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Abstract  A key feature of electricity generation in a distribution 

network is manifested by renewable generation with zero mar-

ginal cost. Existing market mechanisms are likely to fail in sup-

porting such decentralized transactions while providing a rea-

sonable price signal to compensate for the investment cost of re-

newable generators. Given this background, this paper first de-

scribes an average pricing market (APM) mechanism for pricing 

zero marginal cost renewable generation outputs in the distribu-

tion network. Then, a decentralized formulation of the APM 

mechanism is derived using the alternating direction method of 

multipliers (ADMM). Convergence of the decentralized mecha-

nism can be guaranteed under some mild conditions for parame-

ter setting. Finally, case studies are carried out to demonstrate the 

presented market mechanism. Simulation results show that the 

problem of always bidding a zero price by renewable generators 

in some existing markets can be avoided. The presented method 

also provides a solution for organizing decentralized electricity 

transactions in the distribution network and can converge to 

similar results with those obtained by the centralized one, with a 

relative error less than 5%. 

 

Index Terms—electricity distribution market, decentralized 

market mechanism, zero marginal cost, privacy of participants, 

network constraint. 

I. INTRODUCTION 

O enable end-user benefits from distributed renewable 

generation and manage the behaviors of prosumers, the 

establishment of electricity distribution markets has gained 

widespread interests. In particular, some trials and projects on 

peer to peer (P2P) electricity trading in distribution systems 

have been carried out in several countries, aiming to increase 

the engagement of customers in energy transactions. As an 

important basis that supports trading in the distribution network, 

the design of market mechanism attracts significant research 

concerns [1].  

 
This research is partially supported by Australian Research Council under 

grants DP180103217, DE160100675 and IH180100020, and partially sup-

ported by funding from the UNSW Digital Grid Futures Institute, UNSW, 
Sydney, under a cross disciplinary fund scheme. 

J. Yang, Z.Y. Dong and G. Chen are all with the School of Electrical En-

gineering and Telecommunications, University of New South Wales, Sydney, 
NSW 2052, Australia (e-mail: {jiajia.yang; joe.dong; 

guo.chen}@unsw.edu.au). 

F. Wen is with the School of Electrical Engineering, Zhejiang University, 
China, and Department of Electrical Power Engineering and Mechatronics, 

Tallinn University of Technology, Estonia (Email: fushuan.wen@gmail.com). 

Y. Qiao is with the School of Electrical and Information Engineering, 
University of Sydney, Sydney, NSW, 2006, Australia (email: yi-

chen.qiao@sydney.edu.au). 

There are already some publications on electricity distribu-

tion markets. In [2-6], the distribution market is modelled as an 

intermediate entity between the wholesale electricity market 

and distribution network customers. Through coordinating 

communications between the independent system operator 

(ISO) and proactive customers, a distribution market operator 

(DMO) helps customers participate in the wholesale electricity 

market. The distribution locational marginal price (DLMP) is 

employed for market settlement in [3, 4, 6], and is similar to the 

concept of locational marginal price (LMP) in the wholesale 

electricity market. Due to relatively high power losses, voltage 

volatilities, and phase imbalances in the distribution network, 

the determination of DLMP is challenging. Therefore, a 

three-phase alternating current (AC) optimal power flow (OPF) 

based approach is developed to define and calculate DLMP in 

[7]. A framework for designing and simulating electric distri-

bution systems and day-ahead electricity markets in UK is 

studied in [8], however all generators are assumed to be 

price-takers and offer at their marginal costs.  

Besides, in [9] and [10], decentralized energy trading 

frameworks are studied for the independent system operator 

(ISO) and the distribution network operator (DNO) respec-

tively to help organize the transaction between renewable 

generators with uncertain outputs and price-responsive load 

aggregators. However, all the market participants can only 

passively accept the trading prices from the ISO rather than 

setting up the bidding prices by themselves, which is the focus 

of this paper. In [11], a day-ahead decentralized coordination 

method with appliance scheduling and energy sharing among 

smart homes is proposed, but the pricing of electricity is mod-

elled by a quadratic function of the sold power, while the zero 

marginal cost of renewable generation is overlooked.  

As a special electric energy system, a micro grid (MG) has 

advantages in accommodating distributed generation resources. 

Existing energy management algorithms for multi-MG systems 

are usually based on a hierarchical structure [12-17], where the 

lower level problem addresses the optimal scheduling of gen-

eration resources within a MG and the upper level problem 

deals with the coordinative trading between the multi-MGs and 

the wholesale electricity market, respectively.  

Various coordination strategies for multi-MGs have been 

proposed. In [12], under a distributed optimization framework, 

the bargaining of cooperative MGs with each other to reach a 

fair and Pareto-optimal solution is modelled using the concept 

of the Nash bargaining solution (NBS). In [13], a centralized 

inter-MG transactive market is established in order to coordi-

nate the energy supply and demand among MGs. A three-level 
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hierarchical control framework is proposed in [15] to coordi-

nate power exchanges among MGs in a community MG. A 

community MG represents a cluster of neighbouring MGs 

which are linked via interlinking-converters. In [16], a MG 

central controller (MGCC) is presented to coordinate the op-

eration of multi-MGs through solving a centralized scheduling 

problem, and the dual theory is adopted to decentralize the 

original model by relaxing the coupled constraint among mul-

ti-MGs. A priority-based approach for energy trading with a 

time interval of 15min  among multi-MGs is proposed in [17], 

and the presented network management system (DNMS) first 

collects excess energy from producers and receives demand 

requests from consumers, and then allocates energy to con-

sumers based on the amount of energy being requested and the 

priority index (PI) of each consumer. A marginal cost based 

electricity pricing model is proposed in [18] for coordinating 

energy trading among multi-MGs, with an objective to mini-

mize the total cost. The special characteristics of trading in the 

distribution market are neglected by all existing publications, 

especially the zero marginal cost of renewable energy genera-

tion. In existing research [19, 20], the conventional quadratic 

cost function for thermal generators is still adopted to describe 

the renewable energy generation cost, and this is not appropri-

ate. 

Different from traditional generation technologies, renewa-

ble generation is capital-intensive but has zero fuel cost [21]. 

Meanwhile, one of the objectives of the current marginal cost 

based electricity market design is to efficiently price the 

short-term operation cost of a power system [22], but a re-

newable generator makes decision mainly based on its 

long-term cost, such as capital and maintenance costs. There-

fore, the marginal cost based market mechanism could not 

reveal the real market value and generation cost of a renewable 

generator. 

The contributions of this paper are summarized as below: 

(1) Existing electricity markets are designed based on the 

marginal cost and marginal revenue theory, while in the sce-

nario with all participating generators being renewable ones, 

these market mechanisms will fail to price renewable energy 

generation properly. The presented market mechanism in this 

paper is aimed to solve this problem, which has not been tack-

led by existing publications. 

(2) Although endeavours have been devoted to developing 

P2P energy trading systems in some existing publications, an 

effective market mechanism has not yet been proposed to 

support such decentralized transactions. This paper proposed a 

new market mechanism which enables prosumers in an elec-

tricity distribution network to trade electricity without a middle 

man/entity or agent. 

(3) Simulation results show that the problem of always bid-

ding a zero price by renewable generators in some existing 

electricity markets can be avoided. Meanwhile, the proposed 

decentralized market mechanism can converge to basically the 

same results with those obtained by the centralized one, with a 

relative error less than 5%. When transmission congestion 

happens, these two models can achieve almost the same solu-

tion, with the deviation less than 1.5 %.  

The rest of the paper is structured as follows. Section II in-

troduces the market mechanism for pricing renewable genera-

tions with zero marginal costs. Then, the mathematical formu-

lation of the decentralized distribution market mechanism is 

proposed in section III. Section IV analyses the safety of 

transaction under the proposed decentralized market and sec-

tion V provides the case study results and discussions. Finally, 

the paper is concluded in section VI. 

II. DESCRIPTION OF MARKET MECHANISM FOR RENEWABLE 

GENERATION UNITS WITH ZERO MARGINAL COSTS 

A. The Centralized Average Pricing Market Mechanism  

In our previous work presented in [23], an APM mechanism 

for clearing the market bidding of renewable generation with 

zero marginal costs in the distribution network is proposed. The 

APM market mechanism is a double-sided bidding one where 

the ith (i∈N) consumer bids a price-quantity pair (r
b 

i , p
b 

i ) and the 

jth (j∈M) producer offers a price-quantity pair (r
s 

j , p
s 

j ) to the 

market. If a consumer wins, he/she will purchase electricity 

from the distribution market at the market clearing price (MCP), 

otherwise he/she will still purchase electricity at the incumbent 

retail price from the grid. Similarly, for a producer, if he/she 

wins, this producer will sell electricity to the distribution mar-

ket at the MCP, otherwise he/she will have to sell electricity to 

the power grid utility company while being paid by the feed-in 

tariff.  

A strategy is a dominant one if it maximizes the agent’s 

expected utility for all possible strategies of other agents [16, 

24]. In the APM mechanism, both consumers and producers 

have dominant strategies. The dominant strategies of partici-

pants involve the honest reporting of their self-evaluations and 

the market clearing mechanism is depicted in Fig.1. 

In Fig.1, the weighted average r of participants’ bid prices is 

adopted as the MCP, where the weighting factors are their bid 

quantities. Since it is the average price that acts as the MCP, the 

presented market clearing mechanism is named as the average 

pricing market (APM). 
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Fig.1. Schematic diagram of the presented market mechanism. 

Market rules are elaborated as follows. It is assumed that the 

ith consumer bids to the market at (r
b 

i , p
b 

i ) (i∈N) and the jth 

producer offers to the market at (r
s 

j , p
s 

j ) (j∈M). The ith con-

sumer wins the auction only when its bid price r
b 

i  is larger than 

r. On the contrary, the jth producer wins the auction only when 

its offer price r
s 

j  is smaller than r. Besides, when a participant 

bids at a price close to r, there is a risk for this participant to be 

excluded from trading because the market needs to reach equi-

librium between demand and supply. As shown in Fig.1, the 

last winning producer is the marginal participant under the 

APM. It can be found that even if there is a producer with a 

bidding price at  r, this producer still will lose the bidding be-
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cause the market will finally come to the equilibrium state 

between supply and demand. However, if the bid quantity of 

the last winning consumer increases, the producer who bids at 

 r could become the marginal unit, namely there is a possibility 

for the participant to be excluded from trading due to the ne-

cessity of equilibrium between demand and supply. Because 

both the bidding parameters of participants and market clearing 

outcomes are unknown beforehand, all possible scenarios 

should be therefore considered when setting the market rules. 

The market clearing model of the APM mechanism is given 

as follows. 

max   
cb cs cb b cs s( )i j i i j j

i N j M

f p , p p r p r
 

=  −                  (1) 

s.t.    
b b s s b s( + ) ( + )i i j j i j

i N j M i N j M

r r p r p p p
   

=                  (2) 

   cb 0 if b

i ii N , p r r  =                                  (3) 

  
cs s, 0 ifj jj M p r r  =                                  (4) 

cb cs 0i j

i N j M

p p
 

− =                                   (5) 

max cb cs max , ( 1 2 )l i l ,i j l , j l

i N j M

P p d p d P l , , ,L
 

−  +  =     (6) 

cb b0 i ip p  , 
cs s0 j jp p                             (7) 

where p
cb 

i  / p
cs 

j  indicates the dispatched load / generation output 

of the ith consumer / jth producer; P
max 

l  is the power transfer limit 

of branch l; L is the set of branches in the distribution network; 

dl,j denotes the power transfer distribution factor (PTDF) which 

is used to indicate the relative change of the active power that 

occurs on a particular branch l due to actual power change at 

node j; Eqn. (1) is the maximization of social welfare; Eqn. (2) 

calculates the MCP; Eqn. (3) and Eqn. (4) define the rules of the 

participants being dispatched; Eqn. (5) means that market 

clearing ends at an equilibrium state; Eqn. (6) represents dis-

tribution network constraints; Eqn. (7) represents the con-

straints on decision variables. 

The application of PTDFs has been proved to be useful and 

makes it possible to model the impacts of electricity transac-

tions on branch flows in a linear way. PTDFs can be calculated 

using either an alternating current (AC) or direct current (DC) 

power flow model [25]. In particular, since the distribution 

network is characterized by the high R/X ratio and unbalanced 

operation, the AC approach based PTDFs needs to be adopted 

in modelling distribution network constraints. Moreover, it is 

demonstrated in [26] that for a system of an arbitrary topology 

with losses, PTDFs are relatively insensitive to the operating 

point of a given power system if the system topology is fixed 

and there is sufficient reactive power to maintain voltages 

basically constants at all buses. After taking all these into con-

sideration, the PTDF approach is adopted to model the distri-

bution network constraints, as expressed by Eqn. (6).  

B. Proof of the Honesty Dominated Bidding/Offering Strategy  

It is defined as honesty if a participant will bid at his/her 

self-estimated generation cost / electricity utility when 

re-bidding is not permitted and all participants bid and offer 

simultaneously. Otherwise, when re-bidding is permitted, it is 

defined as honesty when the bidding behaviour truly reflects 

the relationship between a participant’s self-estimation of 

generation cost/electricity utility and the MCP. In other words, 

being honest, a participant tends to submit a bid / an offer that is 

not less than/ not larger than the observed MCP if the 

self-estimated generation cost/electricity utility is indeed not 

less than/ not larger than the MCP.  

Theorem 1: Honesty is a dominant strategy for participants 

in the presented market mechanism. 

Proof: It is assumed that when a consumer submits a bid r
b 

i  to 

the electricity market, he/she is aware of his/her true utility of 

using electricity, which is represented by b. Without loss of 

generality, it can also be assumed that the bids of other partic-

ipants except consumer i can be ordered and plotted as in Fig.1. 

After the participation of consumer i, the MCP would change 

from r  to rnew . Then, the net utility of consumer i through 

consuming a unit of electricity can be expressed by b− rnew. But 

if the consumer i loses the auction, the attained utility will be 0. 

In the APM mechanism, the bidding strategies of consumer i 

are analysed under different scenarios of utility b, as shown in 

Table I.  

TABLE I ANALYSIS OF BIDDING STRATEGIES FOR CONSUMERS 

Scenario Strategy Value of  rnew Utility of consumer i 

b r  

if 
b

ir r  new (1+ )r θ r=    (1+ )b θ r−    

if 
b

ir r=  newr r=  0 

if 
b

ir r  new (1 )r θ r= −   0 

b r=  

if 
b

ir r  new (1+ )r θ r=   (1+ ) 0b θ r−    

if 
b

ir r=  newr r=  0 

if 
b

ir r  new (1 )r θ r= −   0 

b r  

if 
b

ir r  new (1+ )r θ r=   (1+ ) 0b θ r−    

if 
b

ir r=  newr r=  0 

if 
b

ir r  new (1 )r θ r= −   0 

Note: θ is a parameter and indicates the change of market clearing because of 

the bids of consumer i. 

Thus, when no available market information, to bid at r
b 

i =b is 

the only choice that can be the best strategy for the consumer 

under all possible conditions.  

In the re-bidding process, when b> r and consumer i chooses 

to bid at r
b 

i > r, this consumer needs to ensure b – (1+ θ)·r > 0. 

Let p
b 

–i denote the bids of other consumers except consumer i, 

the MCP when consumer i bids at r
b 

i  can be expressed as fol-

lows.  

( ) ( )b b b b b
new (1+ ) + +i i i i ir θ r r p r p p p− −=  =           (8) 

(1+ ) 0b θ r−    b b b( )i i ir r b b r p p−
    + − 
     (9) 

Therefore, when b> r and r
b 

i > r, the decision space of con-

sumer i can be determined by Eqn. (9).  

To summarize, once the current market clearing price and 

total trading volume is released, the best strategy for consumer i 

when b> r is to bid r
b 

i > r. Meanwhile, the entries in Table I 

shows that when b= r and b< r, consumer i cannot do better 

than bidding at r
b 

i = r and r
b 

i < r, respectively. 

Similarly, for the jth producer, under the presented market 

mechanism, the offering strategies of producer j are analysed 

under different scenarios of its evaluation s, as shown in Table 

II. A producer obtains the utility of  rnew−s by selling a unit of 

electricity to consumers at the price of  rnew. Besides, if a pro-

ducer loses the auction, the obtained utility will also be 0. 

Thus, when no available market information, to bid at r
s 

j =s is 
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the only choice that can be the best strategy for the producer 

under all possible conditions.  

In the re-bidding process, when s< r and producer j chooses 

to offer at r
s 

j < r, the producer needs to ensure (1– θ)·r – s > 0. 

Let p
s 

–j denote the offers of other producers except producer j, 

the MCP when producer j offers at r
s 

j  can be expressed as fol-

lows.  

( ) ( )s s s s s
new (1 ) + +j j j j jr θ r r p r p p p− −= −  =          (10) 

(1 ) 0θ r s−  − 
s s s( ) j j js r s p p r r−

  − −   
       (11) 

Therefore, when s< r and r
s 

j < r, the decision space of pro-

ducer j can be determined by Eqn. (11).  

Thus, once the current market clearing price and total trading 

volume is released, the best strategy for producer j when s< r is 

to offer r
s 

j < r. Besides, the entries in Table II shows that when 

s= r and s> r, producer j cannot do better than offering at r
s 

j = r 

and r
s 

j > r. 

In other words, when making decision to maximize their own 

utilities, both a consumer and a producer cannot do better than 

bidding/offering honestly in the presented market mechanism. 

Hence, Theorem 1 is proved.  

TABLE II ANALYSIS OF OFFERING STRATEGIES FOR PRODUCERS 

Scenario Strategy Value of rnew Utility of producer j 

s r  

if s

jr r  new (1+ )r θ r= 
 

0 

if s

jr r=  newr r=   0 

if s

jr r  new (1 )r θ r= −   (1 ) 0θ r s−  −    

s r=  

if s

jr r  new (1+ )r θ r= 
 

0 

if s

jr r=  newr r=   0 

if s

jr r  new (1 )r θ r= −   (1 ) 0θ r s−  −   

s r  

if s

jr r  new (1+ )r θ r= 
 

0 

if s

jr r=  newr r=  0 

if s

jr r  new (1 )r θ r= −   (1 )θ r s−  −  

Note: θ is a parameter and indicates the change of market clearing because of 

the offers of producer j. 

III.  MATHEMATICAL FORMULATION OF THE DECENTRALIZED 

DISTRIBUTION MARKET MECHANISM 

A. Proposed Decentralized Distribution Market Mechanism 

Before establishing the decentralized distribution market 

mechanism, the centralized one has been presented in Section II 

where bidding behaviours of zero marginal cost renewable 

generators are also considered. 

In the mathematical optimization community, endeavours 

have been made to seek efficient methods to decompose an 

intractable problem into several sub-problems. As a method 

that combines the advantages of dual decomposition and aug-

mented Lagrangian methods for  constrained optimization 

problems, the ADMM is a simple but powerful algorithm for 

distributed convex optimization problems [27]. Since the 

ADMM is originally introduced for the special case where there 

are only two blocks of variables in the optimization problem, in 

[28] the Gauss-Seidel and Jacobian ADMMs are proposed for 

cases with three or more blocks of variables. In particular, the 

Jacobian ADMM is featured by the advantage of enabling a 

parallelized updating of all variables.  

In [29-31], the ADMM algorithm has been studied to de-

velop distributed computational methods for OPF problems. 

However, there is still no attempt being reported which tries to 

derive highly efficient distributed electricity market mecha-

nisms using the ADMM algorithm. 

In this section, the Proximal Jacobian ADMM algorithm [28] 

is adopted to develop the distributed market mechanism. No-

tably, the original Proximal Jacobian ADMM algorithm can 

only deal with linear equality constraints. However, Eqn. (6) is 

an inequality constraint. Therefore, the Proximal Jacobian 

ADMM algorithm is extended in this paper by introducing the 

slack variable R in order to transform the inequality constraint 

into equations. Then, Eqn. (6) can be expressed as follows.  
cb cs ref max

i l ,i j l , j l l

i N j M

p d p d R P l L
 

+ + =            (12) 

cref cb cs max( )l i l ,i j l , j l

i N j M

R p d p d P l L
 

− + =         (13) 

where R
ref 

l  / R
cref 

l  indicates the slack variable of transmission 

constraints when the power flow is the same as / in contrast to 

the predefined reference direction of electric power.  

Given the centralized optimization problem as expressed by 

Eqn. (1) - Eqn. (7), its corresponding augmented Lagrangian 

equation is as follows.  
cb b cs s T cb cs=( )+ ( )+ρ i i j j i j

i N j M i N j M

L p r p r λ p p
   

− −      

cb cs 2 T cb cs ref max

2 ref,|| - || + [ ( + + )]
2

i j l i l ,i j l , j l l

i N j M l L i N j M

ρ
p p μ p d p d R P

    

−    

cb cs ref max 2

2|| ||
2

i l ,i j l , j l l

l L i N j M

ρ
p d p d R P

  

+ + + −     

T cref cb cs max

cref,[ ( )]l l i l ,i j l , j l

l L i N j M

μ R p d p d P
  

+ − − −     

cref cb cs max 2

2|| ||
2

l i l ,i j l , j l

l L i N j M

ρ
R p d p d P

  

+ − − −                           (14) 

where λ, μref,l, μcref,l are dual variables in the augmented La-

grangian equation; ρ is the parameter for the quadratic penalty 

of the constraint.  

Then, the Jacobian ADMM can solve the original centralized 

optimization problem by solving a decentralized problem in an 

iterative way. Meanwhile, the calculation of each variable can 

be carried out in parallel. Through introducing a proximal term 

in each sub-problem and a damping parameter for the update of 

dual parameters in the iterative calculation, the Proximal Ja-

cobian ADMM algorithm is developed in [28]. With the added 

proximal term, the Jacobian ADMM algorithm is usually more 

stable especially when the sub-problem is not strictly convex. 

Consequently, the final decentralized formulation of the 

APM market clearing mechanism is derived, as detailed below. 

For the jth producer, the optimization problem to be solved can 

be formulated as below. 

cs ref cref

( )
cs( +1) cs s cs cs( ) cb( ) 2

2
, ,

= argmin || || +
2

j j ,l j ,l

k
k k k

j j j j m i
p R R m M j i N

ρ λ
f p r p p p

ρ − 

+ + − − 

( )

ref,cb( ) cs( ) cs ref max 2

, , , , 2

-

[ || + + + || ]+
2

k

lk k

i l i m l m j l j j l l

l L i N m M j

μρ
p d p d p d R P

ρ  

− −  

( )

cref,cref cb( ) cs( ) cs max 2

, , , , 2[ || || ]+
2

k

lk k

j l i l i m l m j l j l

l L i N m M j

μρ
R p d p d p d P

ρ   −

− − − − −  

cs cs( ) 2 ref ref,avg( ) 2 cref cref,avg( ) 21 1 1
|| || + || || + ||| ||

2 2 2j j j

k k k

j j H j ,l l H j ,l l Hp p R R R R− − − (15) 
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s.t.             
cs s, 0 ifj jj M p r r  =                            (16)  

cs s0 j jp p                                        (17) 

where 
1 

2 ||p
cs 

j − p
cs(k) 

j ||
2 

Hj is the proximal term for the p
cs 

j  sub-problem.  

Hj is a symmetric and positive semi-definite matrix and ||Xj||
2 

Hj 

=X 
T 

j HjXj; M − j represents the set of producers except j; k is the 

iteration counter. 

For the ith consumer, the optimization problem to be solved 

can be formulated as below. 

cb ref cref

( )
cb( +1) cb b cs( ) cb( ) cb 2

2
, ,

= argmin (- ) || || +
2

i i ,l i ,l

k
k k k

i i i j n i
p R R j M n N i

ρ λ
f p r p p p

ρ  −

+ − − − 

( )

ref,cb( ) cb cs( ) ref max 2

2[ || || ]
2

k

lk k

n l ,n i l ,i j l , j i ,l l

l L n N i j M

μρ
p d p d p d R P

ρ  − 

+ + + − − +  

( )

cref,cref cb( ) cs cs( ) max 2

2[ || || ]
2

k

lk k

i ,l n l ,n i l ,i j l , j l

l L n N i j M

μρ
R p d p d p d P

ρ  − 

− − − − − +  

cb cb( ) 2 ref ref,avg( ) 2 cref cref,avg( ) 21 1 1
|| || + || || + || ||

2 2 2i j j

k k k

i i H i ,l l H i ,l l Hp p R R R R− − −   (18) 

s.t.               cb 0 if b

i ii N , p r r  =                         (19)  

          
cb b0 i ip p                                   (20) 

where 
1 

2 ||p
cb 

i −p
cb(k) 

i ||
2 

Hi is the proximal term for the p
cb 

i  sub-problem. 

Hi is also a symmetric and positive semi-definite matrix; N−i 

represents the set of consumers except i. 

During the iteration, dual parameters also need to be updated. 
( +1) ( ) cs( 1) cb( 1)= ( )k k k k

j i

j M i N

λ λ γρ p p+ +

 

− −               (21) 

( 1) ( ) cb( +1) cs( +1) ref,avg( +1) max

ref, ref, , ,= ( + + )k k k k k

l l i l i j l j l l

i N j M

μ μ γρ p d p d R P+

 

− −      (22) 

( 1) ( ) cref,avg( +1) cb( +1) cs( +1) max

cref, cref, , ,= ( )k k k k k

l l l i l i j l j l

i N j M

μ μ γρ R p d p d P+

 

− − − −  (23) 

where γ>0 is the damping parameter for the update of dual 

variables. 

Besides, since all the sub-problems share the same trans-

mission constraints of the network, therefore, in the final de-

centralized results, the slack variables obtained by all 

sub-problems should be equal. Then, in Eqn. (15) and Eqn. (18) 

the last two items enable the decisions of sub-problems con-

verge to their average value after the iteration procedure is 

completed. In this way, all the slack variables calculated by 

each sub-problem will be equal in the final optimization results. 

Obviously, the average value of slack variables also needs to be 

updated during the iteration as follows. 
ref,avg( +1) ref( 1) ref( 1)( ) ( )k k k

l i ,l j ,l

i N j M

R R R N M+ +

 

= + +       (24) 

cref,avg( +1) cref( 1) cref( 1)( ) ( )k k k

l i ,l j ,l

i N j M

R R R N M+ +

 

= + +        (25) 

In [27, 31], it is pointed out that the terminating condition for 

the ADMM based methods is that the primal and dual residuals 

must be small enough. 
rd( ) pri

2|| ||kr ε  and 
rd( ) dual

2|| ||ks ε                  (26) 

where rrd(k) and srd(k) are the primal and dual residuals; εpri and 

εdual are the feasibility tolerances for the primal and dual re-

siduals, respectively.  

In the proposed mechanism, the primal residual is defined as 

follows for each sub-problem. 

For the jth producer and ith consumer, 
rd( ) cs( ) cs( 1)k k k

j j jr p p −= −                             (27) 

rd( ) cb( ) cb( 1)k k k

i i ir p p −= −                            (28) 

Besides, the dual residual after each iteration is defined as 

follows. 
rd( ) cs( ) cb( )( )k k k

j i

j M i N

s ρ p p
 

= −                    (29) 

In this paper, it is assumed that when both the primal and 

dual residuals are smaller than the smallest tolerance of all 

decision makers, then the mechanism reaches its termination 

criterion of the iterative procedure.  

B. Convergence of the Decentralized Market Mechanism  

Since the proposed distributed market mechanism is com-

puted in an iterative way, its convergence is hence an essential 

issue. The proposed decentralized market model is based on a 

modified algorithm of ADMM, namely the Proximal Jacobian 

ADMM, all convergence results that hold for the Proximal 

Jacobian ADMM still hold for the proposed model. In [28], it is 

proved that if certain conditions for the matrix Hi and the pa-

rameter γ are satisfied, the Proximal Jacobian ADMM can 

achieve global convergence at an o(1/k) convergence rate. 

Besides, the added proximal term in the objective function also 

enables the sub-problem to become strictly or strongly convex 

if it is not originally.  

In this paper, since the original centralized problem as given 

by Eqn. (1) - Eqn. (7) is a linear programming one, then the 

sub-problem after the decentralized formulation is still a con-

vex optimization one. Thus, the proposed decentralized algo-

rithm can guarantee the convergence of iteration if the speci-

fications for Hi and γ satisfy the conditions as given below. In 

the Proximal Jacobian ADMM algorithm, there are two com-

monly adopted specifications for Hi and γ. 

(1) Hi=τiE (τi>0). This corresponds to the standard proximal 

method. E is the identity matrix. τi is a parameter. The condition 

for parameter setting is 
sub

2
( 1)

2
i i

N
τ ρ A

γ
 −

−
                              (30) 

(2) Hi=τiE−ρA
T 

i Ai (τi>0). This corresponds to the prox-linear 

method, which not only linearizes the quadratic penalty term of 

the augmented Lagrangian equation but also adds a proximal 

term. The condition for parameter setting is 
2sub[ (2 )]i iτ ρN γ A −                         (31) 

where Ai is the coefficient matrix of the equality constraints in 

the original optimization problem; Nsub is the total number of 

sub-problems. 

IV. SAFETY OF TRANSACTION UNDER THE PROPOSED 

DECENTRALIZED MARKET  

A. Communication of Participants in Decentralized Market  

In order to implement the proposed distributed market 

mechanism, a communication path is demanded to transmit 

information among all the participants. Regarding the concrete 

structure of the communication network, different types of 

network topologies can be considered including the ring to-

pology, the fully connected topology and the bus topology. The 

design of the communication network topology is beyond the 

scope of this paper, while the focus is on the requirement of 

exchanged information for implementing the proposed method. 

It is also assumed that the message is transmitted in a serial way 

despite the topology of the actual communication network, as 

shown in Fig.2. 
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Participant N+M

Bid (rN+M, pN+M)

Message N+M

Participant 1

Bid (r1, p1)

Message 1

Participant 2

Bid (r2, p2)

Message 2

Participant 3

Bid (r3, p3)

Message 3

Participant 4

Bid (r4, p4)

Message 4

Participant i

Bid (ri, pi)

Message i

Participant i+1

Bid (ri+1, pi+1)

Message i+1

Participant j

Bid (rj, pj)

Message j

 

Fig.2. Message transmission among participants in the proposed mechanism. 

In the sub-problem of each participant, the proximal terms 

are introduced in order to increase the stability of the Jacobian 

ADMM algorithm especially when the sub-problem is not 

strictly convex. The added proximal terms in the objective 

function of each participant can help the decentralized model 

converge to a stable solution. Notably, the whole process of 

iterative calculation, as shown in Table III, only starts after 

each participant submitted its own bidding parameters. Under 

this circumstance, the process of iterative calculation can be 

designed as an automatic calculation system that prohibits the 

intervention of participants, and then there will be no in-

volvement of participants in the iterative calculation. Therefore, 

the market clearing process in the proposed decentralized 

market mechanism is carried out by the iterative calculation and 

communication without a centralized market operator. 

The pseudo code for the proposed algorithm and details of 

messages transmitted among participants are given in Table III. 

TABLE III DECENTRALIZED MARKET CLEARING ALGORITHM AND DETAILS OF 

MESSAGES TRANSMITTED AMONG PARTICIPANTS  

Communication before the decentralized calculation 

Round 1 Each participant sets its identity as a producer or consumer, 

and then adds its own data into the passing message. At the 
end, the following information is obtained:  

∑ 𝑝𝑖𝑖∈𝑁  (consumers), ∑ 𝑝𝑗𝑗∈𝑀   (producers); 

∑ 𝑝𝑖𝑟𝑖𝑖∈𝑁  (consumers), ∑ 𝑝𝑗𝑟𝑗𝑗∈𝑀  (producers); 

Round 2 ∑ 𝑝𝑖𝑖∈𝑁 , ∑ 𝑝𝑗𝑗∈𝑀 , ∑ 𝑝𝑖𝑟𝑖𝑖∈𝑁  and ∑ 𝑝𝑗𝑟𝑗𝑗∈𝑀  are transmitted to 

each participant. 

Communication during the decentralized calculation 

1. Initialize the parameters and variables (k=0): λ(k), μ 
(k) 

ref,l , μ 
(k) 

cref,l, ρ, Hi, Hj, γ, 

p
cs(k) 

j , R
ref(k) 

j,l , R
cref(k) 

j,l , p
cb(k) 

i , R
ref(k) 

i,l , R
cref(k) 

i,l .   
2. Start the iteration:  

(1) The jth producer (j=1,…,M) and the ith consumer (i=1,…,N) update  

(p
cs(k+1) 

j , R
ref(k+1) 

j,l , R
cref(k+1) 

j,l ) and (p
cb(k+1) 

i , R
ref 

i,l , R
cref 

i,l ), respectively. 

Round 1: Using the optimization results, each participant adds its own  

data into the passing message. At the end, the following in-

formation is obtained:  

             ∑ 𝑝𝑖
cb(𝑘+1)

𝑖∈𝑁 , ∑ 𝑝𝑗
cs(𝑘+1)

𝑗∈𝑀 , ∑ 𝑅𝑖,𝑙
ref(𝑘+1)

𝑖∈𝑁 , ∑ 𝑅𝑗,𝑙
cref(𝑘+1)

𝑗∈𝑀 ,             

             ∑ 𝑝𝑖
cb(𝑘+1)

𝑑𝑙,𝑖𝑖∈𝑁 , ∑ 𝑝𝑗
cs(𝑘+1)

𝑑𝑙,𝑗𝑗∈𝑀 ; 

Round 2: Transmit the obtained aggregated values to each participant in                                                                  
the distribution network; 

(2) Each participant updates λ(k+1), μ
(k+1) 

ref,l , μ
(k+1) 

cref,l  , R
ref(k+1) 

l , and R
cref(k+1) 

l ;  

(3) Continue the iteration until r
rd(k+1) 

i , r
rd(k+1) 

j and  srd(k+1) satisfy the  
terminating conditions; 

3. End iteration. 

After the decentralized calculation 

Distribution market participants will be dispatched and settled according 

to the optimization results obtained through the iterative calculation. 

Note: during the iteration, the optimization calculation of each participant can 

be carried out in a parallel way. 

After the first two rounds of communication, each participant 

would obtain the MCP r. Then, the parameters in the optimi-

zation model of each participant will be reset according to the 

market clearing rules, as formulated by Eqn. (16) and Eqn. (19). 

Next, the decentralized market mechanism starts the iterative 

calculation until the terminating criterion as expressed by Eqn. 

(26) is satisfied. In each iteration, there are two rounds of 

communications for participants to update their parameters, 

where the aggregated values of solutions are transmitted among 

participants. Finally, the dispatch and settlement in the distri-

bution network will be implemented based on the optimization 

results obtained by the iterative calculation.  

B. Privacy Analysis of Market Participants  
As the bid/offer data from participants are private, the in-

formation of each participant should be prevented from leaking 

to the others. The information leakage may lead to the specu-

lative behaviours of some participants, and even result in the 

failure of the market mechanism. Compared with the central-

ized electricity market, the decentralized one does not require a 

market operator who is in charge of the market operation and 

manage private information of participants. Therefore, pro-

tecting the privacy of participants becomes a more severe 

problem in a decentralized market mechanism. 

In the proposed mechanism, the aggregated value of the 

bidding/offering data from other participants is used to solve 

each sub-problem as shown in previous sections. The aggre-

gated values of bids/offers are transmitted in the communica-

tion network. Each participant solves its own optimization 

problem after receiving the transmitted messages from his/her 

neighbours. Through the aggregating of data, the bid/offer 

information of participates is being encrypted. These data will 

not be decrypted during the whole process, thus the distributed 

market mechanism can be operated in a way without exposing 

the personal information of each participant to the others. The 

personal information of each participant will only be used for 

solving his/her own optimization problem.  

V. CASE STUDY AND DISCUSSIONS 

A. Data Specifications in the Case Study 

In [32], it is reported that the global weighted levelized cost 

of energy (LOCE) has declined to about 0.05 $/kWh for on-

shore wind and 0.06 $/kWh for solar photovoltaic (PV) based 

on the latest data in 2017. In this case study, it is assumed that 

the offer prices of small-scale renewable generators fall within 

the range between 0.05 and 0.5 $/kWh. Actual residential solar 

data in the Australian distribution system are presented in [33], 

then the bid/offer quantities of participants are assumed to fall 

within the range between 1 and 5 kW. The standard proximal 

method is adopted for the Proximal Jacobian ADMM algorithm. 

The values of other parameters are given in Table IV and initial 

values of decision variables for each participant are all set as 0. 

TABLE IV PARAMETER VALUES IN DECENTRALIZED MARKET MECHANISM 
Parameters λ (k) μ

(k) 

ref,l μ
(k) 

cref,l ρ γ εpri εdual 

Initial value 

(k=0) 
1 1 1 3×10-3 0.5 0.01 0.01 

Note: Hi=τiE, Hj=τjE, τ=τj=τi (j∈M; i∈N). Since Eqn. (30) in Section III.B 

needs to be satisfied, τ is set according to the total number of participants.  

B. Failure of the Marginal Cost Based Market Mechanism 

A sample power system with three generation units is taken 

as an example to elaborate shortcomings of the conventional 
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uniform clearing mechanism in pricing generation from zero 

marginal cost units, where details about end-users are omitted 

for simplification. Costs of generation units in this sample 

power system are given in Table V and the levelized cost of 

energy (LCOE) is a measurement of long-term generation cost. 

In Table VI, comparisons between market clearing outcomes of 

the marginal cost based market and the APM mechanism in this 

paper are presented. 

TABLE V GENERATION COSTS OF EACH UNIT IN THE SAMPLE POWER SYSTEM  

Unit # 
Long-term Generation Cost Short-term Generation Cost 

LCOE Marginal Cost 

1 CLCOE,1 Cmgl 

1 =0 

2 CLCOE,2 Cmgl 

2 =0 

3 CLCOE,3 Cmgl 

3 >0 

TABLE VI COMPARISON BETWEEN MARGINAL COST MARKET AND APM  

Marginal cost based market APM mechanism 

Scenario 1: high load demand Scenario 1: high load demand 
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Analysis of MCP Analysis of MCP 

Under the uniform clearing 

mechanism, the market clearing price 

will be acceptable for units 1 and 2, 
even though they would offer zero 

prices. Because the MCP is deter-

mined only by the marginal unit and 

offers from units 1 and 2 have no 

impact on the MCP. 

Under the APM mechanism, if 

units 1 and 2 still offer zero prices 
then the final MCP could be lower 

than their acceptable values. There-

fore, units 1 and 2 would choose 
non-zero offer prices. If participants 

are permitted to bid only once, they 

will bid at the self-estimated genera-
tion cost or electricity utility. 

Scenario 2: low load demand Scenario 2: low load demand 
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Analysis of MCP Analysis of MCP 

Renewable generators are also 

likely to become marginal units when 
the load demand in the power system 

is low. The zero bidding prices from 

renewable generators result in the 
zero MCP, and the market is then 

failed to reveal the genuine non-zero 

value of renewable generations. 

Units 1 and 2 do not bid zero 

prices to the market under the APM 

mechanism. Under this circumstance, 

even if only generation units with 

zero marginal costs participate in the 

bidding, the APM market mechanism 
can still produce a reasonable MCP. 

Conclusion Conclusion 

Bidding decisions of generators 

are made based on their short-term 

generation costs. Generation units 
with zero marginal costs will still 

offer zero prices to the market, even 

though their LCOEs are not zero. 

The bidding price from each gen-

erator will have impacts on the final 

MCP. The presented APM mecha-
nism enables generators submit 

bidding price by considering their 

long-term LCOEs. 

C. Comparisons Study without Network Congestions  

Market clearing outcomes obtained by centralized and de-

centralized models are compared under cases 1, 2 and 3. Details 

about the calculation results are shown in Tables VII to XIII. 

(1) Calculation results for various scenarios in Case 1  

In case 1, the bidding data for all participants in each sce-

nario are generated independently. ρ is set as 3×10-3 and 1×10-3 

when the total number of participants is below and over 1000, 

respectively. τ is given in Table IX. Fig.3 shows the differences 

between decentralized and centralized market clearing out-

comes when the number of participants is 1000.  

The statistical results in Table VII show that there are at most 

6.6% of participants being affected when the decentralized 

model is employed. In particular, if the differences with a micro 

value are neglected, such as those with values much less than 1 

kW, the percentage can decrease further. Besides, Table VIII 

shows that the difference between market volumes attained by 

the decentralized and centralized models is always within 5%. 

In terms of the convergence speed, Table VIII manifests the 

number of iterations needed in each scenario. Meanwhile, with 

the increase of participants, the difference between market 

outcomes tends to get larger. This is because with the increase 

of participants, the scale and complexity of the decentralized 

optimization problem will also increase, so the accuracy of the 

algorithm decreases slightly. It is also shown in Table VIII that 

although the number of participants increased by 10 times, the 

proposed decentralized model can still converge to the optimal 

solution quickly. 

The comparison of MCP and computation time under those 

scenarios is presented in Table IX. The results show that the 

proposed decentralized market model can generate the same 

MCP as the centralized model. That is because the MCP is 

determined by the bidding parameters of participants. The 

decentralization of the market mechanism only changes the 

way of information transmission but has no impact on the 

original bidding data. Thus, it does not change the final MCP, 

which is proved by the case study results. 

 
Fig.3. Deviations of market clearing outcomes for 1000 participants in case 1. 
Note: The deviation in Fig.3 represents the difference between the decentral-

ized market result and the centralized market result. 

TABLE VII NUMBER OF PARTICIPANTS HAVING DIFFERENT TRADING 

OUTCOMES WITHOUT NETWORK CONGESTION 

Scenario 
Number of 

participants 
NPA NCA 

Percent 

of (NPA+ NCA) 

1 100 0 4 4% 

2 200 4 7 5.5% 
3 400 5 2 1.75% 

4 600 19 13 5.3% 

5 800 18 35 6.6% 
6 1000 23 41 6.4% 

7 1200 23 23 3.83% 

8 1400 41 41 5.69% 
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Note: NPA / NCA represents the number of producers / consumers who obtain 
different market clearing results under the decentralized and centralized market 

models; Percent of (NPA+NCA) indicates the proportion of NPA+NCA over 

the total number of participants.  

TABLE VIII COMPARISONS OF MARKET CLEARING OUTCOMES UNDER CASE 1  

Number of 

participants 

Market volume 

(kW) 
DBTM 

(kW) 

Percent 

of DBTM 

Number of 

iterations 
DE-M CE-M 

100 68 68 0.0 0.0% 228 

200 156 158 2.0 1.27% 113 
400 290 291 1.0 0.34% 153 

600 417 434 17.0 3.92% 105 

800 558 586 28.0 4.78% 80 
1000 704 738 34.0 4.61% 83 

1200 871 888 17 1.91% 148 

1400 986 1027 41 3.99% 119 

Note: DE-M represents the decentralized market; CE-M represents the cen-
tralized market; DBTM represents the difference between the clearing results of 

the decentralized and centralized markets; Percent of DBTM represents the 

proportion of DBTM over the market volume attained by the centralized 

market model. 

TABLE IX COMPARISONS OF MCPS AND COMPUTATION TIME UNDER CASE 1 

Number of 

participants 

MCP ($/kWh) 
τ ρ 

Computation 

time (min) DE-M CE-M 

100 0.2922 0.2922 1 3.0×10-3 4.22 

200 0.2961 0.2961 1 3.0×10-3 4.17 
400 0.2811 0.2811 1 3.0×10-3 11.10 

600 0.2647 0.2647 1.2 3.0×10-3 11.50 

800 0.2752 0.2752 1.7 3.0×10-3 11.82 
1000 0.2807 0.2807 2.0 3.0×10-3 17.56 

1200 0.2663 0.2663 0.8 1.0×10-3 38.92 

1400 0.2710 0.2710 0.94 1.0×10-3 34.30 

(2) Calculation results for various scenarios in Case 2 

In case 2, the bidding data from all participants in each sce-

nario are generated independently. Differently, ρ is set as 

1.5×10-3 and 0.5×10-3 when the total number of participants is 

below and over 1000, respectively. τ is given in Table XI. The 

results in Table X show that the performance of the decentral-

ized market model is improved after the adjustment of param-

eters. In particular, the difference between results that are at-

tained by the two market models decreases to 0 when the 

number of participants is below 600.  

TABLE X COMPARISONS OF MARKET CLEARING OUTCOMES UNDER CASE 2  

Number of 

participants 

Market volume 

(kW) 
DBTM 

(kW) 

Percent 

of DBTM 

Number of 

iterations 
DE-M CE-M 

100 68 68 0.0 0.0% 116 
200 158 158 0.0 0.0% 42 

400 291 291 0.0 0.0% 122 

600 434 434 0.0 0.0% 190 
800 578 586 8 1.37% 119 

1000 716 738 22 2.98% 105 

1200 888 888 0 0.0% 198 
1400 1009 1027 18 1.75% 80 

TABLE XI COMPARISONS OF MCPS AND COMPUTATION TIME UNDER CASE 2 

Number of 

participants 

MCP ($/kWh) 
τ ρ 

Computation 

time (min) DE-M CE-M 

100 0.2922 0.2922 0.1 1.5×10-3 2.17 

200 0.2961 0.2961 0.2 1.5×10-3 1.52 

400 0.2811 0.2811 0.4 1.5×10-3 9.28 
600 0.2647 0.2647 0.6 1.5×10-3 20.92 

800 0.2752 0.2752 0.8 1.5×10-3 16.67 

1000 0.2807 0.2807 1.0 1.5×10-3 19.08 
1200 0.2663 0.2663 0.40 0.5×10-3 50.53 

1400 0.2710 0.2710 0.48 0.5×10-3 22.83 

Table XI also shows that the decentralized and centralized 

market models generate the same clearing price. Fig. 4 gives 

the differences between the decentralized and centralized 

market clearing outcomes when the number of participants is 

1000. By comparing the outcomes in Fig. 4 with those in Fig. 3, 

it can be found after the parameter adjustments in the decen-

tralized model, the performance of the proposed decentralized 

algorithm is further improved. The same dispatching outcome 

is attained with more participants by the decentralized and 

centralized market models. 

 

Fig. 4. Deviations of market clearing outcomes for 1000 participants in case 2. 

Note: The deviation shown in Fig.4 represents the difference between the 

decentralized market result and the centralized market result. 

(3) Calculation results for various scenarios in Case 3 

In case 3, the bidding data from 100 participants are first 

generated and then additional bidding data added for the in-

creased participants. Therefore, for each scenario in case 3, 

comparing with its previous adjacent scenario, the incumbent 

participants have the same bidding data, only the bidding data 

from newly added participants are randomly generated, which 

differs from cases 1 and 2. Meanwhile, ρ is still set as 1.5×10-3 

and 0.5×10-3 when the total number of participants is below and 

over 1000. τ is given in Table XIII.  

TABLE XII COMPARISONS OF MARKET CLEARING OUTCOMES UNDER CASE 3 

Number of 

participants 

Market volume 

(kW) 
DBTM 

(kW) 

Percent 

of DBTM 

Number of 

iterations 
DE-M CE-M 

100 75 75 0.0 0.0% 128 

200 137 137 0.0 0.0% 124 

400 273 273 0.0 0.0% 157 
600 416 416 0.0 0.0% 129 

800 562 562 0.0 0.0% 185 

1000 716 738 22 2.98% 105 
1200 899 904 5 0.55% 100 

1400 1048 1054 6 0.57% 138 

TABLE XIII COMPARISONS OF MCPS AND COMPUTATION TIME UNDER CASE 3 

Number of 

participants 

MCP ($/kWh) 
τ ρ 

Computation 

Time (min) DE-M CE-M 

100 0.2891 0.2891 0.1 1.5×10-3 2.32 

200 0.2873 0.2873 0.2 1.5×10-3 4.58 
400 0.2799 0.2799 0.4 1.5×10-3 11.45 

600 0.2840 0.2840 0.6 1.5×10-3 14.38 

800 0.2813 0.2813 0.8 1.5×10-3 27.60 
1000 0.2807 0.2807 1.0 1.5×10-3 19.25 

1200 0.2793 0.2793 0.40 0.5×10-3 25.20 

1400 0.2791 0.2791 0.48 0.5×10-3 42.22 

The results of cases 1, 2 and 3 manifest that the convergence 

of the iterative calculation is impacted by parameter settings, 

such as the number of participants, the values of ρ and τ, as well 

as the bidding data of participants. As the quantity of partici-
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pants increases from 100 to 1400, the number of iterations does 

not increase accordingly. This is because the bidding data of 

participants under each scenario is generated independently. 

Therefore, the bidding data from a large number of participants 

is possibly to converge more easily than another group ran-

domly generated bidding data for a small group of participants. 

In order to verify this point, cases 2 and 3 are carried out after 

the case 1. In case 2, the bidding data for all participants in each 

scenario is also generated independently. In case 3, the bidding 

data for 100 participants is firstly generated and then additional 

bidding data is added onto it for the increased participants. In 

other words, a proportion of participants in case 3 share the 

same bidding data, which differs from case 2. However, the 

calculation results of case 3 show that the increase of the 

number of participants will not necessarily lead to the increase 

of iterations. The convergence of the iterative calculation is 

significantly impacted by the concrete bidding data of partici-

pants.  

D. Comparisons Study with Network Congestions 

The IEEE 33-node distribution system [34] is adopted for 

testing the proposed model and solving algorithm. It is assumed 

that end-users 1 to 32 are connected to feeders 2 to 33 sequen-

tially, with end-users 1 to 16 to be consumers and end-users 17 

to 32 to be producers. Node 1 is selected as the slack bus. The 

PTDF matrix is calculated using the data from [34]. Six 

branches are randomly selected and it is assumed that network 

congestion would occur on these branches. The number of 

congested branches is 1/2/3/4/5/6 under scenario 1/2/3/4/5/6, 

respectively. 

 
Fig.5. Deviations market outcomes under different scenarios with congestion. 

Note: The deviation in Fig.5 represents the difference between the decentral-
ized market result and the centralized market result. 

TABLE XIV NUMBERS OF PARTICIPANTS HAVING DIFFERENT TRADING 

RESULTS WITH NETWORK CONGESTION 

Scenario NPA NCA 
Max-deviation 

(kW) 

Min-winning 

bid/offer (kW) 

1 1 1 0.019 1.15 

2 2 2 0.22 1.15 

3 2 2 0.2 1.15 
4 3 2 0.13 1.15 

5 3 2 0.22 1.15 

6 3 1 0.25 1.15 

Note: Max-deviation indicates the maximum value of deviation; Min-winning 

bid / offer represents the minimum demand / generation output among winning 

bids / offers in the market clearing results.  

Fig.5 presents the differences between market outcomes 

when congestion happens. Details of the differences are given 

in Table XIV. Differences between market outcomes are slight 

in which the maximum deviation for all scenarios is 0.25 kW 

and is less than 22% of the minimum winning bids/offers. 

Regarding the market trade volume, Table XV shows that the 

proposed decentralized algorithm can achieve almost the same 

solution as the centralized model, where the maximum differ-

ence is only 1.35%. 

TABLE XV COMPARISONS OF MARKET OUTCOMES UNDER DIFFERENT 

SCENARIOS WITH NETWORK CONGESTION  

Scenario 

Market volume 

(kW) 
DBTM 

(kW) 

Percent 

of DBTM 

Number of 

iterations 
DE-M CE-M 

1 17.95 17.97 0.02 0.11% 536 

2 17.72 17.76 0.04 0.23% 650 

3 14.95 15.09 0.14 0.9% 1608 
4 14.78 14.82 0.04 0.27% 2057 

5 14.59 14.79 0.20 1.35% 2279 

6 14.60 14.80 0.20 1.35% 2268 

TABLE XVI COMPARISONS OF MCPS AND COMPUTATION TIME UNDER 

SCENARIOS WITH NETWORK CONGESTION 

Scenario 
MCP ($/kWh) 

τ ρ 
Computation 

Time (min) DE-M CE-M 

1 0.2842 0.2842 0.065 3×10-3 6.67 

2 0.2842 0.2842 0.2 3×10-3 11.00 

3 0.2842 0.2842 0.5 3×10-3 28.20 
4 0.2842 0.2842 0.6 3×10-3 41.65 

5 0.2842 0.2842 0.7 3×10-3 70.52 

6 0.2842 0.2842 0.8 3×10-3 72.73 

When the number of congested branches increases in the 

network, the number of iterations also increases. Because when 

there are more transmission constraints needed to be considered 

in the sub-problem of each participant, the decision variables 

will increase accordingly, which leads to more iterations. Once 

the decentralized one converges, market clearing outcomes, 

that are close to the centralized market clearing outcomes, can 

be attained. Thus, the results verify that the proposed algorithm 

can still clear the market in a decentralized way when trans-

mission constraints in the distribution system are considered.  

In Tables IX, XI, XIII and XVI, details of the MCP, com-

putation time, and parameter setting under various scenarios are 

presented. As mentioned above, the convergence of the itera-

tive algorithm and computation time change with the parameter 

settings, such as the number of participants, the values of ρ and 

τ, as well as the bidding data of participants. When there is no 

network congestion, the decentralized market model can con-

verge in an hour for all scenarios and in most cases within 30 

mins for the numerical example. Even if network congestion 

occurs, the decentralized market model can mostly converge in 

an hour while in the worst case the required computation time is 

about 73 mins. 

Notably, the serial computation is adopted for the simula-

tions here, and the proposed decentralized market model can 

converge in a reasonable time. The computation time can be 

further reduced by employing parallel computation. Because in 

the proposed decentralized market, the Jacobian ADMM is 

characterized by the advantage of enabling a parallelized up-

dating of all variables. Compared with the serial computation, 

parallel computation will significantly reduce the computa-

tional time for the proposed mechanism to converge, where the 

computational time will mainly be spent on communications 
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among participants. 

E. Convergence Analysis for the Decentralized Market Model 
Because in the proposed decentralized market model, once 

the values of ρ and γ are determined, the parameter τ can be 

assigned different values as long as the constraint of Eqn. (30) 

is respected. Therefore, the convergence speed of the decen-

tralized market model is analysed against different values of τ. 

Five scenarios with 400 participants in the market are studied 

for cases with and without network congestions.  
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Fig.7. Number of iteration and computation time with network congestion. 

TABLE XVII CONVERGENCE ANALYSIS OF DECENTRALIZED MARKET MODEL 

Scenario 

Results without network 

congestion 

Results with network  

congestion 

τ 
Iteration 

number 

C-time 

(min) 
τ 

Iteration 

number 

C- time 

(min) 

1 1.0 153 11.10 0.065 536 6.67 

2 11 188 12.55 0.1 638 7.70 

3 15 278 20.00 0.5 1927 21.92 

4 25 341 23.65 1.0 2230 24.02 

5 30 402 28.03 1.5 3493 41.17 

Note: C-time indicates the computation time. 

Fig.6 and Fig.7 present the number of iterations and com-

putation time needed by the decentralized market model to 

converge under scenarios without and with network conges-

tions, respectively. From the results, it can be found that with 

the increase of τ, the convergence speed of the decentralized 

model would decrease. Consequently, the number of iterations 

and computation time increase. Therefore, the value of τ should 

be controlled to be slightly beyond the limit as calculated by 

Eqn. (30) in implementing the proposed decentralized market 

mechanism. Besides, Table XVII shows the details of the 

convergence analysis results. 

VI. CONCLUSIONS 

Since the percentage of distributed generation in an actual 

power system is expected to grow steadily in the coming years, 

the traditional models of managing the electricity market may 

not work. The following conclusions are attained: 

1) This paper first addresses the distribution market compe-

tition problem among renewable generators with zero marginal 

costs. The presented APM mechanism is able to cope with the 

situation that all participants in the auction are renewables with 

zero marginal costs. 2) Then, a decentralized form of the APM 

mechanism is derived using the ADMM. This provides a solu-

tion for organizing the decentralized electricity transactions in a 

distribution network. 3) The convergence of the decentralized 

mechanism can be guaranteed under some mild conditions for 

parameter setting, and information privacy of market partici-

pants can also be protected since only the sum of bid/offer data 

is transmitted during the iteration. Besides, network constraints 

are also integrated into the proposed model.  

In terms of future research, since the convergence speed 

tends to be slower when network congestion occurs, this issue 

will be carefully examined in our future research efforts. An-

other direction of further work will be to investigate the impacts 

of uncertain trading behaviours on the market operation.  
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