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Abstract
Background  Both early recognition of glomerular injury and diagnosis of renal injury remain important problems in clinical 
settings, and current diagnostic biomarkers have limitations. The aim of this review was to determine the diagnostic accuracy 
of urinary nephrin for detecting early glomerular injury.
Methods  A search was conducted through electronic databases for all relevant studies published until January 31, 2022. 
The methodological quality was evaluated using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. 
Pooled sensitivity, specificity, and other estimates of diagnostic accuracy were determined using a random effect model. The 
Summary Receiver Operating Characteristics (SROC) was used to pool the data and to estimate the area under the curve 
(AUC).
Results  The meta-analysis included 15 studies involving 1587 participants. Overall, the pooled sensitivity of urinary nephrin 
for detecting glomerular injury was 0.86 (95% CI 0.83–0.89) and specificity was 0.73 (95% CI 0.70–0.76). The AUC-SROC 
to summarise the diagnostic accuracy was 0.90. As a predictor of preeclampsia, urinary nephrin showed a sensitivity of 
0.78 (95% CI 0.71–0.84) and specificity of 0.79 (95% CI 0.75–0.82), and as a predictor of nephropathy the sensitivity was 
0.90 (95% CI 0.87–0.93), and specificity was 0.62 (95% CI 0.56–0.67). A subgroup analysis using ELISA as a method of 
diagnosis showed a sensitivity of 0.89 (95% CI 0.86–0.92), and a specificity of 0.72 (95% CI 0.69–0.75).
Conclusion  Urinary nephrin may be a promising marker for the detection of early glomerular injury. ELISA assays appear 
to provide reasonable sensitivity and specificity. Once translated into clinical practice, urinary nephrin could provide an 
important addition to a panel of novel markers to help in the detection of acute and chronic renal injury.
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Urinary Nephrin - a potential marker of early glomerular injury: a systematic review and meta-analysis

Conclusion
• This meta-analysis is the first to systematically review and analyse the diagnostic performance of urinary nephrin in 

determining glomerular injury.
• All articles investigated urinary nephrin as a predictor of PE or nephropathy.
• Most studies used ELISA as the method of choice (11/15) for measuring urinary nephrin.
• Urinary nephrin may provide a potential diagnostic aid for predicting glomerular injury in vulnerable populations.
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Introduction

Glomerular injury is structural damage to the glomeruli 
resulting in declining renal function. Glomerular injury, 
characterised by moderate to severe proteinuria [1], is well 
established as a prominent contributor to end-stage kidney 
disease (ESKD) worldwide [2, 3]. Early glomerular injury 
has been associated with podocyte loss and the development 
of proteinuria [4] and may also contribute to acute kidney 
injury (AKI) through progressive damage to nephrons [5]. 
Repeated glomerular injury and loss of nephron function 
lead to altered renal perfusion and hyperfiltration, leaving 
the remaining nephrons at greater risk of injury [6, 7].

Acute kidney injury also puts the kidney at risk of 
long-term damage. AKI is a clinical term that describes 
a spectrum of injury events that set the scene for further 
renal damage [5]. AKI is complex and has a varied 
aetiology including haemodynamic changes, oxidative 
stress [8], endothelial damage [9], mitochondrial damage, 
and immune-mediated mechanisms [8]; about 10% of cases 
arise from glomerulopathies [10]. A number of studies have 
investigated novel markers for detecting AKI. The choice 
of these markers reflects the varied aetiologies of AKI, 
including but not limited to, kidney injury molecule-1, cell 
cycle arrest markers tissue inhibitor of metalloproteinase 
2; insulin like growth factor binding proteins, neutrophil 
gelatinase-associated lipocalin and interleukin-18 [11]. 

These markers are the subjects of numerous excellent 
reviews and meta-analyses [12, 13]. More recently, attention 
has turned to investigating the appearance of podocyte 
proteins in urine following AKI in a number of clinical 
settings; after surgery and ischaemia reperfusion injury 
[14, 15]. In order to provide a complete clinical picture of 
acute and chronic renal damage, the addition of a sensitive 
indicator of glomerular injury could prove valuable.

Glomerular injury, indicated by the leakage of cells 
and proteins into the urine [1, 16, 17], is used as a clinical 
indicator for glomerular damage. There are several well-
established biomarkers used for diagnosing and monitoring 
glomerular damage either alone or in combination [3, 
18–21]. However, to date, no biomarker has been identified 
for early detection of acute glomerular injury [22, 23]. 
Recent studies have suggested that podocyte proteins may 
be a better marker for detection of early glomerular injury 
[24–27]. A number of studies have found nephrin to be a 
promising early marker of glomerular injury [24, 28–32]. 
Nephrin, a 180 KD transmembrane protein, is an integral 
structural component of glomerular podocytes [33]. It 
belongs to the immunoglobulin superfamily of cell adhesion 
receptors, and is expressed in glomerular podocytes [33, 34].

The use of urinary nephrin as an indicator of glomeru-
lar damage for the prediction of preeclampsia (PE) and 
glomerular nephritis has been well studied. A nationwide 
cohort study revealed that there is a strong association 
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between PE and later glomerular injury [35], while another 
study also showed glomerular injury in diabetic nephropa-
thy [24]. These studies revealed that glomerular injury 
may occur irrespective of proteinuria, that nephrinuria is 
often detected prior to proteinuria/albuminuria, and that 
urine nephrin levels correlate with disease severity [25, 
28, 36]. To date, no study has systematically reviewed and 
analysed the diagnostic accuracy of urinary nephrin for 
determining glomerular injury in patients with acute and 
chronic renal injury. This review aims to systematically 
explore the literature to determine the pooled sensitivity 
and specificity of urinary nephrin for determining glo-
merular injury.

Materials and methods

Design and protocol registration

This review was performed in accordance with the Preferred 
Reporting Item for Systematic Review and Meta-analysis 
Protocol (PRISMA-P 2020) guideline [37]. The review 
protocol was developed before literature searching and 
was registered with the International Prospective Register 
of Systematic Reviews (PROSPERO) database with 
registration number CRD42022309659.

Data source and search strategy

This meta-analysis is intended to explore the diagnostic 
accuracy of urinary nephrin as a biomarker of early 
glomerular injury. The literature search for eligible studies 
was performed using electronic databases PubMed/Medline, 
SCOPUS, EMBASE, Science Direct, Web of Sciences, and 
Cochrane Database Library of Systematic Reviews from 
commencement to January 31, 2022. An updated search 
on August 26, 2022, yielded no additional articles relevant 
to the topic. We also performed a manual search using 
Google, and Google Scholar after retrieving articles from 
the database.

The database was systematically searched in accordance 
with the Medical Subject Headings Thesaurus (MeSH) 
and Boolean operators (AND, OR). The key terms used 
in searching were “glomerular injury” AND “urinary 
nephrin” OR “nephrinuria”. To capture more articles on 
early glomerular injury and AKI, additional search key 
terms were included separately as “Preeclampsia” OR “PE” 
AND “urinary nephrin” OR “nephrinuria”; “nephropathy” 
OR “Diabetes nephropathy” AND “urinary nephrin” OR 
“nephrinuria”; “Acute Kidney Injury” OR “AKI” AND 
“urinary nephrin” OR “nephrinuria”. The search keywords 
were searched alone and in all possible combinations with 
other keywords. Moreover, references from retrieved articles 

were also reviewed to identify cited articles not captured by 
electronic database searches.

Study selection

Original articles that explored the performance of urinary 
nephrin in the diagnosis of glomerular injury were included. 
The authors used the EndNote X9 (Thomson Reuters, New 
York, USA) bibliography manager to check the title and 
abstracts of the articles and then retrieved and rescreened 
the selected articles. Duplicate articles were removed elec-
tronically, and manually if differences in the citation style of 
the various journals existed. The reference lists of the eligible 
articles were checked to find additional relevant articles.

The inclusion and exclusion criteria were systematically 
applied to studies before they were included in the meta-analy-
sis. Studies eligible for meta-analysis included those that meas-
ured urinary nephrin, and studies reporting mandatory data 
from which the diagnostic accuracy of urinary nephrin could 
be calculated and which used a reference standard test to clas-
sify glomerular injury based on the standardised guidelines. In 
this regard, PE was classified according to the American Con-
gress of Obstetrics and Gynaecology (ACOG) definition, while 
diabetic nephropathies were defined according to Kidney Dis-
ease Improving Global Outcome (KDIGO) guidelines based 
on measurements of urine albumin to creatinine ratio (ACR) 
as; normoalbuminuria (ACR < 30 mg/g), microalbuminuria 
(ACR = 30–300 mg/g), macroalbuminuria (ACR > 300 mg/g) 
groups. Only articles published in English were taken into con-
sideration. Studies with duplicate data, review articles, articles 
which failed to report necessary information, letters to the edi-
tor, short communications and conference proceedings were 
excluded. Initially, two authors (BM and DR) independently 
reviewed the titles and abstracts of all articles to evaluate the 
eligibility of the articles. For the studies that could not be 
judged through the abstracts and titles, the full texts of the 
original articles were retrieved for detailed evaluation.

Outcomes of interest

The main outcome of interest of this meta-analysis was the 
pooled diagnostic accuracy of urinary nephrin (diagnostic 
sensitivity, specificity, and other estimates of diagnostic 
accuracy) for determining glomerular injury. Subgroup 
analysis was also performed to determine the diagnostic 
accuracy of urinary nephrin according to clinical conditions, 
the commonly used assay methodology, study design and 
reported units.

Data extraction and quality assessment

Data were extracted for all eligible studies. The basic 
characteristics of the studies were collected using a 
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Microsoft Excel data extraction form, and included the name 
of the first author, year of publication, country, study design, 
sample size, clinical condition, method of analysis, reference 
test, reported cut-off values of urinary nephrin, performance 
of the test including true positives (TP), true negatives (TN), 
false positives (FP), and false negatives (FN), if applicable 
in the studies. If the studies did not report the mandatory 
outcome data, the 2 × 2 table was extracted from the study 
to calculate the TP/TN/FP/FN values.

The methodological quality of the studies was evaluated 
using the Quality Assessment of Diagnostic Accuracy Studies 
(QUADAS-2) tool [38], which is an improved, redesigned, 
widely accepted, and validated tool to evaluate the source of 
bias and variation in diagnostic accuracy studies in systematic 
reviews. The tool includes four key realms such as patient 
selection, index test, reference standard, and flow of patients 
through the study and timing index test and reference standard. 
Each domain was assessed for the risk of bias and applicability 
and classified as “low risk of bias”, and “low concern” was 
considered as having high methodological quality. Any 
discrepancies in the study selection, data extraction, and/
or quality assessment were resolved by discussion with 
other authors to reach a final consensus. The QUADAS-2 
tool scoring criteria was modified according to our aim 
(Supplementary Table 1).

Data synthesis and statistical analysis

The data were entered into Microsoft Excel and exported to 
Meta-Disc version 1.4 software (Complutense University of 
Madrid, Spain) [39] for analysis. The discriminatory power 
of a diagnostic test is commonly assessed by measuring how 
well it correctly identifies true positive and true negative test 
results in terms of sensitivity and specificity [40]. Pooled 
sensitivities and specificities, positive likelihood ratio (LR), 
negative LR, and diagnostic odds ratio (DOR) with a 95% 
confidence interval (CI) were obtained using the random-
effect model (Dersimonian Laird methods) depending on the 
heterogeneity of the study group. Forest plots of sensitivities, 
specificities, positive LR, negative LR, and DOR were 
presented. Furthermore, area under the curve-summary 
receiver operating characteristics (AUC-SROC) values with 
95% CI and Cochrane indices (Q) were calculated. The AUC-
SROC was calculated, and the value was defined according 
to the guideline recommended by Swets in 1988 [41] as; 
excellent diagnostic accuracy AUC: 0.9–1.0, very good AUC: 
0.8–0.9, good AUC: 0.7–0.8 and sufficient diagnostic accuracy 
with AUC: 0.6–0.7.

The magnitude of inter-study heterogeneity was assessed 
using visual inspection of the forest plots of accuracy 
estimates. If no heterogeneity is present, the estimates from 
individual studies lie along a line corresponding to the pooled 
accuracy estimate, a large deviation from the pooled estimate 

indicates possible heterogeneity [39]. Furthermore, statistically 
measured by the Cochrane Q test, a significant Q test (P < 0.05) 
suggests the presence of heterogeneity. Further assessment was 
carried out using the inconsistency index of heterogeneity (I2 
statistics) values of 25%, 50%, and 75% indicated to represent 
low, medium, and high heterogeneity, respectively [42]. To 
further assess the heterogeneity subgroup, analyses were 
conducted based on different parameters including clinical 
conditions, diagnostic methods, study designs and reported 
units.

The threshold effect was evaluated by constructing 
the SROC to assess for presence of shoulder arm pattern 
for each data point in the plot. A typical shoulder arm 
pattern indicates the presence of a threshold effect. Further 
assessment of the threshold effect was conducted and 
indicated by the presence of a strong positive correlation 
using a computation of Spearman’s correlation coefficient 
(r2) between the logit of sensitivity and logit of 1-specificity 
[39].

Results

Overall, the initial search identified 1585 relevant articles 
through various database searches, of which 515 were 
excluded because of duplication. Of the remaining 1070 
studies, 1035 were excluded after screening the titles and 
abstracts, as the articles are not relevant to the current 
review. Of these, 35 full-text articles were assessed for eli-
gibility. After screening the full texts for calculable statis-
tics, 15 studies that included 1587 participants were included 
in the meta-analysis. All included studies were published 
between 2011 and January 2022. Flow diagram illustrating 
the process of the literature screening method is described 
in Fig. 1.

Characteristics of studies included for review

An analysis of the 15 selected studies revealed that all stud-
ies aimed to investigate urinary nephrin as an early indicator 
of glomerular damage in both acute and chronic conditions. 
Eight studies utilised urinary nephrin for predicting PE [20, 
25, 27, 31, 32, 43–45], six studies utilised urinary nephrin 
for predicting nephropathy [24, 36, 46–49], and one study 
utilised urinary nephrin for predicting glomerulopathy/
glomerular injury [50]. Most of the studies used Enzyme 
Linked Immunosorbent Assay (ELISA) (n = 11) and the 
remaining used Real Time-Polymerase Chain Reaction 
(RT-PCR) (n = 3), and Western Blotting (WB) (n = 1) to 
determine the concentration of urinary nephrin. All studies 
reported urinary ACR and/or hypertension with proteinu-
ria (> 300 mg/day) as a reference indicator for glomerular 
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injury. Most articles included in this review report urinary 
nephrin in two ways: urinary nephrin concentration (n = 10) 
with reported cut-off values for nephrin concentration rang-
ing from 85 to 850 ng/ml, and urinary nephrin corrected 
by urinary creatinine concentration and reported as urinary 
nephrin to creatinine ratio (NCR) (n = 5), with reported 
cut-off values ranging from 86.6 to 622 ng/mg. Prospective 
cohort studies made up 47% of the included studies. The 
basic characteristics of the eligible studies are summarised 
in Table 1.

The quality and risk of bias of the studies were assessed 
using the QUADAS2 tool [38]. Overall, the studies included 
in this review were found to be of good quality. While there 
was a low risk of bias observed in the studies, some studies, 
such as those by Kelder et al. 2012 [44], Son et al. 2011 [27], 
do Nascimento et al. 2013 [46], and Shahid et al. 2017 [48] 
did not provide information on the index test interpretation 
and did not provide the cut-off value used to interpret the test. 
Other studies by Yang et al. 2013 [43], Kelder et al. 2012 
[44], and Son et al. 2011 [27] introduced bias during patient 
selection (case–control studies) and reported insufficient 
data to judge the quality based on the criteria. The modified 
QUADAS-2 quality appraisal criteria checklist and scoring 
and percentages of each risk category are presented in Sup-
plementary Table 1 and Supplementary Fig. 1, respectively.

Subgroup analysis based on assay methodology

Subgroup analysis showed that a difference in the 
measurement of urinary nephrin was observed based on the 
assay methodology. ELISA showed a pooled sensitivity of 
0.89 (95% CI 0.86–0.92, I2 = 71.9%) and pooled specificity 
of 0.72 (95% CI 0.69–0.75, I2 = 92.7%). The pooled positive 
LR was 3.84 (95% CI 2.23–6.63), negative LR was 0.16 
(95% CI 0.08–0.30), and pooled DOR was 31.55 (95% 
CI 12.12–82.14). Urinary nephrin using ELISA showed 
excellent diagnostic accuracy with an AUC of 0.92 (Table 2). 
Diagnostic accuracy of urinary nephrin observed from 
three studies using RT-PCR [44, 46, 47] showed a pooled 
sensitivity of 0.73 (95% CI 0.64–0.81, I2 = 83.4%) and a 
pooled specificity of 0.69 (95% CI 0.59–0.79, I2 = 60.1%) 
and good diagnostic accuracy AUC of 0.77 (Table 2). Higher 
diagnostic accuracy was observed in a single study [27] 
using Western blot analysis with a sensitivity of 0.98 (95% 
CI 0.83–1.00) and specificity of 0.98 (95% CI 0.80–1.00).

Subgroup analysis based on study designs

Seven of the 15 studies used a prospective cohort study 
design. The pooled sensitivity of urinary nephrin in pro-
spective cohort studies was 0.86 (95% CI 0.80–0.91, 

Fig. 1   The PRISMA flow dia-
gram illustrating the process of 
studies reviewed, screened, and 
included in a systematic review 
and meta-analysis
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I2 = 73%) and a pooled specificity of 0.71 (95% CI 0.66–0.74, 
I2 = 94.6%) and the AUC was 0.87 (Table 2). Overall, the 
diagnostic accuracy of urinary nephrin in all study designs 
was very good (AUC 0.8–0.9). However, the high level of 
heterogeneity following subgroup analysis was still observed 
across studies.

Subgroup analysis based on reporting units 
of urinary nephrin

In this review, 10 of the 15 studies did not correct urinary 
nephrin concentration for the urine creatinine concentration. 
Measurement of urinary nephrin (ng/ml) showed a pooled 
sensitivity of 0.86 (95% CI 0.82–0.89) and pooled specificity 
of 0.77 (95% CI 0.72–0.80). The normalised urinary nephrin 
by correction with urine creatinine reported as NCR (ng/mg) 

showed a pooled sensitivity of 0.89 (95% CI 0.81–0.94) and 
specificity of 0.69 (95% CI 0.64–0.73) (Table 2).

Overall diagnostic accuracy of urinary nephrin

The pooled sensitivity of urinary nephrin for detecting glo-
merular injury was 0.86 (95% CI 0.83–0.89) and the pooled 
specificity was 0.73 (95% CI 0.70–0.76) (Fig. 2). The AUC 
obtained from the SROC was 0.90 (Fig. 3). This result sug-
gests that urinary nephrin achieved high diagnostic accuracy 
in diagnosing glomerular injury due to the observation that 
AUC > 0.7 is a risk predictor. The pooled positive LR was 
3.53 (95% CI 2.26–5.50) and negative LR was 0.19 (95% 
CI 0.11–0.33). Moreover, using a random-effect model, the 
DOR was 23.37 (95% CI 10.58–51.64) (Table 2).

No significant heterogeneity was found between the stud-
ies based on the threshold effect (r2) = − 0.17; P = 0.57. A 

Table 1   Characteristics of studies included in the meta-analysis of urinary nephrin to determine early glomerular injury

ACR​ Albumin to Creatinine Ratio, ELISA Enzyme Linked Immunosorbent Assay, RT-PCR Real Time Polymerase Chain Reaction, NCR Nephrin 
to Creatinine Ratio, WB Western Blotting, ACOG American Congress of Obstetrics and Gynaecology, JCDNP Joint Committee of Diabetes 
Nephropathy, NR Not Reported, KDIGO Kidney Disease Improvement Global Outcome, I2 Inconsistency Index

Author’s name 
(year)

Country Study design Clinical 
conditions

Sample size Index test Methods Reference test Cut-off (nephrin)

Jim et al. 
(2014) [20]

USA Cohort Preeclampsia 91 NCR ELISA ACOG 
guideline

 ≥ 100 ng/mg

Yang et al. 
(2013) [43]

South Korea Case–control Preeclampsia 83 Urine nephrin ELISA ACOG 
guideline

85 ng/ml

Kelder et al. 
(2012) [44]

Netherlands Case–control Preeclampsia 81 Urine nephrin RT-PCR ACOG 
guideline

NR

Son et al. 
(2011) [27]

South Korea Case–control Preeclampsia 45 Urine nephrin WB ACOG 
guideline

NR

Zhai et al. 
(2016) [32]

Japan Cohort Preeclampsia 89 NCR ELISA ACOG 
guideline

122 ng/mg

Zhai et al. 
(2016) [45]

Japan Cohort Preeclampsia 254 NCR ELISA ACOG 
guideline

86.6 ng/mg

Jung et al. 
(2017) [31]

South Korea Cohort Preeclampsia 117 Urine nephrin ELISA ACOG 
guideline

850 ng/ml

Kostovska et al. 
(2021) [25]

North 
Macedonia

Cross-sectional Preeclampsia 101 Urine nephrin ELISA ACOG 
guideline

304.6 ng/ml

Kishore et al. 
(2021) [36]

India Cross-sectional Nephropathy 170 Urine nephrin ELISA ACR JCDNP 
guideline

97.5 ng/ml

Kostovska. 
(2020) [24]

North 
Macedonia

Cross-sectional Nephropathy 120 Urine nephrin ELISA ACR KDIGO 
guideline

255 ng/ml

Heimlich et al. 
(2018) [50]

Malawi Cross-sectional Glomerulopathy 101 NCR ELISA ACR KDIGO 
guideline

622 ng/mg

doNascimento 
et al. (2013) 
[46]

Brazil Cohort Nephropathy 101 Urine nephrin RT-PCR ACR KDIGO 
guideline

NR

Fayed et al. 
(2019) [47]

Egypt Cohort Nephropathy 80 Urine nephrin RT-PCR ACR KDIGO 
guideline

 ≥ 3.30

Shahid et al. 
(2017) [48]

Pakistan Cohort Nephropathy 78 Urine nephrin ELISA ACR KDIGO 
guideline

NR

Jim et al. 
(2012) [49]

USA Cross-sectional Nephropathy 76 NCR ELISA ACR KDIGO 
guideline

 ≥ 100 ng/mg
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non-threshold effect using estimation of Chi-square test 
(P < 0.05) and inconsistency index for pooled sensitivity 
(I2 = 79.5%) and specificity (I2 = 90.8%) indicated that there 
was heterogeneity in the value of urinary nephrin among the 
15 studies (Fig. 2) due to differences between the diagnos-
tic methods, clinical conditions, cut-off values, and study 
designs of the studies included in the review. Therefore, sub-
group analysis was conducted based on the clinical condi-
tions, assay methodology, study designs and units used for 
reporting urinary nephrin.

Subgroup analysis based on clinical conditions

Subgroup analysis based on clinical conditions showed that 
urinary nephrin predicts glomerular injury caused by PE with 
a pooled sensitivity of 0.78 (95% CI 0.71–0.84, I2 = 81.4%) 
and a pooled specificity of 0.79 (95% CI 0.75–0.82, 
I2 = 89.2%) (Fig. 2). Furthermore, urinary nephrin predicts 

glomerular injury caused by nephropathy with a pooled sen-
sitivity of 0.90 (95% CI 0.87–0.93, I2 = 63.7%), and specific-
ity of 0.62 (95% CI 0.56–0.67, I2 = 89.7%) (Fig. 2). Urinary 
nephrin shows excellent diagnostic accuracy for predicting 
glomerular injury caused by either PE (with AUC of SROC 
0.91) or nephropathy with AUC of the SROC 0.90 for pre-
dicting nephropathy (Table 2).

Sensitivity analysis

Sensitivity analysis was conducted to assess the impact of 
each study in the interpretation of the diagnostic accuracy 
of urinary nephrin on the overall diagnostic accuracy. The 
sensitivity analysis performed to check heterogeneity was 
conducted by excluding each study step by step from the 
analysis. The estimate showed that the excluded study did 
not lead to significant changes in the overall AUC of the 
index test (urinary nephrin) (Table 3).

Table 2   Subgroup analysis of urinary nephrin as a potential marker of early glomerular injury

AUC​ area under the curve, CI confidence interval, DOR diagnostic odds ratio, ELISA enzyme linked immunosorbent assay, LR likelihood ratio, 
RT-PCR real time polymerase chain reaction, NCR nephrin to creatinine ratio

Studies Sensitivity (95% CI) Specificity (95% CI) Positive LR (95% CI) Negative LR (95% 
CI)

DOR (95%CI) AUC​

All studies 0.86 (0.83–0.89) 0.73 (0.70–0.76) 3.53 (2.26–5.50) 0.19 (0.11–0.33) 23.37 (10.58–51.64) 0.90
I2 (%) 79.5 90.8 92.8 79.8 73.3
Clinical condition
 Preeclampsia 0.78 (0.71–0.84) 0.79 (0.75–0.82) 5.35 (2.72–10.52) 0.24 (0.11–0.52) 18.08 (5.11–64.02) 0.91
 I2 (%) 81.4 89.2 85.8 82 78.4
 Nephropathy 0.90 (0.87–0.93) 0.62 (0.56–0.67) 2.49 (1.44–4.30) 0.16 (0.10–0.26) 22.10 (10.43–46.82) 0.90
 I2 (%) 63.7 89.7 94 35.7 41.5

Study design
 Cohort 0.86 (0.80–0.91) 0.71 (0.66–0.74) 3.04 (1.64–5.64) 0.28 (0.15–0.53) 13.23 (4.43–39.57) 0.87
 I2 (%) 73 94.6 93.5 56.3 68
 Case–Control 0.72 (0.62–0.81) 0.82 (0.74–0.88) 3.70 (1.59–8.57) 0.32 (0.11–0.95) 15.32 (2.41–97.23) 0.97
 I2 (%) 89.9 65.7 63.3 84.5 79.6
 Cross-sectional 0.92 (0.88–0.95) 0.73 (0.67–0.79) 3.74 (2.07–6.76) 0.10 (0.05–0.19) 53.74 (26.09–110.71) 0.95
 I2 (%) 59.4 86.2 84.9 39 28.2

Diagnostic method
 ELISA 0.89 (0.86–0.92) 0.72 (0.69–0.75) 3.84 (2.23–6.63) 0.16 (0.08–0.30) 31.55 (12.12–82.14) 0.92
 I2 (%) 71.9 92.7 94.6 73.2 72.1
 RT-PCR 0.73 (064–0.81) 0.69 (0.59–0.79) 2.16 (1.56–2.99) 0.39 (0.20–0.75) 6.17 (3.19–11.94) 0.77
 I2 (%) 83.4 60.1 4.2 66.7 0.0

Nephrin reporting methods
 Urinary nephrin 

(ng/ml)
0.86 (0.82–0.89) 0.77 (0.72–0.80) 4.66 (2.09–10.41) 0.18 (0.09–0.34) 27.36 (10.45–71.69) 0.92

 I2 (%) 86.6 92.4 95.6 82.8 75.1
 Urinary NCR (ng/

mg)
0.89 (0.81–0.94) 0.69 (0.64–0.73) 2.48 (1.68–3.64) 0.19 (0.05–0.67) 17.76 (3.71–85.13) 0.86

 I2 (%) 78.3 84.8 75.7 77.5 73.0
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Discussion

This review shows that urine nephrin could be a potential 
indicator of early glomerular injury, as demonstrated by a 

very good diagnostic accuracy in patients with acute and 
chronic renal injury. Indeed, urinary nephrin has demon-
strated potential as a marker for early glomerular injury in 
several studies [29, 30, 32] and could prove to be a useful 
routine diagnostic marker used alone or in combination with 

Nephropathy 
Pooled Sensi�vity: 0.90 (0.87-0.93)
Chi-Square: 16.51; df=6 (p=0.0113)
Inconsistency (I-Square): 63.7%

Preeclampsia 
Pooled Sensi�vity: 0.78 (0.71-0.84)
Chi-Square: 34.64; df=7 (p < 0.001)
Inconsistency (I-Square): 81.4%

Preeclampsia
Pooled Specificity: 0.79 (0.75-0.82)
Chi-Square: 65.09;df=7 (p < 0.001)
Inconsistency (I-Square): 89.2%

Nephropathy
Pooled Specificity: 0.62 (0.56-0.67)
Chi-Square: 58.45; df=6 (p < 0.001)
Inconsistency (I-Square): 89.7%

Author (Year)

Pooled Sensi�vity = 0.86 (0.83 - 0.89)
Chi-square = 68.14; df = 14 (p < 0.001)
Inconsistency  (I-square) = 79.5% 

Pooled Specificity = 0.73 (0.70 - 0.76)
Chi-square = 151.66; df = 14 (p < 0.001)
Inconsistency  (I-square) = 90.8% 

Fig. 2   Forest plot of the pooled sensitivity and specificity of urinary 
nephrin for detecting glomerular injury across all studies. Subgroup 
analysis: Preeclampsia (within solid lines) and Nephropathy (within 
dashed lines) shows the pooled sensitivity and specificity of urinary 

nephrin for detecting these conditions. The circles and the horizontal 
lines represent the point estimate and 95% CI, respectively. Between 
the dotted vertical lines represents the pooled estimate, and the dia-
monds represent the pooled estimate in all studies with 95% CI

Fig. 3   Hierarchical Summary 
Receiver Operating Character-
istics (SROC) plot of urinary 
nephrin to determine glomeru-
lar injury across all settings. 
The SROC curve is represented 
by the middle line; each of the 
analysed studies is represented 
by a circle and the respective 
95% CI, by the two upper and 
lower lines
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other novel markers such as neutrophil gelatinase-associated 
lipocalin and cell cycle arrest markers [11, 51, 52] for the 
prediction of early kidney injury. However, appropriate vali-
dation of new diagnostic biomarkers requires the demonstra-
tion of assay performance against validation and verification 
criteria set out by professional organisations [53]. Progres-
sion into clinical use requires an investigation of the diag-
nostic accuracy and the ability of the assay to discriminate 
between diseased and healthy populations. In this regard, our 
review aims to provide a first step in this process.

Despite proven satisfactory diagnostic accuracy of 
urinary nephrin (AUC-SROC 0.9), heterogeneity exists 
across the studies reviewed; this has been documented 
previously [54] and across other studies [21, 26, 55]. 
The potential source of heterogeneity in this review was 
evaluated using subgroup analysis by clinical condition, 
methods of analysis, study design, and reporting units. 
The analysis also showed heterogeneity existed within 
subgroups, nevertheless, the diagnostic accuracy of 
urinary nephrin was considered satisfactory in each group 
following subgroup analysis.

Laboratories often have to find a balance between diag-
nostic accuracy and technical complexity when choosing 
assays to adopt for routine diagnostic use [56]. Therefore, an 

important aspect to include in a meta-analysis such as this 
is the heterogeneity in diagnostic accuracy of the methods 
employed by the various studies. ELISA was the method of 
choice in most studies (n = 11) for the detection of nephrinu-
ria in PE and nephropathies [20, 24, 25, 31, 32, 36, 43, 45, 
48–50]. Interestingly these assays demonstrated improved 
sensitivity (0.89) and specificity (0.73) and therefore diag-
nostic accuracy (AUC-SROC = 0.92) for determining uri-
nary nephrin compared to RT-PCR [44, 46, 47]. Addition-
ally, one study demonstrated a sensitivity and specificity of 
100% in a single centre trial involving 25 women with PE, 
using Western blot analysis [27].

Under normal physiological conditions, random 
urine collections contain varied concentrations of urine 
biomarkers due to variability in urine volume. Therefore, 
biomarker concentration is often corrected using urinary 
creatinine [57]. Our result found the pooled sensitivity 
and specificity of uncorrected urinary nephrin (ng/ml) was 
0.86 and 0.77, respectively. In comparison, urinary nephrin 
normalised by correction for urinary creatinine, NCR (ng/
mg), showed a greater pooled sensitivity of 0.89 and lower 
specificity 0.69. The difference in reporting methods and 
lack of consistent cut-off values for urinary nephrin may 
account for heterogeneity seen across the studies included 

Table 3   Sensitivity analysis (pooled diagnostic accuracy with 95% CI, when the individual study was excluded from the meta-analysis)

AUC​ area under the curve, CI confidence interval, DOR diagnostic odds ratio, LR likelihood ratio

First author (year) Sensitivity (95% CI) Specificity (95% CI) Positive LR (95% CI) Negative LR (95% CI) DOR (95% CI) AUC​

All studies 0.86 (0.83–0.89) 0.73 (0.70–0.76) 3.53 (2.26–5.50) 0.19 (0.11–0.33) 23.37 (10.58–51.64) 0.90
Jim et al. (2014) [20] 0.87 (0.84–0.90) 0.74 (0.71–0.77) 3.86 (2.39–6.24) 0.16 (0.09–0.29) 27.89 (13.09–59.44) 0.91
Yang et al. (2013) 

[43]
0.87 (0.84–0.90) 0.72 (0.69–0.75) 3.56 (2.23–5.70) 0.17 (0.09–0.32) 26.46 (10.98–63.74) 0.91

Kelder et al. (2012) 
[44]

0.89 (0.86–0.92) 0.72 (0.69–0.75) 3.65 (2.28–5.84) 0.70 (0.10–0.29) 27.61 (12.06–63.21) 0.92

Son et al. (2011) [27] 0.86 (0.82–0.89) 0.72 (0.69–0.75) 3.32 (2.16–5.10) 0.20 (0.12–0.35) 19.96 (9.28–42.92) 0.89
Zhai et al. (2016) [32] 0.86 (0.83–0.89) 0.72 (0.69–0.75) 3.29 (2.11–5.14) 0.18 (0.10–0.33) 22.42 (9.81–51.23) 0.89
Zhai et al. (2016) [45] 0.86 (0.83–0.89) 0.73 (0.69–0.76) 3.67 (2.22–6.07) 0.19 (0.10–0.33) 24.57 (7.98–42.30) 0.90
Jung et al. (2017) [31] 0.86 (0.83–0.89) 0.70 (0.67–0.73) 3.07 (2.00–4.70) 0.20 (0.11–0.34) 19.84 (9.14–43.09) 0.88
Kishore et al. (2021) 

[36]
0.85 (0.82–0.88) 0.72 (0.69–0.75) 3.52 (2.20–5.63) 0.20 (0.12–0.36) 22.75 (9.67–53.53) 0.90

Kostovska et al. 
(2020) [24]

0.86 (0.83–0.90) 0.72 (0.69–0.75) 3.29 (2.13–5.09) 0.18 (0.10–0.34) 21.85 (9.51–50.21) 0.90

Heimlich et al. (2018) 
[50]

0.86 (0.82–0.89) 0.73 (0.70–0.76) 3.71 (2.25–6.12) 0.20 (0.11–0.35) 22.62 (9.88–51.78) 0.90

Do Nascimento et al. 
(2013) [46]

0.87 (0.83–0.90) 0.73 (0.70–0.76) 3.63 (2.26–5.85) 0.18 (0.10–0.33) 25.99 (10.87–62.12) 0.91

Fayed et al. (2019) 
[47]

0.86 (0.83–0.89) 0.73 (0.70–0.76) 3.82 (2.35–6.23) 0.18 (0.10–0.32) 27.00 (11.57–63.01) 0.91

Shahid et al. (2017) 
[48]

0.85 (0.82–0.88) 0.75 (0.72–0.78) 3.51 (2.49–4.94) 0.19 (0.11–0.34) 23.98 (10.52–40.47) 0.90

Kostovska et al. 
(2021) [25]

0.86 (0.82–0.89) 0.72 (0.69–0.75) 3.24 (2.11–4.96) 0.21 (0.12–0.36) 19.06 (8.92–40.71) 0.88

Jim et al. (2012) [49] 0.85 (0.82–0.88) 0.74 (0.70–0.76) 3.84 (2.33–6.33) 0.20 (0.12–0.35) 22.30 (9.88–50.36) 0.90
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in this review. Hence, a uniform reporting approach for 
urinary nephrin is mandatory for ease of interpretation and 
comparison of results across the literature.

The pooled analysis of the studies investigating urinary 
nephrin as a diagnostic marker of glomerular injury showed 
good sensitivity and specificity. Studies investigating 
urinary nephrin predominantly focused on early detection 
of PE and diabetic nephropathy. Both conditions rely on the 
detection of albumin or protein in the urine as an indicator 
of glomerular damage. PE has an acute presentation 
associated with endothelial swelling and derangements 
[17] and has also been associated with podocyte loss and 
nephrin shedding [17]. As is the case with patients suffering 
AKI, these patients do not always go on to incur further 
renal impacts and therefore progressive renal decline [58]. 
Conversely, nephropathy develops over time and could be 
considered an example of the chronic progression of renal 
disease [59].

All studies determining urinary nephrin showed that 
it increased significantly in patients with increased levels 
of albumin in urine [24, 36]. Likewise, other studies have 
also shown that urinary nephrin increased linearly with the 
progression of the disease, this suggests that quantification 
of nephrin could be a useful biomarker of glomerular injury 
progression [25, 47, 49].

Overall, the sensitivity and specificity of the individual 
studies reviewed for predicting glomerular injury of PE 
ranged from 51–97% to 58–97%, respectively. Urinary 
nephrin predicts acute glomerular injury caused by PE with 
a high level of sensitivity (0.78) and specificity (0.79) with 
SROC of 0.91. Thus, urinary nephrin could be considered 
a good predictor of disease, showing an improvement in 
diagnostic accuracy of albumin (ACR) with sensitivity of 
36% [20] and protein to creatinine ratio with sensitivity of 
72% in predicting significant proteinuria [60].

There is growing evidence that urinary nephrin may be 
a superior marker for PE and can achieve better diagnostic 
accuracy than other podocyte biomarkers. Kerley et  al. 
reported improved diagnostic accuracy of urinary nephrin 
with sensitivity of 0.81 (95% CI 0.72–0.88) and specificity 
of 0.84 (95% CI 0.79–0.84) when compared to combined 
podocyte biomarkers [26]. Likewise, a previous meta-
analysis by Wu et al. investigating the value of biomarkers for 
the detection of early-stage PE found a low predictive value 
using single biomarkers (disintegrin and metalloprotease 
12, inhibin-A, pregnancy-associated plasma protein A, 
placental growth factor and placental protein 13) with a 
pooled sensitivity of all single biomarkers of 0.40 (95% 
CI 0.39–0.41) and a pooled specificity of 0.90 (95% CI 
0.90–0.90) in 147 studies of 401 laboratory biomarkers [21]. 
The investigators found increased diagnostic sensitivity and 
specificity with the use of a panel of biomarkers combined 
with clinical characteristics; sensitivity of 0.43 (95% CI 

0.41–0.46) and specificity of 0.91 (95% CI 0.90–0.91). 
However, the review by Wu et  al. was not focused on 
glomerular-specific biomarkers for determining glomerular 
injury. A similar systematic review conducted by the World 
Health Organisation (WHO) in 2004 assessed the usefulness 
of combined clinical biophysical and biochemical tests for 
the prediction of PE [55], concluding that there was yet to be 
a cost-effective or reliable screening test. It has since been 
demonstrated that urinary nephrin could possibly fill that 
role. The improved diagnostic accuracy demonstrated by 
urinary nephrin may warrant its inclusion in these panels to 
improve early detection of PE.

Identifying nephropathy in the early stages of the disease 
prior to proteinuria is challenging. Existing guidelines rely 
on albuminuria as an indicator of glomerular nephropathy 
[61]. However, this has limitations in terms of timing for 
detection of early nephropathy since glomerular structural 
damage precedes microalbuminuria [30]. In terms of the 
specificity, ACR is widely accepted for the classification 
of glomerular injury and chronic kidney disease, andwhile 
albuminuria has been independently and strongly associated 
with progression to ESKD [62]. The included studies 
showed that nephrinuria positively correlated with increases 
in urinary concentrations of albumin and hyperglycaemia 
status. However, nephrinuria was also detected in a high 
proportion of diabetic patients with normoalbuminuria, 
therefore given that over time hyperglycaemia is likely to 
further damage renal vasculature and the glomerular filtration 
barrier, nephrinuria may provide an early indicator of renal 
damage. Although not all diabetic patients with nephrinuria 
progress to kidney disease, nephrinuria can be used both as 
an early indicator of glomerular damage prior to progression 
to fulminant kidney disease/injury and to signal the need for 
interventional strategies in this vulnerable population. In this 
meta-analysis, the diagnostic accuracy of urinary nephrin for 
predicting glomerular nephropathy showed good diagnostic 
sensitivity of 0.90 (95% CI 0.87–0.93) and specificity of 0.62 
(95% CI 0.56–0.67), SROC = 0.90, suggesting that urinary 
nephrin may be a promising biomarker of glomerular injury.

Early detection of urinary nephrin before the appearance 
of protein and albumin in urine could allow for the detection 
of glomerular injury before the loss of renal function [24]. 
This is important for early diagnosis and intervention. 
Furthermore, albuminuria may not always be present; 
a study by An et al. demonstrated that more than 30% of 
patients with kidney disease had undetectable albuminuria 
despite the presence of severe glomerular damage/renal 
insufficiency [63]. Likewise, previous studies have indicated 
that podocyte proteins may provide earlier indicators for 
glomerular nephropathies preceding albuminuria [28, 48, 
50, 64]. Studies included in this review detected nephrinuria 
prior to the presence of albuminuria, and the urinary nephrin 
concentration reflects the severity of the disease [32, 36]. 
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This has also been reported in previous studies that found 
nephrinuria was detected prior to albuminuria during 
glomerular injury. One study showed that 54% of diabetes 
mellitus patients with normoalbuminuria had nephrinuria 
and 100% of diabetes mellitus patients with micro-
macroalbuminuria had nephrinuria [49]. Similarly, another 
study demonstrated the presence of elevated nephrinuria in 
82% of patients with normoalbuminuria, in 88% of patients 
with microalbuminuria, and in 100% of patients with 
macroalbuminuria [24].

The intention of this review was to investigate the role of 
urinary nephrin as a marker of early glomerular injury for 
detecting both acute and chronic kidney injury. All studies 
related to nephropathy demonstrated that urinary nephrin 
increased in parallel with albuminuria and correlated with 
the progression of the severity of nephropathy [24, 36, 
46–50], suggesting that nephrinuria is a sensitive indicator 
for nephropathy. It has been suggested that continued 
attempts at regeneration and upregulation of nephrin 
production may be evidence of podocyte repair following 
injury [65]. Urinary nephrin also negatively correlated with 
the glomerular filtration rate, and increasing levels were 
associated with the progression of injury to other forms of 
kidney injury/disease [36, 47].

The diagnostic accuracy of urinary nephrin for detecting 
PE and diabetic nephropathy could therefore be extrapolated 
into use as a potential predictor of early glomerular injury, 
particularly in the setting of AKI. Recently, studies have 
emerged investigating the value of urinary nephrin for 
predicting AKI, particularly in critically ill neonates [66, 
67]. These studies concluded that urinary nephrin may 
well provide a marker for predicting AKI, demonstrating 
a diagnostic sensitivity of 62.5%, 61.5%, and specificity 
of 82.1%, 76.9% respectively at a cut-off point of 
NCR = 0.375 µg/mg, suggesting that urinary nephrin may 
give an early indication of podocyte damage as an indicator 
of those infants at risk of developing AKI. This is an area of 
intense interest in the literature [30, 66, 67], since a single 
biomarker may not suffice to define AKI given inherent renal 
heterogeneity and the disparate settings under which kidney 
injury occurs [68].

The strength of this meta-analysis is that it is the first 
to systematically analyse the pooled diagnostic accuracy 
of urinary nephrin in the diagnosis of glomerular injury. 
However, the limitations of this meta-analysis cannot be 
ignored. First, urine ACR and de novo hypertension were 
used as a reference standard to stratify cases and controls 
and to determine the diagnostic accuracy of urinary nephrin 
as a useful marker for glomerular injury. Second, there was 
high heterogeneity across the included studies in the meta-
analysis. Third, diagnostic cut-off values of urinary nephrin 
of numerous studies were not consistent and the included 
articles used different methods of assay measurement. 

Fourth, the current guidelines for stratifying nephropathies 
using urine ACR as a reference standard test cannot reveal 
subclinical glomerular damage and might underscore the 
specificity of urinary nephrin. Fifth, the majority of studies 
included in this review are cross-sectional studies, hence, 
the cross-sectional nature of the study design reflects 
association rather than causality. While nephrin has been 
demonstrated to play an important role in the slit diaphragm 
of the glomerulus providing structural stability [69], normal 
functioning and repair of damaged glomerulus in acute 
injury [70–73], there is no supportive evidence for  nephrin 
as a causal mechanism of glomerular injury. Nor is there 
evidence to support the early detection of nephrinuria as 
a reliable predictor of consequent glomerular injury and 
further progression to other forms of kidney injury/disease 
in the vulnerable populations.

Conclusion

Overall, this meta-analysis found that urinary nephrin could 
become an effective and robust biomarker for the early 
prediction of glomerular injury as well as for monitoring 
disease. Perhaps adding urinary nephrin as a marker of 
early glomerular injury to a panel of promising markers for 
AKI could provide a more complete clinical picture to help 
determine renal injury and prognosis in the future.
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