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Simple Summary: Because tissue biopsy is the gold standard for diagnosing oral cancer, it is often
performed to confirm disease during screening, management, and monitoring. However, many
reports are negative. Salivary biomarkers can provide the preliminary stratification of suspicious
lesions to encourage patient selection in clinical practice. However, the discovery and implementation
of salivary biomarkers still need to be refined. Therefore, in this study, we successfully utilized
machine learning techniques to select optimal methylome biomarkers that may be applied for oral
cancer diagnoses.

Abstract: This study aims to examine the feasibility of ML-assisted salivary-liquid-biopsy platforms
using genome-wide methylation analysis at the base-pair and regional resolution for delineating
oral squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMDs). A nested
cohort of patients with OSCC and OPMDs was randomly selected from among patients with oral
mucosal diseases. Saliva samples were collected, and DNA extracted from cell pellets was processed
for reduced-representation bisulfite sequencing. Reads with a minimum of 10× coverage were used
to identify differentially methylated CpG sites (DMCs) and 100 bp regions (DMRs). The performance
of eight ML models and three feature-selection methods (ANOVA, MRMR, and LASSO) were then
compared to determine the optimal biomarker models based on DMCs and DMRs. A total of
1745 DMCs and 105 DMRs were identified for detecting OSCC. The proportion of hypomethylated
and hypermethylated DMCs was similar (51% vs. 49%), while most DMRs were hypermethylated
(62.9%). Furthermore, more DMRs than DMCs were annotated to promoter regions (36% vs. 16%) and
more DMCs than DMRs were annotated to intergenic regions (50% vs. 36%). Of all the ML models
compared, the linear SVM model based on 11 optimal DMRs selected by LASSO had a perfect AUC,
recall, specificity, and calibration (1.00) for OSCC detection. Overall, genome-wide DNA methylation
techniques can be applied directly to saliva samples for biomarker discovery and ML-based platforms
may be useful in stratifying OSCC during disease screening and monitoring.

Keywords: biomarkers; diagnosis; DNA methylation; epigenomics; oral cancer; oral potentially
malignant disorders

1. Introduction

Oral cancer is the most common head and neck malignancy and accounts for about
2.3% of cancer-related deaths worldwide [1]. The early detection of primary tumors and
tumor recurrence is central to obtaining a better disease-specific and overall prognosis [2–5].
Currently, tumor diagnoses before intervention and during disease monitoring are reliant
on the performance of a tissue biopsy on and the histopathology of apparent lesions.
However, concerns regarding the representativeness of sampled tissues for an optimal
diagnosis, postoperative complications, and potential tumor seeding still exist [6,7]. During
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disease monitoring, patients are subjected to multiple biopsies for lesions emanating
in or around tumor resection sites, which are often false positives [6,8]. Likewise, for
organized/opportunistic oral cancer screenings, the reduced compliance of patients with
suspicious diseases that are identified has been linked to their concerns regarding the
need for and immediate post-operative complications of tissue biopsy. Therefore, utilizing
accurate and specific platforms for delineating high-risk diseases before performing a tissue
biopsy has the potential to improve the impact and efficiency of oral-cancer-screening
programs by allaying patient concerns about the importance of the procedure according to
this preliminary test [8,9].

Liquid biopsy, especially involving saliva and mouth-rinse samples, has the poten-
tial to circumvent the problems posed by tissue biopsies [10,11]. Explorations into the
use of salivary molecular markers that are specific to or preferential for oral cancer have
suggested potential candidates for clinical applications, with transcriptomic and epige-
nomic markers being the most promising [12–16]. Furthermore, for epigenetic markers,
our group and others have reported a better diagnostic accuracy when biomarker pan-
els were used as opposed to single biomarkers [9,17,18]. However, it was observed that
true genome-wide techniques, such as whole-genome bisulfite sequencing (WGBS) and
reduced-representation bisulfite sequencing (RRBS), were not being utilized during methy-
lome biomarker discovery, which may have limited the optimal biomarker selection [9,13].
Moreover, methods to operationalize DNA methylation markers in clinical settings were
not being suggested or utilized in the available reports [8,9,19].

Machine learning (ML) platforms are increasingly being implemented with diverse
feature sets for the accurate diagnosis of different malignancies [20,21]. These intelligent
models have been found to have higher performances than alternate methods for the
construction of assistive diagnostic platforms and, in many cases, they have been found to
have an equivalent or slightly reduced performance when compared to clinicians [22–24].
Therefore, integrating ML and salivary biopsy as an ML-assisted liquid-biopsy platform
could potentially optimize the performance of the salivary biomarkers in diagnosing oral
cancer. This may also provide an avenue to operationalize and validate salivary biomarkers
objectively and efficiently. To this end, this study examined the feasibility of utilizing a
scalable ML-based platform for biomarker selection and the noninvasive diagnosis of oral
cancer using salivary methylome biomarkers. This study hypothesized that biomarkers
identified by genome-wide methylation analysis techniques like RRBS using saliva samples
can efficiently distinguish patients with oral cancer from patients with oral potentially
malignant disorders (OPMDs) or oral mucosal diseases. This could be beneficial as a tool
for the early diagnosis of oral cancer during disease screening, indicating tumor remission
during treatment, and the timely detection of tumor recurrence during disease surveillance.

2. Materials and Methods
2.1. Patients and Eligibility Criteria

Patients with oral squamous cell carcinoma (OSCC) and OPMDs were enrolled in a
study to assess and validate methylome markers in their saliva for cancer diagnoses. This
nested cohort comprised patients who either presented to our institution or were referred
through an oral-cancer-community screening program conducted by the authors [25].
Participant recruitment was carried out from June 2020 to January 2022. Only patients
above 18 years old with primary untreated OSCC and OPMDs were included in this study.
Patients with previous head and neck malignancies, radiation therapy, and histologic
variants other than squamous cell carcinomas, such as oral melanomas and sarcomas, were
not considered. Additionally, patients with severe debilitating and inflammatory conditions
were not included. The scope of OSCC was according to the International Classification
of Disease (ICD) codes C00.3–C00.6, C02–C04, C05.0, and C06 to include only tumors
affecting the oral cavity following Montero et al. [26] and Conway et al. [27]. Meanwhile,
OPMDs were defined according to the recommendations by the WHO Collaboration Centre
for oral cancer in 2020 [28]. The patients were enrolled using the prospective-specimen-
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collection, retrospective-blinded-evaluation (PRoBE) protocol, and the identification of
outcome status for the first 50 patients was conducted for biomarker discovery and ML
analysis [19,29–31]. From this patient pool, 33 patients, comprising patients with OSCC
and OPMDs, were randomly selected using computer-generated numbers for reduced-
representation bisulfite sequencing analysis. Demographical, clinical, and pathological
characteristics of the patient cohort are detailed in Table 1. OPMD subtypes included
oral lichen planus (43.8%), erythroplakia (12.6%), erythroleukoplakia (6.3%), leukoplakia
(31.3%), and oral submucous fibrosis (6.3%).

Table 1. Characteristics of patients included for RRBS analysis.

Variables OSCC (%) OPMD (%) Total p-Value

Age Median (IQR) 65 (57–72) 65.5 (53.8–72.8) 65 (57–72) 0.986 a

Sex
Female 9 (52.9) 8 (50.0) 17 (51.5)

0.866 b

Male 8 (47.1) 8 (50.0) 16 (48.5)

Site affected

Buccal 3 (17.6) 12 (75.0) 15 (45.5)

0.011 b
Palate 1 (5.9) 1 (6.3) 2 (6.1)

Tongue 8 (47.1) 3 (18.8) 11 (33.3)

Gingiva 5 (29.4) 0 5 (15.2)

Risk habit category NSND 11 (64.7) 7 (43.8) 18 (54.5)
0.227 b

SD 6 (35.3) 9 (56.3) 15 (45.5)

Charlson comorbidity index Median (IQR) 1 (0–2.5) 0 0 (0–1) 0.046 a

Family history of cancer Yes 4 (23.5) 4 (25.0) 8 (24.2)
0.922 b

No 13 (76.5) 12 (75.0) 25 (75.8)

Hypertension Yes 5 (29.4) 2 (12.5) 7 (21.2)
0.235 b

No 12 (70.6) 14 (87.5) 26 (78.8)

Tumor stage
Stage I/II 6 (35.6)

Stage III/IV 11 (64.7)

Tumor grade

Well differentiated 5 (29.4)

Moderately differentiated 9 (52.9)

Poorly differentiated 3 (17.6)

a Mann-Whitney U test; b Pearson’s Chi Square test/Fisher’s exact analysis.

2.2. Oral Rinse Collection and DNA Extraction

Mouth rinses were collected following histologic confirmation of the disease and
before treatment commencement. This was performed at least one hour after the patient’s
last meal. Patients were asked to pre-rinse for 30 s with water or chlorhexidine and wait for
5 min before sampling was conducted using 20 mL of PBS. Rinsing was then performed
for 1 min and emptied into a 50 mL falcon tube on ice. The samples were stored at 20 ◦C
until further processing was conducted within 24 h. Afterward, the collected samples were
centrifuged at 2000 rpm for 10 min to isolate the cell pellets. Genomic DNA extraction
was performed using the QIAamp DNA Blood Mini kit (QIAGEN, Hilden, Germany)
according to the manufacturer’s protocol for saliva. DNA quantity was assessed using both
spectrophotometric and fluorometric methods, and the integrity was checked on 0.8% and
2% agarose gel electrophoreses.

2.3. Reduced-Representation Bisulfite Sequencing (RRBS)

A library was constructed on the protocol of the Premium RRBS kit (Diagenode S.A,
Denville, NJ, USA). A total of 100 ng of genomic DNA from each sample was used for library
construction. Samples were digested with the MspI restriction enzyme overnight, after
which the fragmented DNA was end-repaired. Poly-A-tailing of the 3′ ends and indexed
adaptor ligation was performed afterward. Fragment size selection was conducted using
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AMPure XP Beads, which was followed by qPCR quantification and sample pooling (same
amount for all samples) using the Ct values obtained. Bisulfite conversion of the sample
pool to convert unmethylated cytosine to thymine was then performed overnight. Another
round of qPCR quantification was conducted to determine the optimal cycle number
needed for enrichment, after which the DNA fragments were then amplified by 14 cycles
during library enrichment. The quality control of the enriched library was performed using
a Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA), Qubit fluorometric analysis,
and qPCR. The generated library was sequenced using the 151 paired-end protocol of the
NovaSeq 6000 system (Illumina, San Diego, CA, USA).

2.4. Sequence Alignment and Differential Methylation Analysis

The quality control and adapter trimming of raw reads were conducted using the
Trim Galore program (Phred score ≥ 20), while the alignment of filtered reads to the hg38
reference genome and calling of methylated cytosine followed, using Bismark software [32].
Methylkit [33] was used for differential methylation analysis. Bismark coverage files were
entered into the software, and CpG sites common to all samples with a minimum of 10×
coverage were merged. Small-sized differentially methylated regions (DMRs) with read
lengths amenable to subsequent pyrosequencing verification were the unit of regional
analysis performed. A total of 100 bp regions that covered a minimum of ten CpG sites
were tiled with a step size of 25. Logistic regression analysis was performed for each
CpG site and 100 bp region based on the disease groups i.e., OSCC and OPMDs. False
discovery rates were controlled by transforming the p-values to q-values using the sliding-
linear-model (SLIM) method [34]. Differentially methylated CpG sites (DMCs) and DMRs
were selected according to a mean methylation percent difference ≥ 5 (using the read
coverage for weighting) and q-values < 0.01. The functional annotation of DMCs and
DMRs based on their locations, relative to genes and CpG islands, was conducted using
Genomation and Hypergeometric Optimization of Motif Enrichment (HOMER) software
for the description of these sites. DMRs annotated to genes were enriched according to
gene ontology (GO) terms, based on the biological process and KEGG pathways using the
clusterProfiler program [35].

2.5. Machine Learning Models

Percent methylation of both DMCs and DMRs across the different annotated regions
and samples was utilized to construct ML models for the classification of OSCC from
OPMDs. Machine learning models implemented for disease classification included the
linear and radial basis function (RBF), support vector machines (SVM), adaptive boosting
(AdaBoost), k-nearest neighbors (kNN), random forest (RF), decision tree (DT), extremely
randomized trees (ExtraTrees), and gradient boosting machines (GBM). Each DMC/DMR
was utilized as a predictive feature in an initial ML model for all techniques. Due to the
high dimensionality of the data, feature selection was also performed to foster the clinical
application of these methylome biomarkers. Three robust feature-selection techniques,
including the analysis of variance (ANOVA) F-statistic, minimum redundancy–maximum
relevance (MRMR), and least absolute shrinkage and selection operator (LASSO), were
used to select different biomarker combinations for ML modeling. ANOVA and MRMR are
two filter-based feature-selection techniques based on univariate and multivariate analysis,
respectively, while LASSO is an embedded feature-selection method used over regression
analysis for regularization [36]. As wrapper-based feature-selection methods are known to
be model-dependent with the potential for different optimal feature sets according to the
ML techniques, these methods were not considered in this study.

Models based on DMCs and DMRs selected by the three feature-selection methods
were also constructed. Afterward, the concordance of the selected methylome biomarkers
for all three feature-selection methods was assessed, and these consensus biomarkers
(DMCs and DMRs) were implemented with three outperforming ML algorithms to assess
their performance. Model training and validation were implemented using leave-one-out
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cross-validation as the data resampling method. In all, the performance of 70 classification
models was compared. The performance metrics used for model selection included the
recall, specificity, precision, overall accuracy, area under the receiver operating characteristic
curve (AUC), and calibration (O/E). Additionally, global Shapley additive explanations
(SHAP) values were obtained for the optimal ML models based on DMCs and DMRs
to explain their rationale for the predicted classes (OSCC vs. OPMDs) as a function of
the predictors.

2.6. Computation

Descriptive statistics were performed using SPSS v 27. Bioinformatics analyses and
machine learning analyses were implemented in R statistical software v 4.1.0 and Python v
3.7.6 (Python Software Foundation, Wilmington, DE, USA). The reporting of this study was
conducted according to the Transparent Reporting of a multivariable prediction model for
individual prognosis or diagnosis (TRIPOD) statement [37].

3. Results
3.1. Sequencing Quality and Descriptive Analysis

Excellent bisulfite conversion was recorded with an estimated rate of at least 99% for
all samples. Reads were assigned to individual samples with an average of 88% of the
bases with a Q30 Phred score and an average of 47.3% of read pairs that were uniquely
mapped to the reference genome. Three-dimensional plots showing the distribution of
methylation percentages based on sequencing reads with 10× coverage for patients in the
OSCC and OPMD cohorts are displayed in Figure S1. These showed that, for the majority
of the CpG site, percent methylation was either below 5% or above 95%. Also, histogram of
CpG read coverage per base for each sample is deposited in File S1.

3.2. Base-Pair Resolution Analysis

In total, 1745 DMCs were identified for OSCC relative to other mucosal diseases in
the OPMDs group. A heatmap of all DMCs and their methylation percentages is shown
in Figure 1A. Additionally, the mean methylated percentage differences for all DMCs and
their corresponding q-values are presented in Figure 1B, with 854 CpG sites differentially
hypermethylated while 891 CpG sites were hypomethylated. The distribution of the
DMCs per autosome is displayed in Figure 1C with a higher proportion of aberrantly
methylated CpG sites being mapped to the first chromosome than others. An annotation
of the DMCs based on genomic features found that a majority of the DMCs were mostly
enriched in the intergenic regions with about 16% mapped to promoter sites (Figure 1D).
Further annotation showed that 9.4% of DMCs were within CpG islands, while 17.9%
were within CpG island shores which, in this study, represented a 2kb-long region on
both sides of the CpG islands (Figure 1E). As for all DMCs, a similar distribution in the
genomic and CpG island annotations was observed when stratified by hypermethylated
and hypomethylated DMCs.

To map DMCs to pathways in which they were enriched, gene ontology was performed
according to biological processes (GO-BP) using 1283 DMCs annotated to 750 genes. The
enriched DMC set based on their count, irrespective of statistical significance, is listed
in Figure 2A, which alluded to common deregulated processes in tumors. The enriched
significant biological processes included ion transport, regulation of apoptosis, synapse
organization, cellular differentiation, and the response to epidermal growth factor (EGF)
(Figure 2B). KEGG pathway analysis also identified cancer-related pathways in which the
DMCs were enriched (Figure 2C) with the genes associated with these DMCs and their
network, which is shown in Figure S2. The four most-implicated pathways included the
PI3K-Akt, Endocytosis, Rap1, and Ras pathways.
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Figure 1. Base-pair resolution analysis for identification and description of DMCs. (A) Heatmap comprising the methylation percentages of differential CpG sites 
for all samples (B) Volcano plot of weighted mean methylation difference for hypermethylated (red) and hypomethylated (blue) DMCs (C) Autosomal annotation 
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Figure 1. Base-pair resolution analysis for identification and description of DMCs. (A) Heatmap comprising the methylation percentages of differential CpG sites for
all samples (B) Volcano plot of weighted mean methylation difference for hypermethylated (red) and hypomethylated (blue) DMCs (C) Autosomal annotation of
DMCs (D) Genomic annotation of DMCs (E) CpG island annotation of DMCs.
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3.3. Machine-Learning-Based Optimal DMC Selection and Disease Prediction

The methylation percentages for all 1745 DMCs were extracted and used to develop
predictive models for the diagnosis of OSCC among patients with suspicious oral mucosal
diseases. The performance of different ML classifiers based on all 1745 predictive features
is shown in Figure 3A. The linear SVM model had the best recall, specificity, precision,
and O/E calibration of 0.94, 0.93, 0.94, and 1.1 for OSCC prediction, while the worst
discrimination and calibration estimates were obtained for SVM with RBF kernel.

To reduce model overfitting and enhance feasibility, three feature-selection techniques
(ANOVA, MRMR, and LASSO) were compared to select an optimal set of DMCs that could
be clinically utilized for noninvasive OSCC detection. The aberrant CpG sites chosen using
the different techniques and their interactions are listed in Figure 3B. Fifteen optimal DMCs
were selected using ANOVA and MRMR, while LASSO selected 13 optimal DMCs. Across
all three feature-selection methods, six consensual DMCs were selected, while six DMCs in
total were also selected by any two methods (Table S1).

The performance of the ML models for predicting OSCC occurrence according to the
different DMC sets is shown in Figure 3C–E. Using the ANOVA-selected DMCs, linear SVM
and ExtraTrees models had the highest AUC and accuracy of 0.94, although the linear SVM
had a higher specificity (1.00) while ExtraTrees had a higher sensitivity (0.94). Compared
to the ANOVA-selected DMCs, optimal aberrant CPG sites selected by MRMR performed
better: RF and ExtraTrees had an AUC, recall, and specificity of 0.97, 0.94, and 1.00. Both
linear SVM and RF performed best using the LASSO-based DMCs and matched the highest
performances on the MRMR-based DMC set with an AUC, recall, and specificity of 0.97,
0.94, and 1.00.

As linear SVM, ExtraTrees, and RF were the outperforming ML models, the optimal
set of six DMCs selected by all feature-selection techniques were used to classify OSCC
and OPMDs. Linear SVM and ExtraTrees both had similar performance metrics (AUC; 0.97;
recall: 0.94; specificity: 1.00) which was higher than those of RF (AUC; 0.87; recall: 0.88;
specificity: 0.87). Additionally, we evaluated the effect of including demographic variables
in Table 1 to the models; however, this did not improve or degrade the performance of the
models. SHAP values indicative of model explainability for the predicted outputs by the
linear SVM and ExtraTrees classifiers are displayed in Figure S3. Overall, the difference
in the methylation percentages based on DMC hypomethylation of FGF4 was the most
important feature for the delineation of OSCC and OPMDs by both algorithms.

3.4. Differentially Methylated Region (DMR) Analysis

Differential analysis was also conducted according to 100 bp genome regions compris-
ing at least 10 CpG sites as a function of the proportion of the methylated and total reads
summed across all sites. The analysis found a total of 105 DMRs in OSCC patients with
62.9% being hypermethylated regions and 37.1% being hypomethylated regions. Heatmap
of all DMRs is displayed in Figure 4A. Autosomal annotations of the DMRs are also shown
in Figure 4B with a higher proportion of the hypermethylated DMRs found on chromo-
some 1 and the hypomethylated DMRs found on chromosome 5. In contrast to functional
annotation obtained for DMCs, a similar proportion of DMRs were enriched in intergenic
(36.3%) and promoter regions (35.56%) (Figure 4C). In addition, most hypermethylated
DMRs were annotated to promoter than intergenic regions (42.03% vs. 23.19%) while most
hypomethylated DMRs were enriched in the intergenic than promoter region (50% vs.
28.79%). CpG island annotation was also performed with 72.59% located within islands
than shores (8.89%) (Figure 4D). Additionally, 82.61% of hypermethylated DMRs and
62.12% of hypomethylated DMRs were annotated to CpG islands.

According to GO-BP analysis based on 84 DMRs enriched in 47 genes, the majority of
the genes associated with the DMRs were enriched in processes involving cell-cell adhesion,
chromatin organization, and pattern specification (Figure S4). Likewise, KEGG pathway
analysis identified five DMR-associated genes that were involved in different pathways
also shown in Figure S4.



Cancers 2022, 14, 4935 8 of 15

Cancers 2022, 14, 4935 8 of 17 
 

 

 
Figure 2. Gene ontology (GO-BP) and KEGG pathway analysis enrichment of genes associated with DMCs. (A) List of biological processes based on 
the DMC count after GO-BP analysis. (B) List of significant biological processes associated with DMC genes after GO-BP analysis. (C) List of biological pathways 
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Figure 2. Gene ontology (GO-BP) and KEGG pathway analysis enrichment of genes associated with DMCs. (A) List of biological processes based on the DMC count
after GO-BP analysis. (B) List of significant biological processes associated with DMC genes after GO-BP analysis. (C) List of biological pathways enriched for
DMC-associated genes.
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Figure 3. Performance of machine learning models for predicting OSCC using DMC as features. (A) Initial models comprising all 1745 DMCs. (B) Selected features
by the three feature-selection methods and their concordance. (C) Machine learning models based on ANOVA-selected DMC sets for predicting OSCC. (D) Machine
learning models based on MRMR-selected DMC sets for predicting OSCC. (E) Machine learning models based on LASSO-selected DMC sets for predicting OSCC.
(F) Machine learning models based on six consensual DMCs for predicting OSCC.
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Figure 4. 100 bp regional methylation analysis for description of DMRs. (A) Heatmap comprising the methylation percentages of aberrantly methylated regions 
in all samples. (B) Autosomal annotation of DMCs. (C) Genomic annotation of  DMRs. (D) CpG island annotation of DMRs.Figure 4. 100 bp regional methylation analysis for description of DMRs. (A) Heatmap comprising the

methylation percentages of aberrantly methylated regions in all samples. (B) Autosomal annotation
of DMCs. (C) Genomic annotation of DMRs. (D) CpG island annotation of DMRs.

3.5. Machine-Learning-Based Optimal DMR Selection and Disease Prediction

CpG Methylation percentages along 100 bp regions were also used to generate models
for OSCC diagnoses. The performance of the ML models based on all 105 DMRs are shown
in Figure 5A, in which GBM has the best AUC, recall, and specificity of 0.87, 0.88, and
0.87, respectively. Fifteen DMRs were selected by ANOVA and MRMR, while 11 DMRs
were obtained following LASSO selection. DMR sets selected by ANOVA performed worse
than the models comprising all DMRs, in which RBF-SVM and kNN had a similar AUC,
recall, and specificity of 0.81, 0.81, and 0.8 (Figure 5B). Of note, the DMRs selected by
MRMR and LASSO had a better predictive performance for OSCC than those of ANOVA.
The LASSO DMR set, irrespective of the ML algorithms, outperformed models based on
the DMRs selected by ANOVA and MRMR (Figure 5B–D). Overall, linear SVM, based
on the LASSO-selected DMRs, had the best performance of all models with a perfect
AUC, recall, specificity, and calibration (1.00). Incorporating demographic variables to this
out-performing methylome biomarker-based model did not affect its performance.

Eight DMRs were selected in all DMR sets according to the feature-selection techniques,
and the genes associated with the regions are listed in Figure 5E and Table S2. The
performance of the three outperforming models—RBF-SVM, linear SVM, and kNN—was
assessed using this consensual DMR set and presented in Figure 5F. While the RBF-SVM
model had a better classification accuracy than the kNN or linear SVM model (0.87 vs. 0.84
vs. 0.77), none of these consensual DMR models achieved the performance obtained for
the optimal 11 DMRs selected using LASSO. Violin plots of the average SHAP values for
the predicted classes of the LASSO-based linear SVM model are shown in Figure S5, in
which the DMR associated with LINC00461 is the most important for OSCC stratification
from OPMDs.
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Figure 5. Performance of machine learning models for predicting OSCC using DMRs as features. (A) Initial models comprising all 105 DMRs. (B) Machine
learning models based on ANOVA-selected DMR sets for predicting OSCC. (C) Machine learning models based on MRMR-selected DMR sets for predicting OSCC.
(D) Machine learning models based on LASSO-selected DMR sets for predicting OSCC. (E) Selected DMR features by the three feature-selection methods and their
concordance. (F) Machine learning models based on eight consensual DMRs for predicting OSCC.
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4. Discussion

Epigenetic alteration is a common event in oral carcinogenesis. Frequently, these
deregulation signatures are characterized by global hypomethylation, involving the in-
tergenic region, gene body, and repetitive sequences, as well as hypermethylation in the
promoter regions [38]. Several aberrantly methylated genes and CpG islands implicated in
oral cancer have been documented using an array of platforms that cover only about 3.1%
of total CpG sites [39,40]. This has limited the discovery of novel methylome signatures
for oral cancer beyond the confinement of conventional methylation arrays. What is more,
these genome-wide techniques are infrequently applied to noninvasive samples which
represent the clinical application of these biomarkers in real time. Recently, the feasibility
of applying true whole-genome methylation-profiling methods, such as MethylCap-Seq,
has been used with noninvasive samples for OSCC detection [41]; however, the method for
operationalizing these sequencing-based methods has not been described [13]. Building
on these lapses, this feasibility study utilized RRBS (which combines CpG enrichment
and next-generation sequencing) to profile the salivary methylome, while optimizing the
method with ML-based approaches for the detection of oral cancer for the first time.

The findings of this study confirmed that salivary methylome can be profiled both
at the CpG site level and at a 100 bp regional level using genome-wide methods, such as
RRBS, and it can be implemented with ML-based methods for OSCC diagnoses. CpG-based
deregulation signatures were found to be robust, irrespective of different ML and feature-
selection techniques than DMRs; however, the region-based signatures had a slightly
higher recall in the comparison to the best-performing ML models based on both groups of
biomarkers. The high discriminatory performance of both CpG sites and CpG regions in
this study further supports similar studies that have reported on the use of genome-wide
methylation approaches in other noninvasive (such as plasma) and tissue specimens for
the diagnosis and prognosis of other malignancies [42–44]. Moreover, the findings of this
study allude to the importance of comparing and combining different feature-selection
techniques in the identification of robust biomarkers for cancer diagnoses. Of note, LASSO,
an embedded selection technique, was found to be more robust in the selection of an
optimal DMC/DMR set than univariate and multivariate methods of feature selection.
Therefore, this study recommends the use of the technique to optimize the selection of CpG
sites and regions from high-dimensional genome-wide methylation analysis; however, this
may be performed while considering that excluded control variables deemed important
may need to be added manually to the selected biomarkers [45,46]. However, variables
such as age, gender, smoking and alcohol drinking status, as well as a family history of
cancer, did not improve the performance of the best-performing models in this study.

While this study uniquely describes a comprehensive framework for performing the
ML-assisted salivary methylome biomarker-based detection of OSCC, it is not without
limitations. First, the salivary transcriptome was not profiled in this study and, as such,
findings on the biological processes and pathways in which DMC and DMR-associated
genes were involved needs to be confirmed in future reports. Such reports may assist
in determining the ‘dynamic’ methylome profile of OSCC that is expressed in saliva in
comparison to other oral mucosal diseases. Nonetheless, this did not represent the aims of
this study and does not affect our main findings. Second, the optimal ML-based models
using salivary DMCs/DMRs for oral cancer prediction would need to be validated in
independent studies using the PRoBE protocol to determine their generalizability and the
need for future optimization. The findings of such a study would also corroborate this study
in designating the biomarkers as specific/preferential for OSCC because saliva represents
a heterogeneous biofluid, and both normal and tumor cellular components contribute
DNA for analysis. Third, we did not deliberately determine the human papillomavirus
(HPV) infection status of the patients in our cohort. However, many OSCC patients were
profiled to have HPV-negative tumors during histopathological diagnosis following tumor
resection. It should also be noted that these investigations are not standard for patients
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with oral cancer or oral potentially malignant disorders but are mandatory for patients
with oropharyngeal malignancies [47,48].

5. Conclusions

Overall, this study showed the feasibility of applying genome-wide methods of methy-
lation analysis, such as RRBS, for biomarker discovery in oral cancer, which can be opti-
mized further for ML-learning-based diagnoses. Both CpG-based and CpG-region-based
biomarkers can be applied in the accurate diagnoses of oral cancer using feature-selection
techniques, with LASSO being more robust across different ML classifiers than MRMR or
ANOVA in this study. The linear SVM model based on 11 DMRs selected by LASSO had
the best performance in discriminating between oral cancer and OPMDs in this study with
perfect sensitivity and specificity, which suggests a potential clinical application following
rigorous validation studies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14194935/s1, Table S1: List of optimal differentially methy-
lated CpG sites selected by the feature-selection techniques; Table S2: List of optimal differentially
methylated regions selected by the feature-selection techniques; Figure S1: Distribution of percent
CpG site methylation for bases with at least 10× coverage in OSCC (A) and OPMDs (B) patients;
Figure S2: Network plot of genes and their pathways enriched for DMC-associated genes; Figure
S3: Violin plots for average SHAP values to explain the predicted outputs for ExtraTrees (A) and
Linear SVM (B) models based on 6 DMC features; Figure S4: Gene ontology (GO-BP) (A) and KEGG
pathway analysis (B) enrichment of genes associated with DMRs; Figure S5: Violin plot for average
SHAP values to explain the predicted outputs for the optimal Linear SVM models based on 11 DMR
features. File S1: Histogram plots of read coverage per base for all patients.
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