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Abstract

A key characteristic of Plasmodium vivax parasites is their ability to adopt a latent liver-

stage form called hypnozoites, able to cause relapse of infection months or years after a pri-

mary infection. Relapses of infection through hypnozoite activation are a major contributor

to blood-stage infections in P vivax endemic regions and are thought to be influenced by fac-

tors such as febrile infections which may cause temporary changes in hypnozoite activation

leading to ‘temporal heterogeneity’ in reactivation risk. In addition, immunity and variation in

exposure to infection may be longer-term characteristics of individuals that lead to ‘popula-

tion heterogeneity’ in hypnozoite activation. We analyze data on risk of P vivax in two previ-

ously published data sets from Papua New Guinea and the Thailand-Myanmar border

region. Modeling different mechanisms of reactivation risk, we find strong evidence for pop-

ulation heterogeneity, with 30% of patients having almost 70% of all P vivax infections.

Model fitting and data analysis indicates that individual variation in relapse risk is a primary

source of heterogeneity of P vivax risk of recurrences.

Trial Registration: ClinicalTrials.gov NCT01640574, NCT01074905, NCT02143934.

Author summary

Despite elimination efforts, malaria continues to be a public health burden world-wide.

Partially due to its ability to remain dormant in the liver for weeks or months, the malaria

parasite Plasmodium vivax has not responded well to elimination efforts. These dormant

parasites may reactivate and thereby cause disease and contribute to further transmission
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of the disease. Though it is often assumed that reactivations of dormant P vivax parasites

occur at a constant rate, it has also been proposed that there is a time of increased risk of

reactivation (‘temporal heterogeneity’) and there may be differences in individual’s reacti-

vation risks (‘population heterogeneity’). We created models for constant reactivations,

temporal heterogeneity, and population heterogeneity which we use to analyse data of P
vivaxmalaria events from the Thailand-Myanmar border region and Papua New Guinea.

We find strong evidence for population heterogeneity as a major determinant of reactiva-

tion patterns. Further analysis of the data suggests that spatial heterogeneity in exposure

to infectious mosquito bites is a potential contributor to this heterogeneity. Thus, we find

that population heterogeneity plays an important role in the overall epidemiology of P
vivax recurrences.

Introduction

Plasmodium vivax is a major cause of clinical malaria with about 4.5 million cases in 2020 [1].

An important feature of P vivaxmalaria is the ability of the parasite to form latent liver-stage

parasites (hypnozoites), which can later activate and initiate blood stage infection in the

absence of new mosquito inoculation [2–6]. It has been estimated that 66% to 96% of P vivax
blood-stage infections are relapses caused by the activation of hypnozoites [2,4,7–9]. These

and other studies have highlighted that hypnozoite reactivation is a major source of observed

blood-stage infections and presents a major barrier to effective control and eradication of P
vivaxmalaria [4,5,7,9]. Although the drug primaquine can effectively clear hypnozoites, its use

has been limited in part because it can induce severe haemolysis in glucose-6-phosphate dehy-

drogenase (G6PD) deficient individuals [2,4,5,9].

Several factors are thought to influence the timing of hypnozoite activation leading to

relapse. In particular, recent infection with P falciparum or another infectious agent, and other

factors may cause a temporary elevation in the risk of relapse [8,10,11]. Besides these temporal

factors influencing the risk of relapse (‘temporal heterogeneity’), other factors such as trans-

mission intensity, variation in latency due to differences in P vivax strains (e.g. temperate and

tropical latency phenotypes) [6,12], host immunity and age are also known to influence the

pattern of blood-stage infections [4,6,10,13,14]. Further, across a patient population, individu-

als are likely to harbor different numbers of hypnozoites due to differences in infection risk

and a skewed distribution of sporozoite numbers inoculated [6,15,16], use of primaquine for

radical cure and CYP2D6 polymorphisms causing treatment failures in some individuals [17],

or variation in infection susceptibility [18] (which for example may be due to G6PD deficiency

[19]). Given these differences, we might expect that individuals within a population may vary

significantly in the number of hypnozoites they harbor, which is expected to contribute

directly to their risk of hypnozoite reactivation and P vivax relapse [20]. In particular, studies

of P cynomolgi in Rhesus macaques have shown that there is a correlation between the sporo-

zoite inoculation and relapse frequency [21]. Thus, more exposed individuals within a com-

munity are expected to be more likely to have a larger hypnozoite reservoir and to have more

frequent relapses [6,16]. Indeed, heterogeneity in malaria transmission, infections, and P vivax
recurrences (i.e., P vivax infections that are either due to a new, mosquito-borne infection or a

relapse) have been described previously [13,14,18,22]. For example, Chu et al. found that all

recurrences observed after day 35 post enrolment occurred in only 12% of individuals [23].

This is consistent with studies of P falciparum infection, in which Cooper et al. found evidence

that 20% of the population accounted for around 80% of transmission events [24].

PLOS NEGLECTED TROPICAL DISEASES Population heterogeneity in Plasmodium vivax relapse risk

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010990 December 19, 2022 2 / 19

Funding: This work was funded by the Australian

Research Council (ARC; https://www.arc.gov.au)

(grants DP120100064 & DP180103875 (to DSK,

MPD, DC) and DP200100747 (to JAF)) and the

National Health and Medical Research Council

(NHMRC; https://www.nhmrc.gov.au) of Australia

(grants 1082022 (to MPD, DC), 1173528 (to DC),

1141921 (to DSK), 1080001 and 1173027 (to

MPD) and Senior Principal Research Fellowship

1135820 (to NMA)). LJR is supported by NHMRC

(https://www.nhmrc.gov.au) Career Development

Fellowship (GNT1161627). The funders had no role

in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pntd.0010990
https://www.arc.gov.au
https://www.nhmrc.gov.au
https://www.nhmrc.gov.au


Despite evidence for heterogeneity in P vivax relapses, much of the mathematical modelling

of P vivax recurrences to date has assumed either constant or periodic recurrence rates

[7,8,15,25,26], with some exceptions. In particular, Taylor et al. have included inter-individual

heterogeneity in their time-to-event modelling by including a random effect that determines

the probability of the next event being a relapse or a new infection [8]. Further, other models

have included age (a proxy for immunity) as a source of heterogeneity [4,14], and a recent

study incorporated the concept of variable risk in the form of a ‘high susceptibility’ subpopula-

tion that has a higher risk of recurrence [14]. Here, we seek direct evidence of temporal and

population heterogeneity in P vivax recurrences in two previously published studies

[4,8,23,27]. The first study by Robinson et al. [4] contains data from a randomized placebo-

controlled trial of blood- plus liver-stage drugs in Papua New Guinean children. The second

data set consists of two studies by Chu et al. [23,27] and was made available by Taylor et al. [8].

Chu et al. conducted randomized trials in patients from the Thailand-Myanmar border region

with symptomatic P vivaxmalaria, treated them with various therapies, and recorded their P
vivax recurrences over a one-year follow-up [23,27]. A key difference in these studies is that

the Robinson et al. study recruited individuals from communities regardless of whether they

were infected, whereas the Chu et al. studies focus on treatment of individuals with symptom-

atic P vivaxmalaria at enrolment. These datasets provide an excellent opportunity for model-

ling of P vivax recurrences in areas with a short latency P vivax phenotype. We compare

whether a model that considers (i) only a constant risk in relapse, (ii) temporarily increased

relapse risk, (iii) individual variation in relapse risk, or (iv) both temporal and population het-

erogeneity, best explains the pattern of relapses observed in these trials. The evidence suggests

that population heterogeneity in relapse risk is a primary determinant of relapse patterns. We

speculate that this population heterogeneity in relapse is likely mediated by different hypno-

zoite burdens in individuals due to variation in individual exposure to inoculation with sporo-

zoites. This agrees also with the observation that in the Thailand-Myanmar data, almost 70%

of all P vivax infections occur in only 30% of the patients who are treated only for blood-stage

infections [6,28]. In addition to population heterogeneity, we find evidence that temporal het-

erogeneity may also contribute to the overall relapse kinetics in these studies, albeit to a lesser

extent.

Methods

Ethics statement

The study used only openly available human data.

The data set from the Thailand-Myanmar border region was published by Taylor et al.

(2019) on GitHub. This data set is a combination of the data from two studies, the BPD study

and the VHX study. The BPD study was approved by both the Mahidol University Faculty of

Tropical Medicine Ethics Committee (MUTM 2011–043, TMEC 11–008) and the Oxford Trop-

ical Research Ethics Committee (OXTREC 17–11) and was registered at ClinicalTrials.gov

(NCT01640574). The VHX study was given ethical approval by the Mahidol University Faculty

of Tropical Medicine Ethics Committee (MUTM 2010–006) and the Oxford Tropical Research

Ethics Committee (OXTREC 04–10) and was registered at ClinicalTrials.gov (NCT01074905).

The data set from Papua New Guinea was published by Robinson et al. (2015) at https://

datadryad.org/stash/dataset/doi:10.5061/dryad.m1n03. The protocol of this study received eth-

ical clearance from the PNG Institute of Medical Research Institutional Review Board (0908),

the PNG Medical Advisory Committee (09.11), and the Ethics Committee of Basel (237/11)

and was conducted in full accordance with the Declaration of Helsinki. The study was retro-

spectively registered at ClinicalTrials.gov (NCT02143934) on 20 May 2014.
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Written informed consent was obtained from patients or from parents or guardians of chil-

dren when the original studies were conducted [4,23,27].

Data: Papua New Guinea data

The Papua New Guinea data set contains the data from a randomized placebo-controlled trial of

liver-stage treatment using primaquine. The data was made publicly available by Robinson et al.

[4] (where the details of the study can be found). The trial was conducted between August 2009

and 20 May 2010 in 5 village clusters in the Maprik District, East Sepik Province, Papua New

Guinea. Children were enrolled and treated for blood-stage infections with chloroquine or arte-

mether-lumefantrine and with either primaquine for liver-stage infections or with a placebo. Pri-

maquine was administered at a dose of 0.5 mg/kg/day for 20 days (10 mg/kg total dose). After

initial treatment, there were fortnightly active surveillance visits for 32 weeks and passive surveil-

lance throughout the trial. The data contains (amongst others) the time from enrollment to P
vivax infection by PCR and microscopy from 504 children as well as the children’s age (between 4

and 10 years), village cluster, and their treatment (placebo or primaquine). For the model fitting,

we used the time to P vivax infection by PCR data and the village cluster information.

Data: Thailand-Myanmar border region data

We consider the combined data from two randomized trials conducted in the Thailand-Myan-

mar border region, the VivaX History trial (VHX) [27] and the Best Primaquine Dose trial

(BPD) [23] as published by Taylor et al. and made available online [8]. Details of the studies

have been published previously [8,23,27]. In short, the VHX study was conducted between

May 2010 and October 2012, it included 644 patients who were enrolled with uncomplicated P
vivaxmalaria and randomized to either artesunate monotherapy, chloroquine monotherapy,

or chloroquine with high dose primaquine. The BPD study was conducted between February

2012 and July 2014, it included 655 patients with symptomatic P vivaxmalaria, randomized to

a primaquine (at one of two different doses) with either chloroquine or dihydroartemisinin-

piperaquine (Table I in S1 Tables). Patients received either 0.5 mg/kg/day of primaquine for

14 days or 1 mg/kg/day of primaquine for 7 days, i.e., the total primaquine dose was 7mg/kg

for all patients. In both studies, infections were diagnosed using a malaria smear and antima-

larial treatment was allocated based on a factorial design. In the VHX study, patients were

excluded from primaquine treatment if they were found to be glucose-6-phosphate dehydroge-

nase (G6PD) deficient and in the BPD study G6PD deficiency was an exclusion criterion. Indi-

viduals were followed up for one year from enrolment and recurring P vivax infections were

treated with the same antimalarial treatment as the first P vivax infection (VHX study) or with

the standard chloroquine and primaquine regimen (BPD study). The data includes patient id,

episode number, antimalarial treatment, time from last event to current event, censored vari-

able, study, and overall follow-up time.

One individual was excluded from the data as the data indicates censoring at the time of

enrolment. This leaves 1298 individuals (446 patients who received blood-stage treatment and

852 patients who received both primaquine and blood-stage treatment). Data was analyzed in

R (version 3.6.0) [29] using the survival [30, 31] and survminer [32] packages.

Models

We considered four different mathematical models for the risk of relapse and recurrence in

the cohorts. All models include a prophylactic effect of the antimalarial before drug washout

and a constant rate of new infections. Patients are protected at enrolment due to the prophy-

lactic effect of the antimalarial treatment, the time to drug washout is assumed to be lognormal
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distributed, and after drug washout, individuals become susceptible to new infection and

relapses (see Fig A in S1 Methods for a model scheme). The models differ in the construction

of the relapse rate.

Model 1: constant relapse rate

In model 1, the recurrence rate is the sum of the constant rate of new infections and the con-

stant relapse rate. Thus, the dynamics of the fraction of susceptible individuals S(t) at time t is

given by:

d
dt
S tð Þ ¼ w t; m; sð Þ � r þ nð ÞS tð Þ; S 0ð Þ ¼ 0;

where w(t;μ,σ) is the distribution in drug washout times across the population and is assumed

to be described by the probability density function of the lognormal distribution with parame-

ters μ and σ, r is the constant relapse rate, and n is the constant rate of new infections.

Model 2: temporal heterogeneity

Model 2 considers a relapse rate that is time dependent. Since our data analysis suggests that

the relapse rate decreases after an initial peak (Fig 1), we chose a decreasing relapse rate such

that the prophylactic effect of the antimalarial treatment in combination with the decreasing

relapse rate can capture the observed change in the relapse rate (Fig 1). We assume that there

is an initial relapse rate (I) and that the relapse rate decreases exponentially over time (with

rate d). Thus, the relapse rate is given by r(t) = Ie−dt and the dynamics for the fraction of sus-

ceptible individuals at time S(t) is given by:

d
dt
S tð Þ ¼ w t; m; sð Þ � rðtÞ þ nð ÞS tð Þ; S 0ð Þ ¼ 0;

where w(t;μ,σ) is the probability density function of the lognormal distribution with parame-

ters μ and σ, r(t) = Ie−dt is the time-dependent relapse rate, and n is the constant rate of new

infections.

Model 3: population heterogeneity

In model 3, the relapse rate is constant but drawn from a lognormal distribution to model pop-

ulation heterogeneity. To simplify the numerical computations, we group the population in k
different risk groups of equal size. The relapse rate for each risk group is the median relapse

rate for this group that is computed using the percentiles of the lognormal distribution of

relapse rates (see Fig B in S1 Methods). Thus, model 3 is given by:

d
dt
Si tð Þ ¼ w t; m; sð Þ=k � ri þ nð ÞSi tð Þ; Si 0ð Þ ¼ 0;

where Si(t) is the fraction of susceptible individuals that are in risk group i (i2{1,2,. . .,k}) at

time t, k is the number of relapse risk groups, ri is the median relapse rate of group i, and n is

the constant mosquito-borne infection rate. The overall fraction of susceptible individuals at

time t, S(t), is the sum of the fractions of all susceptible individuals in the different risk groups:

SðtÞ ¼
Xk

i¼1

SiðtÞ:
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Model 4: temporal and population heterogeneity

Finally, we considered a model that considers both temporal and population heterogeneity

and is a combination and extension of models 2 and 3. As for model 3, we group the popula-

tion in k different relapse risk groups of equal size and as for model 2 this relapse risk decreases

over time, i.e., ri(t) = Iie−dt where Ii is the initial relapse risk for relapse risk group i. The initial

relapse risk (Ii) is the median relapse rate for this group that is computed using the percentiles

of the lognormal distribution of relapse rates (see Fig B in S1 Methods). Model 4 is given by:

d
dt
Si tð Þ ¼ w t; m; sð Þ=k � riðtÞ þ nð ÞSi tð Þ; Si 0ð Þ ¼ 0;

Fig 1. Time to first recurrence and weekly incidence per patients at risk in the Thailand-Myanmar and Papua New Guinea data. (A, B) Time from

enrolment to the first recurrence for patients who received blood-stage treatment only (red) and patients who received primaquine and blood-stage treatment

(blue). In the Papua New Guinea data, all patients (n = 504) received blood-stage treatment and either a placebo (red) or primaquine (blue). For the time to first

recurrence in the Thailand-Myanmar data (n = 1298) by treatment and study see Fig H in S1 Figs (C, D) Weekly incidence per patients at risk for patients

treated with primaquine and blood-stage treatment (blue dots) and blood-stage treatment only (red dots). The weekly incidence per patients at risk is the

number of patients that had a recurrence within the current week divided by the number of patients who were at risk (i.e., the patients who have not yet had a

recurrence) at the beginning of the week. The curves are fitted to the weekly incidence per patients at risk (using splines).

https://doi.org/10.1371/journal.pntd.0010990.g001
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where Si(t) is the fraction of susceptible individuals that are in risk group i (i2{1,2,. . .,k}) at

time t, k is the number of relapse risk groups, ri(t) = Iie−dt is the time-dependent relapse rate of

group i, and n is the constant mosquito-borne infection rate. As for model 3, the overall frac-

tion of susceptible individuals at time t, S(t), is the sum of the fractions of susceptible individu-

als in the different risk groups.

To fit the models not only to the first recurrence after enrolment but to the first and second

recurrence, we extended the models to take two recurrences into account by adding additional

compartments to the model (see Fig C in S1 Methods). After a susceptible individual has a P
vivax recurrence, the patient is again protected with the same drug washout time distribution

as at enrolment because patients are treated with the same antimalarials at each recurrence. As

for the first recurrence, patients become susceptible to mosquito-borne infections and relapses

after drug washout.

For all models and all simulations shown, we assume that the drug washout time depends

on the antimalarial treatment, the rate of new infections differs between the two different stud-

ies in the Thailand-Myanmar data as incidence rates changed between the time of the two

studies (8) (Table A and Fig A in S1 Model comparisons), and we assumed that patients treated

with primaquine have no relapses, i.e., we assume they are subject only to new infections (as

previously; see Model fitting below and Supplement).

Note that since only the Thailand-Myanmar data contains multiple recurrence times, we

used only the Thailand-Myanmar data for fitting to the first and second recurrence time and

simulating multiple recurrences under the temporal and population heterogeneity models.

The Papua New Guinea data on the other hand contains spatial information (villages) which

we used to study the association between new infections and relapses.

Model fitting to recurrence times

Each model was implemented as an ordinary differential equation (ODE) or a system of ODEs

and solved numerically using the function ode15s in MATLAB [33]. We constructed a likeli-

hood function using this numerical solution to fit our models to the recurrence time data

(including censored time intervals) as described below and obtain maximum likelihood esti-

mates for the model parameters.

From the numerical solution of the model equations, we obtained the fraction of uninfected

individuals at time t, U(t), as the sum of the fraction of individuals who are still protected and

the fraction of susceptible individuals:

UðtÞ ¼ 1 �

Z t

0

wðt; m; sÞdt
� �

þ SðtÞ;

where w(t;μ,σ) is the probability density function of the lognormal distribution of drug wash-

out times with parameters μ and σ. We interpret U(t) as the probability of remaining unin-

fected until time t. The probability of having an infection at the follow-up visit on day t (G(t))
is then the probability of being uninfected on the previous follow-up visit but infected on day

t, i.e.,

GðtÞ ¼ Uðt � DÞ � UðtÞ;

where t—Δ is the time of the last follow-up visit before day t.
Using U(t), the probability of being uninfected until time t, and G(t), the probability of hav-

ing an infection on day t, we used the following loglikelihood function to fit the models to the
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first recurrence times:

lðpjDÞ ¼
XN1

i¼1

log½GðtiÞ� þ
XN0

i¼1

log½UðTiÞ�;

where p are the parameters of the model (see S1 Methods for the parameters of the different

models), D is the data, i.e., the recurrence times, N0 and N1 are the numbers of individuals

with zero and at least one recurrence, respectively, U(t) is the probability of being uninfected

until time t, ti is the time of the first recurrence of individual i, G(t) is the probability of having

an infection at the follow-up visit on day t, and Ti is the overall follow-up time of individual i
(for censored time intervals).

For fitting the data to the first and second recurrence time simultaneously (in the Thailand-

Myanmar data), we constructed a different loglikelihood function. We use both the first and

the second recurrence information (as well as censoring times) from the data in our likelihood

function and also incorporate the different relapse risk groups in models 3 and 4 to allow for

heterogeneity in relapse rates across the population. The loglikelihood function for the param-

eter set p and the data D is given by:

l pjDð Þ ¼
XN0

i¼1

log
Xr

j¼1

UjðTiÞ

" #

þ
XN1

i¼1

log
Xr

j¼1

Gjðti;1Þ�UjðTi � ti;1Þ

" #

þ
XN2

i¼1

log
Xr

j¼1

Gjðti;1Þ�Gjðti;2Þ

" #

þ ðN0 þ N1 þ N2Þ � log
1

r

� �

;

where N0, N1, and N2 are the numbers of individuals with 0, 1, or at least 2 recurrences, respec-

tively, r is the number of risk groups, Uj(t) is the probability of remaining uninfected to time t
for individuals in risk group j, Ti is the follow-up time of individual i (i.e., the time of censor-

ing), Gj(t) is the probability of having an infection on the follow-up visit on day t for individu-

als in risk group j, and ti,1, ti,2 are the times from the start of the study to the first recurrence

and from the first to the second recurrence of individual i, respectively. Note this loglikelihood

function can be simplified for models 1 and 2 as there is only one risk group in these models

(see S1 Methods for the derivation and more details on the loglikelihood function).

The model was fit by minimizing the negative loglikelihood function with the function

fmincon in MATLAB [33]. We did 100 minimizations of the negative loglikelihood function

with random initial parameter values to find the Maximum Likelihood Estimates (MLEs) for

the parameters. Additionally, when fitting the extended model to the first and second recur-

rence data, we used the parameters of the best fit to the first recurrence times as initial parame-

ter values. Confidence intervals were computed using bootstrapping and the percentile

method (see S1 Methods).

We fit models 1 to 3 using one mosquito-borne infection rate for the Papua New Guinea

data and two different infection rates for the two studies in the Thailand-Myanmar data

(Table A and Fig A in S1 Model comparisons). We also assessed the importance of assump-

tions regarding the follow-up schemes (Table B, Figs B, C, and D in S1 Model comparisons),

different numbers of relapse risk groups in model 3 (Table C and Fig E in S1 Model compari-

sons), and the relapse risk distribution in the population heterogeneity model (Table D, Figs F

and G in S1 Model comparisons) in the Thailand-Myanmar data. For the final model compari-

sons and simulations both for fitting to the first recurrence and for fitting to the first and sec-

ond recurrence simultaneously, we chose two different infection rates, daily follow-ups, and 10

relapse risk groups for all models.
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Simulations of the models

To compare the model predictions of the associations in time to first relapse and time to second

relapse with the Thailand-Myanmar data, we used models 2 and 3 to simulate data. We used the

MLEs of the parameters (fit to the first and second recurrence times in the Thailand-Myanmar

data) to simulate a population of individuals treated with artesunate (n = 1000) or chloroquine

(n = 1000) monotherapy. Each individual was simulated by randomly drawing a drug washout

time and recurrence times from the corresponding distribution parameterized during model fit-

ting (Tables S and T in S1 Tables). The drug washout time follows a lognormal distribution and

the infection and relapse rates follow an exponential distribution. In the population heterogene-

ity model (model 3), each individual has a relapse rate that is drawn from a lognormal distribu-

tion and each individual’s relapse rate remains constant throughout the simulation. These

simulations of 1000 individuals for models 2 and 3 and artesunate or chloroquine treatment

were repeated 1000 times. Simulated individuals were censored after 365 days. We analyzed the

simulated data in the same way as the original data and compared the results visually (Fig 4 and

L in S1 Figs). For more details on the model simulations see S1 Methods.

Dryad DOI

https://datadryad.org/stash/dataset/doi:10.5061/dryad.m1n03

Results

Risk of relapse decreases with time since last event

To understand the pattern and timing of relapses, we analyzed and modeled two datasets,

from Papua New Guinea (published by [4]) and from the Thailand-Myanmar border region

[23,27] (published by [8], see Methods and original publications for further details on the

data). We compared the time to first P vivax infection or recurrence in individuals treated for

blood-stage P vivax infection with or without primaquine treatment to eliminate hypnozoites

(Fig 1A and 1B, see also Table I in S1 Tables). It is important to note that groups of individuals

in each study received primaquine treatment to clear the hypnozoite reservoir. To estimate the

relapse rate, we assumed that patients receiving primaquine treatment experience only infec-

tions arising from new infectious mosquito bites (no relapses), whereas those treated only for

blood-stage infection are assumed to have both new infections and relapses (as in previous

studies [7,9]). Thus, we can estimate the rate of new infections directly from the recurrence

rates in primaquine treated patients. The rate of relapses is estimated from the difference

between the total recurrence rate (estimated from patients treated only for blood-stage infec-

tion) and the new infection rate (estimated from the rate of recurrences in primaquine treated

patients). The weekly incidence rates for patients who did not receive radical cure and thus

had both relapses and new infections were analyzed. This suggests that the relapse rate was

non-constant (Fig 1C and 1D). For example, in the Thailand-Myanmar data, 43.6% of the

individuals at risk were observed to have an infection between day 30 and day 60, but only

26.6% of the individuals at risk at day 60 had an infection between day 60 and 90. These obser-

vations indicate that the relapse rate is non-constant over time but decreasing.

Temporal and population heterogeneity in relapse risk as explanations of

non-constant recurrence rates

We next consider models with different types of heterogeneity of relapse rates. First, we con-

sider temporal heterogeneity, i.e., temporal variation of the relapse risk. Both the Thailand-

Myanmar and the Papua New Guinea data show that the risk of a blood-stage infection
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decreases after an initial peak (Fig 1). This change in relapse risk may be due to, e.g., seasonal

variations in the relapse risk [6,12] or more rapid relapse after a recent infection [6,10]. There-

fore, we developed a model that allowed the relapse rate to decrease over time (see Methods).

We compared this to a model with a constant rate of new infections and relapses. Both models

allowed for a prophylactic period after treatment followed by new infections at a constant rate

and either a constant relapse rate or a decreasing relapse rate (Methods). We found that the

temporal heterogeneity model provided a significantly better fit to the data than the constant

reactivation model (Fig 2, AIC differences of 190 and 44 in the Thailand-Myanmar and Papua

New Guinea data, respectively, see Fig B and J in S1 Figs).

Fig 2. Fitting models of temporal and population heterogeneity to the data. The left column (A and C) shows the fit of the temporal heterogeneity model

and the right column (B and D) shows the fit of the population heterogeneity model. The lines are the models fitted to the data and the shaded areas are the

95% confidence regions from the data. The models were fitted using a maximum likelihood approach (see Methods). (A, B) Fit of the heterogeneity models for

each antimalarial treatment and study in the Thailand-Myanmar data. Abbreviations: AS artesunate, CHQ chloroquine, CHQ/PMQ chloroquine and

primaquine, DP/PMQ dihydroartemisinin-piperaquine and primaquine, VHX Vivax History study, BPD best Primaquine Dose study. (C, D) Fit of the

heterogeneity models to all Papua New Guinea data. For a fit to the Papua New Guinea data grouped by village see Figs C and D in S1 Figs.

https://doi.org/10.1371/journal.pntd.0010990.g002
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We also wanted to consider the impact of population heterogeneity in relapse rates, where

individuals differ in their relapse rate due to factors such as their exposure, number of hypno-

zoites, age, or immunity. Importantly, this model is phenomenological in describing a distri-

bution in relapse risk and does not attempt to explicitly model the mechanisms of population

heterogeneity. The population heterogeneity model also provided a significantly better fit to

the data than the constant relapse model (Fig 2, AIC differences of 203 and 27 in the Thailand

Myanmar and Papua New Guinea data, respectively, see Figs B and J in S1 Figs).

Comparing the temporal and population heterogeneity models, for both data sets, the two

heterogeneity models both fit the data reasonably well with similar AIC differences. The model

incorporating population heterogeneity provides a slightly better fit to the Thailand-Myanmar

data (AIC difference of 13), and the temporal heterogeneity model provides a better fit to the

Papua New Guinea data (AIC difference of 17). Thus, it is not clear whether temporal or popu-

lation heterogeneity may be the more important source of heterogeneity in the ‘time-to-first-

infection’ data (Fig 2).

Simulating temporal and population heterogeneity

It is clear that simple fitting of time-to-first infection data cannot distinguish between temporal

and population heterogeneity with the available data. To further explore the temporal and pop-

ulation heterogeneity interpretations of P vivax infection patterns, we developed a simulation

of these processes based on the Thailand-Myanmar data model fits (see Methods and S1 Meth-

ods). These simulations highlighted an important difference between these mechanisms in the

time-to-second recurrence. That is, in the temporal heterogeneity model we observe that the

time to first recurrence and time from first to second recurrence have a very weak negative

correlation due to censoring after one year (Table 1). However, in the population heterogene-

ity model simulations, the time from enrollment to the first recurrence (time-to-first) and the

time from the first to the second recurrence (time-to-second) in individuals are strongly posi-

tively correlated (Table 1). Thus, a key feature that differentiates these models is whether there

is a correlation between time-to-first and time-to-second recurrence. To investigate this in the

data, we fitted both models to time-to-first and time-to-second recurrence data and found that

the population heterogeneity model provided a better fit of the data (based on an AIC differ-

ence of 66, Fig 3). To better understand this result and to also compare the models based on

their predictions of the correlation of time-to-first and time-to-second recurrence, we grouped

individuals into quartiles based on the time to their first recurrence (Fig 4B), and plotted the

time to their second recurrence for each group (Fig 4C and 4D). We found a clear correlation

in the time between first and second recurrence (Figs E and G in S1 Figs and Tables K- M in

Table 1. Spearman correlation between time to first recurrence and time from first to second recurrence in the

simulated data and the Thailand-Myanmar data excluding censored data. All 1,000,000 simulated individuals who

had at least two recurrences during the 1-year-simulation were used to compute the Spearman correlation. Note that

the very weak negative correlation for models 1 and 2 is most likely due the censoring in the simulated data after 1 year

of follow-up (see Table L in S1 Tables for details). All p-values are below 0.0001 due to the large number of simulations.

For the Thailand-Myanmar data, we show here the Spearman correlation for artesunate or chloroquine treated individ-

uals, excluding censored individuals (for the correlations of all individuals including censored data see Table K in S1

Tables).

Artesunate Chloroquine

Model 1: constant relapse rate -0.06 -0.09

Model 2: temporal heterogeneity -0.01 -0.03

Model 3: population heterogeneity 0.54 0.41

Thailand-Myanmar data 0.59 0.42

https://doi.org/10.1371/journal.pntd.0010990.t001
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S1 Tables). This indicates that population heterogeneity in relapse risk is a major determinant

of relapse patterns in the Thailand-Myanmar data. The observation of population heterogene-

ity in the risk of relapse would be consistent with individuals carrying variable numbers of

hypnozoites and therefore experiencing different frequencies of relapse, which may occur

because of random variation in inoculum size from infection or due to some individuals hav-

ing higher exposure to primary P vivax infection.

Both population and temporal heterogeneity contribute to relapse rates

The analysis to this point attempted to compare the temporal and population models to iden-

tify which mechanism better explained the observed patterns of relapse in these data. However,

both factors may also operate concurrently. To investigate this, we investigated whether adding

temporal heterogeneity to the model of population heterogeneity would improve the fit to the

first and second recurrence data. Adding temporal heterogeneity in relapse risk significantly

improved the fit compared to population heterogeneity model alone (AIC difference of 22,

likelihood-ratio test with p-value < 0.0001, see Fig K in S1 Figs). Together this indicates that in

addition to population heterogeneity in risk of relapse, there is evidence for temporal changes

in risk of relapse.

Fig 3. Fitting the temporal and population heterogeneity models to the first and second recurrence time in the Thailand-Myanmar data. Both recurrence

times are fitted simultaneously (see Methods and S1 Methods). The lines are the models fitted to the data and the shaded areas are the 95% confidence regions

from the data. The left column shows the fit to the first recurrence time and the right column the fit to the time from the first to the second recurrence. The first

row shows the temporal heterogeneity model fit and the second row the population heterogeneity model fit. Abbreviations: AS artesunate, CHQ chloroquine,

CHQ/PMQ chloroquine and primaquine, DP/PMQ dihydroartemisinin-piperaquine and primaquine, VHX Vivax History study, BPD best Primaquine Dose

study.

https://doi.org/10.1371/journal.pntd.0010990.g003
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Fig 4. Association between different recurrence times. (A) Since we have multiple within patient recurrence times in the Thailand-Myanmar data, we can

estimate the correlation between the time to first recurrence and the time to the second recurrence. (B) All individuals in the Thailand-Myanmar data who

were treated with artesunate are grouped by their time to first recurrence quartiles, from shortest (green) to longest (red). (C, D) As the recurrence times are

correlated, we find that individuals with a shorter time to the first recurrence (green) also have a shorter time from first to second recurrence (the data are

shown in bolder lines and darker colors). (C) The temporal heterogeneity model cannot capture this feature in the data. The simulations show that all

individuals have a similar time from first to second recurrence, regardless of the time to the first recurrence (simulated data are shown in thinner lines and

lighter colors). (D) In the data simulated under the population heterogeneity model, however, the first recurrence time is predictive of the second recurrence

time and this correlation agrees well with the data. The simulated data for chloroquine treatment compared with the Thailand-Myanmar data are shown in Fig

L in S1 Figs.

https://doi.org/10.1371/journal.pntd.0010990.g004
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Heterogeneity in exposure to P vivax infection may contribute to

heterogeneity in relapse risk

One mechanism for population variation in hypnozoite number and relapse risk is if the fre-

quency of a new infectious bite is variable across the population. If a single individual is more

exposed to infection, then they may be more likely to have a larger hypnozoite reservoir [6,

28]. Since incidence rates for each individual were not easily discerned from these data, we

instead considered whether higher transmission in a community led to higher rates of relapse.

We did not have the necessary data to explore this question in the Thailand-Myanmar studies,

but in the Papua New Guinea study, we could investigate variation in the recurrence risk by

village by allowing both the risk of new mosquito-borne infections and the risk of relapses to

vary between villages [4]. The 5 villages included in the Papua New Guinea trial had distinct

transmission intensities [4]. Therefore, fitting our model of population heterogeneity to Papua

New Guinea data stratified by village, we estimated the average risk of new infection and the

average rate of relapse within each village. We found a weak (non-significant) association

between the risk of new infections and the median relapse risk within each village (Fig 5F).

Discussion

Here we provide strong evidence of variation in individuals propensity to experience relapses

and demonstrate that population heterogeneity is a main driver of the overall pattern of recur-

rences observed in some endemic settings. Although our model of population heterogeneity

did not explicitly incorporate mechanisms that can cause this population heterogeneity in

relapse risk, some previous observations highlight mechanisms that are expected to give rise to

such heterogeneity between individuals [14]. In monkey studies, the sporozoite inoculation

size has been found to influence relapse frequency [21]. Indeed, natural sporozoite inoculum

sizes are highly variable [34, 35]. In addition, differences in the hypnozoite reservoir between

individuals could arise because of differences in individuals’ exposure to inoculation by

infected mosquitoes [14, 24, 36]. Our analysis of the Papua New Guinea data stratified by vil-

lage indicates that the average relapse risk in the community increases with increasing infec-

tion risk (Fig 5). Thus, spatial heterogeneity in the infection risk is likely an important

determinant of relapse heterogeneity. Regional variation is also expected due to different para-

site variants, with ‘temperate’ and ‘tropical’ strains of P vivax known to have different relapse

rates and, in some regions, different strains appear to be present [6, 37, 38]. Heterogeneity in

the time to relapses is observed not only in South East Asian regions but also, for example, in

Central America, Sub-Saharan Africa and other regions (albeit with differing patterns of het-

erogeneity) [38]. Other known factors that may contribute to population heterogeneity in P
vivaxmalaria are immunity, age, heterogeneity in transmission within a community [14, 36,

39]. In particular, with higher blood-stage immunity, more asymptomatic, sub-microscopic

infections may be expected which may be missed in clinical trials and cohort studies. This may

present as some individuals having an apparent low relapse rate. Since spatial heterogeneity is

likely an important determinant of relapse heterogeneity, we hypothesize that variable inocu-

lum size and biting intensity between individuals explains much of the population heterogene-

ity in risk of relapse observed in these settings.

In addition to population heterogeneity, we found evidence that risk of relapse varies with

time. This again is consistent with and follows from observations of temporal factors that have

been observed to be associated with relapse risk, such as febrile illness [10] and even time since

last infectious bite, since the reservoir of hypnozoites may deplete with each relapse [6, 40].

Moreover, strain-specific immunity may also influence the pattern of observed recurrences,

e.g. if different strains in polyclonal relapses are controlled to various degrees, this may lead to
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some strains reaching detectable parasitemia faster than others and hence to variable observed

relapse times [20].

Relapse heterogeneity can influence our understanding of the epidemiology of P vivax
malaria. For example, the fraction of blood-stage infections that are relapses is often estimated

to demonstrate the importance of relapse prevention and treatment with radical cure [7, 9].

However, estimates are often calculated assuming a constant relapse rate across the population

Fig 5. Time to infection population heterogeneity model fit and relapse rate vs infection rate for different villages in the Papua New Guinea data. (A-E)

Model fit of the population heterogeneity model to the time to infection data from Papua New Guinea stratified by village. All villages were fit simultaneously

with the same drug washout time distribution, the rate of new infections and relapses was allowed to vary between villages. The lines indicate the model fit and

the shaded area the 95% confidence region from the data. (F) Relapse rate and infection rate for different villages. For each village, the median relapse rate (dot)

and interquartile range (vertical line) of the relapse rate distribution from the population heterogeneity model fit is plotted against the infection rate. The

Pearson and Spearman correlation between the log-transformed median relapse rate and the infection rate are 0.97 and 0.9, respectively, with p-values of

0.0075 and 0.083, respectively. For model fits to the Papua New Guinea data by village using the other models see Figs C and D in S1 Figs.

https://doi.org/10.1371/journal.pntd.0010990.g005
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and differ across studies [4, 7, 8]. In part this is due to whether the study has a clinical or epide-

miological focus. For example, the studies considered here from the Thailand-Myanmar bor-

der region recruited individuals after having symptomatic P vivaxmalaria and thus inherently

select for those with the highest risk of recurrences in the population [23, 27]. In contrast, the

study from Papua New Guinea recruited individuals regardless of whether they had a P vivax
episode at enrolment [4]. Indeed, Robinson et al., who enrolled and treated children regardless

of their infection status, found that approximately 80% of blood-stage infections were relapses

[4], compared with estimates of>90% from studies that enrolled P vivax-infected individuals

[7, 8].

A factor that has not been included in our models of recurrence is the possibility of unde-

tectable submicroscopic infections. In particular, we have only been able to consider infections

and relapses detectable by microscopy in the Thailand-Myanmar data (although PCR detec-

tion was used in the Papua New Guinea study). The prevalence of submicroscopic P vivax
infection is often higher than the prevalence of microscopic infections [41] and may be an

important factor for transmission of P vivax. Robinson et al. found that age was not signifi-

cantly associated with the risk of the first P vivax blood-stage infection diagnosed with qPCR

but the risk of microscopy-detectable P vivax infections decreased significantly with age [4].

Thus, our models may be biased towards younger and less immune individuals who are more

likely to have microscopy-detectable infections [42,43].

In this work, we found that population heterogeneity can capture observed patterns of the

first and second recurrence times as well as the correlation between the time to first and sec-

ond recurrence. This suggests that population heterogeneity plays an important role in the

overall epidemiology of P vivax recurrence within a given year.
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