
ResearchOnline@JCU

This file is part of the following work:

Cianciullo, Louis (2022) Investigation of unconditionally secure multi-party

computation. PhD Thesis, James Cook University.

Access to this file is available from:

https://doi.org/10.25903/vhy7%2Dd162

Copyright © 20122 Louis Cianciullo.

The author has certified to JCU that they have made a reasonable effort to gain

permission and acknowledge the owners of any third party copyright material

included in this document. If you believe that this is not the case, please email

researchonline@jcu.edu.au

mailto:researchonline@jcu.edu.au?subject=ResearchOnline%20Thesis%20Incident%20

JAMES COOK UNIVERSITY, TOWNSVILLE

College of Science and Engineering

Investigation of Unconditionally Secure

Multi-Party Computation

by

Louis Cianciullo

A Thesis Submitted

in Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Townsville, Australia

Dissertation directed by Associate Professor Hossein Ghodosi
Discipline Information Technology

2022

Certificate of Authorship/Originality

I certify that the work in this thesis has not been previously submitted for a degree

nor has it been submitted as a part of the requirements for other degree except as

fully acknowledged within the text.

I also certify that this thesis has been written by me. Any help that I have received in

my research and in the preparation of the thesis itself has been fully acknowledged.

In addition, I certify that all information sources and literature used are quoted in

the thesis.

© Copyright 2022 Louis Cianciullo

ABSTRACT

Under Information Systems in the Encyclopaedia Britannica it is stated that

“individual privacy hinges on the right to control one’s personal information.” The

very next sentence then moves on to say that “while invasion of privacy is generally

perceived as an undesirable loss of autonomy, government and business organizations

do need to collect data in order to facilitate administration and exploit sales and

marketing opportunities.”

In the same paragraph the importance of individual privacy is highlighted and

then dismissed, citing the need for corporations and governments to store and make

use of an individual’s private information. How can one reconcile the difference in

these two statements? What possible way forward is there that allows for both the

privacy of the individual and the collection and use of the individual’s information

by external (and potentially untrusted) parties. The field of cryptography and

more specifically, the field of multi-party computation (MPC), holds answers to

this problem.

MPC is a cryptographic protocol that allows for computation upon private in-

formation. Using MPC a set of parties can compute any given function (ranging

from a simple summation, to an in depth statistical analysis) across private infor-

mation, without ever actually revealing said information. This thesis is concerned

with the study and exploration of MPC and two related protocols, secret sharing

and oblivious polynomial evaluation (OPE).

Secret sharing is a fundamental cryptographic primitive that acts as a building-

block for MPC. A secret sharing scheme involves a dealer who distributes a secret

among a set of of participants. Each of these participants is assigned a share of

the secret by the dealer. At a later date, qualified subsets of these participants are

able to pool their shares together and reconstruct the secret; unqualified subsets

of participants cannot gain any information relating to the secret. Secret sharing

is a well established privacy preserving tool, whilst OPE has only been established

relatively recently.

An OPE scheme involves two parties, a sender, who holds a secret polynomial,

f(x), and a receiver who wishes to know an evaluation on the sender’s polynomial,

f(α). OPE allows the receiver to learn their desired evaluation without giving

away the evaluation point, α, whilst also ensuring that the receiver cannot learn

any other information relating to the sender’s polynomial, f(x). This protocol

seems somewhat more niche on initial inspection (in comparison to secret sharing

and MPC), however recently published results indicate that OPE is an important

protocol in its own rights, particularly as a building-block for MPC.

In this thesis each of these three privacy-related areas is investigated, with the

main goal being the establishment of new and more efficient or secure protocols.

The specific results are summarised as follows:

Secret Sharing

1. Improvements to Almost Optimum Secret Sharing with Cheating Detection:

The flaws in two existing secret sharing scheme that claim to achieve security

against participants who lie or submit modified shares (AKA cheaters) are

identified and summarily fixed. The resulting, fixed, schemes are relatively

efficient and use a unique sub-protocol to gain security.

2. Secret Sharing with Outsourced Cheater Detection: A new mechanism is de-

veloped that allows for a set of external parties, i.e. not the participants, to

examine the validity of a secret before it is actually reconstructed. The ma-

jor benefits of the resulting ‘outsourced’ secret sharing scheme are that, not

only is cheating detected with high probability, but also, upon cheating being

detected, the actual cheaters themselves now learn nothing about the secret,

something which was not always the case in previous results.

Oblivious Polynomial Evaluation

1. Distributed Oblivious Polynomial Evaluation: The notion of a distributed OPE

scheme (DOPE) is formalised as an OPE in which the function of the sender is

distributed among a set of special servers. Along with this formal definition, an

efficient and secure DOPE protocol is also devised. DOPE allows for greater

privacy for the sender, as well as a higher level of reliability for both parties;

as the sender does not actually have to be present for the execution of the

OPE, allowing the receiver to complete the protocol at their leisure.

2. Unconditionally Secure OPE: A Survey and New Results: The existing un-

conditionally (information theoretic) secure OPE schemes are examined and

formally categorised. Multiple extensions are proposed to improve upon both

the efficiency and security of existing schemes; the flaws in a previously pub-

lished OPE scheme are also identified.

Multi-Party Computation

1. Efficient Information Theoretic MPC from OPE: Utilising both secret sharing

and OPE, a unique MPC scheme is devised. This new MPC scheme is ex-

tremely efficient for certain types of functions and presents an interesting new

method for computing multiplications in MPC.

2. Maliciously Secure OPE: Taking the lessons learnt in the previous research

on detecting cheaters in secret sharing, the MPC scheme devised above is

improved upon to tolerate outright cheating and dishonesty from a majority

of participants. The resulting scheme adds minimal overhead to the existing

MPC.

Each of the results summarised above are based on published or submitted peer-

reviewed articles that seek to incrementally improve upon the field of MPC and

privacy related research. In short, this thesis looks to provide new tools and possi-

bilities for preserving one’s privacy and data by analysing and identifying flaws in

the current research, as well as producing entirely new protocols.

Dedication

To Ness.

Acknowledgements

First and foremost, many thanks to Hossein for his patience and invaluable guidance.

Your careful support and assistance has helped add a level of polish to my writing

I never would have achieved by myself.

A huge thank you to Mangalam, I wouldn’t have got this far without your help,

thank you for the many pep talks and the research/writing group you organised.

To Mum and Dad, thank you for always encouraging me and egging me on (even

if you didn’t quite understand what all this ‘secret squirrel’ business was about), I

look forward to wearing the ‘Mario hat’ at graduation.

To my friends, thanks for the many de-stressful (and certainly not wasted) nights

of playing computer games, they kept me sane.

Last, and by no means least, I want to thank my wife, Vanessa. It’s been a long

time coming, thank you for being there with me every (stressful) step of the way.

Thank you for celebrating every small victory and published paper with me and

(just as importantly) cheering me up after every rejected paper and broken proof.

Louis Cianciullo

Adelaide, Australia, 2022.

List of Publications and Contribution of Others

Each of the following publications correspond to a specific chapter of this thesis.

The author contributed to the bulk of this research, with help and guidance from

associate professor Hossein Ghodosi.

1. Chapter 2 - L. Cianciullo, and H. Ghodosi, “Improvements to Almost

Optimum Secret Sharing with Cheating Detection.” International Workshop

on Security (Springer LNCS), pp. 193-205, 2018.

2. Chapter 3 - L. Cianciullo, and H. Ghodosi, “Outsourced Cheating De-

tection for Secret Sharing” International Journal of Information Security,

Springer, pp. 1-8, 2021.

3. Chapter 4 - L. Cianciullo, and H. Ghodosi, “Unconditionally secure dis-

tributed oblivious polynomial evaluation.” International Conference on Infor-

mation Security and Cryptology (Springer LNCS), pp. 132-242, 2018.

4. Chapter 5 - L. Cianciullo, and H. Ghodosi, “Unconditionally Secure Oblivi-

ous Polynomial Evaluation: A Survey and New Results.” Journal of Computer

Science and Technology, Springer, pp. 443-458, 2022.

5. Chapter 6 - L. Cianciullo, and H. Ghodosi, “Efficient Information Theo-

retic Multi-party Computation from Oblivious Linear Evaluation.” IFIP In-

ternational Conference on Information Security Theory and Practice (Springer

LNCS), pp. 78-90, 2018.

6. Chapter 7 - L. Cianciullo, and H. Ghodosi, “OLE-Based MPC Secure

Against a Malicious Adversary” Draft, 2022.

The research carried out in this thesis was supported by an Australian Government

Research Training Program (RTP) Scholarship.

Contents

Certificate ii

Abstract iii

Dedication vi

Acknowledgments vii

List of Publications viii

1 Introduction 1

1.1 Background . 3

1.1.1 Security Model . 4

1.1.2 Secret Sharing . 7

1.1.3 MPC . 11

1.1.4 Oblivious Polynomial Evaluation 13

1.2 Motivation . 14

1.3 Outline . 15

2 Improvements to Almost Optimum Secret Sharing with

Cheating Detection 16

2.1 Introduction . 16

2.1.1 Background . 16

2.1.2 CDV Model . 19

2.1.3 OKS Model . 20

x

2.1.4 Our Contribution . 20

2.2 Preliminaries . 21

2.2.1 Shamir’s Secret Sharing Scheme 21

2.2.2 The Tompa and Woll Attack 22

2.2.3 Review of an SSCD Scheme Devised in OKS model 23

2.2.4 Review of an SSCD Scheme Devised in CDV model 23

2.3 Flaws in The Reviewed SSCD Schemes 24

2.4 Improvement to JS SSCD . 25

2.4.1 Proposed OKS-Secure Scheme 26

2.4.2 Proposed CDV-Secure Scheme 30

2.5 Conclusion and Comparison . 33

3 Outsourced Cheating Detection for Secret Sharing 35

3.1 Introduction . 35

3.1.1 Background . 37

3.1.2 Our Contribution . 40

3.1.3 Outline . 42

3.2 Model . 42

3.3 Preliminaries . 44

3.3.1 AMD Code Constructions . 44

3.3.2 Dynamic Re-sharing Protocol 45

3.3.3 Random Value Generation . 45

3.4 OSSCD Scheme Based on The Multiplication AMD Code 46

3.5 Multi-Secret OSSCD Scheme . 50

3.6 Conclusion . 52

xi

4 Distributed Oblivious Polynomial Evaluation 54

4.1 Introduction . 54

4.1.1 Our Contribution . 56

4.2 Model . 57

4.3 DOPE Protocol . 59

4.3.1 The Proposed DOPE Protocol 59

4.3.2 Evaluation . 61

5 Unconditionally Secure Oblivious Polynomial Evalua-

tion: A Survey and New Results 67

5.1 Introduction . 67

5.1.1 OPE and Multi-Party Computation 68

5.1.2 OPE and Privacy Preserving Protocols 69

5.1.3 Outline and Contribution . 69

5.2 Background . 70

5.3 Distributed OPE . 74

5.3.1 The DOFE Protocol . 75

5.3.2 Our Proposed DOPE protocol 77

5.3.3 Flexible DOPE from DOT . 78

5.4 Three-Party OPE . 80

5.4.1 Active Third-Party TOPE . 82

5.4.2 Commodity based TOPE . 83

5.4.3 Extending TOPE . 84

5.5 Flaws in Bo et al. OPE Scheme . 92

5.6 Conclusion . 94

xii

6 Efficient Information Theoretic Multi-Party Computa-

tion from Oblivious Linear Evaluation 96

6.1 Introduction . 96

6.1.1 Background . 97

6.1.2 Our Contribution . 101

6.1.3 Outline . 102

6.2 Preliminaries . 102

6.3 Model . 103

6.3.1 Overview . 103

6.3.2 Security and Correctness . 105

6.4 Proposed OLE-Based MPC Protocol 106

6.4.1 Evaluation . 107

7 OLE-Based MPC Secure Against a Malicious Adver-

sary 112

7.1 Introduction . 112

7.1.1 Background . 113

7.1.2 Contribution . 115

7.1.3 Comparison to Previous Results 115

7.2 Preliminaries . 119

7.3 General Model . 120

7.4 Secure OLE-Based MPC . 122

7.4.1 Setup . 123

7.4.2 Sharing . 125

7.4.3 Multiplication . 125

xiii

7.4.4 Addition . 127

7.4.5 Output and Verification . 128

7.4.6 Security of the Protocol . 128

7.5 Security of The OLE-Based MPC Protocol 131

7.6 Evaluation . 137

8 Conclusion 139

References 141

1

Chapter 1

Introduction

Once private information has been revealed, whether personal or business related, it

can never be taken back. This is particularly true in today’s interconnected society.

It is therefore imperative that privacy preserving tools exist that allow individuals

and organisations to not only statically secure their data (i.e., protect it at rest),

but also allow them to freely make use of it.

As an example, consider the case outlined in [66], wherein a set of nations each

have numerous satellites in orbit around the earth. Each of these nations wish to

avoid collisions with another nation’s satellites, without having to actually reveal the

orbital paths of their own satellites. The naive solution to this problem is to simply

have all of the nations hand over their information to a neutral third party, who can

then compute and warn respective nations if a collision is likely. There is, of course,

an obvious problem with this solution. It depends entirely on the trustworthiness

of the third party. So how can we solve this issue without relying on a third party?

Enter multi-party computation (MPC).

MPC is a cryptographic protocol that allows a set of n participants, P1, · · · , Pn,

with private information (respectively), x1, · · · , xn, to compute any given function

f(x1, · · · xn), without explicitly revealing their private information. In simpler terms,

the respective nations mentioned in the example above, could carry out an MPC

protocol to compute a set of potential satellite collisions, without explicitly revealing

the orbital paths of their satellites. The only information a given nation would

obtain, regarding another nation’s satellite, is what is explicitly revealed by the

2

computed collisions, i.e., what the evaluation of the function f(x1, · · · xn) reveals.

The beauty of an MPC protocol is that the ‘function’ (in our case the computing

of collisions) need not be known in advanced. They are generalised protocols that can

be used to privately and securely compute any given function. In fact, as the reader

will see, there are even MPC protocols that can tolerate a set of dishonest or cheating

participants, who deliberately spread misinformation. Specific MPC protocols also

exist that will allow a set of participants to offload the entire computation to a set of

third parties or servers, without letting this set of third parties learn anything [92].

Since its inception in the early 1980s [101], MPC has been extensively researched

within the cryptographic community, as a generalised solution to any scenario in

which computation must be carried out on private data.

A complementary field of research to MPC is the field of privacy preserving pro-

tocols. Within this thesis, a privacy preserving protocol can be seen as a sort of

specialised MPC protocol that only computes a specific function (see [22, 32, 76]

for some examples). The usual benefit of a privacy preserving protocol is greater

communication and/or information efficiency. Drawing back to our previous exam-

ple, a privacy preserving protocol specifically tailored towards the computation of

computing collisions in a set of paths may perform significantly faster for our nations

than a generalised MPC protocol that can solve a variety of different tasks.

The benefits of each approach is evident, on one hand we can potentially save

valuable time and resources using a dedicated privacy preserving protocol, on the

other, we lose the generality and adaptability of an MPC protocol. In general, if

the function is highly specialised or complicated and/or is known in advanced a

privacy preserving protocol will probably be suitable, for all other cases MPC reigns

supreme.

In this thesis both MPC and privacy preserving protocols are investigated. In

3

actual fact the privacy preserving protocols we investigate are actually also used

as primitives and building blocks within MPC protocols. Specifically, this thesis

can be broken up into a set of three parts, each containing two Chapters. In Part

I we investigate the protocol known as secret sharing. Part II is concerned with

a more recently discovered protocol called oblivious polynomial evaluation (OPE).

Finally, Part III describes an MPC protocol that actually makes use of both secret

sharing and OPE. The main focus of this work is the designing of efficient and secure

protocols within each of these respective and inter-related fields.

In the next section we shed some light on what each of these fields entail and

informally describe and give some brief history on the aforementioned areas of study.

In the name of brevity and clarity we have elected to spare the reader and introduce

much of the more technical detail in each of the following Chapters as required.

As such, what follows is not a laborious set of definitions and technical theorems,

but rather, what we hope, is an approachable introduction to the cryptographic

protocols of secret sharing, OPE and MPC.

1.1 Background

The first step to designing or even describing a cryptographic protocol is to for-

mally specify the operational environment the protocol is to be running in. For ex-

ample, is all information public? Can participants communicate securely/privately

with one another? How much computational power is available for each participant?

What kind of adversary are we facing? And so and so forth. The formal term used

for this description is a security model.

Each of the protocols designed or investigated within this thesis have a corre-

sponding security model that is rigorously defined in conjunction with the actual

protocol itself. So to avoid repetition, we will not individually describe the models

used in each of the six Chapters of this thesis. Rather, we instead give a more

4

high level overview of a generalised security model that holds for all of the protocols

described.

1.1.1 Security Model

The specific focus of this thesis is on information theoretic, threshold protocols in

which we consider semi-honest or malicious adversaries. To unpack this statement

we can start by defining what exactly is meant by an adversary.

The protocols described within this thesis are cryptographic protocols that in-

volve a set of n ≥ 2 participants. For each of these protocols we assume the presence

of an adversary who is able to take control of, and gain all of the information held

by, a subset of these participants. The type of adversaries we consider are widely

accepted and researched within the literature [19], coming in two different flavours:

Semi-Honest (Passive) Adversary: The participants controlled by a semi-honest

adversary will not deviate (i.e., cheat) from the protocol, however, they will

privately communicate and pool their knowledge and resources in an attempt

to learn or compute some extra information not explicitly assigned to them.

Malicious (Active) Adversary: This type of adversary is a step above a semi-

honest adversary. Participants controlled by a malicious adversary will ac-

tually deviate from the protocol e.g., sending false information, lying, not

sending information or tampering with held information. Again, this is done

in an attempt to either disrupt the protocol or to gain extra information.

As the protocols we consider are all threshold protocols, the subset of participants

controlled by the adversary is defined as some threshold amount t < n. To elaborate,

a maliciously secure protocol in this model is secure against an adversary controlling

up to t < n participants who may outright lie e.g., sharing or supplying incorrect

information. To draw back to the previous example regarding the orbital paths

5

of a nation’s satellite; a malicious adversary who has seized control of one of the

nations, could have said nation provide a completely false orbital path to the MPC,

whilst a semi-honest adversary could not. We should note that the threshold value

will change depending on the specific protocol we consider (for instance, it could

be that 2t < n), however in all cases t is less than n, meaning that even for the

absolute worst case, to carry out the protocol we require at least one participant

who is honest.

This takes care of the threshold and adversary statements made in the opening

sentence for this sub-section. All that remains is to define what is meant by an

information theoretic secure protocol. Essentially, an information theoretic secure

protocol, or an unconditionally secure protocol, places no computational bounds on

any of the participants (unlimited space, time and processing power). As a direct

consequence of this, there is, of course, also no bounds placed on the adversary. This

is in contrast to a computationally secure protocol which may make use of some

hardness assumption that places bounds on a given participant’s computational

power.

For instance, if an efficient algorithm for determining the prime factors of a given

value were found then the the security of the RSA encryption protocol [96] would

be compromised. The security of the RSA protocol relies on the inability of an

adversary to efficiently find specific prime factors of a large integer. Although this

works well against a bounded adversary, who has limited time and computational

power, finding these factors for an unbounded adversary is trivial, even using the

simple brute-force approach of trying every possible combination of prime numbers.

As a result of this, unconditionally secure protocols are not based on any hardness

conjectures and cannot be broken.

Aside from the obvious security benefits that information theoretic security has

6

over computational security, Halevi et al. [61] state that information theoretic proto-

cols are “typically simpler and have better concrete communication and computation

costs than their computational counterparts.” In general the computational costs

of an information theoretic protocol are much less than that of a computationally

secure protocol. A major downside to unconditional security however, is that it is

not possible to have an information theoretic two-party (i.e., n = 2) protocol [3, 28].

Furthermore a computationally secure protocol can achieve security against a ma-

jority of dishonest participants, whilst an information theoretic protocol requires a

majority of participants to be honest. This limitation can however, be overcome by

utilising an external source of information or making other such assumptions (as we

will see in Chapters 6 and 7).

In fact, in recent years a spate of research has been carried out on efficient

information theoretic MPC protocols [48, 47, 79]. These results are not merely

theoretical, with many protocols being suitable for implementation [72, 73]. It is

for these reasons that, within the bounds of this thesis, we choose to focus on

information theoretic protocols.

From a historical perspective, the first of the different types of protocols dis-

cussed in this thesis is that of secret sharing; which was discovered in 1979 [11, 97].

Following this is MPC, which was originally discussed by Yao [101] for the two party

case and then later, generalised to n participants in the information theoretic set-

ting by Goldreich et al. [60] and Ben-Or et al. [7]. Lastly OPE was discovered

in 1999 by Naor and Pinkas [81]. Given this, it seems only fitting that we present

the background information on each of the three protocols in chronological order of

discovery.

7

1.1.2 Secret Sharing

Secret sharing is a cryptographic protocol in which a secret, S, is divided into a

set of shares, V1, · · · , Vn, and distributed to n participants, P1, · · · , Pn, where Pi gets

the share Vi for i = 1, · · · , n. The (t, n) threshold case, which is considered here, is

such that t < n or less cooperating participants cannot gain any information about

the secret, whilst t + 1 or more participants can pool their shares and reconstruct

the secret. The general gist of the protocol is that a special participant named a

dealer (D) divides the secret among the participants, by privately assigning them

shares. At a later date t + 1 or more participants pool their shares and perform a

computation to reconstruct S.

Secret sharing was first discovered independently by Blakley [11] and Shamir [97]

in 1979. The classic use case given by Shamir is to utilise secret sharing to safeguard

cryptographic keys, by distributing the key among participants via a threshold secret

sharing scheme. In particular, Shamir argues that a very robust key management

scheme can be achieved when the set of participants is equal to n = 2t + 1. The

reason being that the key can be recovered even if bn/2c of the original pieces (or

shares) are destroyed.

As it turns out, secret sharing has far more uses than merely protecting data,

passwords or keys at rest. In fact, it was through secret sharing that the first

MPC schemes were achieved [7, 60]. The literature spanning the field of secret

sharing is exhaustive, with various different modifications and additions taken into

consideration. However, the main drive of research in this field (that we focus on) is

to construct efficient protocols (i.e., small share size and low communication) that

better handle potential cheaters, AKA a malicious adversary.

The first to consider cheating in secret sharing was Tompa and Woll [99]. They

considered the case in which a participant does not follow the protocol, but instead

8

lies to the other participants at reconstruction time and submits false information in

place of their real share. They proved that just a single cheater can not only prevent

all of the honest participants from recovering the secret, but also easily learn the

secret themselves.

To prevent this scenario, Tompa and Woll devised a modified secret sharing

scheme that allowed participants to detect cheating; henceforth we refer to such

a scheme as a secret sharing scheme with cheater detection (SSCD). Their original

SSCD scheme, however, was not very efficient, having a large share size (the amount

of information each participant has to hold). Thankfully, in the years following

Tompa and Woll’s work, many efficient SSCD protocols were discovered, along with

several different variants of cheating resistant secret sharing schemes, which are

briefly examined below.

Secret Sharing with Cheater Detection (SSCD)

SSCD considers the case whereby participants wish to simply detect if cheating

has occurred. This is accomplished by utilising a normal secret sharing scheme and

also having the dealer distribute some extra information among participants. This

extra information is utilised at reconstruction time by a pool of t + 1 participants

to identify if the reconstructed secret is valid or not (i.e., if cheating has occurred).

If cheating has been detected then any honest participants know not to accept the

reconstructed secret as valid. An SSCD scheme requires at least one out of the t+ 1

participants who are reconstructing the secret to be honest.

Because of its limited nature, SSCD is by far the most efficient of the cheater

resistant secret sharing protocols (in terms of both share size and communication

complexity), additionally it has been shown that SSCD can act as a building block

in more complex protocols [40].

9

Secret Sharing with Cheater Identification (SSCI)

SSCI performs in much the same way as SSCD, in that the basic premise is a

secret sharing scheme in which the dealer has assigned some extra information to

participants. As with SSCD, a set of t + 1 participants perform a reconstruction

computation and, during this reconstruction phase, utilise their extra information

in order to detect cheating. In SSCI, however, participants also utilise their extra

information to actually identify who the cheaters are. The downside to this extra

functionality is that SSCI requires that there can only be, at most, k < (t + 1)/2

cheaters [85]. Put simply, in an SSCI scheme we require a majority of honest par-

ticipants, in order to actually identify cheaters.

Robust Secret Sharing

Robust secret sharing begins in much the same way as SSCI and SSCD, with

the dealer privately distributing some extra information alongside each participant’s

share. However, the goal of a robust secret sharing scheme is to actually recover the

secret, even if some of the participant’s have cheated. A limitation of this protocol

is that at least 2t + 1 ≤ n participants are required for the reconstruction phase,

only t of which can be cheaters [10]. Furthermore the reconstruction algorithm of a

robust secret sharing scheme is far more complex than both SSCD and SSCI [21].

Verifiable Secret Sharing (VSS)

The final type of secret sharing scheme we consider is VSS. This protocol was

originally discovered by Chor [27] for the computationally secure setting, and then

later defined for the information theoretic setting in the late 1980s [7, 60, 94]. This

type of secret sharing scheme can be seen as an extended robust secret sharing

scheme, with the additional assumption that even the dealer could actually be a

cheater.

10

This extra assumption came about due to VSS’s use as a key building block in

the early days of MPC. Researchers needed a tool that would allow participants to

distribute private information amongst each other, in such a way that the private

information, as well as the shares of the private information, can all be easily verified

(i.e., check shares have not been tampered with and ensure the dealer has actually

distributed the shares correctly).

VSS schemes are complex protocols with reconstruction/verification phases that

consist of multiple rounds of communication [94]. As with the other secret sharing

schemes, research within this field focuses on reducing share size; additionally a

great deal of research has gone into actually reducing the rounds of communication

needed in VSS [57].

This is easily the most intensive and complex of the four cheater resistant proto-

cols listed, mainly due to the fact that VSS is used within MPC to force participants

to commit to a particular value and provide proof to the other participants that they

have in fact been truthful. However, of late VSS have been usurped as the favoured

tool or building block in MPC [9]. Instead researchers are leaning towards the

approach used in the lighter SSCD schemes, utilising what is known as message au-

thentication codes (MACs) [9, 94], to achieve similar results in both efficiency and

security as SSCD schemes.

Focus of Research in Secret Sharing

In light of the above, this thesis’ main focus is on SSCD schemes. We further

examine this protocol in Chapters 2 and 3, respectively showing the flaws in and

then fixing a previously defined SSCD scheme, and establishing a new type of SSCD

scheme in which reconstruction of the secret is outsourced to a set of special servers.

As previously mentioned, secret sharing is used as a primitive in various privacy

preserving and MPC protocols. The very first information theoretic multi-party

11

schemes that considered n > 2 participants [7, 60] utilised Shamir’s secret sharing

scheme [97] as a core building block, allowing participants to securely distribute

information amongst each other, in the form of shares. This is further discussed

below.

1.1.3 MPC

MPC was first conceived by Yao [101] in 1982, who looked at utilising what is

known as garbled circuits, to allow two parties to securely compute a function across

their private inputs, without explicitly revealing their inputs. Yao’s result was later

generalised by Goldreich et al. [60] and Ben-Or et al. [7] who both developed n party

information theoretic MPC protocols secure against up to t < n/3 participants.

Roughly two or so years after Ben-Or et al.’s result, Rabin et al. [94] achieved

information theoretic MPC secure against t < n/2 participants, by allowing a small

probability of error.

The general approach these early results had each participant utilise a VSS

scheme to distribute their information among the other participants in the form of

shares. Linear operations could then be carried out privately by just performing the

corresponding operation (e.g., addition between two input values) on the shares of

each participant’s input.

Multiplication, however, requires a prohibitive amount of communication [7],

particularly in the malicious setting, where participants must use a VSS each time

they wish to distribute information to the other parties. In light of these facts,

the bottleneck in efficiency of these early MPC results can be traced to 1) the

prohibitive (communication) cost associated with computing multiplication and 2)

the additional, further cost to communication acquired when using a VSS scheme

to validate each participant’s shared information.

The first of these inefficiencies was solved by Beaver [4] in his commodity model,

12

who provided a means of fast multiplication by splitting the MPC protocol into two

phases:

1. Preprocessing Phase: In this phase participants compute or are given some

random, but correlated, data i.e., shared data that has nothing to do with any

of their private information.

2. Online Phase: This phase is where the actual MPC takes place. Participants

utilise the shared data to efficiently compute multiplication in MPC.

The main benefit to this approach is that the bulk of the computation can be

delegated to the preprocessing phase, which can be completed at the participant’s

leisure (as it is independent of their private inputs). This allows for an extremely

efficient online phase, letting participants efficiently perform the required MPC.

The second of these inefficiencies has been solved in recent times, by a variety

of different researchers [9, 48, 72]. The main gist of these results being a general

lowering of the high security expectations laid out in the early results of Goldreich

et al. [60] and Ben-Or et al [7]. Specifically, where these early results relied on full-

blown VSS protocols that could be used to not only detect, but also fix any cheating

that occurred, the more modern results instead rely on simple MAC schemes that

are extremely similar to SSCD protocols (simply detecting cheating). Of course,

the downside to this transition in security models is that cheating can only be de-

tected, not fixed, nor can the cheaters be identified. However, the efficiency boosts

realised from this paradigm shift are undeniable, with practical MPC implementa-

tions starting to take their place in the real world as vital privacy preserving tools

[16].

13

1.1.4 Oblivious Polynomial Evaluation

OPE is a relatively new cryptographic protocol that has roots in another, older

protocol, know as oblivious transfer (OT). An OT protocol is a two party protocol

that involves a sender, who holds a set of secret values, and a receiver who wishes

to learn one of these secrets. OT allows the receiver to learn just one of the sender’s

secrets without actually letting the sender know which secret was learned.

Since its inception [56, 93], OT has been heavily researched and used extensively

as a key building block in MPC and privacy preserving protocols [69, 72]. OPE

is closely related to this protocol, also being composed of a sender and a receiver.

The difference, however, is that in an OPE protocol, the sender holds a polynomial,

f(x), and the receiver wishes to learn a specific evaluation of this polynomial, f(α).

Security and privacy are maintained in an OPE protocol if the receiver only gains

information relating to their evaluation (i.e., they do not learn anything further

about the sender’s polynomial) and if the sender cannot learn anything about the

receiver’s evaluation point (α).

In contrast to OT, OPE is a relatively new protocol, having been discovered by

Naor and Pinkas [81] in 1999 and then formalised and refined in 2006 [83]. OPE has

not been as heavily researched as OT, however, of late there has been an emphasis

on utilising OPE in MPC and privacy preserving protocols [22, 31, 53], in much the

same fashion as OT is used; as a vital building block. A key example of this is given

in Chapters 6 and 7 of this thesis, in which an MPC scheme is designed around an

efficient OPE protocol.

Our research on information theoretic OPE is described in Chapters 4 and 5,

which look at, respectively:

1. Developing an efficient distributed OPE scheme, in which a set of servers

handle the responsibilities of the sender.

14

2. Categorising and performing a thorough investigation of the existing informa-

tion theoretic OPE schemes within the literature, along with multiple exten-

sions and improvements to these existing protocols.

As with all fields and protocols thus far summarised, we leave the technical

details and definitions for the corresponding Chapters (in this case Chapters 4 and

5).

1.2 Motivation

MPC has applications in a vast variety of real-world scenarios such as secure auc-

tions, electronic voting, privacy preserving machine learning and statistics, private

information retrieval and threshold cryptography [55]. However, it is only recently

that MPC has become practical enough for implementation, as such, it is vital that

research continues to push forward in this area, in order to provide privacy and

control of data for everyone. By improving upon already existing protocols, as well

as designing newer and more efficient MPC and privacy preserving protocols, we

hope to help move incrementally closer to these goals.

Of particular note at the time of writing, is the ongoing COVID 19 pandemic

overtaking the world. A common solution to this problem is the introduction of

contact tracing mobile applications that not only record a user’s location, but also

who else they have been in contact with [33]. Whilst these applications may indeed

save lives, they are also relying on the divulgement of very specific and private

locational and behavioural data. The backlash that would occur in the event of

this data being misused or stolen would be extensive. Thus, it is vital that proven

privacy preserving solutions, such as MPC, are available and efficient enough to be

implemented.

15

1.3 Outline

Each of the Chapters within this thesis is based on (or builds on the work carried

out in) a published, peer reviewed conference or journal article. As such they have

been written in a self-contained fashion wherein all of the necessary definitions and

background is provided. It is for this reason that we do not include a preliminary

or dedicated background section.

Chapters 2 and 3 examine SSCD, with Chapter 2 proving and then fixing the

flaws in an already published SSCD scheme, and Chapter 3 going along a different

path, by building a unique SSCD protocol in which the reconstruction and verifica-

tion of the secret is not handled by the actual participants.

The next field examined is OPE. In Chapter 4 we formalise the notion of dis-

tributed OPE and construct an optimal scheme fitting this definition. Chapter 5

takes a step back and thoroughly examines the existing information theoretic OPE

schemes, categorising each scheme as well as adapting and improving upon the exist-

ing literature and, lastly, showing that a previously published scheme is not secure.

The penultimate two Chapters of this thesis deal with MPC; in Chapter 6 we

build an efficient MPC scheme secure against semi-honest adversaries. This scheme

is the culmination of the work done in previous sections, combining both secret

sharing and OPE. In Chapter 7 we improve upon our scheme, utilising an SSCD

technique (MACs) to achieve security against a malicious adversary, at very little

cost to computational or communication complexity. Finally, Chapter 8 concludes

the thesis and establishes avenues of further research.

16

Chapter 2

Improvements to Almost Optimum Secret

Sharing with Cheating Detection

2.1 Introduction

As previously remarked upon, this Chapter is concerned with secret sharing with

cheating detection capability (SSCD), which allows participants to detect the sub-

mission of faulty or modified shares. Within this field researchers actually consider

two different models of security, the OKS model [89] and the CDV model [20]. In this

chapter we review both of these models and then demonstrate that two previously

discovered SSCD schemes (one set in either model) fail to achieve security. After

proving the deficiencies in these schemes we then show that with some modifications

both schemes can be made secure.

The resulting, ’fixed’ schemes have near optimal share size, support operations

from an arbitrary finite field and provide a high level of security even if the secret

domain is small. The first of our fixed schemes is devised under the OKS model and

is the most efficient of its kind, whilst the second is devised under the CDV model

and is as efficient as the current best solution. Before launching into specifics, we

present, in more formal and greater detail, some background information on SSCD.

2.1.1 Background

In a secret sharing scheme a secret, S, is distributed amongst n participants,

P1, · · · , Pn, in the form of shares, V1, · · · , Vn, such that Pi obtains Vi for 1 ≤ i ≤ n.

At a latter date an authorised subset of participants is able to reconstruct S by

17

combining their shares. We can classify authorised and unauthorised subsets of

participants by means of an access structure Γ, such that the subset A ∈ Γ is

an authorised subset that can reconstruct S, whilst A′ /∈ Γ is an unauthorised

subset that cannot. In a perfect, unconditionally secure secret sharing scheme, if an

unauthorised subset attempt to reconstruct S then they should obtain no additional

information regarding S.

A secret sharing scheme is more formally defined as a pair of algorithms SHARE

and REC. The SHARE algorithm is executed by a trusted entity D, known as the

dealer and REC is executed by a second, separate entity C, the combiner. We define

these algorithms in the following manner:

SHARE(S)→ (V1, . . . , Vn) : A probabilistic algorithm that takes a secret S and pro-

duces n random shares.

REC(γ)→ S ′ : A deterministic algorithm that takes a subset of shares γ and outputs

a secret S ′.

Given a secret S ∈ S that is used to compute shares V1, · · · , Vn and a subset of

these shares, denoted by γ, used to compute a secret S ′ then the following properties

will hold (assuming that all participants follow the protocol exactly):

Pr[S ′ = S | γ ∈ Γ] = 1

Pr[S ′ = S | γ /∈ Γ] = Pr[S ′ = S]

These properties state that in a perfect secret sharing scheme a set of unauthorised

participants cannot reduce their uncertainty of the secret. It is a well known fact

that in a perfect secret sharing scheme the share size cannot be smaller than the

secret itself. That is, |Vi| ≥ |S| where |Vi| denotes the maximum size of a given

participant’s share i.e., max1≤i≤n(|Vi|).

18

As with all protocols examined in this thesis, we consider the threshold case,

wherein a (t, n) threshold secret sharing defines an unauthorised subset of partici-

pants as any subset γ′ in which |γ′| < t+ 1 where t+ 1 ≤ n. Secret sharing schemes

are an effective way to safeguard privacy, however due to the work of Tompa and

Woll [99], it is well known that just one cheating participant can compromise the

entire protocol. To protect against this, we can, of course, utilise SSCD.

To reiterate, SSCD considers the scenario in which corrupt participants, known

as cheaters, modify their shares in order to trick other (honest) participants into

reconstructing a false secret. An effective SSCD scheme can alert the honest partic-

ipants to the submission of false shares. This type of protocol has applications in

such things as robust secret sharing [40] and secure message transmission [74].

More formally a (t, n, δ) SSCD scheme is a threshold secret sharing scheme in

which the probability of successful cheating occurring is less than or equal to δ [1].

To put this another way a (t, n, δ) SSCD scheme is a secret sharing scheme with a

modified REC algorithm. In the definition that we consider, there are n participants,

P1, · · · , Pn with shares, V1, · · · , Vn where t+1 of these same participants will attempt

to reconstruct the secret S. We assume that up to t of these participants are

dishonest (cheaters) and wish to force the honest participants into accepting a secret

S ′, where S ′ 6= S.

The goal of SSCD is to detect when such cheating occurs in order to prevent

reconstruction of an invalid secret. Thus, the REC algorithm given for secret sharing

is modified so that it either outputs S ′ (which may or may not be equal to the original

secret) or a special symbol, ⊥, which indicates that cheating has been detected.

For any such scheme with the above reconstruction protocol in which up to t

faulty shares, V ′i1 , · · · , V
′
it and one unmodified share, Vit+1 are submitted, the prob-

19

ability of failure, δ, is defined as:

Pr[REC(V ′i1 , · · · , V
′
it , Vit+1) =⊥] ≥ 1− δ

∀ (S, V1, · · · , Vn) where ∃V ′ij 6= Vij for j ∈ [1, n]

Where a faulty share is defined as a share that is different in value from the original

share distributed by the SHARE algorithm.

Conversely let S be a valid secret distributed to a set of n participants by SHARE

and define S ′ as the secret computed by REC using shares (which may or may not

be modified, i.e., faulty) from t+ 1 of these same participants, then:

Pr[S ′ 6= ⊥|S ′ 6= S] ≤ δ

Which holds for all V ′i1 , · · · , V
′
it where, as before, there exists at least one V ′ij 6= Vij

for j ∈ [1, n].

An extensive amount of work has been produced on SSCD with the main goal

being the reduction of share size. A key factor that greatly influences share size

is the model of security a SSCD scheme is devised under. Typically schemes are

devised under one of two models, the CDV model and the OKS model.

2.1.2 CDV Model

The CDV model was given by Carpentieri, De Santis and Vaccaro [20] in 1994.

Schemes devised under this model consider the scenario in which the cheaters actu-

ally know the secret. Thus, such a scheme is only secure if the honest participants

can detect cheating (with probability 1 − δ) given that the cheaters already know

the secret.

Ogata, Kurosawa and Stinson [89] give a bound for the share size of schemes

devised under this model. As before let |Vi| denote the maximum share size of a

given participant. Let |S| denote the size of the secret domain and δ the probability

of successful cheating occurring:

20

|Vi| ≥
|S| − 1

δ2
+ 1

2.1.3 OKS Model

In [89] Ogata, Kurosawa and Stinson introduced the OKS model. This model of

security assumes that the cheaters do not know the secret, i.e., the secret is assumed

to be uniformly random in the secret space. As a result of this the bound on share

size for schemes developed under this model varies from the bound given by the

CDV model:

|Vi| ≥
|S| − 1

δ
+ 1

Remark 1. SSCD schemes devised under the OKS model typically have smaller

share sizes than those devised under the CDV model. However, a common trait for

schemes developed under the OKS model is that δ is dependent on |S| e.g., δ = 1√
|S|

[87]. This is not the case for schemes devised under the CDV model as in these type

of schemes the probability of successful cheating does not necessarily depend on the

secret domain.

2.1.4 Our Contribution

First we present some flaws that exist in two SSCD schemes given in [71]. One of

these schemes is developed under the OKS model and the other is developed under

the CDV model. The flaws in question allow just one cheating participant to fool

the other participants into accepting an incorrect secret. Secondly we show how

to modify the schemes in [71], such that they are secure and satisfy the following

desirable properties (of “good” protocols) originally given in [86] by Obana and

Tsuchida:

• Capable of supporting an arbitrary finite field: Computations can be

done in a field of any characteristic.

21

• Near optimal share size: The share size is only slightly larger than the

bound given for the particular model the scheme is developed under, where an

optimal scheme is one that meets the bound.

• Adequate level of security even if the secret domain is relatively

small: The probability of successful cheating occurring is no larger than 1
|S|

or can be set arbitrarily (as is the case for most schemes developed under the

CDV model).

Whilst most schemes developed under the CDV model have these attributes there

is only one other scheme developed under the OKS model that currently achieves

this, and it is given by Obana and Tsuchida in [86]. The share size for this scheme

is 2 bits larger than optimal whilst our scheme developed under the OKS model has

a share size only 1 bit larger than optimal. Making our scheme is the most efficient

yet.

The other scheme presented in this Chapter is developed under the CDV model

and achieves the same share size as the scheme presented by Cabello et al. [17]. To

the best of our knowledge this scheme has the smallest share size of any such scheme

secure in the CDV model.

2.2 Preliminaries

2.2.1 Shamir’s Secret Sharing Scheme

In Shamir’s seminal paper [97] he introduced a (t, n) threshold secret sharing

scheme in which each participant is given a point on a polynomial of degree t for their

share. Suppose that there are n participants, P1, · · ·Pn and that all computations

are done in the field Fq, where q is a prime number such that q > n. The protocol

is as follows:

22

SHARE(S)→ (V1, . . . , Vn) : A probabilistic algorithm in which D picks a random

polynomial, f(x) of degree at most t, where f(0) = S. Participants are as-

signed the share Vi = f(i) for 1 ≤ i ≤ n.

REC(γ)→ S ′ : A deterministic algorithm that takes a subset of shares γ, where

|γ| ≥ t+1 and computes and outputs S ′ using Lagrange interpolation. Without

loss of generality assume γ is composed of shares from the first set of |γ|

participants i.e., P1, · · · , P|γ|, then:

S ′ =

|γ|∑
i=1

Vi
∏

1≤i≤|γ|
i6=j

j

j − i

In Shamir’s scheme it is assumed that all participants follow the protocol exactly,

i.e., they always submit the correct shares for REC, and this, S ′ = S.

2.2.2 The Tompa and Woll Attack

Tompa and Woll [99] showed that Shamir’s scheme is vulnerable to an attack in

which malicious participants are able to obtain the secret S and force the honest

participants into reconstructing S ′ 6= S. In fact, it is possible for just one cheater in

a group of t+1 participants to accomplish this. To carry out this attack successfully

cheaters modify their shares in the following fashion.

Given a set of t+1 participants P1, · · · , Pt+1 attempting to reconstruct the secret,

assume that there is subset of dishonest participants within this set denoted by θ

where 1 ≤ |θ| ≤ t. This set of cheaters compute a polynomial ∆(x) of degree at

most t. They set ∆(i) = 0 for Pi /∈ θ (all of the honest participants) and ∆(0) = β,

which is an arbitrary value picked by the cheaters. Pj ∈ θ then submits the share

Vj + ∆(j) where Vj is the share originally assigned to Pj. All dishonest participants

submit these modified shares; whilst Pi /∈ θ submits his unaltered share Vi (which

can be viewed as Vi + ∆(i)).

23

This results in the reconstruction of f ′(x) = f(x) + ∆(x) where f(x) is the

original polynomial used to compute and distribute shares. It is now easy for the

cheaters to compute S as f ′(0) = S ′ = S + β.

2.2.3 Review of an SSCD Scheme Devised in OKS model

In this section the scheme developed under the OKS model presented in [71] is

reviewed. All computations are done in the field Fq where q > 2n.

SHARE(S)→ (V1, . . . , Vn) : D picks a random polynomial f(x), of degree at most

2t, where f(0) = S. D also chooses 2n distinct public elements α1, · · · , α2n.

Each participant, Pi is given the share Vi = (f(αi), f(αi+n)) for 1 ≤ i ≤ n.

REC(γ)→ S ′ : A subset, γ, of t+ 1 participants (of which up to t can be cheaters)

submit shares to C who reconstructs f ′(x) using Lagrange interpolation. If the

degree of f ′(x) is 2t or less, output s′ = f ′(0) as the secret, otherwise output

⊥.

2.2.4 Review of an SSCD Scheme Devised in CDV model

Here we present the SSCD scheme devised under the CDV model presented in

[71]. All computations are done in the field Fq where q > 3n.

SHARE(S)→ (V1, . . . , Vn) : D picks a random polynomial f(x), of degree at most 3t,

where f(0) = S. D also chooses 3n distinct public points α1, · · · , α3n. Each

participant, Pi is given the share Vi = (f(αi), f(αi+n), f(αi+2n)) for 1 ≤ i ≤ n.

REC(γ)→ S ′ : A subset, γ, of t+ 1 participants (of which up to t can be cheaters)

submit shares to C who reconstructs f ′(x) using Lagrange interpolation. If the

degree of f ′(x) is 3t or less, output s′ = f ′(0) as the secret, otherwise output

⊥.

24

2.3 Flaws in The Reviewed SSCD Schemes

This section is concerned with the security flaw inherent in the two schemes

presented by in [71] (henceforth refereed to as the JS schemes). It is shown that

neither of these two schemes is secure. We begin by investigating the first scheme

which was developed under the OKS model.

The authors state that this scheme will detect cheating with probability δ = 1− 1
q

even if up to t of the t+1 participants are cheaters. The mechanism used for cheating

detection relies on the fact that a degree 2t polynomial is uniquely defined by 2t+ 1

points. So if t + 1 participants submit their shares then C obtains 2t + 2 points. If

these shares are unaltered then they will all describe the same degree 2t polynomial

f(x). However, if one or more of these shares are changed in a random fashion

then, with probability 1 − 1
q
, the collection of shares will describe a degree 2t + 1

polynomial.

For the above scenario in which shares are changed randomly the scheme is indeed

secure. However, the scheme is not secure against the Tompa and Woll attack.

Using this attack just one participant can cheat the other honest participants with

probability 1, as demonstrated below.

Let θ denote the set of dishonest participants where 1 ≤ |θ| ≤ t. In order to

cheat they must submit shares that are consistent with the honest participants’

shares, i.e., all shares describe a polynomial of degree 2t. To accomplish this they

can use the Tompa and Woll attack to force reconstruction of f ′(x) 6= f(x), where

f ′(x) is a polynomial of degree at most 2t. To do so θ compute a polynomial

∆(x) of degree at most 2t, such that for all honest participants Pi /∈ θ, ∆(αi) =

∆(αi+n) = 0 and ∆(0) = β. All cheaters Pj ∈ θ submit the modified shares

V ′j = (f(αj) + ∆(αj), f(αj+n) + ∆(αj+n)). This will result in the reconstruction

of a polynomial f ′(x) = f(x) + ∆(x) that is of degree at most 2t with f ′(0) =

25

S + β. This occurs because of the well known (+, +) homomorphic property of

Shamir’s secret sharing scheme [8]. This property states that given two sets of

shares, r1, · · · , rz and k1, · · · , kz, associated with the polynomials R(x) and K(x)

respectively, the individual summation of these shares: r1 + k1, · · · , rz + kz, will

describe the polynomial R(x) +K(x).

The second of the JS schemes is devised under the CDV model. However, the

cheating detection mechanism is the same as the first scheme described. This time

however, D uses a polynomial of degree at most 3t to distribute shares and each

participant is given three points on this polynomial as his share. Thus the exact same

attack can be used against this scheme, with the cheaters computing a polynomial

∆(x) of degree 3t.

2.4 Improvement to JS SSCD

In this section we show how to modify the JS SSCD schemes in order to add

security. Both modified schemes are unconditionally secure with the same share

size, secret space, and probability of successful cheating as claimed in the original

protocols presented in [71]. The basic idea behind these corrected schemes is to

use a slightly modified version of what Hoshino and Obana [67] call a check digit

function, which is another name for a technique from the field of MPC that we’ve

briefly touched on before, MAC tags.

In a cheater detection scheme that employs these check digit function, two types

of shares are distributed: one directly related to the secret S, and the other related

to a check digit l = L(S). At reconstruction of a secret S ′ and a check digit l′,

the combiner, C checks whether l′ = L(S ′). If this is not the case then C concludes

that cheating has occurred and outputs ⊥, otherwise C assumes that S ′ is valid and

broadcasts this value.

26

Our proposed scheme follows this basic definition. However, instead of construct-

ing shares related to the check digit l and the secret S we instead distribute two

or three shares (using the OKS or CDV models, respectively) to each participant

corresponding to either two or three polynomials of degree at most t, respectively.

These polynomials can then be used to reconstruct a larger degree polynomial A(x)

(of degree 2t or 3t) as well as the check digit. Note that the definition of a check

digit described here is slightly different to [67] in that for our schemes l = S. Thus

we compare the reconstructed secret to the check digit, if the two are not equal then

we reject S ′ and conclude that cheating has occurred. This is explained in greater

detail in the following sections.

2.4.1 Proposed OKS-Secure Scheme

In this scheme a polynomial, A(x) of degree at most 2t, where A(0) = S, is used

to construct two polynomials, f(x) and g(x) of degree at most t, which are then

used to distribute shares to participants. Upon reconstruction both f(x) and g(x)

are reconstructed and used to reconstruct A(x). In order to check that no cheating

has occurred, C checks that A(0) = f(0) · g(0). As with the original JS scheme,

all computations are performed in Fq where q is a prime number and q > 2n. The

SHARE and REC algorithms are as follows:

SHARE(S)→ (V1, . . . , Vn) : D picks a random polynomial A(x) = S + Q1x + · · · +

Q2tx
2t where Qj ∈ Fq for 1 ≤ j ≤ 2t. He then uses the first 2t + 1 points on

A(x) to construct two more polynomials in the following fashion:

f(x) = A(1) + A(2)x+ · · ·+ A(t+ 1)xt

g(x) = α + A(t+ 2)x+ · · ·+ A(2t+ 1)xt

Where α is picked such that S = A(1) · α and the other coefficients of both

g(x) and f(x) are points on A(x). As a result of this we also require that

27

A(1) 6= 0 (D can simply re-sample A(x) to achieve this).

Participant Pi is assigned the share Vi = (f(i), g(i)) for 1 ≤ i ≤ n.

REC(γ)→ S ′ : A subset, γ, of t+ 1 participants (of which up to t can be cheaters)

submit shares to C who reconstructs f ′(x) and g′(x) using Lagrange interpo-

lation. C then uses the coefficients of f ′(x) and g′(x) (specifically the points

A′(1), · · · , A′(2t + 1)) to reconstruct A′(x). If A′(0) = f ′(0) · g′(0) then C

outputs A′(0) as the secret, otherwise output ⊥.

Security Discussion

To prove the security of the proposed OKS-secure scheme we begin by showing

that it is perfect and then prove that except with probability δ a set of dishonest

participants cannot cheat the honest participants into accepting a false secret.

Theorem 1. The proposed OKS-secure scheme is perfect, i.e., fewer than t+ 1

participants cannot reduce their uncertainty of the secret S.

Proof. Say that the first t participants with shares Vi = (f(i), g(i)) for 1 ≤ i ≤ t wish

to compute S. By pooling their shares and forming a coalition they can construct

the following system:

f(1) = A(1) +A(2) + · · ·+A(t+ 1)

g(1) = α+A(t+ 2) + · · ·+A(2t+ 1)

f(2) = A(1) + 2 ·A(2) + · · ·+ 2t ·A(t+ 1)

g(2) = α+ 2 ·A(t+ 2) + · · ·+ 2t ·A(2t+ 1)

...

f(t) = A(1) + (t) ·A(2) + · · ·+ (t)t ·A(t+ 1)

g(t) = α+ (t) ·A(t+ 2) + · · ·+ (t)t ·A(2t+ 1)

For any value i it is known that A(i) = S+i ·Q1 + · · ·+i2t ·Q2t. So the above system

of equations can therefore be rewritten purely in terms of the coefficients of A(x)

28

(including S). This results in an unsolvable system composed of 2t independent

equations and 2t + 1 unknowns. To clarify this, let S = Q0 then, consequently, α

becomes:

Q0 · (A(1))−1 = Q0(
2t∑
i=0

Qi)
−1

Therefore, the shares of a given participant in the coalition, denoted as Pw for

1 ≤ w ≤ t, can be rewritten as:

f(w) =
t+1∑
j=1

(
wj−1 ·

2t∑
i=0

jiQi

)

g(w) = Q0(
2t∑
z=i

Qi)
−1 +

t+1∑
j=1

(
wj−1 ·

2t∑
i=0

(j + t)iQi

)
The above can be represented as a system of equations featuring the unknowns

of Q0, Q1, · · · , Q2t (as the w values are known to the attackers). By the properties

inherent in Shamir’s secret sharing scheme; due to the uniform and independent

choices of Q1, · · · , Q2t in Fq any 2t evaluations of A(x) at non-zero distinct points

are uniform and independently distributed in Fq, for any choice of secret S = A(0).

In particular, the 2t evaluations A(1), · · · , A(t + 1), A(t + 2), · · · , A(2t + 1), are

uniform and independent in Fq, for any S = A(0). Therefore the t non-constant

coefficients of f(x) and g(x) respectively are uniform and independent in Fq, hence

by Shamir’s scheme’s properties the shares f(i), and g(i) for i = 1, · · · t are uniform

for any choice of secrets A(1) and α shared by f(x) and g(x) respectively, and hence

also for any choice of the secret S.

Put simply, each of the t participants in the coalition is essentially given 2 shares

of a degree 2t polynomial, albeit in roundabout fashion. Therefore, the coalition has

a set of 2t shares relating to a polynomial of degree 2t. Due to the perfectness of

Shamir’s secret sharing scheme [97], they cannot compute any information relating

to S as (from the point of view of the t participants) all potential q amount of values

of S are equally likely.

29

Theorem 2. The proposed OKS-secure scheme is a (t, n, δ) SSCD under the

OKS model with share size |Vi| = 2 log(q), secret domain S = Fq and probability of

cheating δ = 1
q
.

Proof. Without loss of generality assume that it is the first t participants (P1, · · · , Pt)

who wish to cheat. Here, by cheating, we mean that the set of (at most t) partic-

ipants submit modified shares that pass the test and from the resulting value (S ′)

released by the combiner, the cheating participants learn the actual secret (S), while

the honest participants learn nothing.

In order to successfully cheat, this set of t dishonest participants, denoted by θ,

will need to not only force the reconstruction of a secret S ′ = S+β1 but also ensure

that S ′ = f ′(0) · g′(0) where f ′(0) = f(0) + β2 and g′(0) = g(0) + β3 such that β1

, β2 , and β3 are some constants. In order to cheat they need to pick these values

such that:

S + β1 = (f(0) + β2)(g(0) + β3)

Whilst it is trivial for θ to use the Tompa and Woll attack force the reconstruction

of f ′(0) and g′(0) with any values they choose for (respectively) β2 or β3, we note

that this is not at all the case for S ′. That is, ignoring the difficulty that θ face in

modifying their shares in such a way that coefficients of the resulting polynomials

f ′(x) and g′(x) are points of a 2t-degree polynomial A′(x) with a secret S ′ = A′(1)·α′

(i.e., a 2t-degree polynomial that satisfies 2t + 2 points); learning S implies that θ

know the value of β1. To explain this we can expand the equation above to get:

β1 = A(1) · β3 + β2 · g(0) + β2 · β3

.

This can be simplified further by noting that the cheaters really only need to

change one of either f(x) or g(x). Therefore, without loss of generality we can set

30

β3 = 0 and simplify the equation to

β1 = α · β2

. Summarising the above means that to successfully cheat the coalition will have to:

1. Compute a 2t-degree polynomial A′(x) from the coefficients of g(x) and f ′(x)

such that S ′ = g(0) · f ′(0); to restate, they must compute said 2t-degree

polynomial from 2t+ 2 points.

2. Even if f ′(x) and g(x) achieve the above condition the cheaters must also

compute f ′(x) such that S ′ = S+α ·β2 which is an equation with 2 unknowns

(S and α).

Discounting the difficulty in computing f ′(x) to result in the required 2t-degree

polynomial, the cheater’s chances of cheating rely on reducing the unknowns of the

equation specified in condition 2 above. Since, by the proof of theorem 1, they cannot

do this, their chances of cheating are analogous to guessing, i.e., 1
q
. Additionally,

each participant gets, as their share, two field elements from a field of characteristic

q, thus the share size is 2 log q.

2.4.2 Proposed CDV-Secure Scheme

In our OKS-secure scheme it is easy to see that if the cheaters know the value

of S then it is entirely possible for them to compute β1 = β3 ·f(0)+β2 ·g(0)+β2 ·β3

and therefore break the security of the system. In fact if the cheaters know S then

they can actually compute the share of the honest participant, as they will be able

to solve the system given in the proof of Theorem 1.

So, while this scheme is certainly secure in the OKS setting (where the cheaters

do not know the secret) it is not at all secure in the CDV setting (where they do

know the secret). However, it is possible to rectify this with a simple modification.

31

The construction and cheating detection mechanism for the CDV-secure scheme

is much the same as for the OKS-secure scheme. However, here A(x) is of degree

at most 3t and we use the first 3t + 1 points on A(x) to construct three polyno-

mials f(x), g(x) and h(x) of degree at most t. This means that each participant

obtains three shares, one relating to each of the degree t polynomials. As per the

second scheme described in [71] this prevents malicious participants (who know the

secret) from computing the honest participant’s share. We define the check digit

as l = f(0) · g(0) · h(0). All computations are performed in Fq where q is a prime

number such that q > 3n and |S| ≤ q.

SHARE(S)→ (V1, . . . , Vn) : D picks a random polynomial A(x) = S + Q1x + · · · +

Q3tx
3t. He then uses the first 3t + 1 points on A(x) to construct three more

polynomials:

f(x) = A(1) + A(2)x+ · · ·+ A(t+ 1)xt

g(x) = α + A(t+ 2)x+ · · ·+ A(2t+ 1)xt

h(x) = ω + A(2t+ 2)x+ · · ·+ A(3t+ 1)xt

Where α and ω are picked such that S = A(1) ·α ·ω and the other coefficients

of f(x), g(x) and h(x) are all points on A(x). Participant Pi is assigned the

share Vi = (f(i), g(i), h(i)) for 1 ≤ i ≤ n.

REC(γ)→ S ′ : A subset, γ, of t+ 1 participants (of which up to t can be cheaters)

submit shares to C who reconstructs f ′(x), g′(x) and h′(x) using Lagrange

interpolation. C then uses the coefficients of f ′(x), g′(x) and h′(x) (specifically

the points A′(1), · · · , A′(3t + 1)) to reconstruct A′(x), again using Lagrange

interpolation. If A′(0) = f ′(0) · g′(0) · h′(0) then C outputs A′(0) as the secret,

otherwise output ⊥.

32

Security Discussion

As before, in this section the security of the given scheme is proved.

Theorem 3. The proposed CDV-secure scheme is perfectly secure.

Proof. Analogous to the proof of Theorem 1.

Theorem 4. The proposed CDV-secure scheme is a (t, n, δ) SSCD under the

CDV model with share size |Vi| = 3 log(q), secret domain size |S| ≤ q and probability

of cheating δ = 1
q
.

Proof. As with the proof for Theorem 2 assume that we have t+ 1 participants who

wish to reconstruct S and that t of these participants make up the set of dishonest

participants denoted by θ. All computations are done in the field Fq.

In order to successfully cheat, θ need to force reconstruction of S ′ = f ′(0) · g′(0) ·

h′(0). Where we define S ′ = S + β1, f ′(0) = f(0) + β2, g′(0) = g(0) + β3 and

h′(0) = h(0) + β4. Since θ know the value of S they can easily compute S ′. So to

successfully cheat they must solve the following equation:

S ′ = (f(0) + β2)(g(0) + β3)(h(0) + β4)

In order to solve this equation they must first compute f(0), g(0) and h(0). We show

that this is not possible except with probability 1
q

which is analogous to guessing.

Without loss of generality assume that θ is composed of participants P1, · · · , Pt and

Pt+1 is the honest participant. By pooling their shares, θ can construct the following

33

system:

f(1) = A(1) +A(2) + · · ·+A(t+ 1)

g(1) = α+A(t+ 2) + · · ·+A(2t+ 1)

h(1) = ω +A(2t+ 2) + · · ·+A(3t+ 1)

f(2) = A(1) + 2 ·A(2) + · · ·+ 2t ·A(t+ 1)

g(2) = α+ 2 ·A(t+ 2) + · · ·+ 2t ·A(2t+ 1)

h(2) = ω + 2 ·A(2t+ 2) + · · ·+ 2t ·A(3t+ 1)

...

f(t) = A(1) + (t) ·A(2) + · · ·+ (t)t ·A(t+ 1)

g(t) = α+ (t) ·A(t+ 2) + · · ·+ (t− 1)t−1 ·A(2t+ 1)

h(t) = ω + (t) ·A(2t+ 2) + · · ·+ (t)t ·A(3t+ 1)

As with the proof of theorem 1, the above system can be represented in terms of

the coefficients of A(x) = S + Q1x + · · · + Q3tx
3t and ω (as α = S

ω·A(1)
). Since S is

known, the system is composed of 3t equations and 3t+ 1 unknowns, meaning that

θ cannot compute the values of f(0), g(0) or h(0) except with probability 1
q
, i.e.,

they attempt to guess a value for either of the three variables. Therefore we can

define the probability of successful cheating as δ = 1
q
.

Since each participant receives three values as their share and all values (except

for S ∈ S) are drawn from Fq then the size of the share size is |Vi| = 3 log(q). Thus

the proposed scheme is a (t, n, δ) SSCD under the CDV model.

2.5 Conclusion and Comparison

The results presented in this Chapter are threefold:

1. It was shown that the two SSCD schemes presented in [71] are vulnerable to

the classic attack described by Tompa and Woll [99].

2. The construction of a near optimal SSCD scheme secure under the OKS model

34

that supports arbitrary finite fields and a small secret domain was given. This

is the most efficient of such schemes to date, being the same size as the original

scheme devised in [71], which they state is 2 bits greater than optimal. Thus

it is 1 bit more efficient than the scheme given in [86] which is the only other

secure scheme that achieves these extended capabilities.

3. A near optimal SSCD scheme secure in the CDV model that has the same share

size as the insecure scheme described in [71] was given. This is an extremely

efficient scheme as it achieves a share size equal to that of the scheme presented

by Cabello et al. [17] which is the most efficient yet.

We note that although our schemes achieve a small share size, unfortunately, our

OKS scheme requires double the amount of field multiplications during reconstruc-

tion than the OKS scheme devised in [86] (due to the extra reconstruction of a 2t

degree polynomial). Likewise our CDV scheme requires double the amount of field

multiplications for reconstruction than the CDV scheme given by [17]. An open

problem within this field is the construction of a SSCD scheme secure under the

CDV model that achieves optimum share size. Another interesting topic recently

introduced in [86] is the construction of a SSCD scheme secure in the OKS model

that is not only optimal but also supports an arbitrary field and a small secret

domain. In the next Chapter we take an alternate look at the construction and

specification of SSCD schemes, particularly focusing on the role of the combiner

and the security assumptions implicit in such an assumption.

35

Chapter 3

Outsourced Cheating Detection for Secret Sharing

3.1 Introduction

Within the literature of SSCD the focus has been on producing ever more efficient

schemes. However, we note that a common feature across all SSCD protocols, that

has yet to be addressed, is that even if cheating is detected, the cheaters still get the

secret. Specifically, if an invalidated secret, S ′ is reconstructed then the cheating

participants (who caused reconstruction of the invalid secret) will still be able to

obtain the original secret (S), even if their cheating has been successfully detected.

In this Chapter, we propose a solution designed to overcome this problem: out-

sourced SSCD (OSSCD). Our proposed protocol utilises the same techniques as

SSCD, however, before the secret is reconstructed we have participants distribute

their shares among a set of special validation servers. These validation servers then

perform a public computation to determine if cheating has occurred. They do this

without reconstructing S. The result of this is that, if cheating has occurred, the

servers can halt the protocol, ensuring no one learns the secret.

We present two efficient constructions of our proposed OSSCD protocol, one

capable of detecting cheating with high probability, the other capable of tolerating

many secrets simultaneously. As before, we begin by defining a simple threshold

secret sharing scheme.

Definition 1. A (t, n) threshold secret sharing scheme consists of n participants,

P1, · · · , Pn who are privately assigned shares of D’s secret value S, which is across

some finite field F. Correctness is achieved if any set of t + 1 or more participants

36

can recover S. Security is achieved if a set of t or less participants cannot reduce

their uncertainty of S.

This then naturally leads back to the division of a secret sharing scheme into

two algorithms, SHARE and REC, where D executes SHARE and a third party, the

combiner, C, executes REC (as defined in the previous Chapter).

If |γ| ≥ t + 1 and all participants follow the protocol exactly, then S ′ = S,

otherwise the probability of computing the correct secret (with less than t partic-

ipants) is analogous to guessing, i.e., 1/|F|. This provides a high level of privacy

for D. We note, however, that such schemes are dependent on the assumption that

all participants follow the protocol exactly. As we know, this is, of course, not al-

ways the case and to counter this SSCD was proposed and researched extensively

[1, 17, 20, 29, 67, 86, 89], with most work focusing on producing constructions with

low share size (the maximum amount of information each participant must store).

Although the field of SSCD is well established, there are many conflicting imple-

mentations and security frameworks. Thus, in 2008 Cramer et al. [40] generalised

SSCD by proposing, what they call, “algebraic manipulation detection codes” (AMD

codes). They showed that SSCD schemes can be constructed by applying an AMD

code to a secret sharing scheme (similar, but far more rigorous, to the notion of check

digit functions presented in the preceding Chapter). Their approach formalises many

of the notions present within the literature of SSCD and allows for a more formal

and easier analysis of results and security. In general, however, detecting cheating

via SSCD or AMD codes is performed in exactly the same fashion. That is, par-

ticipants are given some extra information, along with their shares, which enable

them to check the validity of a reconstructed secret during the execution of the REC

algorithm.

The problem with this approach is that it still allows the cheaters to learn the se-

37

cret. Therefore, to combat this, we propose a new type of cheater detection protocol,

in which the function of the combiner does not reside with just one individual. Our

proposed protocol makes use of multiple third parties who will check the validity of

a given secret without ever actually reconstructing the secret itself. We call such

a protocol an outsourced SSCD (OSSCD) scheme. In the next sections we review

SSCD and AMD codes, following this, we discuss our contribution in depth.

3.1.1 Background

For completeness we reiterate what was examined in the previous Chapter, defin-

ing SSCD in general, as well as threshold SSCD protocols.

SSCD

A (t, n, ε) SSCD scheme can be defined as a (t, n) threshold secret sharing scheme

with a modified REC algorithm.

SHARE(S)→ (V1, . . . , Vn) :

A probabilistic algorithm wherein D takes a secret S and computes n shares:

V1, . . . , Vn. Participant Pi is privately assigned the share Vi, for 1 ≤ i ≤ n.

REC(γ)→ (S ′) or (⊥) :

A set of exactly t+ 1 participants, γ, submit their shares to C who performs a

computation in order to determine if any modified shares have been submitted.

If cheating is detected then C halts the protocol and outputs a special symbol,

⊥. Otherwise C computes and outputs a secret, S ′.

Note that we use S ′ to show that the constructed secret may or may not be equal

to S.

Definition 2. A (t, n, ε) SSCD scheme is a (t, n) secret sharing scheme secure

against a set of at most t cheaters. If no cheating occurs then Pr[S = S ′] = 1.

38

Otherwise, in the case of cheating Pr[REC(γ) =⊥] ≥ 1− ε, conversely Pr[REC(γ) =

S ′ | S 6= S ′] ≤ ε.

We note that, unlike D, the combiner, C, is not intrinsically trusted by the

participants. Rather, in most SSCD protocols it is assumed that all data submitted

to C and all computations performed by C are public knowledge. As a result of this

it is easy to see that, although cheating can be detected with high probability, the

cheaters will, unfortunately, learn the secret. To clarify this, say a set of cheaters

force reconstruction of a secret S ′ = S + ∆s. Even if they are detected in their

cheating the value of S ′ is publicly revealed, which subsequently allows the cheaters

to learn S as it is a trivial matter for the cheaters to control the exact value of ∆s

(as per Tompa and Woll [99]).

If we consider the original use case that Shamir proposed for secret sharing, i.e.,

protecting cryptographic keys at rest, we can easily see how disastrous allowing a

set of cheaters to learn the secret before all other (honest) participants is. If said

cryptographic key was used to encrypt private or sensitive information then the

cheaters of the secret sharing scheme would have instant and unrestricted access to

all of the information, whilst the honest parties would be at a distinct disadvantage,

having no access at all.

Furthermore, if instead participants privately submitted their shares to C then

this would allow C to simply reconstruct the secret himself, without necessarily

revealing it to the participants. This forces the participants to place a high degree

of trust in C which is not an ideal situation.

AMD Codes

AMD codes can be viewed as an abstraction of older techniques utilised within

the literature for the purpose of detecting tampering or cheating in secret sharing

39

and multi-party computation. These codes were originally introduced by Cramer et

al. in [39]. An AMD code essentially allows for the detection of algebraic tampering

on a stored value. To explain this we can use the description from [41].

Consider an abstract storage device Σ(G) that stores a value X, such that X ∈ G

where G is publicly known an abelian group. A given adversary is able to alge-

braically manipulate this stored value by adding some chosen value ∆ ∈ G such that

Σ(G) now holds X + ∆. An AMD code consists of a source, S which is encoded

as X and stored in Σ(G) in such a way that the adversary’s manipulation can be

detected with high probability. We can define these codes using the definition given

in [41]:

Definition 3. [41] Let S be a set of size |S| > 1 and G an abelian group of order |G|.

Consider a pair (E,D) where E denotes a probabilistic encoding map E : S → G and

D denotes a deterministic decoding map D : G → S ∪ {⊥} such that D(E(S)) = S

with probability 1 for every S ∈ S.

The pair (E,D) is an (|S|, |G|, ε)-AMD code if, for every ∆ ∈ G and every S ∈ S

it holds that:

Pr[(D(E(S) + ∆) /∈ {S,⊥}] ≤ ε

A systematic AMD code [41] occurs when S is a group, G = S × G1 × G2 where

G1 and G2 are groups and E, the encoding mapping, is of the form:

E(S) = (S,X, f(X,S))

Where X ∈ G1 is chosen uniformly at random and the function f is given as f :

G1 × S → G2. From this we define the decoding algorithm as:

D(S,X, e) =

S, if e = f(X,S)

⊥, otherwise.

40

It is easy to see that the above explanation of a systematic AMD code is equivalent to

an SSCD scheme. In fact a given (t, n, ε) SSCD scheme, with secret domain |S| and

share size |G|, can be constructed by utilising a systematic (|S|, |G|, ε)-AMD code.

We can achieve this by simply running the encoding algorithm, E (the function

f(X,S)) on a secret S ∈ S and a given value X ∈ G1 to get a value y ∈ G2. Each

participant is then given a share of S, X and y. To detect cheating we simply

reconstruct these values and then run the decoding algorithm.

In their seminal work Cramer et al. [39] introduced AMD codes as both a gen-

eralisation and formalisation of many different algebraic techniques used within the

literature of secret sharing for the purpose of both cheater detection and identifica-

tion. AMD codes are a more natural approach to this field of work and are simpler

to both demonstrate and prove the security of. As such, we make extensive use of

the notation and concepts found within the AMD code literature. We note that

AMD codes do not replace SSCD, rather they allow for a more natural description

and construction of such protocols.

3.1.2 Our Contribution

Our proposed OSSCD protocol utilises the same SHARE protocol as regular SSCD,

however we make use of a modified REC algorithm. To clarify, OSSCD replaces the

combiner, C, with a set of special validation servers. Instead of having participants

simply send their shares to C we instead have them utilise a re-sharing protocol to

distribute their shares to a set of servers. The validation servers then collectively run

a validation algorithm that determines whether or not cheating has occurred. This

is done without reconstructing the secret. If cheating has occurred then the protocol

halts and no one learns the secret. Otherwise, the servers allow the participants to

learn the secret.

To achieve this we utilise a slightly modified validation technique commonly

41

used in MPC protocols [47] (MACs) as well as the re-sharing technique given in

[52]. We demonstrate two constructions of our proposed OSSCD protocol that are

based on Shamir’s secret sharing scheme [97] and strong, systematic AMD codes for

the purpose of detecting cheating.

The reasoning behind this is that during the validation phase of our protocol the

servers must publicly reconstruct some information. Specifically, they reconstruct

X in a systematic AMD code. If we were to utilise a normal AMD code, then

reconstructing X would allow the cheaters to learn the secret.

Our new construction is in the same vein of thought as recent works such as [44,

98] which utilise a set of special, independent (i.e., non- maliciously collaborating)

servers to perform critical tasks for a set of participants. This is a realistic and

real-world assumption that is especially relevant in light of the infrastructure and

model of the internet. Wherein a set of participants can purchase the service of a

set of chosen servers and be relatively certain of the non-malicious nature of said

servers (i.e., the servers will not deliberately supply false information).

A similar method that could be used to achieve the same result is to have par-

ticipants enact a multi-party computation amongst themselves. However, such pro-

tocols would require far more information be given to each participant, furthermore

the communication costs among the participants would also increase.

Our solution allows for low complexity and communication among participants

and does not require a full blow multi-party computation protocol with a set of

private and authenticated communication channels between each participant (we

only require secure communication between the servers and the participants). This

is particularly desirable when participants have relatively low computational power

compared to servers, a scenario that can be likened to, for instance, clients with mo-

bile phones (the participants) offloading the computation to the cloud (the servers).

42

3.1.3 Outline

The rest of this Chapter is organised as follows. In the next section (section 3.2)

we define a model for our new protocol. Following this, section 3.3 displays some

of the tools needed in our protocol. In section 3.4 we show a specific construction

of our protocol that is capable of detecting cheating, with a high probability, for a

single secret. Lastly, section 3.5 extends on this, giving a construction that can be

used to verify multiple different secrets.

3.2 Model

Our OSSCD protocol consists of a dealer, D, a set of n participants, P1, · · · , Pn

and m validation servers, A1, · · · , Am. The basic premise of OSSCD is simple. As

with SSCD, participants are assigned shares by D. However, to reconstruct the

secret participants must first redistribute their shares to a set of k + 1 out of the

m servers (k < m). These servers then collectively run a validation algorithm to

determine if cheating has occurred. If cheating has occurred then the protocol is

halted and no one learns the secret, otherwise the servers publicly reconstruct and

broadcast the secret. The proposed protocol can be divided into three algorithms

or phases:

SHARE(S)→ (V1, . . . , Vn) :

A probabilistic algorithm wherein D takes a secret S, as well as some validation

information (specifically, X and y in an AMD code), and computes n shares:

V1, . . . , Vn. Participant Pi is privately assigned the share Vi, for 1 ≤ i ≤ n.

RESHARE(γ)→ ({Yj}Aj∈ω) :

A probabilistic algorithm in which a set of exactly t + 1 ≤ n participants, γ,

privately distribute their shares to a set of servers, denoted as ω, of size k + 1

(out of m, where k < m). Specifically, Pi ∈ γ assigns to server Aj ∈ ω the

43

share Vij of his original share Vi. Each server then performs a computation to

determine his share, denoted as Yj.

VAL→ (S ′), (⊥) :

A deterministic algorithm in which the set of servers, ω, perform a joint com-

putation across their shares, Yj, in order to detect if cheating has occurred.

If cheating has occurred the servers output ⊥, otherwise they publicly recon-

struct S ′, which is taken to be the secret.

The essential premise of the validation algorithm is that we have servers compute

a random number, R as well as reconstructing the value, X (from the AMD code).

The servers then perform basic MPC techniques across this public information and

their private share, to securely compute the value:

R · y −R · f(S,X)

If the reconstructed value is not 0 then it is assumed that cheating has occurred.

This technique is a simplified version of the “MACCheck” protocol found in [47].

Similar to the SSCD assumption regarding C, as well as the model depicted in

[44, 98], we assume that the validation servers follow the protocol exactly. However,

we also assume that subsets of k or less of these servers may try to learn some

extra information by pooling their resources (i.e., they are semi-honest). This is

encapsulated in the following definition:

Definition 4. A (t, n, k, ε) OSSCD scheme can be defined as a (t, n, ε) SSCD scheme

in which a set of k+1 out of m servers carry out the functions of the combiner. The

scheme is secure if a set of t participants and a (separate) set of k servers cannot

reduce their uncertainty of S. If cheating is detected then neither the participants nor

the servers should learn the secret, otherwise the secret is broadcast by the servers.

44

As previously stated, we do not assume that either the participants or the servers

know S. In terms of communication, we assume there exists secure channels between

each server and participant. However, no such channels exist between each of the

participants. Rather, we assume that the VAL algorithm is carried out by the servers

over a public broadcast channel, visible to both participants and servers.

3.3 Preliminaries

In this section we go through some preliminaries necessary for the OSSCD con-

structions given in sections 3.4 and 3.5.

3.3.1 AMD Code Constructions

To detect cheating in our two constructions we utilise two different AMD codes.

The first of these was originally given by Cabello et al. [18], in the form of an SSCD

scheme. Cramer et al. [42] later described this protocol in terms of AMD codes,

dubbing it the “multiplication AMD code.” As before, let the encoding function of

a systematic AMD code be represented by the function f(X,S), the multiplication

AMD code simply takes the form

f(X,S) = S ·X

If we set S,X ∈ Fq, where q is a prime number, then this gives a (q, q2, 1/q)

systematic AMD code.

The second code we utilise is a variation of the code that was originally given

by Cramer et al. [39] in their seminal work on AMD codes. We utilise this code for

the verification of multiple secrets, S1, · · · , Sw ∈ Fq, where q > w and is a prime

number, as before. Let X ∈ Fq, then the encoding function for this code is as

follows:

f(X,S) = Xw+2

w∑
l=1

Sl ·X l

45

This gives a (qw, qw+2, (w + 1)/q) systematic AMD code.

3.3.2 Dynamic Re-sharing Protocol

In order to carry out the RESHARE algorithm we utilise the resharing proto-

col originally detailed by Desmedt and Jajodia [52]. Their scheme allows for the

conversion of a (t, n) threshold secret sharing scheme to a (k,m) threshold secret

sharing scheme, where k and m can be greater than, less than or even equal to

t and n respectively. Assume that we have a set of participants, P1, · · · , Pn in a

(t, n) Shamir secret sharing scheme, with respective shares V1, · · · , Vn relating to

f(x) with f(0) = S. Denote a set, of size t + 1, of these participants as γ. Now,

say that the members of γ wish to redistribute their shares to a different set of m

participants, A1, · · · , Am in the form of a (k,m) scheme. To do this γ would need to

carry out the following protocol with a set of k + 1 out of the m other participants,

denoted as ω:

1. Pi ∈ γ computes:

Bi = Vi

(∏
Pi,Pl∈γ
i6=l

−l
i− l

)

2. Each Pi then privately distributes shares of Bi to all Aj ∈ ω using a polynomial

of degree at most k (as per Shamir’s secret sharing scheme), such that Aj gets

the share Vij from Pi.

3. Aj computes his share of S as:

Yj =
∑
Pi∈γ

Vij

3.3.3 Random Value Generation

In order for our scheme to work each of the servers must have access to a random

value R, such that this value is known and privately held by all servers. There are

46

many such methods that could be employed to compute this value securely, for

instance each server picks a random value r and then securely distributes this value

to all of the other servers. The value R is then the summation of all r values.

We note that, the servers could easily compute many such values ahead of time

(allowing them to perform many OSSCD evaluations). As such, we will not go

into detail here, but merely assume that each of the servers knows the random and

arbitrary value R.

3.4 OSSCD Scheme Based on The Multiplication AMD Code

In this section we introduce an OSSCD construction based on the multiplication

AMD code [18] introduced in section 3.3.1. As before, we have a set of n participants,

P1, · · · , Pn, a dealer, D, and m servers, A1, · · · , Am. All computations are performed

in the finite field Fq where q is a prime number such that q > max(n,m).

SHARE(S)→ (V1, . . . , Vn) :

D takes a random number, X, such that X 6= 0 and computes y = X · S. He

then computes three random polynomials, f(x), g(x) and h(x), of degree at

most t where f(0) = S, g(0) = X and h(0) = y. Using Shamir’s secret sharing

scheme he distributes shares of these polynomials to each of the n participants,

with Pi receiving Vi = (f(i), g(i), h(i)) for i = 1, · · · , n.

RESHARE(γ)→ ({Yj}Aj∈ω) :

A set of exactly t + 1 participants, denoted as γ, conduct the re-sharing pro-

tocol described in section 3.3.2 with a set of k + 1 servers, denoted as ω.

A given server, Aj ∈ ω is assigned the share Vij by participant Pi, where

Vij = (fi(j), gi(j), hi(j)) and fi(x), gi(x) and hi(x) are the random, degree k

polynomials computed by a given Pi. Each Aj then computes his share as:

Yj = (F (j), G(j), H(j)) where F (0) = S, G(0) = X and H(0) = y. As per the

47

re-sharing protocol:

F (x) =
∑
Pi∈γ

fi(x)

G(x) =
∑
Pi∈γ

gi(x)

H(x) =
∑
Pi∈γ

hi(x)

For clarity we can denote Aj’s share as:

Yj = (Sj, Xj, yj)

VAL→ (S ′) or (⊥) :

Each Aj ∈ ω publicly broadcasts Xj (their share of G(x)). Using these shares

they compute X ′ = G′(0). If X ′ = 0 they halt the protocol and output ⊥.

Otherwise each Aj then collectively computes: α = R · X ′, where R is the

random value mentioned in section 3.3.3.

Following this each Aj then privately computes a value βj = R · yj. He then

broadcasts the value υj = βj − Sj · α. Collectively, ω then reconstructs the

value υ from the shares υj. If υ 6= 0 the protocol halts and the output is ⊥,

otherwise the servers reconstruct and broadcast the value S ′ from their shares

Sj.

Theorem 5. The proposed construction is a secure (t, n, k, ε) OSSCD scheme with

error probability ε = 1
q−1

.

We know that the scheme is secure against t participants during the sharing phase

due to the proof in [18]. Due to the proof in [52], we also know that the re-sharing

protocol is secure. It remains to be seen, however, if the scheme is secure against t

participants and k servers during the validation phases.

Proof. We will first prove that the scheme is secure against a set of t participants and

a separate set of k servers when no cheating has occurred. Without loss of generality,

48

assume that the set γ is made up of the first t + 1 participants, P1, · · · , Pt+1 and

that it is the first t of these that forms a coalition. After the verification phase has

been conducted, but before reconstruction, the set of t participants will have the

following information (in addition to their shares of X, y and S):

1. The re-shared values each of the participants privately sent to the servers, of

the form:

Vij = (fi(j), gi(j), hi(j))

for Aj ∈ ω and i = 1, · · · , t.

2. The publicly reconstructed X ′, here X ′ = X as we assume no cheating has

occurred.

3. k public shares of the form:

υj = βj − S · α

which can be rewritten as:

υj = R(yj − S ·X)

We can rewrite each yj and Sj as:

yj =
t+1∑
i=1

hi(j) Sj =
t+1∑
i=1

fi(j)

Which gives us:

H(x) =
t+1∑
i=1

hi(x) F (x) =
t+1∑
i=1

fi(x)

Each of the validation shares, υj, broadcast by the servers now takes the form:

υj = R

(t+1∑
i=1

hi(j)−
t+1∑
i=1

fi(j) ·X
)

49

Now, the coalition know the values of the first t of the shares these values are

composed of, i.e., h1(j), · · · , ht(j) and the shares f1(j), · · · , ft(j). So let us rewrite

the above equation by substituting the coalitions known values as:

ρ =
t∑
i=1

hi(x)− fi(j) ·X

We also make the following additional substitution:

ψ = R(ft+1(j)− ht+1(j) ·X)

Rewriting our equation as:

υj = R · ρ+ ψ

It is easy to see that the above equation is unsolvable to the coalition without

knowing either the values of R or ψ. They cannot compute R as no server will

communicate with a participant outside the bounds of the protocol. The value ψ

is also unknowable due to the very same reason (as ψ = R(ft+1(j) − ht+1(j) ·X)).

Furthermore, even if the coalition did compute the value of ψ and were able to then

compute a polynomial T (x) = ht+1(x)−ft+1(x)·X, they would still not have enough

information to compute S.

On that line of thought, we note that if the coalition were able to explicitly

compute ht+1(x) − ft+1(x) then this would allow them to compute a share to a

polynomial with free term y− S, which in turn would allow them to compute S (as

they know X). However this is not possible, since they do not know the values of

ht+1(x) or ft+1(x) and the coefficients of these polynomials are essentially random,

meaning that all possible values are equally likely.

As a result of this no information relating to S is gained by the coalition, as the

free term of T (x) is simply a share of a polynomial with free term equal to 0 (i.e.,

the same value as the verification value, υ). This is also the case if unsuccessful

cheating occurs, however the value of υ will instead be equal to ∆ i.e., the error

introduced by the cheaters.

50

We note that the above section of the proof also holds for any set of k servers,

as they hold even less information than the participants. In fact the servers only,

collectively, hold two sets of k shares relating to two different k degree polynomials,

meaning that they cannot compute any information relating to S. Therefore neither

a set of t participants, nor a set of k servers can gain any information relating to S.

It only remains to prove that the probability of cheating is ε = 1
q−1

.

In order to cheat, the coalition will attempt to force the reconstruction of S ′ =

S + ∆s where ∆s 6= 0. To do this they will also need to force reconstruction of

y′ = ∆y and X ′ = X + ∆X such that:

y′ = S ′ ·X ′

Put simply, in order to cheat they will need to solve:

y + ∆y = R

(
(S + ∆s)(X + ∆X)

)
Which simplifies to:

∆y = R(S∆X + ∆sX + ∆s∆X + SX)− y

Since the coalition do not know the value of X ahead of time they cannot solve the

above equation and cannot compute appropriate values that will enable undetected

cheating. Furthermore, the value R is unknown throughout the protocol, resulting

in the coalition also being unable to compute S. In fact the probability of successful

cheating is analogous to essentially guessing the value of X i.e., 1/q. However, in

our construction X 6= 0, meaning that they have a 1/(q − 1) chance of guessing X.

This, therefore, results in an error probability of ε = 1
q−1

.

3.5 Multi-Secret OSSCD Scheme

In this section we utilise the second of the AMD codes discussed in section 3.3.1

to construct an OSSCD scheme capable of tolerating multiple secrets at a time. We

51

take the same assumptions as the previous section, however, this time we have W

secrets, S1, · · · , SW and all computations are performed in the finite field Fq where

q is a prime number such that q > max(n,m,W).

SHARE(S)→ (V1, . . . , Vn) :

D takes a random number, X, such that X 6= 0 and computes

y = XW+2 +
W∑
l=1

Sl ·X l

He then computes W+2 random polynomials, g(x), h(x) and f1(x), · · · , fW (x)

of degree at most t where fl(0) = Sl for l = 1, · · · ,W , g(0) = X and h(0) = y.

Using Shamir’s secret sharing scheme D distributes shares of these polynomials

to each of the n participants, with Pi receiving:

Vi = (f1(i), · · · , fW (i), g(i), h(i))

for i = 1, · · · , n.

RESHARE(γ)→ ({Yj}Aj∈ω) :

A set of exactly t + 1 participants, denoted as γ, conduct the re-sharing pro-

tocol described in section 3.3.2 with a set of k + 1 servers, denoted as ω.

A given server, Aj ∈ ω is assigned the share Vij by participant Pi, where

Vij = (f1i(j), · · · , fWi
(j), gi(j), hi(j)) and f1i(x), · · · , fWi

(x), gi(x) and hi(x)

are the random, degree k polynomials computed by a given Pi. Each Aj then

uses the latter half of the re-sharing protocol to compute his share as:

Yj = (Fl(j), G(j), H(j))

where l = 1, · · · ,W , Fl(0) = Sl, G(0) = X and H(0) = y. As before, for

clarity we can denote Aj’s share as Yj = (S1j , · · · , SWj
, xj, yj).

VAL→ (S ′) or (⊥) :

Each Aj ∈ ω publicly broadcasts xj. Using these shares they compute X ′ =

52

G′(0). If X ′ = 0 they halt the protocol and output ⊥. Otherwise each Aj

privately computes a value βj = R · yj. Aj then broadcasts the value:

υj = βj −R
(

(X ′)W+2 +
W∑
l=1

Slj · (X ′)l
)

Collectively ω then reconstructs the value υ from the shares υj. If υ 6= 0

the protocol halts and the output is ⊥, otherwise the servers reconstruct and

broadcast the values S ′1, · · · , S ′W from their shares S1j , · · · , SWj
.

Theorem 6. The proposed construction is a secure (t, n, k, ε) OSSCD scheme with

error probability ε = W+1
q−1

.

Proof. The proof of this is analogous to the proof of theorem 5 i.e., the coalitions

of k servers and t participants cannot compute any information relating to S. The

error probability is given as ε = W+1
q−1

. This is based on the error probability of

the AMD code: ε = W+1
q

coupled with the fact that, X 6= 0 (giving a 1/(q − 1)

probability of guessing X).

3.6 Conclusion

In this Chapter we demonstrated the new concept of OSSCD which allows par-

ticipants to offload the verification phase of an SSCD protocol. In a typical SSCD

scheme, either the participants reconstruct the secret among themselves, or they

assign the reconstruction to a single party who publicly carries out the necessary

computations. In both cases, even if cheating is detected and the reconstructed

secret is found to be faulty, the cheating participants are able to work backwards

and obtain the original, uncorrupted secret. Our new protocol corrects this flaw by

outsourcing verification of the secret to a set of servers. If verification fails then

neither the servers nor the participants achieve the secret.

Unlike the solutions used for such purposes in multi-party computation, our

protocol does not require private and authenticated channels between participants,

53

reducing both the computational and communication complexity required by the

participants. This is ideally suited for participants with low computational power,

as the bulk of the complexity can be abstracted away by the servers.

54

Chapter 4

Distributed Oblivious Polynomial Evaluation

4.1 Introduction

In this Chapter we investigate a method of achieving unconditionally secure

distributed OPE (DOPE) in which the function of the sender is distributed amongst

a set of n servers. Specifically, we introduce a model for DOPE based on the model

for distributed oblivious transfer (DOT) described by Blundo et al. in 2002. We

then describe a protocol that achieves the security defined by our model. Our DOPE

protocol is efficient and achieves a high level of security. Furthermore, our proposed

protocol can also be used as a DOT protocol with little to no modification.

To refresh the brief explanation of OPE given in Chapter 1, OPE was first

introduced by Naor and Pinkas in 1999 [81]. An OPE protocol involves two parties,

a receiver, R who holds a private value, α and a sender, S who holds a private

polynomial, f(x). Informally, an OPE protocol allows R to learn the evaluation

of S’s polynomial at his private value i.e., f(α), whilst keeping S from learning α

and R from learning any more information about f(x). A more formal definition,

adapted from [22] is given below:

Definition 5. [22] An OPE protocol is composed of two parties, S who has a poly-

nomial f(x) over a finite field F and R who has an input value α ∈ F. Correctness

is achieved if, at the end of the protocol, R learns f(α). Security is guaranteed if

the following two conditions are met after the protocol has been executed:

1. S cannot reduce his uncertainty of α, i.e., the probability of S computing α is

55

1/|F|.

2. R does not learn any information relating to f(x), other than f(α).

OPE has been found to have a myriad of applications in such things as secure

computation [53], oblivious neural learning [22], secure set intersection [63] and

privacy preserving data mining [78]. As a result of this, an extensive amount of

research has been conducted on this topic [22, 59, 62, 63, 75, 80, 100, 102].

To the best of the author’s knowledge there exists only three unconditionally

secure OPE protocols in the literature. The first unconditionally secure OPE was

given by Chang and Lu [22]. To achieve information theoretic security they use a

third party who takes an active role in the protocol execution. The second infor-

mation theoretic secure OPE protocol was given by Hanaoka et al. in [62] (and was

later expanded on in [100]). Their protocol also requires the use of a third party

although, in their protocol the third party acts as an initialiser, in that they merely

distribute some (unrelated, effectively random) information at the start of the proto-

col and then take no further part in the protocol execution. The third OPE protocol

that achieves information theoretic security was given by Li et al. [75]. Their pro-

tocol takes a different approach and instead utilises a set of servers to collectively

implement the function of the sender. We denote such a scheme as a distributed

oblivious polynomial evaluation (DOPE) protocol, in order to differentiate this type

of scheme from the other three-party protocols.

In the DOPE protocol of Li et al. [75] the sender initialises the protocol by

distributing some information amongst a set of n ≥ 2 servers. Following this, S

takes no further part in the protocol. To compute his evaluation, R communicates

with a subset composed of t amount of these servers where t ≤ n is known as

the threshold. The sender’s security is guaranteed against a coalition composed of

l − 1 servers and R; whilst the receiver’s privacy is guaranteed against a subset

56

of b − 1 servers, where b + 1 < t ≤ n. Li et al. also show how to improve this

scheme allowing for the greater threshold of b = l = t by introducing some publicly

known information. However, we note that this increase in security comes at a

cost. Namely, it dramatically increases the overall complexity of their protocol and

it also allows both R and the servers to gain some extra information about f(x).

The authors of [75] state that in their protocol the servers receive a set of linear

equations relating to the coefficients of f(x) such that (R) obtains more information

simply from contacting more servers during the protocol. Specifically, like many

DOT protocols, they require that there is a mechanism that limits the amount of

servers (R) is allowed to contact, as contacting over this specified amount will result

in (R) gaining (S)’s polynomial. The protocol introduced in this chapter does not

suffer from such a flaw and allows (R) to contact as many servers as possible.

4.1.1 Our Contribution

In this Chapter we develop such a protocol by first describing a model of DOPE

and then introducing an efficient DOPE protocol that achieves the security defined

in our model. Specifically, our proposed protocol allows R to compute his evaluation

by simply broadcasting some information and then receiving contact from t + 1 or

more servers. The protocol achieves security for R against a coalition of t servers

and security for S against a coalition composed of l servers and R and does not leak

any information relating to either f(x) or α.

To develop a model of DOPE we simply apply a slightly modified version of the

already established and well studied security framework developed by Blundo et al.

[14, 13] for the purpose of distributed oblivious transfer (DOT) [6, 25, 35, 34, 82, 84].

We then give the construction of a DOPE protocol that is secure under this model.

An interesting property of our protocol is that it can also be utilised as a DOT

protocol with little to no modification.

57

Our protocol achieves security equivalent to what Blundo et al. describe as a

strong DOT protocol [13]. That is, our DOPE protocol is secure against a coalition

composed of t servers and R even after R has received f(α).

4.2 Model

Similar to a DOT protocol a DOPE protocol consists of a sender, S, the receiver,

R and n servers, s1, · · · , sn. As per Definition 5 the sender has a polynomial,

f(x) of degree k ≥ 1 over F, whilst the receiver has a point α ∈ F, such that

|F| = q where q is a prime number and q > max(k, n). We assume a standard

model of communication present in many multi-party protocols [7] i.e., a synchronous

broadcast connection exists between the servers and R, such that R can privately

and simultaneously send the same message to all of the servers. Additionally, we

assume each server has a secure channel that allows them to send private messages

to R. DOPE consists of two phases:

1. Initialisation: S privately distributes some information relating to f(x) to

each of the n servers. Following this S takes no further part in the protocol.

2. Evaluation: R broadcasts some information to all of the servers. A set of

t + 1 or more servers send a response to R who then uses this information to

compute f(α).

In order to achieve both correctness and security a DOPE protocol must satisfy the

following security conditions, originally given by Blundo et al. [13] and informally

stated by Corniaux and Ghodosi [34] for the purpose of DOT:

1. Correctness: R is able to compute the requested evaluation after receiving

information from t+ 1 servers.

58

2. Receiver’s Privacy: A coalition of t servers cannot compute any informa-

tion relating to α.

3. Sender’s Privacy: After the initialisation phase (but before the evaluation

phase) a coalition composed of t servers andR cannot compute any information

relating to f(x).

4. Sender’s Privacy After Protocol Execution: After communication be-

tween R and the servers has occurred and R has computed f(α), a coalition

composed of t servers and R cannot compute any information relating to f(x);

other than what the evaluation of R’s chosen value (i.e., f(α)) has already re-

vealed.

In our model we assume that all participants follow the protocol exactly, i.e., they

are semi-honest. A benefit of our model is that the degree of f(x) (given as k) is not

related to the threshold parameter, t. This allows for a flexible and easily changeable

level of security. For instance, even if the degree of k is small S can ensure security

against a large number of servers by assigning a high value to t.

In regards to the security conditions given by Blundo et al. it was shown that a

DOT protocol that achieves all four security conditions could only be achieved in two

rounds of communication between the servers and R, or by allowing S to contact

R during the initialisation phase. This also proves true for our DOPE protocol

which is given in the next section. We note that, similar to Blundo’s “Strong DOT

Protocol” [13] our protocol assumes that S correctly distributes the information to

the servers and does not try to initiate any further contact with R or the servers

after the initialisation phase. The rationale behind this assumption (which has long

been held in the field of DOT) is that the sender exists much like the dealer in a

secret sharing scheme i.e., they are a third party that exists solely to distribute their

respective information then take no further part in the protocol.

59

Our model of DOPE is very similar to the model given by Li et al. [75], we have

merely extended their somewhat brief explanation by utilising the tools Blundo et

al. developed for DOT.

4.3 DOPE Protocol

In this section we describe our DOPE protocol and then evaluate the security of

the protocol against the security conditions given in the previous section.

In our proposed protocol S utilises Shamir’s secret sharing scheme [97] to securely

distribute his polynomial among the n servers. This has been covered in previous

Chapters and, as such, is omitted here.

4.3.1 The Proposed DOPE Protocol

The underlying idea behind our protocol is similar to the protocol given by Li

et al. [75], in that we have S utilise Shamir’s secret sharing scheme to distribute

shares of the coefficients of f(x) to each server.

To achieve privacy for R we have S distribute some semi-random information

along with the shares of the coefficients. Each server receives shares of this in-

formation whilst R receives the information in its entirety. Using the distributed

information R can then easily distribute his value α among the servers, who then

perform a computation and send the output back to R. Following this, R computes

a polynomial of which the free term is his desired evaluation.

The actual method utilised to distribute shares of α was originally given in [48] as

a means to securely introduce input values under a shared MAC key in multi-party

computation. We specifically use it to allow the contacted servers to efficiently

compute a share of α multiplied by a given coefficient of f(x). The full DOPE

protocol is given in figure 4.1.

60

Input: S has the polynomial f(x) = a0 + a1x+ · · ·+ akx
k and R the value α.

Output: R receives f(α) and S gets nothing.

Initialisation

1. S creates a set of random values r1, · · · , rk and computes k values of the form

γi = ri · ai for i = 1, · · · , k.

2. For each coefficient, ah (h = 0, · · · , k), S computes a random polynomial, Ah(x)

of degree at most t such that Ah(0) = ah. He does the same for each γi value,

computing k polynomials of the form Γi(x) with free term Γi(0) = γi.

3. Using Shamir’s secret sharing scheme S distributes these values among the

servers, giving server sj (j = 1, · · · , n) the following information:

• k shares of the form γij = Γi(j)

• k + 1 shares of the form ahj = Ah(j)

4. S privately sends to R the values r1, · · · , rk and then takes no further part in

the protocol.

Evaluation

1. R broadcasts to all servers a set of k values of the form εi = αi − ri.

2. A set of t + 1 or more servers, denoted as W respond to R’s broadcast values.

Each server, sj ∈ W, computes and sends to R the share:

zj = a0j +
k∑
i=1

(aij · εi + γij)

3. R performs Lagrange interpolation across each zj value to compute the polyno-

mial Z(x) with free term Z(0) = f(α).

Figure 4.1 : The Proposed DOPE Protocol

61

In section 4.2 we stated the result of Blundo et al. [13] which proved that a strong

DOT protocol can only be achieved in two rounds. The same is true for our DOPE

protocol, we merely circumvented this limitation by allowing S to contact R in the

initialisation phase. Specifically, in our protocol we have S directly send the values

r1, · · · , rk to R in the initialisation phase. This is actually not strictly necessary, and

to limit direct contact between S and R we could instead have S distribute shares

of r1, · · · , rk to each server. At the start of the evaluation phase a set of t + 1 or

more servers would then send R their shares of these values. This results in a two

round protocol in which R only has to be present during the evaluation phase. This

is, of course, the exact same approach taken by Blundo et al. [13] for their strong

DOT protocol.

In fact, due to the similarity of the models our DOPE protocol can easily be

converted to a strong
(

1
m

)
DOT protocol. In a

(
1
m

)
DOT protocol the receiver

wishes to learn 1 of m secrets held by S. If we define S’s secrets as ω1, · · · , ωm then

we can achieve DOT by having S compute f(x) so that f(i) = ωi for i = 1, · · · ,m.

To learn the ith secret R sets α = i and then executes the rest of the protocol as

before.

4.3.2 Evaluation

In this section we evaluate the security of the proposed DOPE protocol by prov-

ing that it meets the conditions given in section 4.2.

Correctness

Theorem 7. If all participants follow the protocol correctly the receiver obtains f(α)

by contacting t+ 1 servers.

Proof. At the end of the evaluation phase R will have received t + 1 shares of the

62

form:

zj = a0j +
k∑
i=1

(aij · εi + γij)

Where the share zj is from server sj. Due to the homomorphic nature of Shamir’s

secret sharing scheme, linear operations performed on shares also correspond to the

secrets and polynomials these shares are computed from [8]. In other words the

shares correspond to the polynomial:

Z(x) = A0(x) +
k∑
i=1

(Ai(x) · εi + Γi(x))

The free term of each Ai(x) is Ai(0) = ai, similarly Γi(0) = ri · ai, therefore:

Z(0) = a0 +
k∑
i=1

(ai · εi + ri · ai)

Since εi = αi − ri this becomes:

Z(0) = a0 +
k∑
i=1

(ai · αi − ai · ri + ri · ai)

= a0 +
k∑
i=1

ai · αi

= a0 + a1 · α + a2 · α2 + · · ·+ ak · αk

= f(α)

Receiver’s Privacy

Theorem 8. A coalition of t servers cannot compute any information relating to

α.

Proof. Suppose that a set of t servers, who were all contacted by R, form a coalition.

The goal of this coalition is to compute some information relating to α. Collectively

the servers have a set of t shares relating to each coefficient of f(x), (i.e. a0, · · · , ak)

as well as t shares relating to the product of each random value and a coefficient,

63

i.e. γi = ai · ri for i = 1, · · · , k. Additionally, the servers also have k values of the

form εi = αi − ri which gives the following system of equations:

ε1 = α− r1

ε2 = α2 − r2

...

εk = αk − rk

From the above system, we can see that to compute α the coalition would first need

to compute a given ri value. However, due to the perfectly secure nature of Shamir’s

secret sharing scheme [36, 97], t shares does not reveal any information relating to

a given secret. As a result of this, the coalition of servers cannot compute any

information relating to any of the coefficients of f(x), the γi or the ri values. Since

each ri value is chosen at random, and they cannot compute any information relating

to these values the above system is composed of k independent equations and k+ 1

unknowns (each ri value in addition to α) which results in every possible value of α

being equally likely.

Sender’s Privacy

Theorem 9. A coalition composed of t servers and R cannot compute any infor-

mation relating to f(x) during initialisation.

Proof. At the end of the initialisation phase a coalition of t servers and R will have

the following information:

1. The values r1, · · · , rk

2. t shares corresponding to each coefficient polynomial (A0(x), · · · , Ak(x)), which

gives t(k + 1) shares.

64

3. t shares relating to the each of other set of polynomials (Γ1(x), · · · ,Γk(x)),

giving kt collective shares.

As per the proof of Theorem 7 it is impossible to compute any information about

a given polynomial, of degree t, with only t shares. However, the free term of each

polynomial of the form Γi(x) for 1 = 1 · · · k is Γi(0) = riai where ri is a known

quantity. The coalition can use this knowledge to compute a polynomial with free

term ai. This allows them to hold two polynomials with the free term ai.

We note that even with this extra knowledge they cannot achieve anything as

ai is unknown to them and furthermore, holding two sets of t shares relating to

two different polynomials with the same free term does not actually reveal any

information [70, 97].

Sender’s Privacy After Protocol Execution

Theorem 10. A coalition composed of t servers and R cannot compute any in-

formation relating to f(x) after the execution of the protocol, other than what the

evaluation of R’s chosen value, f(α), gives them.

Proof. The proof of this is analogous to the previous proof with the addition of

some extra information, namely the information given to R by the other servers

who contacted him. For the sake of the proof we will assume that the first t + 1

servers contact R. Without loss of generality and for the sake of convenience, assume

that the coalition is composed of R and the first t servers, s1, · · · , st. This coalition

has the exact same information as before, this time however, they also have the

added knowledge of the other (honest) server’s responses to R. That is:

zt+1 = a0t+1 +
k∑
i=1

(ait+1 · εi + γit+1)

65

If the coalition are able to compute any of the polynomials used to distribute the co-

efficients of the senders polynomial, A0(x), · · · , Ak(x), or even the polynomials used

to distribute the product of the random values and the coefficients, Γ1(x), · · · ,Γk(x),

then they can easily compute the value of a given coefficient of f(x). We must there-

fore prove that this is not possible.

First, let h = 0, · · · , k and let i = 1, · · · , k then any given server, sj, contacted

by R has k + 1 shares of the form ahj corresponding to Ah(x) and k shares of the

form γij corresponding to Γh(x). We can write these polynomials as:

Ah(x) = ah + Ah1x+ Ah22x2 + · · ·+ Ahtx
t

Γi(x) = riai +Gi1x+Gi2x
2 + · · ·+Gitx

t

Using this notation the response of each server, zj for j = 1, · · · t+ 1, can be written

as:

zj =
k∑
y=1

ayα
y +

k∑
h=0

(
εh
(t∑
v=1

Ahvj
v
))

+
k∑
i=1

(t∑
v=1

Givj
v

)
Therefore, from t + 1 responses R obtains a system composed of t + 1 equations

and (t + 1)(k + 1) + kt unknowns, specifically, t + 1 unknowns from each of the

k + 1 polynomials of the form Ah(x) and t unknowns from each of the k amount of

polynomials of the form Γi(x).

Each zj is composed of a linear combination of polynomials of degree t. There-

fore, the system that R constructs is composed of t + 1 independent equations.

However, we note that t ≥ 1 and k ≥ 1, meaning that the amount of unknowns will

always be greater than the amount of independent equations. As a result of this, R

and the coalition of t servers cannot compute anything from just the responses.

In fact, even with the direct shares of each of the t servers in the coalition they

still cannot compute any information. This is because the equation used to describe

a given share is not linearly independent to the equation used for a given zj i.e. each

zj is simply a linear combination of a given participant’s share and thus, is not a

66

separate (independent) equation.

The net result for the coalition is a system composed of only t + 1 independent

equations and (t + 1)(k + 1) + kt unknowns, resulting in each value of a given

coefficient of f(x) being equally likely.

67

Chapter 5

Unconditionally Secure Oblivious Polynomial

Evaluation: A Survey and New Results

5.1 Introduction

In this Chapter we review some of the myriad of applications OPE has been

utilised in and, additionally, take an in depth look at the special case of information

theoretic OPE.

Specifically, we provide a current and critical review of the existing information

theoretic OPE protocols in the literature. We divide these protocols into two dis-

tinct cases (three party and distributed OPE) allowing for the easy distinction and

classification of future information theoretic OPE protocols. In addition to this work

we also develop several modifications and extensions to existing schemes, resulting

in increased security, flexibility and efficiency. Lastly, we demonstrate the flaws in

a previously published OPE scheme .

An extensive amount of research has been conducted on OPE since its introduc-

tion [30, 59, 65, 102, 75, 83, 100]. Of particular interest are the many applications

and uses which researchers have found for OPE.

This valuable tool has been used in protocols such as multi-party computation

(MPC) [31, 53], secure mean computation [91], oblivious neural learning [22, 23],

oblivious keyword search [88], and privacy preserving data mining [76], to name a

few. In fact, OPE is an integral part of many protocols utilised in modern cryptog-

raphy. In general we can divide these protocols into the two categories, previously

discussed in Chapter 1:

68

1. Multi-Party Computation (MPC) Protocols : MPC allows a set of n partic-

ipants to securely compute any given function over their privately held in-

formation. More formally, a set of n participants, P1, · · · , Pn with respective

private inputs, x1, · · · , xn can compute a given function f(x1, · · · , xn) without

revealing any information relating to their inputs.

2. Privacy Preserving Protocols: We choose to use this term to refer to protocols

that solve a specific function or problem, with the same level of privacy utilised

in MPC. We can actually view these sorts of protocols, and OPE itself, as a

subset of MPC protocols.

5.1.1 OPE and Multi-Party Computation

Many of the recently proposed MPC protocols within the literature [45, 48, 53,

72] utilise OPE as an offline protocol for the generation of correlated random data.

To clarify this statement, in such protocols an MPC is split into two phases:

1. Offline Phase: In this phase participants compute some effectively random

and shared data.

2. Online Phase: This phase is where participants are able to compute a func-

tion across their private data. The MPC protocol can be computed efficiently

using the correlated random data computed in the offline phase.

Using OPE in such a fashion allows for a fast online phase, resulting in an efficient

MPC protocol.

The other use that OPE has seen in MPC is as a multiplication protocol in the

online phase. We have shown [31] (Chapter 6) that a certain type of multiplication

can be computed efficiently and securely by utilising a modified OPE protocol based

on the work of Tonicelli et al. [100].

69

5.1.2 OPE and Privacy Preserving Protocols

As stated previously, a privacy preserving protocol can be seen as a subset of

MPC. These types of protocols compute a specific function with great efficiency,

many such privacy preserving protocols utilise OPE as an essential building block.

Lindell et al. [79] utilised OPE as an integral part of their secure data mining

protocol, which allows participants to securely run standard data mining algorithms

across their privately held information. Similar to this, Chang et al. [22, 23] utilised

OPE for the purpose of oblivious neural learning i.e., training a neural network

across private data. In [64] Hazay showed how a set of participants could securely

compute the intersection of their privately held sets. Ogata and Kurosawa [88]

utilised OPE to develop an oblivious keyword protocol, wherein a participant can

search among a secure database whilst keeping the information s/he was searching

for private. Lastly, a secure voting scheme was developed from OPE in [90] by

Otsuka and Imai.

5.1.3 Outline and Contribution

It is evident that OPE is a valuable protocol that has many applications and uses.

However, to the best of the author’s knowledge there has not yet been any surveys

or reviews published on this deeply interesting topic. We seek to rectify this by

presenting a thorough review of a unique type of OPE protocol. Namely, as with all

of the protocols in this thesis, we focus on the specific case of information theoretic

(or unconditionally secure) OPE, wherein it is assumed each of the participants

(and any given adversary) has unlimited computational resources (see section 5.2

for more information).

In particular, we review the current results present within the literature and

then modify some of these protocols to gain improvements in efficiency, flexibility

and security. To summarise, our results are threefold:

70

1. We provide a thorough description and critical review of currently known

information theoretic OPE protocols. Furthermore, we show that each of the

information theoretic OPE protocols within the literature can be classified

under two sub-fields, three party OPE and distributed OPE.

This result, or classification, directly corresponds to the already well known

and researched area of information theoretic oblivious transfer [35, 43, 95].

2. We do not merely describe and review each protocol. We also develop mod-

ified versions of specific protocols, extending their capabilities, efficiency and

security.

Additionally, we further prove the link between OT and OPE by demonstrating

that a previously published distributed oblivious transfer (DOT) protocol can

easily be adapted to a distributed OPE protocol.

3. Lastly, we show that a previously published ‘unconditionally secure OPE’

scheme does not, in fact, achieve unconditional security.

The rest of this Chapter is organised as follows. Section 5.2 provides some

background on information theoretic OPE. Sections 5.3 and 5.4 investigate the two

distinct categories of information theoretic OPE, reviewing current results and also

describing our own research in this field. Section 5.5 examines the OPE scheme

shown in [15] and demonstrates that it is not secure. Finally, section 5.6 concludes

the Chapter.

5.2 Background

An information theoretic OPE is a two party protocol that is secure against an

adversary, or participants, who have unlimited computational power and resources.

This is more formally defined below.

71

Definition 6. Given definition 5 (Chapter 4), we define the output of an OPE

protocol (i.e., the value the receiver, R computes as his/her desired evaluation) as

fα. Let A define the set of all possible evaluation points such that α ∈ A and let E be

the set of all possible evaluations such that fα ∈ E. Lastly, let VR denote R’s view

(i.e., all information known and held by R) upon completion of the protocol, and

let VS denote S’s view. Assuming that all participants are honest, an OPE protocol

obtains information theoretic security if the following conditions hold.

• Correctness.

Pr[fα = f(α)] = 1

• Security for R. Given VS defines S’s view of the distribution of any given

possible value of α and define α′ ∈ A as another possible value for α chosen

by R. We say that security is maintained for R if (from the view of VS) it is

indistinguishable when R chooses α or R chooses α′.

• Security for S. Similarly, given that R has obtained the evaluation point fα =

f(α), define gα = g(α), where g(x) is another possible polynomial chosen by

S. Security is maintained for S if, from the point of view of VR, fα and gα

are statistically indistinguishable from each other.

The above definition is a more expanded version of Definition 5 that formalises

the security requirements for OPE. Put simply it states that, if all participants are

honest then the value computed by R at the end of the protocol will be equal to

f(α). In terms of security, Definition 6 states that upon completion of the OPE, S

cannot reduce their uncertainty of R’s evaluation point (α) and R cannot reduce

their uncertainty of S’s polynomial, i.e., for any given input all possible outputs are

equally likely.

Computationally secure protocols, need not rely on such stringent measures of

72

security. Instead, in a computationally secure protocol, security is assured if S or R

can reduce their uncertainty of (respectively) α and f(x) only by expending some

(defined) limit of computational power and/or time. For example, an OPE scheme

could be considered computationally secure if R could reduce his/her uncertainty

of f(x) in exponential time only.

We note that, although information theoretic protocols have a far higher level of

security, this comes with a trade off in communication complexity and the number of

participants. Specifically, most purely information theoretic OPE protocols within

the literature tend to have a high communication complexity. The upside to this,

however is that information theoretic protocols are often computationally efficient.

Additionally, it has long been understood that it is not possible to have information

theoretic security with only two participants [28, 38].

This very statement seems to preclude any possibility of an information theoretic

OPE protocol. However, numerous researchers have cleverly avoided this conundrum

by introducing a third party (or a set of third parties) who takes part in, but gains

no information from the OPE protocol. We specifically refer to what we dub as both

three-party OPE and distributed OPE which are (informally) described below.

1. Distributed OPE (DOPE). A DOPE protocol consists of n+2 participants,

the sender and receiver, along with n servers. In this type of protocol R and

S compute the OPE by communicating with n servers. At the start of the

protocol S distributes some information among the servers. Later, R contacts

a subset of these servers, who provide him/her with enough information to

compute his/her evaluation.

As before, both the evaluation point and the polynomial should remain private,

and furthermore a coalition of servers should not be able to compute anything

related to either R or S’s private information. An additional requirement

73

is that a coalition composed of a subset of servers and R cannot compute

anything related to S’s polynomial.

The benefit of this type of protocol is that after S distributes their data, they

need not (and is not expected to) take any further part in the protocol. This

provides a high level of availability for R in that he/she is able to compute

his/her OPE at any given time, without waiting on S. This is further improved

when we consider that R need only contact a subset of servers; thus if some

servers are not available R may still compute their evaluation.

DOPE also has a requirement on the security of the sender and receiver in

that maximum security can only be achieved for one of these individuals. As

evidenced in [75] we require that γ1 + γ2 ≤ t where γ1 and γ2 are potential

server collusion sizes for both R and S respectively.

2. Three-Party OPE (TOPE) A TOPE protocol involves a single third party

who takes part in the protocol alongside S andR. This third party is mutually

trusted and provides information to both participants which allow them to

efficiently and securely compute an OPE.

As with the servers in DOPE, the third party should not be able to compute

any information related to S’s polynomial or R’s evaluation point. However,

unlike DOPE, it is expected that the third party will not actively try to cheat

by sharing (private) information with either S or R. We note that TOPE

protocols are far more efficient than DOPE protocols and often a lot simpler

and easier to understand.

In this work, we examine information theoretic OPE schemes that are secure in

the presence of a semi-honest (AKA honest but curious) adversary. This assumes

that all of the participants will follow the protocol exactly, but will try to learn as

much extra information as possible. In the case of DOPE this means that coalitions

74

of servers will attempt to compute some information, whilst in TOPE we assume

that no coalitions are formed, rather both R and S will individually attempt to

compute information related to both α and f(x) (whichever they themselves do not

directly know).

Within the literature, there currently exist very few information theoretic OPE

protocols. However, the usefulness of these protocols (as seen in section 5.1) is not

in doubt. TOPE has been used in both MPC and privacy preserving protocols,

whilst DOPE draws strong parallels to distributed oblivious transfer (DOT) which

is a well established and thoroughly researched field with many rich applications

and protocols.

Thus, it is our hope to further illuminate information theoretic OPE by reviewing

the current protocols and providing our own research in this field. In the following

sections we formally define DOPE and TOPE and investigate the protocols present

within the literature.

5.3 Distributed OPE

To the best of the author’s knowledge there exists only two DOPE protocols

within the literature, the ‘distributed oblivious function evaluation’ (DOFE) of Li

et al. [75] and the DOPE protocol reviewed in the previous Chapter [30]. Al-

though both DOPE protocols in the literature differ in their security requirements

and definitions, we can provide a blanket model that suffices to broadly explain

the requirements of both DOPE protocols. We will, of course, specify the specific

requirements of each DOPE protocol before examining them. Our broad model and

security requirements of a DOPE protocol are given in the preceding Chapter.

75

5.3.1 The DOFE Protocol

Li et al. [75] describe a set of three DOPE protocols, each with varying levels of

security and flexibility. For our purposes, we examine their second scheme, however

in section 5.3.3 we show that a sub-protocol for a DOT scheme shown in [25] can

be slightly altered to produce the first DOPE scheme described by Li et al. In the

DOPE protocol of Li et al. [75] the sender’s security is guaranteed against a coalition

composed of l−1 servers andR. Whilst the receiver’s privacy is guaranteed against a

subset of b−1 servers and S, such that b+l < t ≤ n where the security of bothR and

S is guaranteed against a coalition composed of t−1 or less servers. The full protocol

is given in Figure 5.1. This is a flexible scheme that can be easily altered to suit

a given environment. However, it is evident that increasing the security or privacy

threshold for S would result in a decrease of security for R and vice versa. Li et al.

show how to avoid this, achieving a threshold of b = l = t, unfortunately though

this increase in security comes with a cost complexity (as discussed in Chapter 4).

Besides the overall complexity of the scheme increasing, the security modifica-

tions also allow R to learn extra information about f(x) (see Chapter 4). Although

this information is not enough for R to compute anything in an isolated setting, it

does mean that this scheme may not be suitable for implementation as part of a

larger protocol.

The only other DOPE protocol present within the literature is the scheme devised

in Chapter 4. We note that this is a robust scheme in which R simply broadcasts

(publicly) some information to which a set of servers then respond. This means

that R does not necessarily need to pick the specific servers he communicates with,

rather the servers can either all respond or just have a minimum subset of required

servers respond.

76

Input: S has the polynomial f(x) = a0 + a1x+ · · ·+ akx
k and R the value α.

Output: R receives f(α) and S gets nothing.

Initialisation

1. S selects and broadcasts k + 1 random, distinct values: x0, x1, · · · , xk.

2. Using these values S privately computes y0, y1, · · · , yk such that yi = f(xi)

where i = 0, · · · k.

3. Next, S computes k + 1 random polynomials, f0(x), f1(x), · · · , fk(x) where

f0(0) = y0, f1(0) = y1 − y0, · · · , fk(0) = yk − y0 such that the degree of f0(x) is

at most t− 1 and the other k polynomials have degree at most l − 1.

4. S send to each server, sj the share Aj = (f0(j), · · · , fk(j)).

Evaluation

1. R computes the random values d1, · · · , dk such that they satisfy α = d1x1 +

· · ·+ dkxk. Where, for any value x, the value x denotes (1, x, x2, · · · , xk).

2. R then uses these values to compute a set of random polynomials,

Q1(x), · · · , Qk(x) of degree at most b− 1, where Qi(0) = di for i = 1, · · · , k.

3. R selects a subset of t servers denoted as ω. He then sends to each sj ∈ ω the

values Bj = (1, Q1(j), · · ·Qk(j)).

4. Each sj ∈ ω computes and sends to R the value R(j) = 〈Aj , Bj〉 i.e., the inner

(dot) product of the two vectors.

5. R computes f(α) by interpolating over the set of R(j) values he received to

compute the polynomial R(x). He takes R(0) as his evaluation.

Figure 5.1 : DOFE Protocol [75]

77

5.3.2 Our Proposed DOPE protocol

Whilst the security benefits of our previously described DOPE scheme are obvi-

ous, it is not without flaws. For instance, this protocol requires S to communicate

directly with R during the initialisation stage. Although we show how this case can

be fixed (by simply assigning shares of the required values to the servers, who can

then share it with R), the result is an increase in communication complexity.

Furthermore, and perhaps more alarmingly, the protocol requires (like many

previously published DOT protocols) that S not communicate with any of the servers

after the initialisation phase. It is easy to see that if this were to occur it would be

a trivial matter for S to compute the exact value of α.

Specifically, all it would take is one server revealing to S the value of εi. This

would allow S to compute α = i
√
εi + ri. Resulting in a complete loss of privacy for

R.

Unfortunately this predicament is an inherent problem present in all such schemes

that achieve the maximum level of security. As noted by Cheong et al. [25], achieving

this level of security in a DOT protocol also results in the same issue. To overcome

this problem within the field of DOT, the author’s of [25], developed a robust and

flexible DOT scheme that achieved what they described as the maximum security a

DOT scheme could possibly achieved. One in which the security issue highlighted

above does not exist.

In the next section we show that an interesting sub protocol used in their DOT

scheme can be modified to provide a secure DOPE protocol, with the flexible security

thresholds of the DOFE protocol. In fact, we show that this sub-protocol can be

adapted into the first DOPE protocol described in [75] by Li et al. with minimal

effort.

78

Input: S has the polynomial f(x) = a0 + a1x and R the value α.

Output: R receives f(α) and S gets nothing.

Initialisation

1. S computes two random polynomials, B0(x) and B1(x), such that B0(x) is of

degree at most t with B0(0) = a0 and B1(x) is of degree at most γ2 with B1(0) =

a1. He combines these two polynomials to compute the bivariate polynomial

Q(x, y) = B0(x) +B1(x)y.

2. Each server, sj (for j = 1, · · · , n) receives from S the values (B0(j), B1(j)).

Evaluation

1. R computes the random polynomial S(x), of degree at most γ1, where S(0) = α.

2. Each server, sj receives from R the value S(j).

3. Let Q(x, S(x)) = R(x), then a set of t + 1 or more servers (denoted by sj)

computes and sends to R the value R(j) = B0(j) +B1(j)S(j).

4. R interpolates over these values to compute R(x). Taking the value R(0) =

B0(0) +B1(0)α = f(α) as his desired evaluation.

Figure 5.2 : The DOLE Protocol given in [25]

5.3.3 Flexible DOPE from DOT

The security parameters of the DOT protocol devised by Cheong et al. [25] op-

erate in much the same fashion as the DOFE protocol, in that security is guaranteed

against two different thresholds. Put simply, R’s privacy is guaranteed against a

group consisting of γ1 servers and S, whilst S’s privacy is guaranteed against a set

of γ2 servers and R, where γ1 + γ2 < t + 1 ≤ n. Furthermore, a group of t or less

servers cannot compute anything relating to either S’s or R’s private information.

79

In this section we show how to adapt a sub protocol of their DOT scheme, in or-

der to produce a DOPE protocol with exactly the same highly desirable security

guarantees.

The core building block of this DOT scheme (the aforementioned sub-protocol,

given in Figure 5.2) can be viewed as a special case of a DOPE protocol, in which the

degree of S’s polynomial is 1. Such a scheme is commonly called an oblivious linear

evaluation (OLE), thus, in our case, the sub-protocol is essentially a distributed

OLE (DOLE).

To create a DOPE from this DOLE protocol we simply extend the protocol, sub-

stituting the bivariate polynomial, Q(x, y) with a multivariate polynomialQ(x, y1, · · · , yk).

The full DOPE protocol is given in Figure 5.3.

Interestingly enough, the resulting protocol is exactly equivalent to the first of

the three DOPE protocols given in [75] by Li et al. (as such, we point the reader to

[75], for a security proof of this protocol). In fact, we note that both of these schemes

(the DOT protocol of [25] and the DOPE protocol of [75]) actually utilise techniques

given in the seminal work of Naor and Pinkas [82] which first introduced DOT. This

result clearly shows the relationship between DOPE and DOT and establishes DOPE

as an interesting field in its own right.

In the next section we examine the existing TOPE protocols within the literature.

80

Input: S has the polynomial f(x) = a0 + a1x+ · · ·+ akx
k and R the value α.

Output: R receives f(α) and S gets nothing.

Initialisation

1. S computes k+ 1 random polynomials, B0(x), · · · , Bk(x), such that B0(x) is of

degree at most t with B0(0) = a0 and B1(x), · · · , Bk(x) are of degree at most

γ2 with Bi(0) = ai, for i = 1, · · · , k. As before, he combines these polynomials

to compute the Multivariate polynomial Q(x, y1, · · · , yk) = B0(x) + B1(x)y1 +

· · ·+Bk(x)yk.

2. Each server, sj (for j = 1, · · · , n) receives from S the values

(B0(j), B1(j), · · · , Bn(j)).

Evaluation

1. R computes the random polynomials S1(x), · · · , Sk(x), of degree at most γ1,

where Sj(0) = αj .

2. Each server, sj receives from R the values (S1(j), · · · , Sk(j)).

3. Let Q(x, S1(x), · · · , Sk(x)) = R(x), then a set of t+ 1 or more servers (denoted

by sj) computes and sends to R the value

R(j) = B0(j) +B1(j)S1(j) + · · ·+Bk(j)Sk(j)

4. R interpolates over these values to compute R(x). Taking the value R(0) =

B0(0) +B1(0)α = f(α) as his desired evaluation.

Figure 5.3 : Flexible DOPE Protocol from DOT [25]. Equivalent to the first DOPE

protocol given in [75].

5.4 Three-Party OPE

TOPE substitutes the n servers of DOPE for just one extra participant who

takes part in the protocol. As with the servers in DOPE, this third participant

81

should learn nothing relating to either f(x) or α, furthermore it is expected that

the third party not actively collaborate with either R or S.

The major benefit that a TOPE protocol has over a DOPE protocol is the

need for only one extra participant. This drastically cuts down on communication

complexity as there is no need to send/receive messages from a large set of servers.

The downside to TOPE, is of course, that there is a central point of failure. To

clarify, if the third party is compromised and/or corrupted in some way and freely

shares information with either S or R, then all security is lost. Another issue is that

of availability, the third party must actually be present throughout the protocol, if

there is no third party whom both participants are willing to trust then the OPE

cannot be computed. DOPE overcomes these issues by essentially spreading out

the function of the third party among the set of n servers, achieving security and

availability at a far higher cost to efficiency (namely, efficiency of communication).

Of the two TOPE protocols reviewed in this section, the first uses the third

participant as an active and ever present party who takes full part in the protocol,

whilst the second simply uses the third participant to provide some unrelated and

random information at the start of the protocol. For this reason we shall not present

an overall model of security and communication for TOPE, rather, the security

and communication requirements for each of these protocols is given as required.

However, we can provide a broad and informal definition that covers both TOPE

protocols reviewed here.

Definition 7. A TOPE protocol is an OPE protocol with an extra participant who

does not (illegally, i.e., in secret or against the protocol) collaborate with either S

or R. Security is maintained as per the requirements stated in definition 5, along

with the additional requirement that the extra participant cannot compute anything

relating to either f(x) or α.

82

5.4.1 Active Third-Party TOPE

The TOPE protocol given by Chang and Lu [23] requires an active third party

who takes full part in, and is present for the entire TOPE protocol. We call this third

party the mediator, denoted asM. There are three rounds of communication in this

protocol, in the first round R sends some information to the other participants, the

second round has S sending information and, lastlyM sends information to R who

then computes his evaluation. All computations are performed over a finite field F.

The full protocol is given in Figure 5.4.

Input: S has the polynomial f(x) = a0 + a1x+ · · ·+ akx
k and R the value α.

Output: R receives f(α) and S gets nothing.

TOPE Protocol

1. R sends to S a set of random values, r1, · · · rk ∈ Fk. He also sends to M the

values, α′1, · · · , α′k where α′i = α+ ri for i = 1, · · · , k.

2. S sends to R a set of random values, s0, · · · , sk ∈ Fk+1. Additionally, M gets

a set of k + 1 values, a′0, · · · , a′k from S. Where a′0 = a0 + s0 +
∑k

i=1 airi and

a′i = ai + si.

3. M sends to R the value y = a′0 +
∑k

i=1 a
′α′i. Finally, R computes f(α) =

y − (s0 +
∑k

i=1 a
′
isi).

Figure 5.4 : TOPE with Active Third Party [23]

The use of an actively involved third party allows for an efficient protocol, how-

ever, M has an integral role that is tied in with the entire protocol. As such, there

may be issues with both security and availability. To elaborate, ifM is not avaialble

for the entire protocol then the OPE cannot be computed. Furthermore, the fact

83

that M is present for the entire protocol may result in some security concerns. To

rectify these problems, Hanoaoka et al. [62] and Tonicelli et al. [100] developed

a TOPE protocol in which the third party does not receive communications from

either of the other two participants and only needs be present for the start of the

protocol.

5.4.2 Commodity based TOPE

In this section we look at what is known as the commodity based TOPE given in

[62, 100]. Commodity based cryptography was originally described by Beaver in [5]

and involves the participants ‘buying’ or being assigned some (essentially random)

information from a neutral third party at the start of (or before, i.e., ‘offline’) a

given protocol. We dub this third party the initialiser, denoted as I, and divide the

TOPE protocol into two phases:

1. Setup: In this phase the initialiser individually assigns some correlated

random information to both S and R.

2. Computation: Here, S and R securely and privately compute an OPE

using the correlated information assigned to them by I.

As with the previously depicted OPE protocols, security is maintained if, after

the protocol has been executed, R cannot compute any information relating to

f(x) (other than f(α)) and S cannot compute any information relating to α. All

computations are performed in the finite field Fq, where q > k is a prime number,

the protocol is given in Figure 5.5.

Hanoaka et al. and Tonicelli et al. prove that their TOPE is (for the conditions

that they have defined) optimal in terms of communication complexity and overall

efficiency. Their scheme is elegant in its simplicity and does away with the restric-

tions of the active third party TOPE given in [23]. Specifically, we note that the

84

Input: R has a value α and S the polynomial f(x) of degree at most k.

Output: R obtains f(α) and S gets nothing.

Setup I privately sends:

1. A random polynomial, S(x), of degree at most k to S.

2. A random value, d and the value g = S(d) to R.

Computation

1. R sends the value l = α− d to S.

2. S then computes and sends to R the polynomial V (x) = f(l + x) + S(x).

3. R computes f(α) = V (d)− g.

Figure 5.5 : Commodity Based TOPE [62, 100]

setup phase of the protocol can be done at any time, even before either S or R have

their respective privately held information (f(x) and α). Tonicelli et al. have also

rigorously proved the security of their scheme under the simulation based paradigm

and their work has been used as a building block in protocols for MPC [31] and

secure voting [90].

5.4.3 Extending TOPE

In this section we take the TOPE protocol shown above and extend its capa-

bilities further modifying the underlying scheme. Our modifications are relatively

simple and do not result in any dramatic changes to the efficiency of the protocol.

We demonstrate three modifications to the commodity based TOPE displayed in

the previous section:

1. Multivariate Polynomial Capabilities: Without any loss of security, we

85

extend the protocol to handle multivariate polynomials. Our modified scheme

is just as efficient as the original scheme.

2. Randomised Multi-Evaluation Capabilities: By simply having I send

extra information to S and R in the setup phase, we show how R can com-

pute not only his desired evaluation (f(α)), but also a random set of k − 1

extra evaluations. Our modification does not add any extra communication

or complexity to the computation phase.

3. Multi-Evaluation Capabilities: By relaxing the security constraints and

slightly adapting the above modified scheme, we show how to allow R to

compute a given set of k evaluations (that are not randomised).

TOPE With Multivariate Polynomial

Our first modification is to allow the commodity based TOPE protocol to handle

multivariate polynomials. In this case S has the multivariate polynomial f(x1, · · · , xh),

whilst R holds a range of values, α1, · · · , αh and wishes to learn the evaluation

of f(α1, · · · , αh). All computations are performed in the finite field Fq, where

q > max(h, k) is a prime number. The full multivariate protocol is given in Figure

5.6.

Evaluation The security and correctness of this extended protocol is an obvious

extension of the original protocol, for a full proof of this see [100]. It is easy to see

that our protocol is still very efficient, only adding a multiplicative factor h onto the

communication complexity of the original univariate protocol.

The probability of error forR, i.e., the chance that S correctly guesses α1, · · · , αh

(or d1, · · · , dh) is given as 1
qh

, as to do this S would have to correctly guess h

values over the finite field Fq. Although, S has a 1
q

chance to correctly guess the

evaluation value, as this requires only guessing one number. However, we note

86

Input: R has a set of values α1, · · · , αh and S the multivariate polynomial

f(x1, · · · , xh) of degree at most k in any variable.

Output: R obtains f(α1, · · · , αh) and S gets nothing.

Setup I privately sends:

1. A random multivariate polynomial, S(x1, · · · , xh), of degree at most k in all

variables, to S.

2. A set of random values, d1, · · · , dh and the value g = S(d1, · · · , dh) to R.

Computation

1. R sends the values l1, · · · , lh to S, where li = αi − di for i = 1, · · · , h.

2. S then computes and sends to R the polynomial:

V (x1, · · · , xh) = f(l1, x1, · · · , lh, xh) + S(x1, · · · , xh)

3. R computes:

f(α1, · · · , αh) = V (d1, · · · , dh)− g

Figure 5.6 : Commodity Based Multivariate TOPE

that security/privacy for R is reliant on S not being able to correctly compute R’s

privately held values, α1, · · · , αh. Thus the probability of error here is 1
qh

.

We note, however, that if this value is lowered to 1
q
, then we can achieve even

greater efficiency. To do this, we simply have I send one d value to R in the setup

phase of the protocol. In the computation phase of the protocol R utilises the same

d value as a mask for all of his α1, · · · , αh values. This modification results in a

more communication efficient protocol, at the cost security. The full extension to

the multivariate protocol is given in Figure 5.7.

87

Input: R has a set of values α1, · · · , αh and S the multivariate polynomial

f(x1, · · · , xh) of degree at most k in any variable.

Output: R obtains f(α1, · · · , αh) and S gets nothing.

Setup I privately sends:

1. A random multivariate polynomial, S(x1, · · · , xh), of degree at most k in all

variables, to S.

2. The values d and g = S(d, · · · , d) to R.

Computation

1. R sends the values l1, · · · , lh to S, where li = αi − d for i = 1, · · · , h.

2. S then computes and sends to R the polynomial:

V (x1, · · · , xh) = f(l1, x1, · · · , lh, xh) + S(x1, · · · , xh)

3. R computes:

f(α1, · · · , αh) = V (d, · · · , d)− g

Figure 5.7 : A More Efficient Commodity Based Multivariate TOPE

As discussed, the probability of error here is only 1
q

as all S has to do is correctly

guess d ∈ Fq to easily compute all α1, · · · , αh values.

TOPE With Randomised Multi-Evaluation

Our next modification allows R to compute not only his evaluation f(α), but

also a set of k − 1 extra (random) evaluations as well.

This modification is efficient and only effects the setup phase, allowing for a

computation phase that is just as efficient as the original unmodified protocol. The

benefit of this is evident when we consider that often-times in protocols such as

88

MPC, a lot of computation is delegated to the offline or setup phase in order to

make the actual computation phase (or ‘online’ phase) as efficient as possible. The

logic behind this choice being that the setup phase can be done at any time, well in

advance of when the actual computation is needed.

In order to compute the extra, random, evaluations we have I send to R a set

of extra values d1, · · · , dk−1 during the setup phase. The computation phase then

proceeds (from a communication point of view) exactly as before, with the only

change being some small, extra, computations performed privately by R. The full

protocol is given in Figure 5.8.

The main benefit of our protocol is that we are able to compute k evaluations

for the same communication complexity (in the computation phase) as the original

protocol. A naive approach to this would result in a multiplicative increase of k,

something our protocol manages to avoid by simply designating all extra communi-

cation to the setup phase.

Evaluation From S’s point of view the actual protocol is unchanged from the

original protocol. Thus it only remains to show that R cannot compute anything

extra from the multiple evaluation points he has received.

Theorem 11. The randomised multi-evaluation OPE protocol maintains privacy

for S.

Proof. The proof of this is quite simple and is a result of Shamir’s secret sharing

scheme [97].

At the end of the modified OPE protocol R will have obtained k evaluations of

a k degree polynomial: f(x) = a0 + a1x + · · · + akx
k. as such, R holds a system

composed of k+ 1 unknowns and k independent equations. In other words, R has k

shares of a Shamir polynomial of degree k. As per Shamir’s scheme, it is known that

89

Input: R has the value α and S the polynomial f(x) of degree k or more

Output: R obtains f(α) as well as k−1 random evaluations of S’s polynomial of the

form: f(β1), · · · , f(βk−1). As before, S gets nothing.

Setup I privately sends:

1. A random polynomial, S(x), of degree k or more to S.

2. A set of random values, d0, · · · , dk−1, and the values gi = S(di) to R, for

i = 0, · · · , k − 1.

Computation

1. R computes and sends to S the value l = α − d0. Privately, R also computes

k − 1 values, of the form βi = l + di, for i = 1, · · · , k − 1

2. S then computes and sends to R the polynomial V (x) = f(l + x) + S(x).

3. R computes his evaluation as: f(α) = V (d0)−g0. The k−1 random evaluations

are computed in much the same fashion: f(βi) = V (di)− gi.

Figure 5.8 : Commodity Based Randomised Multi-Evaluation OPE

k + 1 shares are needed to compute the polynomial. Therefore, R cannot compute

anything extra about S’s polynomial, other than what his evaluation points already

tell him.

The benefits of this protocol are evident when looking at the uses to which the

original protocol was put to. Specifically, the original OPE is used as a multiplication

protocol in MPC [31] and is also the backbone of a secure voting protocol [90]. Our

modifications would allow for increases in efficiency, for both of these purposes i.e.,

computing multiple multiplications simultaneously and/or evaluating multiple votes

simultaneously in each respective protocol.

90

TOPE With Multi-Evaluation

In this final extension to the commodity based TOPE protocol we show that

by lessening the original security requirements of the protocol, we can modify the

previously discussed randomised multi-evaluation scheme to allow R to actually

choose all evaluation points. To do this we modify the setup phase and allow R

to communicate with I. This modification does not actually lessen security in any

fashion, as I will still not be able to learn anything relating to either S’s or R’s

private information. Furthermore, this new protocol has the same communication

complexity as the randomised multi-evaluation protocol and we still do not require

I to be an active participant throughout the protocol (as in [23]) i.e., I is only

present for the setup phase.

To summarise our modification, we take the randomised multi-evaluation proto-

col and add an extra level of communication in the setup phase, whereby R sends

to I a specific set of d1, · · · , dk points to be evaluated by S(x). This allows R to

choose the evaluation points he requires, as opposed to them being random. The

full protocol is given in Figure 5.9.

As with the randomised protocol, the benefits of this scheme have applications

in both MPC and privacy preserving protocols. However, with this scheme there is

no need to use randomised evaluations, rather a set of predetermined evaluations

can be chosen, allowing for a for more useful and versatile protocol.

Evaluation From a security perspective this protocol is (for S and R) exactly

the same as the randomised protocol, in that neither R nor S can compute any

information they do not get directly from the protocol or already have. As the

protocol is exactly the same in terms of what is shared between S and R we can

rest assured that security is maintained for this case. When looking at the extra

91

Input: R has the values α1, · · · , αk and S the polynomial f(x) of degree k or more

Output: R obtains f(α1), · · · , f(αk). As before, S gets nothing.

Setup

1. I sends a random polynomial, S(x), of degree k or more to S.

2. R computes and sends to I the values d1, · · · , dk. Where di = l − αi for i =

1, · · · k and l is a random, private value chosen by R.

3. I sends to R the values g1, · · · , gk where gi = S(di).

Computation

1. R sends to S the value l.

2. S then computes and sends to R the polynomial V (x) = f(l − x) + S(x).

3. R computes his k evaluations as: f(αi) = V (di)− gi for i = 1, · · · , k

Figure 5.9 : Commodity Based TOPE with Multi-Evaluation Capabilities

information given to I byR it is easy to see that I cannot compute anything relating

to any of R’s evaluation points. This is because, each of the di values is essentially

random from I’s point of view, to correctly guess any αi the initialiser would have to

guess l ∈ Fq. This gives I a 1
q

chance of correctly computing any extra information,

the same probability as in the original scheme given by Tonicelli et al. [100], and

the same probability that S has of correctly guessing the evaluation points.

We note that performing k OPEs would result in an overall probability of 1
qk

,

however this comes at a far greater cost to communication.

92

5.5 Flaws in Bo et al. OPE Scheme

In this section we show that the OPE protocol devised by Bo et al. [15] is not

secure. The essential premise of this scheme (as per the author’s claims) is that it

achieves unconditional security with only two participants, R and S. However, as

we mentioned at the start of this Chapter, it has long been established that a two

party unconditionally secure protocol is impossible [28, 38]. To demonstrate this

fact we display Bo et al.’s protocol in Figure 5.10 and then discuss the flaws in their

proposed OPE.

The idea behind this protocol is to utilise a series of random values as masks, in

order to preserve the privacy of both S andR. However, after learning the evaluation

(f(α)) the receiver, R, is able to go back and actually compute the masks used by

S. This then allows R to break the protocol by computing f(x). The exact method

by which this is possible is given below in an example in which we set k = 1 (the

degree of S’s polynomial).

As stated, k = 1, so l = 1 as well. Assume that the protocol has been completed

and R has computed f(α). We now draw the reader’s attention to step 3 of the

protocol, in which R is assigned the following pieces of information:

1. D0 = Ha0.

2. D1 = Ha1∆11 (as a2 = 0).

where H, a0 and a1 are unknowns. Now, at the end of the protocol R also has

the equation f(α) = a0 + αa1, as before a0 and a1 are unknowns. Combining these

pieces of information gives the following system of equations:

D0 = Ha0

D1 = Ha1∆11

f(α) = a0 + a1α

93

Input: R has the values α and S the polynomial f(x) of degree k or more

Output: R obtains f(α) and S gets nothing.

Preliminaries: Let l =
⌊
k
2

⌋
+ 1 if k is odd and l = k

2 if k is even. All values are

drawn from the field Zq \ {0} where q is a large prime.

OPE Protocol

1. R privately selects the random values β1, β2, T1, T2 and r1, · · · , rl. He uses

these values to compute l values of the form r′1, · · · , r′l, such that r′j = T−1
2 rj for

j = 1, · · · , l.

2. R then sends to S the values ∆j = (∆j1 ,∆j2) where:

∆j1 = T1rjα
2j−1 + β1r

′
j

∆j2 = T1rjα
2j + β2r

′
j

3. S privately computes the random value H and sends to R the values D0, · · · , Dl

where D0 = Ha0 and Dj = Ha2j−1∆j1 +Ha2j∆j2 , where j = 1, · · · l and a2l = 0

if k is odd.

4. R computes M = T1T2D0 +
∑l

j=1Dj(r
′
j)
−1 and then sends to S the value

M1 = Mβ−1
1

5. S sends to R the value S1 = M1 −H
∑l

j=1 a2j−1.

6. Using this value, R sends to S the value M2 = S1β1β
−1
2 .

7. Following this, S sends to R the value S2 =

(
M2 −H

∑l
j=1 a2j

)
H−1

8. Finally, R computes f(α) = S2β2T
−1
1 T−1

2

Figure 5.10 : Flawed OPE protocol [15]

94

To solve this system, we multiply the third equation by H and substitute the first

two equations into this new third equation. Doing so gives, f(α)H = D0 + αD1.

Solving this gives the value of H = (D0 + αD1)(f(α))−1. Now that H is known we

can compute a0 and a1 with ease:

a0 = H−1D0

a1 = H−1∆−1
11
D1

As a result of this R is able to compute the entirety of S’s polynomial f(x), thereby

resulting in a flawed scheme that does not ensure either security or privacy. We note

that our attack will also work with all possible cases, however k = 1 was used in

order to easily demonstrate the flaws in this protocol.

5.6 Conclusion

In this Chapter we critically reviewed the exiting information theoretic OPE

protocols. Additionally we made several key contributions to the field of information

theoretic OPE:

1. We adapted a DOT protocol into a flexible DOPE protocol that is equivalent

to an existing DOPE protocol presented in [75], displaying the strong link

between the relatively new field of DOPE and the existing and well researched

field of DOT.

2. We created 3 extensions of a well known TOPE protocol, resulting in the

following improvements:

(a) Multivariate capabilities.

(b) Randomised multi-evaluation capabilities.

(c) Multi-evaluation capabilities with relaxed security.

3. Demonstration of the flaws inherent in the OPE given by Bo et al. [15].

95

OPE is a relatively new field which is continuing to grow, with new results and

applications appearing frequently. As such, there is still many more opportunities

for research within this field, particularly in terms of the myriad of applications

to which this protocol can be put towards. We demonstrate this in the next two

Chapters, by constructing a robust MPC protocol on the back of the commodity

based TOPE protocol reviewed here.

96

Chapter 6

Efficient Information Theoretic Multi-Party

Computation from Oblivious Linear Evaluation

6.1 Introduction

In terms of efficiency and communication complexity, multiplication in MPC

has always been a large bottleneck. The typical method employed by most current

protocols has been to utilise Beaver’s method [4], which relies on some precomputed

information. In this Chapter we introduce an OLE-based MPC protocol which also

relies on some precomputed information.

For a specific family of functions which consist of a sum of monomials, our

proposed protocol has a more efficient communication complexity than Beaver’s

protocol by a multiplicative factor of t. Furthermore, to compute a share to a

multiplication, a participant in our protocol need only communicate with one other

participant; unlike Beaver’s protocol which requires a participant to contact at least

t other participants.

This result is achieved by utilising a special case of OPE, wherein f(x) is of degree

at most one, known as oblivious linear evaluation (OLE). Specifically, we utilise OLE

for the purpose of performing multiplication in multi-party computation (MPC).

To refresh the reader, MPC allows a set of n mutually distrustful participants

to compute any given function across their private inputs, without revealing any

information relating to their private inputs. We focus on the threshold setting,

where an MPC protocol is considered secure if a set of t or less participants, where

t < n, cannot gain any information relating to another participant’s private input,

97

other than what the output of the protocol gives them. More formally:

Definition 8. A (t, n) threshold MPC protocol allows a set of n participants, P1, · · · , Pn

with respective private inputs, x1, · · · , xn to compute a given function, f(x1, · · · , xn).

Privacy is maintained if, after completion of the protocol, an adversary control-

ling any subset of up to t participants (t < n), cannot learn more information (about

other participant’s private inputs) than what could be derived from each participant’s

individual, private input and the output of the protocol.

Traditionally, the adversary is classified as either passive or malicious. Partici-

pants under control of a passive adversary may share information with one another

but do not deviate from the MPC protocol. Participants under control of a malicious

adversary also share information but may act arbitrarily, i.e., they do not necessarily

follow the protocol. Another aspect of the adversary considered in an MPC protocol

is the resources it has at its command. Specifically, an unconditionally (informa-

tion theoretic) secure MPC protocol is secure against a computationally unbounded

adversary. Whilst a conditionally (computationally) secure MPC protocol is secure

against a computationally bounded adversary.

This Chapter focuses on building a (t, n) threshold MPC scheme, secure against

a passive (semi-honest) adversary. We show the construction of an efficient MPC

scheme based on OLE. In the next section we give some background and motivation

on this topic, following this we then discuss our contribution in depth.

6.1.1 Background

MPC is a powerful tool that can be used to solve practically any given problem

involving a set of distrustful parties. In classical, unconditionally secure protocols

[7, 24, 94] each participant, Pi (i = 1, · · · , n) shares their private input, xi by

utilising Shamir’s secret sharing scheme [97] to distribute shares to all participants.

98

To compute a given function, f(x1, · · · , xn), participants need simply perform all

computations on the shares of each input value. For instance, if a participant wants

to compute a share relating to the sum of two distributed input values he simply

adds his two corresponding shares together. At the end of the protocol, a set of t+1

or more participants then pool their information to reconstruct the output.

Due to the (+, +)-homomorphic nature of Shamir’s scheme [8] participants can

easily compute any linear operation by privately computing on their shares. How-

ever, since the inception of MPC [60] the largest limiting factor has been the high

amount of resources required to compute a multiplication. Specifically, multiplying

the shares associated with two secrets does actually result in shares of a polynomial

with the correct free term (i.e., the desired multiplication). However, the issue is

that the resulting polynomial will be of degree 2t, thereby making it impossible for

t+ 1 participants to reconstruct the results of the multiplication. As a direct result

of this, the very first MPC protocols [7] tended to rely upon complex, multi-round

protocols that essentially reduces the degree of the multiplication polynomial.

Perhaps the most widely known and efficient method of computing a multiplica-

tion in an MPC protocol is known as Beaver’s method (A.K.A Beaver’s triples) [4].

For completeness we review this protocol below.

Beaver’s Method

Beaver’s method [4] for computing a multiplication in MPC relies on some pre-

shared information known as a triple. Specifically, a triple is composed of three

values, a, b, and c where a · b = c and a, b, c ∈ Fq such that q > n and q is a

prime number. Each participant has a share of these triples, such that participant

Pk (k = 1, · · · , n) receives the shares ak, bk and ck relating to (respectively) a, b,

and c.

Suppose we have participants Pi with input xi and Pj with input xj for i, j =

99

1, · · · , n and i 6= j. To compute shares of the multiplication γ = xi ·xj we first have

both Pi and Pj distribute shares of their private values among the other participants,

where Pk gets xik relating to xi and xjk relating to xj. To compute a share, γk relating

to the product γ, a set of at least t+ 1 participants execute the following steps:

1. Each participant, Pk, computes zk = xik − ak and vk = xjk − bk, where zk is a

share of the value z = xi − a and vk is a share of v = xj − b.

2. A set of at least t + 1 participants broadcast their shares, zk and vk amongst

themselves.

3. Participants publicly reconstruct the values of z and v using the shares zk and

vk, respectively.

4. Pk computes his share of γ as γk = zv + zbk + vak + ck.

5. t+ 1 or more participants can reconstruct γ = xi · xj by pooling their shares.

In order to construct z and v a set of t+ 1 participants is required to cooperate.

If all participants in this set wish to compute these values (and consequently, the

multiplication) then each participant must both receive and send t messages. Since

each message would consist of a constant amount of elements from the field Fq (i.e.,

the values zk and vk) the communication complexity of this protocol can be given

as O(t2 log q).

Many recent MPC protocols utilise a resource intensive computationally secure

offline phase to compute these multiplication triples. The actual MPC is then carried

out in a faster information theoretic online phase. For our purposes, we focus solely

on the information theoretic online phase. It suffices to assume that participants

gain the shares of the triples via an external party known as an initialiser, who

(after computing and distributing the shares of the triples) does not take part in

100

the actual MPC protocol. In the next section we review the OLE based two-party

protocol given by Döttling et al. [53].

TinyOLE

Recently Döttling et al. [53] proposed a two-party protocol (n = 2) in which

the two participants, P1 and P2 use OLE to compute shares to a multiplication.

Specifically, they use OLE to compute multiplication triples in an offline phase.

Their scheme utilises a simple additive secret sharing scheme wherein a given value,

a (for example), is represented as a = a1 + a2, across a finite field F; where P2 has

the share a2 and P1 gets a1. Addition in their scheme consists of simply adding

shares together. Multiplication is achieved by utilising OLE in a black-box fashion.

To compute a multiplication of two distributed (and not necessarily known)

values, a and b, they rely on the fact that: ab = a1b1 + a1b2 + a2b1 + a2b2. To

compute the “troublesome” terms of the form c = a1b2 they utilise a black-box

OLE. Essentially, P1 acts as a sender and submits the polynomial f(x) = a1x − c1

where c1 is a randomly chosen value. The second participant, P2 acts as receiver

and submits α = b2. Both participants send their values to a black-box OLE, with

P2 receiving back f(α) = a1b2 − c1. If we set c2 = f(α) then each participant now

holds a share of c as c = c1 + c2. To compute shares to the entire multiplication it

is easy to see that at least 2 OLEs are needed.

Döttling et al. specifically use this method in a computationally secure offline

phase to compute random multiplication triples, where the values of a and b are not

actually known to either participant. Our proposed scheme differs to theirs in that

we wish to utilise OLE in an information theoretic, online phase to compute the

multiplication of known input values for a given MPC function.

101

6.1.2 Our Contribution

In this section we summarise our proposed MPC scheme which utilises OLE to

compute shares to a given multiplication. In contrast to the methods discussed

above our protocol obtains the following desirable properties:

1. Unlike Beaver’s scheme [4] our proposed protocol only requires communication

between two participants to compute a given share to a multiplication i.e., a

participant may compute his share without the assistance of t other partici-

pants. We achieve this result by having one designated participant who acts

as a sender in an OLE. The other participants need simply privately compute

an OLE with this sender participant to compute a share to a multiplication.

As a result of this, the communication complexity of our protocol is O(t log q),

which is more efficient than Beaver’s (at O(t2 log q)) by a multiplicative factor

of t.

2. We do not rely on a black-box method of OLE and instead provide a specific

construction. Our OLE multiplication scheme is based on the information

theoretic protocol given in [62, 100]. This scheme, like Beaver’s scheme, relies

on some precomputed information which can be produced via an offline phase

or an initialiser. Since we wish to focus solely on the information theoretic

OLE-based MPC scheme itself we will assume that the information is provided

via an initialiser.

3. Our scheme only utilises one OLE per participant to compute a multiplication.

In a two party protocol we would only need one OLE. So, for an individual

participant to compute his share (in either a multi-party or two-party protocol)

the complexity cost is just O(log q).

4. Lastly, unlike the TinyOLE scheme [53], our scheme is scalable, in that it

102

extends to the multi-party case with n participants. In fact, computing n

shares (one for each participant) to a single multiplication requires only n− 1

OLEs, one for each individual participant to compute his share. We note that

utilising all n participants is not actually necessary. We only really require a

set of t+1 participants, enough to compute the output of a given multiplication

at the end of the protocol.

As noted, there are restrictions to the usefulness of our protocol, namely that it

is only efficient for specific types of functions which are composed of a sum of

monomials. This is explored further in Chapter 7, Section 7.6.

6.1.3 Outline

The rest of the Chapter is organised as follows. In section 6.2 we go over some of

the sub protocols and tools used in our proposed MPC protocol. Section 6.3 gives

a high level overview of our protocol as well as a model for security. The actual

construction for our protocol is given in section 6.4, along with an evaluation and

proof of correctness and security.

6.2 Preliminaries

The building blocks of our protocol are Shamir’s secret sharing scheme, and the

previously dubbed ‘commodity based TOPE’ protocol given by Hanaoka et al. in

[62]. Since these protocols are extensively discussed in previous Chapters we have

neglected to include them again here. For reference, however, we have included a

description of Hanaoka et al.’s OPE scheme in Figure 6.1.

103

Input: R has a value α and S the polynomial f(x) of degree at most t.

Output: R obtains f(α) and S gets nothing.

Setup The initialiser privately sends:

1. A random polynomial, S(x), of degree at most t to S.

2. A random value, d and the value g = S(d) to R.

Computation

1. R sends the value l = α− d to S.

2. S then computes and sends to R the polynomial V (x) = f(l + x) + S(x).

3. R computes f(α) = V (d)− g.

Figure 6.1 : Information Theoretic OPE [62, 100]

6.3 Model

This section presents a high level overview of our protocol and a set of criteria

for evaluating the security of our scheme. We use the traditional setting of MPC

protocols. That is, each party Pj (1 ≤ j ≤ n) distributes its private input, xj

amongst all participants, using a Shamir (t, n) threshold scheme. Linear functions

can be computed by each participant privately. In order to perform multiplication,

however, we must utilise OLE.

6.3.1 Overview

Suppose we have a set of n participants who wish to compute shares to the value

γ = xi ·xj, where xi and xj are the respective private input values of participants Pi

and Pj, for 1 ≤ i, j ≤ n and i 6= j. Further suppose, that Pj utilises the polynomial

fj(x) to share xj among all participants (via Shamir’s secret sharing scheme), such

104

that a given participant Pk (k = 1, · · · , n) receives the share xjk = fj(k) of xj.

A simple method for computing shares of γ is to have each participant, Pk,

simply send his share, xjk , to Pi who can then send back the value γk = xixjk . Due

to the (+, +)-homomorphic nature of Shamir’s secret sharing scheme the value γk

is a share corresponding to the polynomial Γ(x) = xifj(x) with free term xi · xj.

The obvious problem with this simple protocol is that neither Pi’s nor Pj’s privacy

is maintained.

To keep Pi’s input, xi, private we can have Pi introduce a random, private

masking polynomial, hi(x), of degree at most t, with free term hi(0) = 0. Now,

when he receives a given share, xjk , we require Pi to send back γk = xixjk + hi(k).

Each Pk now holds shares to the polynomial Γ(x) = xifj(x) + hi(x). Intrinsically

we can see that, due to Shamir’s secret sharing scheme, the protocol is now t-

private with respect to Pi, as a set of t participants with t shares cannot compute

any information relating to the effectively random polynomial Γ(x). It remains to

ensure the privacy of Pj.

Surprisingly, ensuring that Pj’s privacy is maintained is actually quite simple.

Rather than having each Pk simply hand his share to Pi we instead have Pk and Pi

utilise an OLE protocol, where Pk acts as the receiver and Pi as the sender. First

Pi computes two polynomials, fi(x) = xi · x and hi(x) (the masking polynomial,

as before). Each Pk (1 ≤ k ≤ n) then acts as the receiver and executes an OPE

protocol with Pi (who acts as the sender) to privately evaluate Pi’s polynomial, fi(x)

at the point xjk , as before Pi adds the masking polynomial to his computation.

Since the OLE protocol does not allow Pi to learn the evaluation point then

the protocol can now be considered t-private for both Pi and Pj. Specifically, Pi’s

privacy is maintained via the masking polynomial and Pj’s privacy is maintained

via Shamir’s secret sharing scheme and the OLE protocol. An overview of this is

105

Figure 6.2 : Overview of the protocol

given in Figure 6.2. Note that Pi will also use his share from xj and compute his

own share of γ = xi ·xj (of course, there is no need to perform OLE, as he plays the

role of the sender and receiver at the same time).

6.3.2 Security and Correctness

In order to prove the security and correctness of our proposed scheme we will

evaluate it against the following criteria specified below:

1. Correctness – Upon completion of the protocol each participant, Pk holds a

share, γk of the polynomial Γ(x), of degree at most t with free term Γ(0) =

xi · xj.

2. Privacy – A set of t or less participants, not including either Pi or Pj, cannot

reduce their uncertainty of xi or xj.

3. Privacy with respect to Pi – A set of t or less participants, including Pj,

cannot reduce their uncertainty of xi.

4. Privacy with respect to Pj – A set of t or less participants, including Pi,

cannot reduce their uncertainty of xj.

We note that the last three criterion presented here simply encapsulate the notion

of privacy given in definition 8.

106

6.4 Proposed OLE-Based MPC Protocol

Similar to the OPE protocol given in Figure 6.1, our proposed multiplication

protocol consists of two phases:

1. The Setup Phase: Where the initialiser privately sends some (essentially

random) information to each participant involved in the protocol.

2. The Computation Phase: Where participants are able to compute shares

to the multiplication.

Where our scheme differs to the original OPE, however, is that we utilise a new

masking polynomial (hi(x)) and we limit the degree of the receivers polynomial to

a maximum value of 1 (i.e., an OLE scheme instead of an OPE scheme).

As per section 6.3.1 suppose we have a set of n participants P1, · · · , Pn, with

respective private inputs x1, · · · , xn, who wish to compute shares of the value γ =

xi × xj where i, j ∈ [1, n] and i 6= j. Participant Pj first privately distributes shares

for xj amongst all participants, using the polynomial fj(x), such that Pk (1 ≤ k ≤ n)

gets the share xjk = fj(k). To compute a share γk, of γ each Pk cooperates with Pi

to execute our modified OLE protocol, with Pk essentially acting as the receiver and

Pi acting as the sender for each Pk. Note that all computations are performed in

the field Fq where q is a prime number such that q > n. The full protocol is given in

the OLEMult protocol presented in Figure 6.3. We note that the exchange between

Pk and Pi can actually just be viewed as one OLE if we set fi,k(x) = xi · x+ hi(k),

it is only for clarity of purpose that we delineate h(x) as a masking polynomial.

In order to compute a share, Pk and Pi exchange exactly 3 field elements (l and

V (x)). This gives a communication complexity of O(log q). Therefore, the overall

communication complexity, required for all of the n participants to compute his

share can be given as O(n log q). However, since the protocol is based on Shamir’s

107

Input: Pi has xi and Pk has the share xjk , of xj . Output: Pk obtains the share γk, of Γ(x) where

Γ(0) = xi · xj .
Setup The initialiser privately sends:

1. A set of n− 1 random polynomials, Sik (x), of degree at most 1 to Pi where k = 1, · · · , n and k 6= i.

2. A random value, dk and the value gk = Sik (dk) to every participant Pk.

Computation Pi privately computes:

• A masking polynomial, hi(x) of degree at most t with hi(0) = 0.

• The multiplication polynomial, fi(x) = xi · x.

Each Pk then privately executes the following steps with Pi:

1. Pk sends the value lk = xjk − dk to Pi.

2. Pi then computes and sends to Pk the polynomial Vk(x) which is computed as:

Vk(x) = hi(k) + fi(x+ lk) + Sik (x)

3. Pk computes his share of γ as γk = Vk(dk)− gk.

Figure 6.3 : OLEMult Protocol - An information theoretic, OLE-based multiplica-

tion protocol for MPC

(t, n) secret sharing scheme [97] we actually only require t+ 1 participants to ensure

the output can be constructed. This gives a communication complexity of O(t log q).

6.4.1 Evaluation

In this section we evaluate the proposed protocol against the set of security

criteria given in section 6.3.2. We note that all four of these criterion evaluate

the specific multiplication protocol and not the actual MPC itself. That is, we

evaluate the multiplication protocol only and assume that participants have not yet

reconstructed the actual output of the MPC.

108

Correctness At the end of our protocol each participant, Pk, will now have a

share of the polynomial: Γ(x) = hi(x) + xifj(x). Since the free term of hi(x) is

equal to zero, we can say that Γ(0) = xifj(0). Now, fj(x) has the free term xj and

both hi(x) and fj(x) are of degree at most t. As a result of this we can conclude

that correctness is achieved, as each Pk has a share to a polynomial, Γ(x), of degree

at most t, with free term equal to xi · xj.

Privacy

Theorem 12. A set of t participants, not including Pi or Pj, cannot compute any

information relating to xi or xj.

In order to prove this we must first show that the modified OLE protocol is secure.

Following this, we need to prove that a set of t shares relating to the multiplication

reveals no information.

Proof. Suppose that a given participant, Pk executes the multiplication protocol

with Pi. After sending lk to Pi he receivers the polynomial Vk(x) = hi(k) + fi(x +

lk) + Sik(x) which we can simplify as Vk(x) = vk + zkx. Let Sik(x) = κk + ωkx and

recall that fi(x) = xi · x, then we can rewrite the equation as V (x) = hi(k) + xilk +

κk(xi + ωk)x. This gives Pk the following information:

vk = hi(k) + xilk + κk

zk = xi + ωk

Since the values ωk and κk (as well as the coefficients of hi(x)) are chosen at random,

Pk cannot gain any information from the above equations. The next step in the

protocol is for Pk to compute γk = V (dk) − gk, which can be written as γk =

hi(k) + xixij . Individually, this gives no information to Pk as he does not know the

value of either hi(k) or xi, it remains to be seen if a coalition of participants can

compute any information.

109

Without loss of generality suppose that the first set of t participants, P1, · · · , Pt

pool their information together. Let hi(x) = m1x + m2x
2 + · · · + mtx

t, then the

coalition can compute the following system:

γ1 = xi · xi1 +m1 +m2 + · · ·+mt

γ2 = xi · xi2 + 2m1 + 4m2 + · · ·+ 2tmt

...

γt = xi · xit + tm1 + t2m2 + · · ·+ ttmt

Due to the perfectness of of Shamir’s secret sharing scheme [36, 97] the above

system does not reveal any information to the participants as they effectively have

a set of t shares relating to a degree t polynomial. This becomes even more evident

when we take into account that xik = fj(k) meaning that each Pk has a share of the

polynomial Γ = xifj(x) + hi(x).

The end result being that a coalition of t participants cannot reduce their un-

certainty of xi. The same is also true for xj, as collectively the coalition only has t

shares of fj(x).

Privacy with respect to Pi

Theorem 13. A set of t participants, including Pj, cannot compute any information

relating to xi.

Proof. The proof of this is similar to the proof of Theorem 12 along with some

extra information. Namely, we now assume that the coalition of participants has

the values of both fj(x) and, consequently xj. The first, obvious ramification of this

is that the coalition now know the shares of every other participant relating to xj.

This actually gives them no advantage, in regards to the OLE, as they do not know

110

(and cannot compute) the values given to the other participants by the initialiser

(namely dk and gk). We therefore only need to prove that knowing fj(x) reveals no

information relating to xi.

As before, at the end of the protocol each participant has a share to the polyno-

mial Γ(x) = xifj(x) + hi(x). It is easy to see that if the coalition can compute Γ(x)

or even hi(x) then they can easily compute xi. However, the coalition do not hold

direct shares to hi(x), so even knowing hi(0) = 0 gives them nothing. Furthermore,

to compute any information relating to Γ(x) would require the coalition to compute

a solution to the system given in the proof of Theorem 12.

Computing a solution to this system is analogous to solving a system of equations

composed of t + 1 unknowns (xi and the coefficients of hi(x)) and t equations. We

can therefore conclude that a set of participants, including Pj cannot reduce their

uncertainty of xi.

Privacy with respect to Pj

Theorem 14. A set of t participants, including Pi, cannot compute any information

relating to xj.

Proof. In the proof of Theorem 12 it was shown that the modified OLE is se-

cure, therefore to prove the above Theorem we need to show that a coalition

of t participants, including Pi, with t shares relating to Γ(x) = xifj(x) + hi(x)

and t shares of fj(x) cannot compute any information relating to xj. First, let

fj(x) = xj +W1x+ · · ·+Wtx
t and assume, as before, that a coalition composed of

the first t participants (which includes Pi) pool their knowledge. They can construct

the following system from their shares of Γ(x):

111

γ1 = xi · (xj +W1 + · · ·+Wt) + hi(1)

γ2 = xi · (xj + 2W1 + · · ·+ 2tWt) + hi(2)

...

γt = xi · (xj + tW1 + · · ·+ ttWt) + hi(t)

From the shares of fj(x) we get:

xj1 = xj +W1 + · · ·+Wt

xj2 = xj + 2W1 + · · ·+ 2tWt

...

xjt = xj + tW1 + · · ·+ ttWt

It is easy to see that the two systems are actually linearly dependent. Since the values

of xi and hi(x) are known to the coalition, this results in a system composed of t+1

unknowns (the coefficients of fj(x)) and only t linearly independent equations. The

net result of this is that each value of xj is, from the point of view of the coalition,

equally likely. Meaning that they cannot compute any information relating to xj.

112

Chapter 7

OLE-Based MPC Secure Against a Malicious

Adversary

7.1 Introduction

In this Chapter, we take the OLE-based MPC protocol devised in the previous

section and extend upon it, to achieve security against up to n − 1 malicious ad-

versaries. Our modifications result in only a small, constant increase (specifically, a

multiplicative factor of 2) in the communication complexity of the original scheme;

thereby maintaining an efficient communication complexity of O(n log q), where q is

the characteristic of the finite field computations are performed in. We also take a

deeper look at the current literature, particularly focussing on similar MPC models

in which participants are assigned some correlated information before the actual

MPC protocol.

Many practical MPC protocols have been presented within the literature (e.g.,

[48]). Most (if not all) of these protocols have overcome the prohibitive communica-

tion requirements of the early results by utilising a preprocessing phase that takes

place before the actual MPC itself. This paradigm was first discussed by Beaver

[4], and was known as commodity-based cryptography. More recently, Ishai et al.

[68] generalised Beaver’s model as the “correlated randomness” model. The basic

premise involves splitting the MPC up into two phases, summarised below:

1. Offline/Preprocessing Phase: In this phase participants collectively com-

pute or are assigned some correlated, random information (i.e., not related to

the MPC or any participant’s inputs) which is to be used later in the online

113

phase. In the commodity-based model of Beaver, this information is known as

a commodity, and participants purchase or are assigned this information by a

neutral third party.

2. Online Phase: The online phase is where the actual MPC is computed. This

is done in an efficient manner using information theoretic primitives. The

reason that this can be done so efficiently is due to the information computed

in the preprocessing phase.

Generally, the correlated randomness computed in the preprocessing phase allows

participants to efficiently compute multiplications in the online phase. This is be-

cause, in typical MPC, computing multiplications is an expensive operation. The

reason being that in an MPC protocol each participant utilises a secret sharing

scheme [97] to securely distribute shares of their input value among the other par-

ticipants. Participants can then collectively carry out any computations on their

assigned shares. Computing linear operations is both efficient and private (i.e., no

need for communication). However, this is not the case for multiplication, which

often requires a prohibitive amount of communication among participants. So, to

avoid this bottleneck the bulk of the computation can be designated to the prepro-

cessing phase.

7.1.1 Background

The MPC scheme described in Chapter 6 achieves a communication complexity

of O(n log q), where q is the characteristic of a finite field, Fq in which computa-

tions are performed in. The protocol focuses on the online phase, abstracting the

preprocessing step away by assuming the presence of a mutually trusted third party

(the initialiser) who distributes correlated randomness among participants. This

assumption is prevalent throughout the field of MPC in the correlated randomness

model as it is both a practical assumption that mirrors the real-world (e.g., vendors

114

selling ‘commodities’ via the internet [5]) and it simplifies research considerably, al-

lowing for results that focus on improving efficiency and communication complexity

in the online phase. Additionally, we note that the initialiser can always be replaced

by a preprocessing phase in which participants compute the correlated randomness

themselves, as is the case in [48, 47, 72, 79, 73].

Our original MPC protocol is extremely efficient for a particular type of function

that contains minimal multiplications on ‘nested additions’. Specifically, functions

with minimal components of the form xa(xb +xc). This result is due to a restriction

which requires participants to firstly compute all multiplications, before any linear

operations can be performed. As such, in the example specified, participants would

have to compute two multiplications (xaxb and xaxc) rather then just the one, as

would be the case in a variety of other MPC protocols. Furthermore, this protocol

can only be performed by participants who directly hold their private information,

i.e., the actual computation must be performed by the actual parties themselves,

rather than designating the MPC among a set of third parties via secret sharing or

some other such mechanism.

Nevertheless, even with these restrictions this result is still relevant and practical

for functions without multiplication on nested addition. A concrete example of

functions that take this form can be drawn from the field of machine learning.

Protocols used in this field, such as linear regression can often be boiled down to

simple linear algebra operations, such as computing the inner product and matrix

multiplication, both of which require no nested multiplication and can therefore be

computed efficiently by their protocol.

The backbone of this efficient MPC scheme is, of course, the oblivious linear

evaluation (OLE) protocol which is based on [62]. The OLE protocol allows for

security against a semi-honest adversary. To reiterate what was stated in Chapter

115

1, a stronger adversary, in which corrupted participants are able to deviate from

the protocol (i.e., submitting arbitrary values, lying etc.), is known as a malicious

adversary.

7.1.2 Contribution

In this work we build upon the previously presented OLE based MPC proto-

col and provide security against a malicious adversary. Specifically, we provide a

mechanism that allows participants to check the validity of the output, letting an

honest party detect foul play with high probability. As with the original proto-

col, our modified MPC scheme operates in a simple finite field of Fq, allowing for

the evaluation of arithmetic functions, similarly, our adapted protocol also obtains

information theoretic security; meaning that we make no assumptions about the

computational power of the adversary (i.e., an ‘unbound’ adversary with unlimited

computational power).

Our result achieves the same communication efficiency of the original proto-

col, allowing participants to privately evaluate a multiplication with communication

complexity O(n log q). Furthermore, by utilising correlated randomness (as per the

original semi-honest scheme) we are able to achieve security against a majority of

n−1 participants. In the next section we contrast our result against similar protocols

within the correlated randomness field.

7.1.3 Comparison to Previous Results

An abundance of research has been carried out on maliciously secure MPC with

a preprocessing phase (e.g., [9, 48, 47, 72, 79, 73]), however most of these protocols

make use of computational assumptions in the preprocessing phase and/or make use

of black-box style functionalities or commitment schemes in the online phase that,

in turn, rely on or cannot be realised efficiently without computational assumptions.

116

As such, whilst these protocols make use of efficient information theoretic primi-

tives, they do not, in the strictest sense, achieve information theoretic security. The

bulk of the work in the correlated randomness model that does achieve information

theoretic security against a malicious adversary can be divided into four categories,

commodity-based MPC, boolean circuit MPC, privacy preserving protocols, and

Beaver-based protocols.

Commodity-based MPC Similar, yet disparate to the framework we utilise,

is the notion of dividing the job of the initialiser among a set of non-cooperating

“commodity” servers who may or may not be corrupt. This model protects against

the case in which the initialiser is compromised and/or produces untrustworthy data.

However, a necessary side-effect of this is a much higher communication com-

plexity in the pre-processing phase, when each participant must contact multiple

servers to generate their required information. The work of [46] and [98] considers

the two party and n-party cases respectively.

Boolean Circuit MPC There are two general methods by which a function

is represented and computed via MPC, as a boolean circuit, or as an arithmetic

circuit over a finite field. Whilst boolean circuit based MPC is more efficient for

certain types of functions, arithmetic/finite field based MPC tends to generalise for

arbitrary functions better [26]. In the general field of MPC we note that the majority

of work tends to lean towards arithmetic based MPC. However, to the best of the

author’s knowledge, in the correlated randomness model with a malicious adversary

(in particular, purely information theoretic schemes that utilise an initialiser) there

seems to have been a greater focus on boolean circuit based MPC protocols, with

minimal, if any work on arithmetic circuits.

Blier et al. [12] proposed an interesting protocol that considers the case where

117

the initialiser can supply incorrect information, constructing a boolean circuit based

MPC protocol that can tolerate an initialiser sending misleading information to par-

ticipants. Damg̊ard et al. [49] presented a construction that uses a trusted initialiser

to efficiently compute an arbitrary boolean circuit, even with a dishonest/corrupted

majority of participants (up to n−1). Finally, the ground-breaking work conducted

by Couteau [37] demonstrates that both arithmetic and boolean circuits can be

evaluated with communication complexity sublinear to the size of the actual cir-

cuit/function itself. Couteau’s protocol works on specific types of “layered” circuits

and achieves malicious security for boolean circuits, but only semi-honest security

for arithmetic based MPC.

Although these results are both efficient and secure, arithmetic based MPC in

this model is a desirable outcome due to the fact that “unlike Boolean circuits,

arithmetic circuits allow natural computations on integers to be expressed easily

and efficiently” [72].

Privacy Preserving Protocols We differentiate privacy preserving protocols

(PPP) from MPC protocols by delineating PPPs as protocols in which only a spe-

cific function is computed. There are many such protocols in this field and we detail

a few here that utilise an initialiser (i.e., commodity-based, correlated randomness,

etc.).

Works such as [54] utilise a trusted initialiser to compute the inner product

of two private vectors. Whilst in [32] a matrix multiplication scheme based on

correlated randomness serves as the backbone for an efficient privacy observing linear

regression protocol. Of a similar note is the work conducted in [51] which produces

two party, machine learning classification protocols. Many more such works exist in

the literature, particularly in the semi-honest setting and whilst all such works tend

to be extremely efficient, they are only efficient for specific tasks and thus, cannot

118

be generalised to any given function like an MPC protocol.

Beaver’s Triples As mentioned previously, to the best of the author’s knowl-

edge, the vast majority of arithmetic based MPC protocols utilise a method known

as ‘Beaver’s Triples’ [4] to compute multiplication. In fact, all of the MPC schemes

mentioned at the beginning of this section (the MPC protocols with preprocessing)

also utilise Beaver’s triples. A detailed description of this method is given in the

previous Chapter. We reiterate that, due to the need to reconstruct some interme-

diary values, the communication complexity of this protocol is O(n2 log q). In fact,

even the efficient matrix multiplication method given in [32] has a communication

complexity bound by n2, a result of their scheme being based on Beaver’s triples

[50].

Our scheme does not require the reconstruction of any values and as such a

participant is able to compute a share of a multiplication in constant time. In fact,

as per the original semi-honest protocol, to compute a given share a participant need

merely exchange messages with just one other designated participant. Resulting in

a total communication complexity of only O(n log q)

Our Work In light of the work mentioned above, our protocol achieves the fol-

lowing results:

• Not limited to boolean circuits: Generalises to a simple arithmetic

function/circuit based on the finite field Fq.

• Security against up to n− 1 participants: Our scheme achieves security

against a dishonest majority of n− 1 participants.

• Non-Beaver based: By not utilising Beaver’s triples to compute multi-

plications we manage to avoid the extra communication overhead associated

119

with reconstructing intermediary values.

In the next section we lay the foundation of our protocol by describing some pre-

liminary information.

7.2 Preliminaries

The original OLEMult protocol given in the previous Chapter utilised Shamir’s

secret sharing scheme. For the sake of efficiency we have chosen to substitute this

with the simple additive secret sharing scheme. To share a value, xj, using this

scheme, participant Pj would compute n − 1 random shares: xj1 , · · · , xjn−1 . The

last share could then be computed as:

xjn = xj −
n−1∑
l=1

xjl

A given participant, Pk is then assigned the share xjk . All computations are per-

formed in the finite field Fq where q is a prime number.

As with the previous Chapter, the scheme assumes the presence of a neutral third

party, known as the initialiser, who distributes information to the participants in the

offline phase. Furthermore, we take the standard MPC assumption that there exists

private channels between all participants. The full, modified, OLEMult protocol is

given in Figure 7.1.

120

Input: Pi has xi and Pk has the share xjk , of xj . Output: Pk obtains the share γk,

of γ where γ = xi · xj .

Setup The initialiser privately sends:

1. A set of n − 1 random polynomials, Sik(x), of degree at most 1 to Pi where

k = 1, · · · , n and k 6= i.

2. A random value, dk and the value gk = Sik(dk) to every participant Pk.

Computation Pi privately computes:

• n shares of the value 0, we will denote this value as the mask 0i =
∑n

l=1 0il .

• The multiplication polynomial, fi(x) = xi · x.

Each Pk then privately executes the following steps with Pi:

1. Pk sends the value lk = xjk − dk to Pi.

2. Pi then computes and sends to Pk the polynomial Vk(x) which is computed as:

Vk(x) = 0ik + fi(x+ lk) + Sik(x)

3. Pk computes his share of γ as γk = Vk(dk)− gk.

Figure 7.1 : OLEMult Protocol [31] with Additive Secret Sharing Scheme

7.3 General Model

In this section we define the model of communication as well as the security

properties of our MPC protocol. We assume the usual model of communication

present within many MPC protocols, that is, synchronous, secure, and authenticated

private channels exist between each of the participants. However, we do not assume

(or need) a broadcast channel. Due to the fact that the multiplication scheme can

121

only be executed on directly held input values, all multiplications must be computed

first (before any other type of computation). As a result of this, the general MPC

protocol can be divided into five phases:

1. Setup Phase: The initialiser privately assigns some multiplication data to

each of the participants, as per OLEMult. In addition to this he also assigns

participants shares to some verification data as well as some random sharing

data.

2. Sharing Phase: Participants use the sharing data assigned to them to dis-

tribute shares of their input values among the other participants.

3. Multiplication Phase: In this phase all of the necessary multiplications are

carried out utilising the OLEMult protocol. In order to maintain security each

participant executes OLEMult twice, once with his share and the other time

with the verification data assigned by the initialiser.

4. Addition Phase: All linear operations are privately computed in this phase,

with no need for communication between participants.

5. Verification Phase: Once all of the computation has taken place participants

simultaneously send their shares of both the output and the verification data

to each of the others. Participants can then verify the validity of the output

by reconstructing both the output and the verification data and then running

a simple computation.

Our model of security is identical to the security with abort notion, in that the

adversary is able to abort the protocol at any time. This can be achieved by having

the participants under his control simply not participate in the protocol. Another

way of achieving this is to have a corrupted participant raise a false complaint about

122

an honest participant, i.e., lie about an honest participant’s behaviour. However, if

the adversary does instead simply try to introduce an error into the output then,

with high probability the honest participants will be able to detect this. This leads

to the following definition in which we describe our requirements for a secure MPC

scheme:

Definition 9. A (t, n, ε)-MPC scheme is a (t, n) threshold MPC scheme (Definition

8) in which, upon completion of the protocol, a set of n − t honest participants are

able to detect the aberrations or malicious behaviour of an adversary (controlling

the remaining t participants) with probability 1 − ε. Specifically, they are able to

detect if the adversary has not followed the protocol correctly and attempted to force

reconstruction of an incorrect output.

This model of security may seem somewhat lax and low, however it is a very

practical notion that is identical to the security with abort paradigm utilised in many

efficient and well known MPC protocols present within the literature [9, 48, 72, 53].

The main idea behind this model being that, in the event of a failure (i.e., the MPC

protocol halts) it is relatively easy to simply start the protocol again (due to the

high level of efficiency). Furthermore, in a real-world scenario most participants will

wish to compute the actual output of the MPC and hence, will be unlikely to cheat,

especially in the face of detection.

7.4 Secure OLE-Based MPC

In this section we describe our MPC protocol and show that any errors intro-

duced by the adversary can be detected with high probability. The method by

which this detection takes place is via the utilisation of two information theoretic

message authentication codes (MAC). For a given value S and two keys, α and β,

the particular MAC functions utilised in our protocol are given below:

123

1. Mα(S) = α · S + β

2. Mβ(S) = β · S

During the setup phase the initialiser will randomly choose both α and β. Shares

of these keys will be assigned to each of the participants, however the actual values

themselves are only revealed at the end of the protocol, during the verification phase.

When a given participant shares his input value, he distributes not only shares of the

actual value, but also shares of his input under the specific MAC functions above.

For instance, when Pj shares his value, xj (for j = 1, · · · , n) we can represent it as:

[[xj]] =

(
(xj1 , · · · , xjn), (Mα(xj)1, · · · ,Mα(xj)n), (Mβ(xj)1, · · · ,Mβ(xj)n)

)
Where a given participant Pk gets the share [xj]k =

(
xjk ,Mα(xj)k,Mβ(xj)k

)
, for

k = 1, · · · , n and each value is shared utilising the additive scheme, such that:

• xj =
∑n

l=1 xjl

• Mα(xj) =
∑n

l=1 Mα(xj)l

• Mβ(xj) =
∑n

l=1 Mβ(xj)l

Below we describe the setup phase of our protocol, in which the initialiser privately

distributes information among the participants. We note that all computations are

carried out in the finite field Fq where q is a prime number.

7.4.1 Setup

In the setup phase of our protocol the initialiser carries out the setup phase

depicted in Figure 7.1. In addition to this, he also chooses two random keys, α and

β. Lastly the initialiser assigns some randomly shared values to each participants.

We denote these values as random input values. Each participant is given a set

of these values (one for each of his potential private inputs) whilst every other

124

participant is given a share of each value. Shares of each value under each of the

MAC functions and the aforementioned keys are also assigned to each participant.

The full setup phase is given in Figure 7.2.

Setup The initialiser distributes to all participants:

1. Sufficient multiplication information in the form of random polynomials and

points on those polynomials (the setup phase in Figure 7.1).

2. Shares of two randomly chosen keys, α and β, such that each participant, Pj for

j = 1, · · · , n, receives the shares αj and βj respectively.

3. A set of random values, one for each input value held by a given participant.

Specifically he assigns a value, r to Pj whilst each other participant, Pk for

k = 1, · · · , n, (including Pj) is given a share of this value, rk. Shares of the

MACs of this value are also given out, such that each Pk is given:

(a) The share Mα(r)k, corresponding to the value Mα(r) = r · α+ β

(b) The share Mβ(r)k, corresponding to the value Mβ(r) = r · β

Overall giving a set of shares of the form [r]k =
(
rk,Mα(r)k,Mβ(r)k

)
along with shares

of both keys, βk and αk.

Figure 7.2 : The setup phase of the MPC protocol, run by the initialiser

Although each Pj is given the value of r he does not know the value of either

Mα(r) or Mβ(r), thus ensuring that no participant is able to compute any of the

MAC keys. We also note that if the input (or the amount of input values) of each

participant is not known ahead of time then we can simply assign each participant

shares of the r values. During the sharing phase, when the inputs are known, each

participant can then open a specific r value by having the other participants send

them their corresponding shares. This is evident in the next section which describes

125

the sharing phase of the protocol.

7.4.2 Sharing

In this phase each participant uses the random input values, assigned to him by

the initialiser, to distribute shares of his private input values. The specific protocol

used to accomplish this is similar to the technique used in the well known ‘SPDZ’

protocol [48]. However, where they simply distribute shares under one MAC we

require each participant to distribute shares under both of our previously described

MAC functions. This is shown in Figure 7.3.

Sharing

1. To share his input Pj takes one of the assigned random values, r, and sends to

each participant the value τ = xj − r.

2. Each participant, Pk (with the share [r]k =
(
rk,Mα(r)k,Mβ(r)k

)
) then com-

putes his share of xj along with shares of the corresponding MAC values, Mα(xj)

and Mβ(xj), as follows:

(a) A designated participant, say P1 computes his share as xj1 = rk + τ , each

of the other participants compute their shares as xjk = rk.

(b) Mα(xj)k = Mα(r)k + τ · αk.

(c) Mβ(xj)k = Mβ(r)k + τ · βk.

Figure 7.3 : Secure Share Distribution Protocol

7.4.3 Multiplication

During this phase of the MPC, the participants collaborate to compute shares

to any multiplications that are needed. This is done utilising two iterations of the

OLEMult protocol given in section 7.2. Specifically, a given participant, Pk is able

126

to compute a share, [γ]k =
(
γk,Mα(γ)k

)
, where γ = xi · xj (as per section 7.2) and

k = 1, · · · , n. The full explanation of this is given in Figure 7.4.

Multiplication To compute shares of the multiplication γ = xi · xj each partici-

pant, Pk, along with Pi, executes OLEMult (Figure 7.1) twice to compute:

1. γk, which is a share of γ. This is a straightforward execution of the multiplication

protocol, with Pk using xjk and Pi using xi as their respective inputs.

2. Mα(γ)k, which is a share of Mα(γ). To compute this share Pk executes the

multiplication protocol with Pi, however, this time Pk uses Mα(xj)k as his input,

whereas Pi uses xi, as before. What Pk receives after executing the protocol with

Pi is a share, denoted as θik , which corresponds to the value θi = γ ·α+β ·xi+0i.

Where 0ik is a share of the mask 0i, as per Figure 7.1. Pk then privately computes

his share as follows:

Mα(γ)k = θik −Mβ(xi)k + βk

The final output being that Pk has the share [γ]k =
(
γk,Mα(γ)k

)
. If a given participant

does not respond with an input then a complaint is raised and the protocol halts. For

example, if Pi does not submit the output of OLEMult to Pk then Pk raises a complaint

(sending a message to each of the other participants) which halts the protocol.

Figure 7.4 : SecOLEMult : Secure Multiplication Protocol

In the first iteration of OLEMult, Pk executes the protocol with Pi to compute

γi. The second iteration allows Pk to compute Mα(γ)k. This is done by having Pk

supply the share Mα(xj)k as his input into OLEMult, and then utilising the output

in a private computation to compute Mα(γ)k.

127

7.4.4 Addition

Following the multiplication phase, participants are now ready to privately com-

pute all linear functions, such as addition and multiplication by a constant. Each

participant computes a share of the output (i.e., the addition or multiplication by

a constant) as well as a share of the output under the MAC function Mα(). This is

shown in Figure 7.5.

Linear Operations Let S and W be two shared values, such that each participant

Pk (for k = 1, · · · , n) has the shares [S]k =
(
Sk,Mα(S)k

)
and [W]k =

(
Wk,Mα(W)k

)
.

Then:

1. To compute shares of the addition γ = S + W , each Pk privately computes

γk = Sk +Wk and Mα(γ)k = Mα(S)k +Mα(W)k − βk.

2. To compute shares to the addition γ = S+Z, where Z is a constant, a designated

individual participant, Pj (can be chosen at random or by any given method)

privately computes: Z + Sj . To compute a share to the MAC value each Pk

privately computes:

Z · αk +Mα(S)k

3. Lastly, to compute shares to γ = S · Z (as before, Z is a constant) each Pk

privately computes: Z · Sk and Z ·Mα(S)k − βk(Z − 1).

Figure 7.5 : Computing linear operations

We note that, rather than trust just one participant to compute Z + xij (Pj in

Figure 7.5) the participants can instead publicly divide Z into n shares and add

these shares to each of their shares of S. This may be preferable to just trusting

one participant, especially if Z is known ahead of time.

128

7.4.5 Output and Verification

In this final phase of the protocol the output is reconstructed and checked for

errors. This involves reconstructing both MAC keys, the output, and the MAC of

the output. Following this, a simple computation is run that checks to see if the

output is consistent with its MAC value. The full protocol is given in Figure 7.6.

Reconstruction and Verification

1. To check the validity of a given output value, γ, participants reconstruct the

values: γ, Mα(γ), β and α. Reconstruction is done by simply having each of

the participants simultaneously send their shares of the given values to each of

the other participants. If a given participant does not send a share then the

protocol aborts.

2. They take γ to be valid if γ · α + β −Mα(γ) = 0. If this is the case then γ is

taken as the output. Otherwise, cheating has occurred and the protocol aborts,

outputting ⊥.

Figure 7.6 : Secure reconstruction and verification protocol

7.4.6 Security of the Protocol

Here, we informally show that the OLE-based MPC scheme is secure against a

malicious adversary that can control n− 1 of the participants. Specifically, we show

that even if such an adversary introduces an error into the computation then the

participants will be able to detect this with probability ε = 1− 1
q

where q is the size of

the finite field used for computation. We first begin by stating that the protocol has

information theoretic privacy. This is due to the privacy of the OLEMult protocol

and the additive secret sharing scheme.

Theorem 15. The proposed MPC protocol is perfectly private, in the information

129

theoretic sense.

Proof. The proof of this is analogous to proving the security of the semi-honest

OLEMult protocol, given in [31].

It remains to show that a set of n− 1 participants cannot, with high probability,

fool an honest participant into reconstructing an incorrect output.

Theorem 16. The proposed MPC protocol is a secure (n−1, n, 1/q)-MPC protocol,

as per Definition 9.

Proof. To show this we must first examine the potential errors that the adversary

can introduce into a given output. As per the work presented by Genkin et al. in

[58], we classify two types of errors:

1. Additive: An additive error is simply a constant that is added to the output

of the MPC protocol. For example, consider an output S. If the adversary

successfully introduced an additive error, ∆+ he would force reconstruction of

S ′ = S + ∆+, where ∆+ 6= 0.

2. Multiplicative: The same principle applies to a multiplicative error, except

here S ′ = S ·∆×, where ∆× 6= 1.

Although it is possible to frame both of these types of errors as equivalent we prefer

to tackle them separately, in much the same way that an MPC protocol has separate

protocols for addition and multiplication.

Due to the nature of the additive secret sharing scheme a multiplicative error

can be introduced at any given time. However a multiplicative error can only be

successfully introduced (i.e., the error is not detected at the end of the MPC) during

130

the multiplication phase. We shall first show that any given undetectable (multi-

plicative or additive) error can only be introduced during the multiplication phase

with the low probability of 1/q.

Suppose that, during the SecOLEMult protocol (Figure 7.4) a set of n−1 partici-

pants, including Pi and Pj, are corrupted by the adversary. During the first iteration

of the protocol they are able to substitute the actual output of OLEMult (originally

γ = xi · xj) with γ′ = γ ·∆×. They will do the same with the output of the second

iteration of OLEMult, resulting in the value θ′i = θ · δ×, where θi = γ ·α+β ·xi+ 0ik .

In order to successfully introduce an undetectable error the adversary would need

to solve the equation:

γ′ · α + β + ∆+ = θ′i −Mβ(xi) + δ+ + β

Where ∆+ and δ+ are additive errors introduced by the adversary. This equation

can be rewritten as:

γ∆×α + β + ∆+ = γαδ× + βδ×xi − xiβ + β + δ+

Which simplifies to:

γ∆×α + ∆+ = γαδ× + xiβ(δ× − 1) + δ+

It is easy to see that the above equation can only be solved if β is known. Since this

value is random and unknown to the adversary (due to the additive secret sharing

scheme) the adversary cannot solve the equation and hence, cannot introduce an

undetectable error into the output during the multiplication phase, except with

probability 1/q (i.e., the adversary guesses the correct value of β). It remains to

prove that the adversary has the same chances of cheating the verification procedure

(Figure 7.6).

As mentioned, the adversary is able to introduce an additive error into the output

at any given time. In order to successfully cheat he will wish to force reconstruction

131

of a given output, S ′ 6= S, where S is the original output that would be reconstructed

if no errors were introduced. Let S ′ = S+ ∆+, to succeed in cheating the adversary

must fool the verification procedure, to do this he will also introduce an additive

error to the MAC value of the output, Mα(S). As such, denote the adversary’s

modified MAC as Mα(S)′ = Mα(S)+δ+. To successfully introduce an error that goes

undetected upon the completion of the protocol he will need to solve the following

equation:

S ′ · α + β + κ = Mα(S)′

Where κ is the additive error introduced on any of the other reconstructed values.

This equation then becomes:

α(S + ∆+) + κ = α · S + δ+

Which simplifies to:

α∆+ + κ = δ+

Similar to before, to solve the above equation the adversary needs to know the value

of α which, just like β, is perfectly hidden and random (due to the additive secret

sharing scheme). As a result of this, the probability of successfully introducing an

error into the output is 1/q (again, the adversary must simply guess). Therefore the

proposed protocol is a secure (n− 1, n, 1/q)-MPC scheme, as per Definition 9.

The formal simulation-based proof of this is given in the next section.

7.5 Security of The OLE-Based MPC Protocol

In this section we prove the security of our MPC protocol utilising the simulation-

based paradigm in the stand-alone security model [77]. We operate in the stand-

alone model (rather than say, the universally composable model) due to the niche

and specialised nature of our protocol. To clarify, our protocol can only evaluate

132

certain types of arithmetic circuits (as shown in section 7.6), as such the main use

and purpose of our protocol will be to compute specific and specialised problems in

a stand-alone, “one off fashion”. For this reason, we feel that the stand-alone model

of security suffices for our purposes.

An outline of our overall protocol is given in Figure 7.7 below. Note that we

do not include the input phase as the initialiser is assumed to be a neutral honest

third party, and thus cannot be corrupted. We also define an ideal functionality,

Fonline (Figure 7.8) in which an ideal world third party, F carries out the ideal world

functionality of our protocol, alongside a simulator, S who simulates the dishonest

participants (i.e., the adversary). In order to prove the security of our protocol we

require that the output of the ideal and real world protocols, for any given set of

fixed inputs, are indistinguishable, except with low probability.

An excellent, more formal definition of stand-alone, simulation-based security is

given by Backes et al. in [2]. For completeness we present their definition below:

“In the stand-alone model, a protocol Π securely implements an ideal function

F if for every set of corrupted parties C and for every adversary A there is a

simulator S such that the families of random variables REALΠ,A,x and IDEALF ,S,x

are indistinguishable in the security parameter k for all inputs x = (x1, ..., xn). Here

REALΠ,A,x is the output of the adversary (A) and of the uncorrupted parties in the

following interaction:

The uncorrupted parties Pi /∈ C get input xi. Then the parties interact as pre-

scribed by the protocol Π. The adversary controls the corrupted parties, i.e., he can

send messages in the name of a party Pi ∈ C and receives all messages for parties

Pi ∈ C. Similarly, IDEALF ,S,x consists of the output of the simulator S and of the

results of the function F . Here the inputs of F corresponding to the uncorrupted

parties are chosen according to x, and the inputs of the corrupted parties are entered

133

by the simulator.”

For our purposes the security parameter k, is the error probability previously

defined in section 7.4.6 (ε). As such, security for our protocol is achieved if, except

with probability ε, REALΠ,A,x ≈ IDEALF ,S,x. The proof of this is given below,

whilst the overall protocol as well as the ideal functionality (in addition to the

simulator’s input) are given in Figures 7.7 and 7.8.

Proof. Both A and S are able to terminate the protocol at any time, S does this by

simply sending a message to F whilst A simply has one of the participants under

his control not send a message or raise a complaint.

Communication is synchronous, thus in the verification stage of the protocol A

can pick and choose who his dishonest participants send their output shares to.

This can be achieved by simply having a dishonest participant miss (i.e., not submit

anything for) the given round of communication. This particular aspect is modeled

in the the Fonline functionality by having S send to F a list of honest participants

who are allowed to receive the output.

To model the cheating of A, the simulator S introduces errors into the selected

dishonest participant’s input by selecting false x′i at the start of the functionality

(during sharing). We argue that this is all that is needed to model the cheating of A

in regards to share modification. This is due to the fact that A cannot increase his

chances of successfully cheating above what random probability (i.e., selecting his

false shares at random) gives him (as per the proof in section 7.4.6). Thus, the x′i

can be picked by S right at the start of the protocol and it will make no difference.

To model the errors introduced into the MAC values the simulator picks three

random values, ∆α, ∆β, and ∆M which represents the errors introduced into α, β

and Mα(γ). Again, these values are chosen randomly by S to simulate the real world

scenario in which the adversary cannot compute “valid” errors that will pass the

134

verification procedure, except by random chance. We can therefore conclude that

IDEALF ,S,x ≈ REALΠ,A,x, with a probability of error ε, such that ε = 1
q

for the

finite field Fq (as per section 7.4.6).

135

Sharing

1. To share his input Pj takes one of the assigned random values, r, and sends to each participant the

value τ = xj − r.

2. Each participant, Pk (with the share [r]k =
(
rk,Mα(r)k,Mβ(r)k

)
) then computes his share of xj along

with shares of the corresponding MAC values, Mα(xj) and Mβ(xj), as follows:

(a) xjk = rk + τ

(b) Mα(xj)k = Mα(r)k + τ · αk

(c) Mβ(xj)k = Mβ(r)k + τ · βk

Multiplication

To compute shares of the multiplication γ = xi · xj each participant, Pk, along with Pi, executes OLEMult

(Figure 7.1) twice to compute:

1. γk, which is a share of γ. This is a straightforward execution of the multiplication protocol, with Pk

using xjk and Pi using xi as their respective inputs.

2. Mα(γ)k, which is a share of Mα(γ). To compute this share Pk executes the multiplication protocol

with Pi, however, this time Pk uses Mα(xj)k as his input, whereas Pi uses xi, as before. What Pk

receives after executing the protocol with Pi is a share, denoted as θik , which corresponds to the value

θi = γ · α + β · xi + 0i. Where 0ik is a share of the mask 0i, as per Figure 7.1. Pk then privately

computes his share as follows:

Mα(γ)k = θik −Mβ(xi)k + βk

The final output being that Pk has the share [γ]k =
(
γk,Mα(γ)k

)
.

Addition

Let S and W be two shared values, such that each participant Pk (for k = 1, · · · , n) has the shares [S]k =(
Sk,Mα(S)k

)
and [W]k =

(
Wk,Mα(W)k

)
. Then: To compute shares of the addition γ = S + W , each Pk

privately computes:

1. γk = Sk +Wk

2. Mα(γ)k = Mα(S)k +Mα(W)k − βk

Verification

1. To check the validity of a given output value, γ, participants reconstruct the values: γ, Mα(γ), β and

α.

2. They take γ to be valid if γ · α + β − Mα(γ) = 0. If this is the case then γ is taken as the out-

put. Otherwise, cheating has occurred and we output ⊥. We set REALΠ,A,x as the output of all

participants.

If at any point int the protocol a given participant does not respond with an input then a complaint is

raised and the protocol halts and outputs ⊥.

Figure 7.7 : Protocol Πonline

136

Initialisation

1. Each party, Pi is assigned an input xi which is given to F .

2. The simulator, S sends to F a list, C of cheating participants. F then sends the input of each party

in this list to S.

3. The initialiser sends the random MAC values, α and β to F .

Sending Input to F

1. For each dishonest (cheating) participant Pi ∈ C, the simulator may select any given value x′i and send

this to F , who then uses this in place of the actual xi value originally assigned to Pi.

2. S also sends to F the random values ∆α, ∆β and δM .

Computing The Circuit

1. F computes the circuit, f(x1, · · · , xn) utilising the original input values from the honest participants

and the x′i values supplied by S for the dishonest participants to compute an output value γ′ =

f(x1, · · · , xn).

2. F also computes the following values:

• α′ = α+ ∆α

• β′ = β + ∆β

• Mα(γ)′ = γ · α+ β + ∆M

Verification

1. S sends to F a list, L composed of a subset of honest participants who are permitted to have the

output.

2. F checks whether Mα(γ)′ is equal to α′ · γ′ + β′. If they are equal he sets γ′ as the output, otherwise

⊥ is set as the output.

3. F then outputs the result for each honest party listed in L as well as each of the dishonest parties.

Where IDEALF,S,x is set as these output values.

At any time during the protocol S may abort by simply sending the message Abort to F who then outputs

⊥.

Figure 7.8 : Functionality Fonline and Simulator S

137

7.6 Evaluation

In this section we evaluate the efficiency of our protocol and compare it to other

MPC schemes secure against a malicious adversary∗. To the best of the author’s

knowledge, most of the current MPC schemes within the literature utilise the well

known Beaver’s triples protocol [5] for the purpose of computing multiplications in

MPC. The general method by which secure multiplication is conducted using this

method is to utilise a MAC and secret sharing scheme, similar to the one utilised in

this work. Specifically, participants carry out the multiplication protocol on their

shares, and once again on their shares under the MAC [73]. For each participant

to compute a share of a given multiplication a total of at least n(n − 1) messages

must be sent. Each of these messages is composed of field elements. Therefore, if

all computations are conducted in the field Fq then this results in a communication

complexity of O(n2 log q). We note that, even if just one participant wishes to

compute a share (i.e., every other participant simply sends all their reconstructed

values to a designated participant) they will need to reconstruct some values; as

a result of this, the communication complexity for even just one participant to

compute a given share is O(n log q).

In our protocol n − 1 participants send and receive just two messages to allow-

ing for an overall communication complexity of O(n log q). Furthermore, a single

participant can compute their share with a constant communication complexity of

O(log q). This is due to the use of the efficient OLEMult protocol given in figure

7.1. Our protocol simply uses their protocol twice, resulting in only a small increase

in communication complexity.

We note, however, that there is a significant downside to our proposed protocol.

∗We specifically compare the cost of multiplication and ignore the communication complexity

of the sharing phase (which is similar to many other protocols within the literature).

138

Specifically, multiplication can only be carried out if one of the values is explicitly

known and held by a participant. As a result of this, it is not possible to compute

the multiplication of two unknown (but shared) values using our protocol. Another,

previously mentioned restriction of our proposed protocol is that multiplication must

be completed before addition, resulting in Beaver’s function being far more efficient

for functions with many multiplications on nested additions.

Conversely however, it is evident that our protocol performs significantly better

at tasks such as the standard way of computing matrix multiplication and the inner

product of two vectors. This is due to the absence of any multiplications on ‘nested

additions.’ This may seem somewhat limited, however we note that many models

and protocols in (privacy preserving) machine learning make extensive use of matrix

multiplication. As such, our protocol could, for instance, easily be adapted for use

in a privacy preserving machine learning application.

139

Chapter 8

Conclusion

In this thesis the three inter-related fields of secret sharing, oblivious polynomial

evaluation and multi-party computation were investigated. Specifically, several new

protocols were proposed, existing protocols were extended and improved upon and

the flaws inherent in some of the existing literature was identified and, where pos-

sible, rectified. Although we hope that the contribution of this thesis to the field

of cryptography is both relevant and of interest, there are several opportunities for

future research, some of which we highlight below:

Secret Sharing As mentioned in Chapter 2, an open problem within the field

of SSCD is the construction of a scheme secure under the CDV model that

achieves optimum share size. Additionally, construction of a SSCD scheme

secure in the OKS model that is not only optimal but also supports an arbitrary

field and a small secret domain is also desirable. Closer to home, development

of an OSSCD scheme that tolerates dishonest and collaborating servers would

also be of interest.

OPE A topic of interest identified in the field of OPE is the development of a

maliciously secure OPE scheme; either a DOPE or TOPE scheme. Currently

all such information theoretic OPE protocols can only tolerate semi-honest,

passive adversaries.

MPC The field of MPC is vast, with many opportunities existing for future re-

search. Looking to the results presented here however, it would be desirable

140

to produce an offline phase for the MPC protocol given in Chapters 6 and

7, i.e., to phase out and replace the initialiser. Additionally, future research

could look at extending the MPC in order to compute a multiplication without

requiring a participant to actually be holding onto one of the input values, i.e.,

just have each participant hold shares of the values.

Another aspect not looked at by this thesis is the actual implementation of the

protocols developed here. Indeed, the construction and real-life implementation of

MPC protocols is, itself, a task worthy of much study entirely separate from the

theoretical construction and evaluation that was conducted in this thesis and other

such research articles.

141

References

[1] Araki, T., Obana, S.: Flaws in Some Secret Sharing Schemes Against Cheat-

ing. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) Information Security

and Privacy: 12th Australasian Conference, ACISP 2007, Townsville, Aus-

tralia, July 2-4, 2007. Proceedings, pp. 122–132. Springer Berlin Heidelberg,

Berlin, Heidelberg (2007)

[2] Backes, M., Müller-Quade, J., Unruh, D.: On the necessity of rewinding in se-

cure multiparty computation. In: Vadhan, S.P. (ed.) Theory of Cryptography.

pp. 157–173. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

[3] Beaver, D.: Perfect privacy for two-party protocols. In: Proceedings of DI-

MACS Workshop on Distributed Computing and Cryptography. vol. 2, pp.

65–77 (1991)

[4] Beaver, D.: Efficient Multiparty Protocols Using Circuit Randomization. In:

Feigenbaum, J. (ed.) Advances in Cryptology — CRYPTO ’91. pp. 420–432.

Springer Berlin Heidelberg (1992)

[5] Beaver, D.: Commodity-based cryptography (extended abstract). In: Proceed-

ings of the Twenty-ninth Annual ACM Symposium on Theory of Computing.

pp. 446–455. STOC ’97, ACM, New York, NY, USA (1997)

[6] Beimel, A., Chee, Y.M., Wang, H., Zhang, L.F.: Communication-efficient

distributed oblivious transfer. Journal of Computer and System Sciences 78(4),

1142–1157 (2012)

142

[7] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-

cryptographic Fault-tolerant Distributed Computation. In: Proceedings of the

Twentieth Annual ACM Symposium on Theory of Computing. STOC ’88,

ACM, New York, NY, USA (1988)

[8] Benaloh, J.C.: Secret sharing homomorphisms: Keeping shares of a secret

secret (extended abstract). In: Odlyzko, A.M. (ed.) Advances in Cryptology

— CRYPTO’ 86. pp. 251–260. Springer Berlin Heidelberg, Berlin, Heidelberg

(1987)

[9] Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic en-

cryption and multiparty computation. In: Annual International Conference

on the Theory and Applications of Cryptographic Techniques. pp. 169–188.

Springer (2011)

[10] Bishop, A., Pastro, V., Rajaraman, R., Wichs, D.: Essentially optimal robust

secret sharing with maximal corruptions. In: Annual International Confer-

ence on the Theory and Applications of Cryptographic Techniques. pp. 58–86.

Springer (2016)

[11] Blakley, G.: Safeguarding cryptographic keys. In: Proceedings of the 1979

AFIPS National Computer Conference. pp. 313–317. AFIPS Press, Monval,

NJ, USA (1979)

[12] Blier, H., Tapp, A.: A single initialization server for multi-party cryptography.

In: Safavi-Naini, R. (ed.) Information Theoretic Security. pp. 71–85. Springer

Berlin Heidelberg, Berlin, Heidelberg (2008)

[13] Blundo, C., D’Arco, P., De Santis, A., Stinson, D.: On unconditionally secure

distributed oblivious transfer. Journal of Cryptology 20(3), 323–373 (Jul 2007)

143

[14] Blundo, C., D’Arco, P., Santis, A.D., Stinson, D.R.: New results on un-

conditionally secure distributed oblivious transfer. In: Revised Papers from

the 9th Annual International Workshop on Selected Areas in Cryptogra-

phy. pp. 291–309. SAC ’02, Springer-Verlag, London, UK, UK (2003), http:

//dl.acm.org/citation.cfm?id=646558.694899

[15] Bo, Y., Qinglong, W., Yunfei, C.: An efficient and unconditionally-secure

oblivious polynomial evaluation protocol. In: The First International Sympo-

sium on Data, Privacy, and E-Commerce (ISDPE 2007). pp. 181–184 (2007)

[16] Bogetoft, P., Christensen, D.L., Damg̊ard, I., Geisler, M., Jakobsen, T.,

Krøigaard, M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., et al.:

Secure multiparty computation goes live. In: International Conference on Fi-

nancial Cryptography and Data Security. pp. 325–343. Springer (2009)

[17] Cabello, S., Padró, C., Sáez, G.: Secret Sharing Schemes with Detection of

Cheaters for a General Access Structure. Designs, Codes and Cryptography

25(2), 175–188 (2002)

[18] Cabello, S., Padró, C., Sáez, G.: Secret Sharing Schemes with Detection of

Cheaters for a General Access Structure. Designs, Codes and Cryptography

25(2), 175–188 (2002)

[19] Canetti, R.: Security and composition of multiparty cryptographic protocols.

Journal of CRYPTOLOGY 13(1), 143–202 (2000)

[20] Carpentieri, M., De Santis, A., Vaccaro, U.: Size of Shares and Probability

of Cheating in Threshold Schemes. In: Helleseth, T. (ed.) Advances in Cryp-

tology — EUROCRYPT ’93: Workshop on the Theory and Application of

Cryptographic Techniques Lofthus, Norway, May 23–27, 1993 Proceedings,

pp. 118–125. Springer Berlin Heidelberg, Berlin, Heidelberg (1994)

144

[21] Cevallos, A., Fehr, S., Ostrovsky, R., Rabani, Y.: Unconditionally-Secure Ro-

bust Secret Sharing with Compact Shares. In: Pointcheval, D., Johansson,

T. (eds.) Advances in Cryptology – EUROCRYPT 2012: 31st Annual Inter-

national Conference on the Theory and Applications of Cryptographic Tech-

niques, Cambridge, UK, April 15-19, 2012. Proceedings, pp. 195–208. Springer

Berlin Heidelberg, Berlin, Heidelberg (2012)

[22] Chang, Y.C., Lu, C.J.: Oblivious polynomial evaluation and oblivious neural

learning. In: Boyd, C. (ed.) Advances in Cryptology — ASIACRYPT 2001.

pp. 369–384. Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

[23] Chang, Y.C., Lu, C.J.: Oblivious polynomial evaluation and oblivious neural

learning. Theoretical Computer Science 341(1-3), 39–54 (2005)

[24] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty Unconditionally Secure

Protocols. In: Proceedings of the Twentieth Annual ACM Symposium on

Theory of Computing. pp. 11–19. STOC ’88, ACM, New York, NY, USA

(1988)

[25] Cheong, K.Y., Koshiba, T., Nishiyama, S.: Strengthening the security of dis-

tributed oblivious transfer. In: Australasian Conference on Information Secu-

rity and Privacy. pp. 377–388. Springer (2009)

[26] Choi, S.G., Hwang, K.W., Katz, J., Malkin, T., Rubenstein, D.: Secure multi-

party computation of boolean circuits with applications to privacy in on-line

marketplaces. In: Dunkelman, O. (ed.) Topics in Cryptology – CT-RSA 2012.

pp. 416–432. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

[27] Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing

and achieving simultaneity in the presence of faults. In: 26th Annual Sympo-

sium on Foundations of Computer Science (sfcs 1985). pp. 383–395 (1985)

145

[28] Chor, B., Kushilevitz, E.: A zero-one law for boolean privacy. SIAM Journal

on Discrete Mathematics 4(1), 36–47 (1991)

[29] Cianciullo, L., Ghodosi, H.: Improvements to almost optimum secret shar-

ing with cheating detection. In: Inomata, A., Yasuda, K. (eds.) Advances

in Information and Computer Security. pp. 193–205. Springer International

Publishing, Cham (2018)

[30] Cianciullo, L., Ghodosi, H.: Unconditionally secure distributed oblivious poly-

nomial evaluation. In: International Conference on Information Security and

Cryptology. pp. 132–142. Springer (2018)

[31] Cianciullo, L., Ghodosi, H.: Efficient information theoretic multi-party com-

putation from oblivious linear evaluation. In: Blazy, O., Yeun, C.Y. (eds.)

Information Security Theory and Practice. pp. 78–90. Springer International

Publishing, Cham (2019)

[32] Cock, M.d., Dowsley, R., Nascimento, A.C., Newman, S.C.: Fast, privacy

preserving linear regression over distributed datasets based on pre-distributed

data. In: Proceedings of the 8th ACM Workshop on Artificial Intelligence and

Security. pp. 3–14. ACM (2015)

[33] Commonwealth of Australia, Department of Health: Covidsafe app. https://

www.health.gov.au/resources/apps-and-tools/covidsafe-app, acessed

December 2020

[34] Corniaux, C.L.F., Ghodosi, H.: A verifiable distributed oblivious transfer pro-

tocol. In: Parampalli, U., Hawkes, P. (eds.) Information Security and Privacy.

pp. 444–450. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

[35] Corniaux, C.L.F., Ghodosi, H.: An information-theoretically secure thresh-

old distributed oblivious transfer protocol. In: Kwon, T., Lee, M.K., Kwon,

146

D. (eds.) Information Security and Cryptology – ICISC 2012. pp. 184–201.

Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

[36] Corniaux, C. L. F., Ghodosi, H.: An entropy-based demonstration of the

security of Shamir’s secret sharing scheme. In: 2014 International Conference

on Information Science, Electronics and Electrical Engineering. vol. 1, pp.

46–48 (Apr 2014)

[37] Couteau, G.: A note on the communication complexity of multiparty compu-

tation in the correlated randomness model. In: Ishai, Y., Rijmen, V. (eds.)

Advances in Cryptology – EUROCRYPT 2019. pp. 473–503. Springer Inter-

national Publishing, Cham (2019)

[38] Cramer, R., Damg̊ard, I.B., Nielsen, J.B.: Secure multiparty computation.

Cambridge University Press (2015)

[39] Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic

manipulation with applications to robust secret sharing and fuzzy extractors.

In: Smart, N. (ed.) Advances in Cryptology – EUROCRYPT 2008. pp. 471–

488. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

[40] Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of Algebraic

Manipulation with Applications to Robust Secret Sharing and Fuzzy Extrac-

tors. In: Smart, N. (ed.) Advances in Cryptology – EUROCRYPT 2008: 27th

Annual International Conference on the Theory and Applications of Cryp-

tographic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings, pp.

471–488. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

[41] Cramer, R., Fehr, S., Padró, C.: Algebraic manipulation detection codes.

Science China Mathematics 56(7), 1349–1358 (Jul 2013)

147

[42] Cramer, R., Padró, C., Xing, C.: Optimal algebraic manipulation detection

codes in the constant-error model. In: Dodis, Y., Nielsen, J.B. (eds.) Theory

of Cryptography. pp. 481–501. Springer Berlin Heidelberg, Berlin, Heidelberg

(2015)

[43] Crépeau, C., Morozov, K., Wolf, S.: Efficient unconditional oblivious transfer

from almost any noisy channel. In: International Conference on Security in

Communication Networks. pp. 47–59. Springer (2004)

[44] Damg̊ard, I., Haagh, H., Nielsen, M., Orlandi, C.: Commodity-based 2pc

for arithmetic circuits. In: Albrecht, M. (ed.) Cryptography and Coding. pp.

154–177. Springer International Publishing, Cham (2019)

[45] Damg̊ard, I., Haagh, H., Nielsen, M., Orlandi, C.: Commodity-based 2pc for

arithmetic circuits pp. 154–177 (2019)

[46] Damg̊ard, I., Haagh, H., Nielsen, M., Orlandi, C.: Commodity-based 2pc

for arithmetic circuits. In: Albrecht, M. (ed.) Cryptography and Coding. pp.

154–177. Springer International Publishing, Cham (2019)

[47] Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.:

Practical covertly secure mpc for dishonest majority–or: breaking the spdz

limits. In: European Symposium on Research in Computer Security. pp. 1–18.

Springer (2013)

[48] Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from

somewhat homomorphic encryption. In: Advances in Cryptology–CRYPTO

2012, pp. 643–662. Springer (2012)

[49] Damg̊ard, I., Zakarias, S.: Constant-overhead secure computation of boolean

circuits using preprocessing. In: Sahai, A. (ed.) Theory of Cryptography. pp.

621–641. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

148

[50] Dankar, F.K., Madathil, N., Dankar, S.K., Boughorbel, S.: Privacy-preserving

analysis of distributed biomedical data: Designing efficient and secure multi-

party computations using distributed statistical learning theory. JMIR medical

informatics 7(2), e12702 (April 2019)

[51] David, B., Dowsley, R., Katti, R., Nascimento, A.C.A.: Efficient uncondition-

ally secure comparison and privacy preserving machine learning classification

protocols. In: Au, M.H., Miyaji, A. (eds.) Provable Security. pp. 354–367.

Springer International Publishing, Cham (2015)

[52] Desmedt, Y., Jajodia, S.: Redistributing secret shares to new access structures

and its applications. Tech. rep., Technical Report ISSE TR-97-01, George

Mason University (1997)

[53] Döttling, N., Ghosh, S., Nielsen, J.B., Nilges, T., Trifiletti, R.: Tinyole: Ef-

ficient actively secure two-party computation from oblivious linear function

evaluation. In: Proceedings of the 2017 ACM SIGSAC Conference on Com-

puter and Communications Security. pp. 2263–2276. CCS ’17, ACM, New

York, NY, USA (2017)

[54] Dowsley, R., van de Graaf, J., Marques, D., Nascimento, A.C.A.: A two-party

protocol with trusted initializer for computing the inner product. In: Chung,

Y., Yung, M. (eds.) Information Security Applications. pp. 337–350. Springer

Berlin Heidelberg, Berlin, Heidelberg (2011)

[55] Evans, D., Kolesnikov, V., Rosulek, M.: A pragmatic introduction to secure

multi-party computation. Foundations and Trends® in Privacy and Security

2(2-3) (2017)

[56] Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing con-

tracts. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryp-

149

tology. pp. 205–210. Springer US, Boston, MA (1983)

[57] Fitzi, M., Garay, J., Gollakota, S., Rangan, C.P., Srinathan, K.: Round-

optimal and efficient verifiable secret sharing. In: Theory of Cryptography

Conference. pp. 329–342. Springer (2006)

[58] Genkin, D., Ishai, Y., Prabhakaran, M.M., Sahai, A., Tromer, E.: Circuits

resilient to additive attacks with applications to secure computation. In: Pro-

ceedings of the forty-sixth annual ACM symposium on Theory of computing.

pp. 495–504 (2014)

[59] Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear func-

tion evaluation with constant overhead. In: Takagi, T., Peyrin, T. (eds.) Ad-

vances in Cryptology – ASIACRYPT 2017. pp. 629–659. Springer International

Publishing, Cham (2017)

[60] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game.

In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of

Computing. pp. 218–229. STOC ’87, ACM, New York, NY, USA (1987), http:

//doi.acm.org/10.1145/28395.28420

[61] Halevi, S., Ishai, Y., Kushilevitz, E., Rabin, T.: Best possible information-

theoretic mpc. In: Theory of Cryptography Conference. pp. 255–281. Springer

(2018)

[62] Hanaoka, G., Imai, H., Mueller-Quade, J., Nascimento, A.C.A., Otsuka, A.,

Winter, A.: Information Theoretically Secure Oblivious Polynomial Evalua-

tion: Model, Bounds, and Constructions. In: Wang, H., Pieprzyk, J., Varad-

harajan, V. (eds.) Information Security and Privacy. pp. 62–73. Springer Berlin

Heidelberg (2004)

150

[63] Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from

algebraic prfs. In: Dodis, Y., Nielsen, J.B. (eds.) Theory of Cryptography. pp.

90–120. Springer Berlin Heidelberg, Berlin, Heidelberg (2015)

[64] Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from

algebraic prfs. Journal of Cryptology 31(2), 537–586 (2018)

[65] Hazay, C., Lindell, Y.: Efficient oblivious polynomial evaluation with

simulation-based security. IACR Cryptology ePrint Archive 2009, 459 (2009)

[66] Hemenway, B., Lu, S., Ostrovsky, R., Welser IV, W.: High-precision secure

computation of satellite collision probabilities. In: Zikas, V., De Prisco, R.

(eds.) Security and Cryptography for Networks. pp. 169–187. Springer Inter-

national Publishing, Cham (2016)

[67] Hoshino, H., Obana, S.: Almost Optimum Secret Sharing Schemes with Cheat-

ing Detection for Random Bit Strings. In: Tanaka, K., Suga, Y. (eds.) Ad-

vances in Information and Computer Security: 10th International Workshop

on Security, IWSEC 2015, Nara, Japan, August 26-28, 2015, Proceedings, pp.

213–222. Springer International Publishing, Cham (2015)

[68] Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky,

A.: On the power of correlated randomness in secure computation. In: Sahai,

A. (ed.) Theory of Cryptography. pp. 600–620. Springer Berlin Heidelberg,

Berlin, Heidelberg (2013)

[69] Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious

transfer–efficiently. In: Annual international cryptology conference. pp. 572–

591. Springer (2008)

[70] Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access

structure. Electronics and Communications in Japan (Part III: Fundamental

151

Electronic Science) 72(9), 56–64 (1989)

[71] Jhanwar, M.P., Safavi-Naini, R.: Almost Optimum Secret Sharing with Cheat-

ing Detection. In: Security, Privacy, and Applied Cryptography Engineering.

pp. 359–372. Springer, Cham (Oct 2015)

[72] Keller, M., Orsini, E., Scholl, P.: Mascot: faster malicious arithmetic se-

cure computation with oblivious transfer. In: Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security. pp. 830–842.

ACM (2016)

[73] Keller, M., Pastro, V., Rotaru, D.: Overdrive: making spdz great again. In:

Annual International Conference on the Theory and Applications of Crypto-

graphic Techniques. pp. 158–189. Springer (2018)

[74] Kurosawa, K., Suzuki, K.: Almost Secure (1-Round, n-Channel) Message

Transmission Scheme. In: Desmedt, Y. (ed.) Information Theoretic Secu-

rity: Second International Conference, ICITS 2007, Madrid, Spain, May 25-29,

2007, Revised Selected Papers, pp. 99–112. Springer Berlin Heidelberg, Berlin,

Heidelberg (2009)

[75] Li, H.D., Yang, X., Feng, D.G., Li, B.: Distributed oblivious function evalua-

tion and its applications. Journal of Computer Science and Technology 19(6),

942–947 (Dec 2004)

[76] Lindell, Pinkas: Privacy preserving data mining. Journal of Cryptology 15(3),

177–206 (Jun 2002), https://doi.org/10.1007/s00145-001-0019-2

[77] Lindell, Y.: How to simulate it–a tutorial on the simulation proof technique.

In: Tutorials on the Foundations of Cryptography, pp. 277–346. Springer

(2017)

152

[78] Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.)

Advances in Cryptology — CRYPTO 2000. pp. 36–54. Springer Berlin Hei-

delberg, Berlin, Heidelberg (2000)

[79] Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-

party computation combining bmr and spdz. In: Annual Cryptology Confer-

ence. pp. 319–338. Springer (2015)

[80] Naor, M., Pinkas, B.: Oblivious Polynomial Evaluation. SIAM Journal on

Computing 35(5), 1254–1281 (Jan 2006)

[81] Naor, M., Pinkas, B.: Oblivious Transfer and Polynomial Evaluation. In: Pro-

ceedings of the Thirty-first Annual ACM Symposium on Theory of Computing.

pp. 245–254. STOC ’99, ACM, New York, NY, USA (1999)

[82] Naor, M., Pinkas, B.: Distributed oblivious transfer. In: International Confer-

ence on the Theory and Application of Cryptology and Information Security.

pp. 205–219. Springer (2000)

[83] Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM Journal on

Computing 35(5), 1254–1281 (2006)

[84] Nikov, V., Nikova, S., Preneel, B., Vandewalle, J.: On unconditionally secure

distributed oblivious transfer. In: International Conference on Cryptology in

India. pp. 395–408. Springer (2002)

[85] Obana, S.: Almost optimum t-cheater identifiable secret sharing schemes. In:

Annual International Conference on the Theory and Applications of Crypto-

graphic Techniques. pp. 284–302. Springer (2011)

[86] Obana, S., Tsuchida, K.: Cheating Detectable Secret Sharing Schemes Sup-

porting an Arbitrary Finite Field. In: Advances in Information and Computer

Security. pp. 88–97. Springer, Cham (Aug 2014)

153

[87] Ogata, W., Kurosawa, K.: Optimum Secret Sharing Scheme Secure against

Cheating. In: Maurer, U. (ed.) Advances in Cryptology — EUROCRYPT ’96:

International Conference on the Theory and Application of Cryptographic

Techniques Saragossa, Spain, May 12–16, 1996 Proceedings, pp. 200–211.

Springer Berlin Heidelberg, Berlin, Heidelberg (1996)

[88] Ogata, W., Kurosawa, K.: Oblivious keyword search. Journal of complexity

20(2-3), 356–371 (2004)

[89] Ogata, W., Kurosawa, K., Stinson, D.R.: Optimum secret sharing scheme

secure against cheating. SIAM Journal on Discrete Mathematics 20(1), 79–95

(2006)

[90] Otsuka, A., Imai, H.: Unconditionally Secure Electronic Voting, pp. 107–123.

Springer Berlin Heidelberg, Berlin, Heidelberg (2010), https://doi.org/10.

1007/978-3-642-12980-3_6

[91] Özarar, M., Özgit, A.: Secure multiparty overall mean computation via obliv-

ious polynomial evaluation. In: Security of Information and Networks: Pro-

ceedings of the First International Conference on Security of Information and

Networks (SIN 2007). p. 84. Trafford Publishing (2008)

[92] Peter, A., Tews, E., Katzenbeisser, S.: Efficiently outsourcing multiparty com-

putation under multiple keys. IEEE transactions on information forensics and

security 8(12), 2046–2058 (2013)

[93] Rabin, M.O.: How to exchange secrets with oblivious transfer (2005),

http://eprint.iacr.org/2005/187, harvard University Technical Report 81

talr@watson.ibm.com 12955 received 21 Jun 2005

[94] Rabin, T., Ben-Or, M.: Verifiable Secret Sharing and Multiparty Protocols

with Honest Majority. In: Proceedings of the Twenty-first Annual ACM Sym-

154

posium on Theory of Computing. STOC ’89, ACM, New York, NY, USA

(1989)

[95] Rivest, R.L.: Unconditionally secure commitment and oblivious trans-

fer schemes using private channels and a trusted initializer. Unpublished

manuscript (1999)

[96] Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital sig-

natures and public-key cryptosystems. Communications of the ACM 21(2),

120–126 (1978)

[97] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

[98] Smart, N.P., Tanguy, T.: Taas: Commodity mpc via triples-as-a-service. In:

Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Se-

curity Workshop. pp. 105–116 (2019)

[99] Tompa, M., Woll, H.: How to Share a Secret with Cheaters. Journal of Cryp-

tology 1(2), 133–138 (Aug 1988)

[100] Tonicelli, R., Nascimento, A.C.A., Dowsley, R., Müller-Quade, J., Imai, H.,

Hanaoka, G., Otsuka, A.: Information-theoretically secure oblivious polyno-

mial evaluation in the commodity-based model. International Journal of In-

formation Security 14(1), 73–84 (Feb 2015)

[101] Yao, A.C.: Protocols for secure computations. In: Foundations of Computer

Science, 1982. SFCS’08. 23rd Annual Symposium on. pp. 160–164. IEEE

(1982)

[102] Zhu, H., Bao, F.: Augmented oblivious polynomial evaluation protocol and

its applications. In: di Vimercati, S.d.C., Syverson, P., Gollmann, D. (eds.)

Computer Security – ESORICS 2005. pp. 222–230. Springer Berlin Heidelberg,

Berlin, Heidelberg (2005)

	Front Pages
	Title Page
	Certificate of Authorship/Originality
	Abstract
	Dedication
	Acknowledgements
	List of Publications and Contribution of Others
	Contents

	Chapter 1 Introduction
	Chapter 2 Improvements to Almost Optimum Secret Sharing with Cheating Detection
	Chapter 3 Outsourced Cheating Detection for Secret Sharing
	Chapter 4 Distributed Oblivious Polynomial Evaluation
	Chapter 5 Unconditionally Secure Oblivious Polynomial Evaluation: A Survey and New Results
	Chapter 6 Efficient Information Theoretic Multi-Party Computation from Oblivious Linear Evaluation
	Chapter 7 OLE-Based MPC Secure Against a Malicious Adversary
	Chapter 8 Conclusion
	References

