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Abstract: The microsatellite stable/epithelial-mesenchymal transition (MSS/EMT) subtype of gastric 
cancer represents a highly aggressive class of tumors associated with low rates of survival and con-
siderably high probabilities of recurrence. In the era of precision medicine, the accurate and prompt 
diagnosis of tumors of this subtype is of vital importance. In this study, we used Weighted Gene 
Co-expression Network Analysis (WGCNA) to identify a differentially expressed co-expression 
module of mRNAs in EMT-type gastric tumors. Using network analysis and linear discriminant 
analysis, we identified mRNA motifs and microRNA-based models with strong prognostic and di-
agnostic relevance: three models comprised of (i) the microRNAs miR-199a-5p and miR-141-3p, (ii) 
EVC/EVC2/GLI3, and (iii) PDE2A/GUCY1A1/GUCY1B1 gene expression profiles distinguish EMT-
type tumors from other gastric tumors with high accuracy (Area Under the Receiver Operating 
Characteristic Curve (AUC) = 0.995, AUC = 0.9742, and AUC = 0.9717; respectively). Additionally, 
the DMD/ITGA1/CAV1 motif was identified as the top motif with consistent relevance to prognosis 
(hazard ratio > 3). Molecular functions of the members of the identified models highlight the central 
roles of MAPK, Hh, and cGMP/cAMP signaling in the pathology of the EMT subtype of gastric 
cancer and underscore their potential utility in precision therapeutic approaches. 

Keywords: gastric cancer; epithelial-mesenchymal transition; EMT subtype; precision medicine; 
WGCNA; machine learning; microRNA; motif analysis 
 

1. Introduction 
Gastric cancer (GC) is one of the most common malignancies with extreme inter- and 

intra-tumoral heterogeneity [1,2]. With more than a million new cases each year and ap-
proximately 769,000 deaths in 2020, it comprises one of the leading causes of cancer-re-
lated deaths worldwide [3]. Despite its substantial burden, little progress has been made 
regarding the development of effective therapeutic interventions for GC patients [4]. This 
reflects the inability of the conventional one-size-fits-all diagnostic/therapeutic ap-
proaches for combatting such a heterogeneous disease.  

Fortunately, in recent decades, various classifications with either histologic [5] or mo-
lecular [6] bases have been developed for this malignancy. These classification systems 
guide the development of disease management strategies that are tailor-made for specific 
subtypes of GC. In comparison with histologic classifications, molecular classifications 
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display a wider association with tumor heterogeneity and patient prognosis, suggesting 
their broader utility in the clinical setting [7]. One of the major molecular classifications of 
stomach cancer was developed based on the mRNA expression data of gastric tumors 
almost a decade ago by the Asian Cancer Research Group (ACRG) [8]. This classification 
stratifies gastric tumors into four subtypes, namely (i) microsatellite instability (MSI), (ii) 
microsatellite stable/epithelial-mesenchymal transition (MSS/EMT; EMT for short), (iii) 
microsatellite stable/TP53+, and (iv) microsatellite stable/TP53−. Among these, the EMT 
subtype is associated with significantly poorer overall survival and a higher chance of 
recurrence, possibly demanding a more aggressive treatment approach [8–10]. 

Despite the obvious benefits of tumor classifications, the substantial costs of the cur-
rent experimental approaches required for patient stratification impede the clinical trans-
lation of these subtypes, underscoring the necessity of the development of practical bi-
omarkers for disease/patient management [7]. Specifically, considering the aggressive na-
ture of the EMT-type tumors, exploration of the molecular landscape of these tumors and 
the development of practical means for the stratification of patients into EMT and non-
EMT cases is of substantial interest. In this line, Lee at el. [9] developed a NanoString-
based 71-gene signature assay that can potentially be used for diagnostic/prognostic pur-
poses in the clinical setting. Nevertheless, there is still room for reductions in the costs and 
availability of patient stratification approaches, and the underlying biology of the pheno-
types observed in patients with EMT-type tumors remains elusive. 

In this study, we established the EMT GC subtype, proposed by the ACRG, as the 
subtype with the most distinct transcriptomic landscape and moved on to identify some 
of the core elements involved in the pathology of this subtype through the combination 
of co-expression module discovery and motif extraction approaches. These elements were 
further explored in terms of their clinical utility, and the most potent candidates with di-
agnostic and prognostic relevance were identified and discussed. The pipeline designed 
for this study appears to be robust for the identification of central regulators of biological 
phenomena and can readily be employed in other similar contexts. Moreover, the top mo-
tifs identified represent potent candidates for further validation to be used as affordable 
means for the stratification of GC patients in the clinical setting.  

2. Materials and Methods 
2.1. Datasets 

We retrieved RNA-seq and miRNA-seq raw counts from treatment-naïve adenocar-
cinomas of The Cancer Genome Atlas-STomach ADenocarcinoma (TCGA-STAD) cohort 
(n = 316; only the samples that were not flagged as low quality were retrieved) using the 
Genomic Data Commons (GDC) data portal [11] and microarray data from the ACRG co-
hort (n = 300) and the Singapore cohort (n = 192) via the Gene Expression Omnibus (acces-
sion numbers GSE62254 and GSE15459). The clinical information for the analyzed samples 
is available in the Supplementary Table S1. The distribution of the clinical information 
within each subtype for all three cohorts is also presented in Table 1. Since not all of the 
316 TCGA samples possessed all the required data categories for the different steps of the 
analysis (e.g., survival data, ACRG classification, etc.), for each specific step of the study, 
only the subset of the original cohort that included all data modalities relevant to that step 
was utilized. Tumors from all three cohorts have been previously classified into the four 
ACRG-based molecular subtypes [8]. The same classification was used in this study. This 
reduced the samples with classifications for the TCGA to a total of 167 samples (MSI = 37; 
EMT = 47; TP53+ = 42; TP53− = 41). In the ACRG cohort, three samples (#369, #533, and 
#542) were removed since they were identified as outliers based on the Principal Compo-
nent Analysis (PCA) of the log2 transformed intensities (total: 297; EMT = 46; MSI = 68; 
TP53+ = 77; TP53− = 106). The RNA-seq data for gastric tumors and paired normal gastric 
tissues were also retrieved from GSE184336 for tumor vs normal comparisons. 
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Table 1. The distribution of the clinical information within each subtype for the TCGA-STAD, 
ACRG, and Singapore cohorts. 

Cohort Subtype Sample Size Age (Mean ± sd) 
Sex AJCC Pathologic Stage 

Male Female I II III IV 

TCGA-STAD 

EMT 47 61.7 ± 10.06 62% 38% 7% 33% 51% 9% 
MSI 37 70.16 ± 10.58 54% 46% 27% 32% 30% 11% 

TP53+ 42 66.44 ± 11.02 71% 29% 15% 41% 39% 5% 
TP53− 41 66.92 ± 9.59 68% 32% 23% 36% 31% 10% 

NA 149 66.77 ± 11.02 64% 36% 13% 27% 48% 12% 

ACRG 

EMT 46 55.72 ± 12.44 59% 41% 4% 15% 39% 41% 
MSI 68 64.82 ± 9.94 66% 34% 21% 38% 28% 13% 

TP53+ 78 61.86 ± 11.67 72% 28% 5% 38% 34% 23% 
TP53− 105 62.86 ± 10.48 65% 35% 8% 32% 31% 30% 

Singapore 

EMT 83 62.64 ± 13.15 60% 40% 11% 16% 36% 37% 
MSI 11 69.33 ± 12.67 55% 45% 36% 9% 36% 18% 

TP53+ 37 63.15 ± 13.2 73% 27% 19% 16% 38% 27% 
TP53− 61 66.58 ± 13.24 69% 31% 18% 15% 39% 28% 

2.2. Data Analysis and Visualization 
R version 4.1.1 and Cytoscape version 3.9.0 were used for the statistical and network-

based analysis of the data and visualization of the results. Differential gene expression 
analysis was carried out using the DESeq2 R package [12], which uses negative binomial 
generalized linear models for the identification of the differentially expressed genes. Venn 
diagrams were constructed using the VennDiagram package and PCA was carried out 
using the prcomp function in R. 

2.3. Evaluation of ACRG Subtypes 
Enrichment analysis of the TCGA tumor samples classified into the four distinct sub-

types in comparison to the normal samples was carried out using the Hallmark gene sets 
of the Gene Set Enrichment Analysis (GSEA) desktop application version 4.1.0 [13]. GSEA 
is one of the most popular methods from the second generation of enrichment analysis 
techniques. This method ranks genes based on the correlation of their expression levels 
with the phenotype under investigation and calculates an enrichment score for each pre-
defined gene set (in this case, the gene sets in the Hallmark collection of the GSEA) based 
on the aggregation of the members of these sets at the top or the bottom of the ranked list 
of genes. Identification of the top modules of the differentially expressed genes for each 
subtype was conducted using the greedy search algorithm of the jActiveModules plug-in 
in the Cytoscape [14]. 

2.4. Weighted Gene Co-Expression Network Analysis and Motif Identification 
Co-expression modules are, in essence, clusters of genes that present a coordinated 

variation in their expression levels across samples, and they potentially represent groups 
of genes with related functions regulated by the same transcriptional program. The inter-
pretation of these modules within specific biological contexts can reveal novel insights 
regarding how specific functions/phenotypes are regulated [15]. Here, the identification 
of co-expression modules was performed using the Weighted Gene Co-expression Net-
work Analysis (WGCNA) algorithm [16]. WGCNA first constructs an adjacency matrix by 
applying a hard or soft thresholding procedure on the co-expression similarity measure-
ments between each pair of genes and then utilizes a clustering approach for the identifi-
cation of the co-expression modules. In this study, the co-expression module discovery 
was carried out with the following parameters: a signed topological overlap matrix was 
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used, the minimum module size was set to 20, the optimum soft threshold was identified 
as 20 using the scale independence and mean connectivity plots, and the dendrogram cut 
height for module merging was set to 0.25. The significance of the modules was deter-
mined by taking the average of the −log10(adj. p-value) of the differential expression of 
their members in the EMT samples compared to the pooled samples of the other subtypes 
(Wald test; corrected for multiple hypothesis testing by the Benjamini–Hochberg method).  

Motifs in protein–protein interaction (PPI) networks are small subgraphs that occur 
much more often than is expected by chance. Alterations in the activity and expression 
levels of these regulatory units are a common observation in pathological states such as 
cancer [17]. In this context, the identified top module was further queried for biologically 
relevant regulatory subunits through the utilization of motif identification approaches. 
The PPI data were retrieved from the STRING database version 11.5 [18], and the 
NetMatchStar plug-in in the Cytoscape [19] was used to identify triangle motifs with three 
nodes and three edges. The choice of the triangle motifs was based on the high frequency 
with which they are observed in the biological systems and the fact that many larger mo-
tifs are comprised of multiple triangle motifs [20]. 

A modified version of the multi-objective scoring function used in [21,22] was used 
for motif scoring: 𝑆 =   ×  ( ) ( ) +  × ( ) ( ) + 𝑊  × ( ) ( ) + 𝑊  × ( ) ( ) + 𝑊  ×  (| |) (| |),  

where W stands for the weight, i is any given motif, j is any one of the weighting scenarios 
(all of the 13 utilized weighting scenarios are available in the Supplementary Table S2), 
ND is the mean of the node degree of each of the motif members, BC is the mean between-
ness centrality, DP is the number of the nodes in a given motif that are members of the 
pathways in the cancer KEGG pathway (hsa05200), AUC is the mean area under the ROC 
curve, and the LFC is the mean absolute log2 fold change of the expression of the nodes 
in a motif in the EMT subtype in comparison to the pooled samples of the other subtypes. 
The ‘max (parameter)’ denotes the maximum value of each parameter achieved by a mo-
tif. 

2.5. Assessment of Diagnostic and Prognostic Values of the RNAs 
Survival analysis was performed using the survival and survminer packages in R. 

The TCGA RNA-seq data for 288 solid tumor samples with appropriate clinical infor-
mation based on the criteria used by Anaya [23] were subjected to Variance Stabilizing 
Transformation (VST), and the ACRG microarray data were Robust Multichip Average 
(RMA)-normalized prior to the survival analysis. 

The top and bottom 40% of the samples (based on the expression of the gene under 
investigation) were used as the high-expression and low-expression groups, respectively. 
As for the motifs, the intersection of the samples in the top/bottom 40% based on the ex-
pression of each motif member was used to form the high-expression and low-expression 
groups. The age and sex of the patients were used as covariates in the Cox regression 
analysis in order to account for their possible confounding effects. Due to the inclusion of 
samples that exhibited concordant high/low expression of all of the motif members in each 
analysis, a varying number of samples were analyzed for each motif. Considering this, 
only motifs with at least 30 samples in each group (high- and low-expression groups) and 
a total of at least 100 samples were selected for further examination. Among these, we 
specifically looked for motifs that were consistently present among the top five motifs of 
both cohorts (based on their Hazard Ratio [HR]).  

The glm built-in function in R was used for the logistic regression analysis. Since 
quantile normalization was found to be an excellent method for making the microarray 
and RNA-seq data comparable for machine learning applications [24], the raw counts and 
intensities for TCGA and ACRG samples were pooled, log2 transformed, and quantile 
normalized prior to logistic regression analysis. After normalization, the TCGA and 
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ACRG samples were again separated, and the regression models for discrimination be-
tween tumor subtypes were first fitted to the TCGA data and then validated on the ACRG 
data. To assess the robustness of the models, their performance on the independently 
quantile normalized data of the samples from the Singapore cohort was also evaluated. 
The ability of the motifs to distinguish tumors from normal samples was also assessed by 
fitting a model to the TCGA RNA-seq data for both STAD solid tumors (n = 316) and the 
available adjacent normal tissue samples from the gastric cancer patients in the TCGA-
STAD cohort (n = 30; cases for which adjacent normal tissue samples were available are 
distinguished with bold script in the Supplementary Table S1) after VST normalization. 
The same method was also applied to the GSE184336 dataset (with 70% of the samples as 
the training set and the remaining samples as the validation set) for independent valida-
tion of the capacity of the motifs for discrimination between normal and tumor samples.  

Multi-candidate miRNA combinations capable of discriminating EMT-type tumors 
from other subtypes were identified using the linear discriminant analysis (LDA) with 
leave-one-out cross-validation, using the method described in [25]. Eighty percent of the 
samples were allocated to the training set for this analysis and the remaining samples 
were used for validation. The validated mRNA targets of the differentially expressed miR-
NAs were obtained using the multiMiR library in R [26]. 

2.6. MiRNA-mRNA Network Construction 
The miRNA-mRNA network was constructed in R using the PPI interaction infor-

mation from STRING and the validated miRNA-target interactions obtained from multi-
MiR. Twenty-three centrality measures were calculated for the network using the igraph 
and centiserve [27,28] packages in R. PCA was used to identify the most suitable centrality 
measure among these 23 centrality measures based on the structure of the network, using 
the method described in Ashtiani et al. [29]. The final network was visualized using Cyto-
scape. 

3. Results 
3.1. EMT-Type Gastric Cancer Displays a Distinct Transcriptional Profile 

In order to assess the transcriptional rewiring of the tumors in different ACRG sub-
types, we performed a set of exploratory analyses on 167 TCGA samples classified into 
four distinct subtypes (MSI, EMT, TP53+, and TP53−) [8]. GSEA has shown that EMT-type 
tumors did indeed exhibit hallmarks of epithelial–mesenchymal transition (False Discov-
ery Rate (FDR) = 0.038) and angiogenesis (FDR = 0.047) as their top enrichment signals. 
Other subtypes, however, have consistently shown G2M checkpoint and E2F/MYC targets 
as their top enrichment results (FDR < 0.05) (Supplementary Figure S1). This suggests a 
more profound difference in the transcriptional rewiring of EMT-type tumors compared 
to other subtypes.  

Next, we reconstructed PPI networks, highlighting interactions among the differen-
tially expressed genes in each subtype compared to normal samples (adjusted p-value ≤ 
0.05, absolute LFC ≥ 3). We then identified and compared the top-scoring modules of the 
different subtypes based on the greedy algorithm of the jActiveModules Cytoscape plug-
in. Considerable overlap between the top modules of MSI, TP53+, and TP53− subtypes 
was observed, yet the top module of the EMT subtype did not share any genes with the 
other subtypes (Supplementary Figure S2). 

Finally, the results of the PCA on the complete expression matrices of TCGA tumors 
revealed that the samples belonging to the EMT subtype are roughly distinguished in PC1; 
this is while no tangible difference can be observed between the other three subtypes (Sup-
plementary Figure S3). In accordance with our observations in the TCGA samples, similar 
results were also observed in the PCA of the ACRG samples (Supplementary Figure S3). 

Overall, these results indicated that the samples belonging to the EMT subtype dis-
play the most distinct transcriptional profile among all the ACRG subtypes. 
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3.2. WGCNA and Motif Ranking Identify 39 Core mRNA Motifs 
In order to find robust prognostic/diagnostic RNA markers, we sought to take ad-

vantage of co-expression module and motif identification approaches to identify core 
RNA regulators of EMT-type tumors. The workflow implemented for the identification of 
these RNAs is shown in Figure 1A. Fourteen co-expression modules with varying num-
bers of genes were identified by applying WGCNA on the expression data of the 47 EMT-
type tumors in the TCGA cohort. A list of members of each module is provided in Sup-
plementary Table S3. We used the negative logarithm of each gene’s adjusted p-value, after 
differential expression analysis between EMT-type samples and other subtypes, as the cri-
terion for gene significance. Using this criterion, the module with the most significant av-
erage differential expression was designated as the “EMT” module and the members of 
this module were selected for further investigation (Figure 1B). Since a high level of mod-
ule membership indicates that the expression level of a gene is an adequate proxy for the 
general behavior of a module, the label for the rest of the modules was based on the gene 
with the highest level of module membership in that module. The association of the 
eigengenes of each module with clinical parameters (gender, age at diagnosis, pathologi-
cal stage, TNM stages, and the tissue of origin) was also assessed (Figure 1C). There is a 
significant negative correlation between the eigengene of the EMT module and the age at 
diagnosis, suggesting the potential role of the members of this module in the earlier onset 
of the disease. 

 
Figure 1. Workflow and co-expression modules. (A) Schematic presentation of the overall workflow 
of this study; (B) Bar plot of module significance (defined here as the minus logarithm of the ad-
justed p-values of the differential expression of all the members of a module in the epithelia-mesen-
chymal transition (EMT) subtype in comparison to the pooled samples of the other subtypes); (C) 
Association of the co-expression modules with clinical parameters. There is a significant negative 
correlation between the eigengene of the EMT module and the age at diagnosis (R = −0.31; p-value = 
0.03). It should be noted that since all of the co-expression modules were identified on the same set 
of samples, the observation that the eigengene of the EMT module is negatively correlated with the 
age at diagnosis is not biased by possible age imbalances in the data. Tumor staging system: T—size 
and spread of the primary tumor; N—level of spread to lymph nodes; M—metastasis. 
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Triangle motifs (with three nodes and three edges) are the most common type of mo-
tifs and are known to largely regulate the higher network structures and serve as the core 
building blocks of complex biological networks [20,30]. To identify core regulatory ele-
ments of the EMT module by taking advantage of the biological relevance of triangle mo-
tifs, the PPI network of the members of this module was reconstructed in Cytoscape. A 
total of 920 triangle motifs were identified. Each one of these motifs was scored based on 
13 different weighting scenarios (Supplementary Table S2) using the multi-objective scor-
ing function (see Materials and Methods). Supplementary Table S4 contains all 920 motifs 
with their corresponding scores in each of the weighting scenarios. The top 10 motifs 
based on each of the weighting scenarios were selected. After removing the redundant 
motifs, a total of 39 top motifs remained and were used for further evaluation (Table 2). 
These motifs represent potent candidates for playing central roles in GC, specifically the 
EMT subtype. This is due to the fact that the utilized scoring function was designed to 
designate the best scores to the motifs with the most profound topological significance, 
diagnostic value, and differential expression in the EMT subtype in comparison to the 
other subtypes. 

Table 2. The results of Cox regression analysis for the 39 top motifs. 

Node1 Node2 Node3 HR in  
TCGA 

Cox Regression 
p-Value in 

TCGA 

HR in 
ACRG 

Cox Regression 
p-Value in 

ACRG 
ACTN2 LDB3 PDLIM3 1.199 0.51 2.936 0.019 
ADCY5 CAV1 CACNA1C 2.396 0.007 4.406 >0.001 

CAMK2A ADCY5 CACNA1C 1.853 0.054 1.234 0.585 
CAMK2A ACTN1 CACNA1C 2.499 0.003 0.958 0.919 
CAMK2A ADCY5 ADCY2 1.716 0.077 0.994 0.989 

CNN1 MYH11 ACTG2 1.608 0.042 2.179 >0.001 
DMD ITGA1 CAV1 3.636 >0.001 3.13 >0.001 
EVC EVC2 GLI3 2.035 0.007 2.746 >0.001 

FLNA ITGB3 CAV1 2.997 0.001 2.088 0.019 
FLNA ITGB3 VCL 2.438 0.01 2.299 0.03 

GUCY1A1 GUCY1B1 PDE3A 1.716 0.034 1.905 0.006 
GUCY1A1 GUCY1B1 PRKG1 1.852 0.012 1.76 0.02 

IGF1 FGF7 FGFR1 2.133 0.009 2.47 0.001 
IGF1 FGF10 FGFR1 1.926 0.02 2.984 0.002 
IGF1 FGF10 HGF 2.223 0.009 1.768 0.054 
IGF1 FGF10 KIT 1.622 0.102 1.559 0.104 
IGF1 FGF2 FGFR1 1.741 0.051 2.303 0.003 
IGF1 FGF2 KIT 1.388 0.273 1.377 0.233 
IGF1 FGF2 HGF 1.874 0.033 1.663 0.056 
IGF1 FGF7 KIT 1.691 0.088 1.489 0.12 

ITGA1 ITGB3 CAV1 4.165 >0.001 2.079 0.009 
ITGA9 JAM3 JAM2 2.101 0.004 2.13 0.003 
ITGB3 VCL ACTN1 2.45 0.014 1.669 0.22 

KCNA1 LGI1 CNTN2 1.184 0.542 1.113 0.782 
LMOD1 MYH11 ACTG2 1.534 0.065 2.105 0.002 
LMOD1 CNN1 ACTG2 1.599 0.044 1.92 0.004 
LMOD1 CNN1 MYH11 1.43 0.113 1.872 0.006 
MYH11 MYL9 ACTG2 2.106 0.005 3.318 >0.001 
MYH11 TAGLN ACTG2 1.741 0.03 2.52 >0.001 
MYLK MYH11 ACTG2 1.552 0.071 2.691 >0.001 

MYOCD CNN1 MYH11 1.487 0.096 2.002 0.003 
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OGN OMD PRELP 2.052 0.005 1.48 0.095 
OGN ST3GAL3 OMD 1.614 0.079 1.725 0.069 
OGN ST3GAL3 PRELP 1.797 0.037 2.089 0.017 

PDE1A GUCY1A1 GUCY1B1 1.981 0.009 1.761 0.018 
PDE2A GUCY1A1 GUCY1B1 2.254 0.003 2.23 0.003 
PRNP CAV1 CACNA1C 2.972 0.003 4.006 >0.001 

SNAP25 CAV1 CACNA1C 3.014 0.001 3.29 0.001 
TPM2 MYH11 ACTG2 1.648 0.069 2.901 >0.001 

HR: Hazard Ratio. Note: The complete results of cox regression analysis for each node and motif 
are available in Supplementary Table S5. 

3.3. Expression of the DMD/ITGA1/CAV1 Motif Is a Strong Predictor of Patient Survival 
Next, we set out to characterize the 39 top motifs and identify the most potent candi-

dates in terms of their prognostic capability. To this end, we conducted a survival analysis 
on the motifs based on the expression levels of the members of the motifs. For each mem-
ber of the motifs, and for each motif considered a single entity, samples were divided into 
high expression and low expression groups both for the TCGA and ACRG cohorts, 
Kaplan–Meier curves were constructed (Figure 2A), and multivariate cox regression re-
sults (to account for the effects of age and sex) were extracted (Table 2). Considering our 
stringent criteria (Section 2), the DMD/ITGA1/CAV1 motif was identified as the top motif 
with consistent relevance to prognosis (HR > 3 in both TCGA and ACRG cohorts). 
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Figure 2. Diagnostic and prognostic capacities of the identified top motifs and members of the 
miRNA-based diagnostic model. (A) DMD/ITGA1/CAV1 was identified as the top motif with con-
sistent relevance to prognosis in both TCGA (left) and ACRG (right) cohorts (hazard ratio > 3 in both 
cohorts); (B) Receiver Operating Characteristic (ROC) curves of the top motifs with diagnostic rele-
vance in the validation set (ACRG cohort). For the complete set of plots for TCGA survival analysis, 
ACRG survival analysis, and ROC curves, refer to Supplementary Figures S4–S6. 

3.4. EVC/EVC2/GLI3 and PDE2A/GUCY1A1/GUCY1B1 Are Robust Diagnostic Motifs 
In order to assess the diagnostic capacity of the motifs and identify the most signifi-

cant motifs with diagnostic relevance, we conducted a logistic regression analysis. Mem-
bers of the motifs were used as predictors and the subtype of the samples (EMT versus 
non-EMT) as the response variable. We used the TCGA cohort as the training set and the 
ACRG cohort as the validation set. Additionally, the independently normalized data from 
the samples of the Singapore cohort were used to assess the robustness of the models. The 
top two motifs based on their Area Under the Receiver Operating Characteristic Curve 
(AUC) in the validation set were EVC/EVC2/GLI3 (AUC = 0.97) and 
PDE2A/GUCY1A1/GUCY1B1 (AUC = 0.97) (Figure 2B; Table 3). We also assessed the di-
agnostic capacity of the motifs for distinguishing tumors from normal samples using the 
data from TCGA-STAD normal and tumor tissues and the GSE184336 dataset as an inde-
pendent test set. Interestingly, PDE2A/GUCY1A1/GUCY1B1 achieved the highest AUC in 
the TCGA cohort (AUC = 0.95) and an AUC of 0.85 in the test set of the GSE184336 dataset, 
reinforcing its diagnostic importance (Table 4). 

Table 3. The diagnostic capacity of the logistic regression models for distinguishing between the 
EMT subtype and the other subtypes for the 39 top motifs. 

Node1 Node2 Node3 
AUC in the  

Training Set 
(TCGA) 

AUC in the  
Validation Set 

(ACRG) 

AUC in the  
Independent Set 

(Singapore) 
EVC EVC2 GLI3 0.943 0.974 0.92 

PDE2A GUCY1A1 GUCY1B1 0.935 0.972 0.947 
IGF1 FGF2 FGFR1 0.932 0.969 0.935 

ITGA9 JAM3 JAM2 0.944 0.969 0.935 
GUCY1A1 GUCY1B1 PDE3A 0.927 0.967 0.944 

IGF1 FGF7 FGFR1 0.938 0.967 0.926 
GUCY1A1 GUCY1B1 PRKG1 0.927 0.965 0.944 

IGF1 FGF10 FGFR1 0.941 0.965 0.932 
SNAP25 CAV1 CACNA1C 0.877 0.961 0.904 

PRNP CAV1 CACNA1C 0.9 0.954 0.914 
MYLK MYH11 ACTG2 0.908 0.952 0.913 
PDE1A GUCY1A1 GUCY1B1 0.936 0.949 0.941 
ACTN2 LDB3 PDLIM3 0.927 0.948 0.934 

IGF1 FGF2 KIT 0.91 0.944 0.9 
IGF1 FGF2 HGF 0.911 0.942 0.907 

ADCY5 CAV1 CACNA1C 0.893 0.939 0.892 
IGF1 FGF7 KIT 0.923 0.937 0.902 

MYH11 MYL9 ACTG2 0.904 0.937 0.916 
MYH11 TAGLN ACTG2 0.915 0.935 0.918 
DMD ITGA1 CAV1 0.883 0.929 0.899 
OGN OMD PRELP 0.935 0.925 0.914 
FLNA ITGB3 VCL 0.888 0.921 0.92 
OGN ST3GAL3 OMD 0.937 0.92 0.893 
IGF1 FGF10 KIT 0.931 0.918 0.904 
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OGN ST3GAL3 PRELP 0.938 0.916 0.883 
FLNA ITGB3 CAV1 0.897 0.915 0.925 
IGF1 FGF10 HGF 0.928 0.915 0.911 

LMOD1 CNN1 ACTG2 0.899 0.912 0.876 
CNN1 MYH11 ACTG2 0.889 0.911 0.836 
ITGA1 ITGB3 CAV1 0.876 0.906 0.904 
TPM2 MYH11 ACTG2 0.864 0.882 0.881 
ITGB3 VCL ACTN1 0.815 0.881 0.868 

LMOD1 MYH11 ACTG2 0.897 0.877 0.88 
LMOD1 CNN1 MYH11 0.887 0.876 0.886 

CAMK2A ACTN1 CACNA1C 0.888 0.864 0.814 
MYOCD CNN1 MYH11 0.847 0.829 0.844 
KCNA1 LGI1 CNTN2 0.914 0.783 0.587 

CAMK2A ADCY5 ADCY2 0.887 0.777 0.732 
CAMK2A ADCY5 CACNA1C 0.895 0.765 0.725 

AUC: Area Under the Receiver Operating Characteristic Curve. The complete results of all of the 
logistic regression models, including their p-values, area under the receiver operating characteristic 
curves, and area under the precision-recall curves are available in Supplementary Table S6. 

Table 4. The diagnostic capacity of the logistic regression models for distinguishing between the 
normal and gastric cancer tissues for the 39 top motifs. 

Node1 Node2 Node3 AUC in the TCGA 
AUC in the 
GSE184336  
(Training) 

AUC in the 
GSE184336  
(Validation) 

PDE2A GUCY1A1 GUCY1B1 0.95 0.772 0.854 
DMD ITGA1 CAV1 0.932 0.835 0.822 

KCNA1 LGI1 CNTN2 0.929 0.83 0.826 
PDE1A GUCY1A1 GUCY1B1 0.92 0.737 0.803 
MYLK MYH11 ACTG2 0.914 0.821 0.884 
ITGA9 JAM3 JAM2 0.912 0.663 0.614 
ADCY5 CAV1 CACNA1C 0.904 0.696 0.804 

IGF1 FGF7 KIT 0.895 0.888 0.868 
IGF1 FGF2 KIT 0.893 0.888 0.868 
IGF1 FGF10 KIT 0.889 0.887 0.864 

ITGA1 ITGB3 CAV1 0.876 0.699 0.757 
CAMK2A ADCY5 CACNA1C 0.858 0.752 0.807 

OGN OMD PRELP 0.857 0.629 0.691 
ACTN2 LDB3 PDLIM3 0.85 0.74 0.709 
LMOD1 CNN1 MYH11 0.85 0.707 0.705 

OGN ST3GAL3 OMD 0.849 0.615 0.7 
LMOD1 MYH11 ACTG2 0.844 0.682 0.707 
LMOD1 CNN1 ACTG2 0.844 0.689 0.677 

IGF1 FGF2 HGF 0.831 0.843 0.83 
TPM2 MYH11 ACTG2 0.829 0.704 0.72 
FLNA ITGB3 CAV1 0.828 0.691 0.728 

MYH11 TAGLN ACTG2 0.822 0.787 0.812 
IGF1 FGF10 HGF 0.821 0.813 0.817 

CNN1 MYH11 ACTG2 0.82 0.702 0.701 
MYOCD CNN1 MYH11 0.82 0.698 0.689 

PRNP CAV1 CACNA1C 0.815 0.634 0.69 
MYH11 MYL9 ACTG2 0.814 0.751 0.754 
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SNAP25 CAV1 CACNA1C 0.813 0.74 0.832 
OGN ST3GAL3 PRELP 0.808 0.58 0.606 

GUCY1A1 GUCY1B1 PRKG1 0.807 0.741 0.783 
CAMK2A ADCY5 ADCY2 0.792 0.646 0.566 

FLNA ITGB3 VCL 0.768 0.687 0.735 
IGF1 FGF2 FGFR1 0.762 0.828 0.776 
IGF1 FGF10 FGFR1 0.752 0.773 0.736 

CAMK2A ACTN1 CACNA1C 0.745 0.802 0.811 
EVC EVC2 GLI3 0.734 0.658 0.567 

GUCY1A1 GUCY1B1 PDE3A 0.665 0.718 0.748 
IGF1 FGF7 FGFR1 0.655 0.791 0.777 

ITGB3 VCL ACTN1 0.613 0.712 0.703 
AUC: Area Under the Receiver Operating Characteristic Curve. The complete results of all of the 
logistic regression models, including their p-values, area under the receiver operating characteristic 
curves, and area under the precision-recall curves are available in Supplementary Table S6. 

3.5. A Two-Membered miRNA Model Accurately Distinguishes EMT-Type Tumors from Other 
Gastric Tumors 

The candidate miRNAs regulating the expression of the identified motifs were deter-
mined through the identification of differentially expressed miRNAs (EMT vs other sub-
types; n = 220) that targeted one or more genes among the members of the top 39 motifs 
(109 miRNAs). The top multi-candidate miRNA combination was identified using LDA 
with leave-one-out cross-validation. The top two-membered miRNA combination consist-
ing of hsa-miR-199a-5p and hsa-miR-141-3p with an AUC of 0.963 in the training set and 
an AUC of 0.995 in the test set was identified as the best discriminant multi-candidate 
miRNA combination (index: (0.597167 × hsa-miR-199a-5p) + (−0.798247 × hsa-miR-141-3p) 
+ 2.02755). The results of the survival analysis for these miRNAs and their combination 
are demonstrated in Figure 3. 
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Figure 3. Top two-membered miRNA combination. Kaplan-Meier plots of (A) miRNAs model com-
ponents and (B) their combination. Only the expression levels of hsa-miR-199a-5p are significantly 
associated with patient prognosis. (C) The two-membered miRNA-based diagnostic model presents 
an almost perfect Area Under the Receiver Operating Characteristic Curve (AUC) of 0.995 in the 
validation set. 

Finally, the integrated interaction network of the members of the top 39 motifs and 
the 109 differentially expressed miRNAs targeting them was visualized (Figure 4). 
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Figure 4. A network of top motifs from the 13 motif ranking scenarios and their miRNA regulators. 
The top 10 central RNAs based on the Latora closeness [31] are marked by blue margins. Yellow 
edges represent protein–protein interactions. MiR-182-5p, miR-195-5p, miR-1-3p interactions are 
represented with blue, red, and black solid lines, respectively. The interactions of the members of 
the miRNA diagnostic model are represented by dashed lines. To reduce complexity, only the 3 
miRNAs that were among the top 10 central RNAs and the two miRNAs from the multi-candidate 
discriminatory miRNA combination are shown. The complete interaction data of the network con-
sisting of 109 miRNAs, 51 mRNAs, and 435 edges are available in Supplementary Table S7. 

4. Discussion 
Among the molecular classifications of gastric tumors by ACRG, tumors of the EMT 

subtype are associated with significantly worse patient prognosis and likely demand more 
drastic therapeutic interventions [9]. Coupling this with the vastly unknown nature of the 
tumors of this subtype, further investigation of the molecular landscape of these tumors 
and the development of diagnostic and predictive biomarkers are of utmost importance. 
Here, we have identified a differentially expressed co-expression network in the tumors 
of the EMT subtype using WGCNA. The negative correlation of this module with the age 
of the patients at the time of diagnosis (Figure 1C) is in line with the characterization of 
this subtype by ACRG [8] and indicates the relevance of this module to the EMT subtype. 
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We have further explored this co-expression module in order to extract its central motifs 
and regulatory miRNAs with relevance to diagnosis and prognosis. 

4.1. Poor Outcomes for Patients with High Expressions of DMD/ITGA1/CAV1 Motif 
Our results are able to characterize the signaling circuits involved in the aggressive 

phenotypes often observed in the gastric tumors of the EMT subtype (e.g., invasion, 
chemoresistance, etc.). We have identified the DMD/ITGA1/CAV1 motif as the top motif 
with consistent relevance to prognosis (HR > 3 in both TCGA and ACRG cohorts). The 
ITGA1 gene encodes the α-1 subunit of the integrin superfamily of glycoproteins. These 
transmembrane receptors are responsible for a variety of cellular functions including cell 
adhesion, migration, and intracellular signaling in response to the extracellular environ-
ment (ECM) [32]. ITGA1 is extensively associated with cancer invasiveness and poor pa-
tient prognosis in various tumor types. It promotes EMT, proliferation, and drug re-
sistance in response to dysregulations in the tumor extracellular matrix. This is in part 
realized through upregulation of the Ras/MEK/ERK (MAPK) pathway [33–36]. Addition-
ally, a wealth of studies indicate that the EMT-promoting effects of dysregulation in vari-
ous molecules in GC converge on ITGA1, highlighting its potential as a therapeutic target 
[37,38]. 

Upon stimulation, the integrin receptors activate Ras through the recruitment of the 
Grb2/SOS complex. This is a process in which Caveolin-1 (Cav-1), a protein encoded by 
another member of the identified motif (CAV1), has been shown to play a pivotal role [39]. 
Cav-1 is best known for its crucial roles as a component of the caveolae—invaginations in 
the cell membrane involved, among other functions, in cell surface receptor localization 
and signal transduction [40]. Similar to ITGA1, Cav-1 is strongly associated with poor 
treatment outcomes, poor prognosis, and EMT [41,42]. Importantly, MAPK is not the only 
pathway through which Cav-1 has been associated with EMT. It has been shown that Cav-
1 stimulates the dephosphorylation of β-Catenin, culminating in the activation of the 
WNT pathway and upregulation of Met receptor tyrosine kinase. Met (also known as 
HGFR), through its positive crosstalk with HER2, contributes to tumor aggressiveness, 
migration, proliferation, and chemoresistance by upregulating MAPK, WNT, and 
PI3K/AKT pathways [40]. Studies investigating the role of DMD, the last member of the 
identified motif, are sparse and contradictory [43], warranting a need for further investi-
gation of the role of the DMD in the GC EMT subtype and its functional association with 
ITGA1 and Cav-1. 

4.2. The EVC/EVC2/GLI3 Motif Performs Well Both as a Diagnostic and a Prognostic Marker 
Our analysis pipeline resulted in the identification of two motifs with superior rele-

vance to the diagnosis of gastric tumors of the EMT subtype. The top identified motif con-
sists of EVC, EVC2, and GLI3; genes coding for essential members of the Hedgehog (Hh) 
signaling pathway [44]. The Hh pathway is firmly associated with the exhibition of stem-
like phenotypes in cancer, cancer cell migration, EMT, and drug resistance in various can-
cer types including GC [45–47]. GLI3 is a transcription factor central to the regulation of 
the Hh pathway and plays dual roles both as an activator and a repressor of the genes 
downstream of this pathway [44]. In the absence of the Hh pathway ligands, GLI3 is 
bound to SUFU, which mediates its proteolytic cleavage, resulting in the abundance of 
cleaved GLI3 proteins, which act as suppressors of the Hh pathway. In the presence of the 
Hh ligands, SUFU dissociates from the GLI3 in a process in which both EVC and EVC2 
have been shown to be of vital importance [48]. The dissociated full-length GLI3 promotes 
upregulation of the Hh pathway. The activity of GLI3 is strongly associated with various 
malignancies. For example, it promotes proliferation and EMT in multiple cancer types 
[49,50] and plays a role as a cancer driver gene in GC [51]. Importantly, multiple lines of 
evidence associate the overexpression of GLI3 with poor prognosis in various tumor types 
[50,52]. In line with these reports, our results indicate considerably worse outcomes for 
patients with higher expression of the EVC/EVC2/GLI3 motif in both TCGA (HR = 2) and 
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ACRG (HR = 2.7) cohorts, suggesting the possible utility of this motif as a prognostic in-
dicator as well as a diagnostic marker. 

4.3. PDE2A/GUCY1A1/GUCY1B1—A Strong Diagnostic Marker 
The other identified top motif with potential diagnostic capacity for the EMT subtype 

of GC is comprised of PDE2A (a member of the phosphodiesterase superfamily), 
GUCY1A1, and GUCY1B1 (also known as GUCY1A3 and GUCY1B3, respectively). These 
molecules are central regulators of the metabolism of cyclic guanosine monophosphate 
(cGMP) and cyclic adenosine monophosphate (cAMP), secondary messengers involved in 
many cellular functions including cell proliferation, differentiation, and apoptosis [53]. 
Interestingly, in addition to its exceptional performance in discriminating the samples of 
the EMT subtype from other gastric tumors, this motif presented a capacity for distin-
guishing gastric tumors from normal samples (AUC = 0.95; highest AUC among the as-
sessed motifs), demonstrating its potential use as a diagnostic marker of GC in general. 
Notably, the presence of other proteins of the phosphodiesterase superfamily (PDE1A and 
PDE3A) and adenylate cyclase 5 (ADCY5) in addition to guanylate cyclase (GUCY) pro-
teins among the identified top motifs (Table 3; Figure 4) points to a likely central role of 
cAMP and cGMP metabolism in the EMT subtype of GC. In line with this, there are a 
plethora of studies indicating the viability of phosphodiesterase inhibition as a treatment 
approach for the suppression of proliferation and reduction of the invasion capacity of 
tumors in various cancers [54]. However, the exact role of these molecules in tumorigene-
sis and cancer progression is ambiguous, and specifically, the interplay between the 
cyclase and phosphodiesterase proteins in cancer remains largely unexplored. 

4.4. MiR-199a-5p and miR-141-3p Dysregulations Are Associated with Tumor Invasiveness 
Another important result of this study is the identification of a candidate two-mem-

bered miRNA diagnostic biomarker (AUC = 0.995; Figure 3) consisting of hsa-miR-199a-
5p (upregulated in the samples of the EMT subtype; LFC = 1.4) and hsa-miR-141-3p 
(downregulated in the samples of the EMT subtype; LFC = -1.9). In contrast to its down-
regulation in various tumor types, the expression of hsa-miR-199a is shown to be in-
creased in the case of GC and has been associated with increased tumor invasiveness and 
metastasis in multiple studies [55,56]. These reports are in accordance with the observa-
tions of the current study and support the positive coefficient of this molecule in the iden-
tified diagnostic model. The other member of our two-membered diagnostic model, hsa-
miR-141-3p, is a member of the miR-200 family of miRNAs, the downregulation of the 
members of which is tightly associated with increased proliferation, EMT, and invasive-
ness of gastric tumors among other tumor types [57–59]. Altogether, these results highly 
support the relevance of the identified two-membered miRNA-based diagnostic model in 
distinguishing gastric tumors of the EMT subtype. Additionally, the expression of both of 
these miRNAs was associated with patient outcomes in GC in previous studies [55,59]. 
However, our results only indicate a positive association between the high expression of 
hsa-miR-199a-5p and poor survival (p-value = 0.034). No association between the expres-
sion of hsa-miR-141-3p and patient prognosis could be observed (p-value = 0.34; Figure 3).  

5. Conclusions 
A few points regarding the implemented methods for motif identification and their 

limitations in this study should be noted. Considering the effects of multi-collinearity, the 
coefficients in the logistic regression modeling of the motifs should be utilized with cau-
tion when inferring the behavior of the mRNAs in these motifs since they are all extracted 
downstream of WGCNA. Nevertheless, this does not affect the precision of the prediction 
of the disease status by the motifs, and thus the top motifs with diagnostic capacity rep-
resent viable candidates. One should also take note that, based on the design of this study, 
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the identified motifs are inclined to be more important in the EMT subtype, but their im-
portance is not necessarily restricted to it; especially due to the inclusion of weighting 
factors such as the topological significance and previous association with cancer pathways 
in the motif ranking procedure. Additionally, while the top motifs in terms of prognostic 
and diagnostic capacity were the main focus of this discussion, all of the other high-scor-
ing motifs in different weighting scenarios (Supplementary Table S4) represent potential 
candidates for playing significant roles in the pathology of GC and are encouraged to be 
further explored. Finally, this investigation was carried out entirely in silico, and subse-
quent wet-lab experiments are necessary for further validation of the results. 

Overall, the current study took advantage of the biological relevance of both co-ex-
pression modules and network motifs through the combination of their identification 
methods in an end-to-end analysis workflow. Exploiting the abilities of WGCNA, a multi-
objective motif scoring function, and machine learning approaches, we identified combi-
nations of mRNAs and regulatory miRNAs with considerable prognostic and diagnostic 
capability. These results highlight the central roles of MAPK, Hh, and cGMP/cAMP sig-
naling in the pathology of the EMT subtype of GC and provide an unprecedented picture 
of rewired signaling circuits that possibly contribute to the phenotypes observed in tu-
mors of this subtype. Additionally, the identified co-expression modules and the large 
number of characterized motifs provide an opportunity for further exploration of this sub-
type of gastric tumors through various study designs. 
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