised total
impact score of dimensions. Note: Total normalised risk factor of School-associated risk factors is 33.29%.
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Figure 7. (a) Impact score for age group 0–9. (b) Impact score for age group 10–19. The impact score
is calculated using the proposed comprehensive impact score review method based on the RNN-GRU
model to decide the effectiveness of risk factors in preventing COVID-19 infection. The risk factors
are listed in descending order within each risk dimension. The school-related risk factors (prevention
strategies, immunisation status for the education sector) are listed first, followed by student-related
community risk factors, and general population risk factors.
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4. Discussion

This study examined the impact score of risk factors of preventing COVID-19 infection
within educational facilities in Victoria using an incremental deep learning RNN-GRU
model. Compared to other machine learning methods, the model simulation performance
was excellent in terms of R2, RMSE, and MAE criteria. Employing the incremental batch
learning method brings a continuous learning ability to the simulation model and is ideal for
handling increasing COVID-19 cases and variants in current society. Three key dimensions
were established, namely, school-associated risk factors, student-related community risk
factors, and general population risk factors.

The study shows that within the prevention strategies subgroup of the school-associated
risk factors, contact tracing initiated by the school and testing policy contributed the most
to the total impact score among both age groups. This finding is consistent with previous
studies [12,13], which indicated that contact tracing programs and testing policies can be
highly effective in swiftly preventing infections on campuses and in the community. As
one of the earliest applied preventive strategies, the requirement for facial covering was
another contributor to the impact score. Evidence suggests that the use of appropriate facial
covering effectively prevent COVID-19 infection by interrupt the transmission of SARS-
CoV-2 in both hospital settings and the community [9,10]. One previous study in North-
East Nigeria [32] suggests a decreased risk of SARS-CoV-2 transmission among healthcare
workers using N95 marks. According to the simulation results presented in Table 4, the
impact score associated with school closure appears to be a relatively small contributor
to the overall impact of school-related factors in the Victoria region. It has been reported
that school closures have limited effectiveness in reducing SARS-CoV-2 transmission and
preventing COVID-19 infection compared with other social restrictions [5]. Furthermore, a
recent study also found that school closures did not help control the epidemic based on data
from the virus outbreak in mainland China, Hong Kong, and Singapore [33]. Specifically,
our simulation results revealed that school closure had the third highest impact score within
the dimension of preventive strategies for the age group 0–9 years but was not a major
contributor for the age group 10–19 years. This finding is consistent with previous research
showing that younger children have an increased risk of SARS-CoV-2 transmission than
other age groups [34]. Moreover, the simulation results suggest that the vaccination policy
for students and teachers has the potential to reduce the incidence of COVID-19 among
the student population. Prior clinical evidence demonstrates that COVID-19 vaccination
not only prevents severe symptoms of the virus but is also an important tool for reducing
the infection rate [35]. Overall, our analysis of impact scores indicates effective contract
tracing programs, mandatory face covering requirements, comprehensive testing policies,
and vaccination requirements in the education sector have a significant association with
the prevention of COVID-19 infection in educational settings. Additionally, school closure
presents a different effectiveness level in preventing SARS-CoV-2 transmission between
students in age groups 0–9 and 10–19.

For the general population risk factors, public information campaigns are an unig-
nored risk factor. The public information campaign ensured that students were aware
of the pandemic virus and accepted COVID-19 vaccines [36]. Its contribution increased
significantly in the age group 10–19. A study in Saudi Arabia found a noticeable difference
regarding knowledge of COVID-19 prevention between different ages of students through
secondary school and university participants [37]. The government stringency index is
the measurement indicator for government COVID-19 social restrictions. Social restriction
effectively slowed the spread of the virus, as evidenced by the increase in infection dou-
bling time [38]. The daily infection number and mandatory vaccination policy significantly
contributed to the total impact score.

Lastly, the student-related community risk factors focus on the factors and policies
that affect the COVID-19 infection rate among students outside of school time but are
still related to students through students’ social gatherings and daily life. The state and
international travel control contributed the highest impact score. The previous travel
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control in Bhutan, South Asia [39], indicated that stringent border control and in-country
travel had prevented direct entry and widespread transmission of SARS-CoV-2 in Bhutan.
However, the contribution of state and international travel control in the age group 0–9 was
much lower than in the age group 10–19. Furthermore, common social restriction policies,
including restrictions on gatherings and public events were reported to effectively reduce
public mobility and infection rate by slowing the spread of SARS-CoV-2 [40]. Based on
the analysis of the general population risk factors, and student-related community risk
factors, our study suggests that appropriate COVID-19 public information campaigns,
travel control, and social restrictions have a significant association with reducing COVID-19
infection rates in educational settings by slowing the spread of SARS-CoV-2. However,
social restriction could lead to social and emotional loneliness and mental health issues
among students, which needs to be managed [41].

There are a few limitations to this study. Firstly, although the COVID-19 confirmed
patient data collected was from the Victoria government website, considering the numerous
unreported and asymptomatic cases, these data may not be representative of the actual
COVID-19 confirmed cases in Victoria. Secondly, the results of our study were based only
on data collected in Victoria, which may limit their generalisability to other contexts. We did
not consider risk factors and cases of infection outside the Victoria region, which may affect
the external validity of our findings. Therefore, the results may not be applicable elsewhere.

5. Conclusions

In summary, a COVID-19 infection simulation analysis using the incremental deep
learning RNN-GRU model, based on the dataset from 11 March 2020 to 10 October 2022,
was conducted to evaluate the impact score of risk factors for COVID-19 infection within
educational facilities in Victoria. The incremental batch learning method has proven a
continuous learning ability during the training process, which will be an ideal training
method to simulate COVID-19 infection considering the different infection rates of SARS-
CoV-2 variants. An RNN-GRU model has provided a reliable simulation performance in the
sequential data compared with other machine learning models in the performance analysis.

The simulation results indicate that the general population and school-associated risk
factors have contributed significantly to COVID-19 infection simulation process within
educational facilities for age groups 0–9 and 10–19. For the school-associated risk factors,
the simulation results showed a significant association between school-initiated contact
tracing, face covering requirements, testing policies, and vaccination requirements with
COVID-19 infection and the slowing of SARS-CoV-2 transmission within educational
facilities. Moreover, within the student-related community risk factors, international and
state travel policies and mandatory vaccination policies could effectively prevent direct
entry and widespread transmission of SARS-CoV-2 for both age groups 0–9 and 10–19.

Based on the simulation results, it is recommended to establish an effective and swift
contact tracing and test system within educational facilities to prevent further transmission
of SARS-CoV-2. Wearing facial coverings within educational facilities is highly recom-
mended. It is one of the cost-effective methods to reduce the infection rate by slowing
the spread of SARS-CoV-2. Finally, our data analysis highlights the need for increased
prevention support for the younger generation in Victoria, particularly the 10–19 age group,
as a higher incidence of COVID-19 infections was identified in the period 2020–2022.
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