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Population irruptions of crown-of-thorns starfish (COTS) cause extensive
degradation of coral reefs, threatening the structure and function of these
important ecosystems. For population irruptions to initiate and spread,
large numbers of planktonic larvae have to successfully transition into their
benthic life-history stage (i.e. settlement), whereby larval behaviour and the
presence of settlement cues may shape spatial patterns of recruitment and
adult densities. Our results demonstrate that a wide range of coralline algae
species induce COTS larvae to settle; however, the capacity to promote settle-
ment success variedmanyfold among algal species, ranging from greater than
90% in Melyvonnea cf. madagascariensis to less than 2% in Lithophyllum cf.
kotschyanum and two Porolithon species at 24 h. Because many coralline
algae species that promote high settlement success are prevalent in shallow
reef habitats, our findings challenge the hypothesis that COTS larvae predo-
minantly settle in deep water. Considering both larval behaviour and algal
ecology, this study highlights the ecological significance of coralline algae
communities in driving recruitment patterns of COTS. More specifically, the
local abundance of highly inductive coralline algae (especially, Melyvonnea
cf. madagascariensis) may explain some of the marked spatial heterogeneity
of COTS populations and the incidence of population irruptions.
1. Introduction
Environmental cues play pivotal roles in the regulation of animal life histories,
particularly in the timing and completion of major life-history transitions [1,2].
Response mechanisms to environmental cues permit animals to orchestrate
these transitions and optimize survival at transition points which are character-
ized by high mortality [3,4]. For many animals with complex life cycles,
survival rates are particularly low at ontogenetic boundaries between early
life-history stages [3,5,6]. Consequently, the presence of apt environmental
cues, combined with the capability of animals to respond to them during
early ontogeny, can drastically change the dynamics of populations [7–9].

The transition from larval to juvenile stages, which in most animals includes
some form of metamorphosis [10–12], is largely governed by environmental cues
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[13]. Groups of insects, fishes, amphibians and marine
invertebrates have evolved neural and hormonal mechanisms
translating abiotic and biotic cues to navigate this inherently vul-
nerablephase [14–16].Most benthicmarine invertebratesdisplay
bipartite life histories with a highly specialized larval settlement
stage [17]. This irreversible planktonic–benthic transition (i.e.
settlement) can be a major population bottleneck [18,19]. How-
ever, response to environmental inputs (e.g. chemical cues
associated with conspecifics or benthic substrata) may result in
the settlement of larvae in locations that confer higher likelihood
of survival and recruitment [20–22]. The larval decisionofwhere
and when to settle is thus of fundamental importance.

Population irruptions of crown-of-thorns starfish (Acantha-
ster spp., COTS) remain a significant driver of coral loss and
reef degradation [23], which are increasingly compounded by
climatic disturbance [24,25]. For population irruptions to
occur and spread among coral reefs, large numbers of plank-
tonic larvae must successfully transition into the benthic
juvenile stage [26,27]. In contrast with other echinoderm
larvae that metamorphose during their planktonic stage [22],
COTS metamorphosis is initiated after substratum contact
[26]. Because of exceptionally high mortality rates in early
juvenile COTS [28,29] and limited adult movement behaviour
[30,31], settlement rates are likely to be the foremost constraint
on local abundance and the incidence of population irruptions
[32–34]. Larval settlement of COTS in the wild is presumably
induced by coralline algae and their associated microbial com-
munities [35]; however, it is unclear whether all or only some
coralline algae have the capacity to induce high settlement
rates [23]. The alga Lithothamnion cf. proliferum was so far sur-
mised to be the predominant settlement cue, which gave rise
to the hypothesis that COTS mostly settle in deep, inter-reef
habitats [36]. Recent advances in the taxonomy and contrasting
ecology of different coralline algae species do, however,
necessitate a renewed exploration of settlement induction.

Here, we assess the relative capacity of a diversity of cor-
alline algae to induce COTS settlement in order to test the
hypothesis that the alga Lithothamnion cf. proliferum promotes
higher settlement rates than the other species. Notably, this
research facilitates a critical evaluation of the deep-water
recruitment hypothesis [36] by considering whether other
algal species that play important roles in COTS settlement
induction occur in deep and/or shallow reef habitats. The
integration of larger-scale algal field-distribution data in the
interpretation of our experimental results further enables us
to better understand the ecological consequences of coralline
algae assemblages for the recruitment patterns and ecological
impact of this nuisance starfish.
2. Materials and methods
To obtain settlement-stage western Pacific COTS (Acanthaster cf.
solaris) for experimental assays, we reared larvae at the Australian
Institute of Marine Science (AIMS) National Sea Simulator (elec-
tronic supplementary material, §S1), following Uthicke et al. [37].
Larval development was microscopically examined until we
determined metamorphic competency 14 days post-fertilization.
Experimental treatments included 14 living coralline algae species
and one living Peyssonneliaceae alga (collectively referred to as
coralline algae in this study; table 1) with relatively high abun-
dance on Australia’s Great Barrier Reef (GBR), and structural
control (sterile aragonite) and filtered seawater (FSW) control treat-
ments. A diversity of coralline algae were collected from two
central GBR locations (electronic supplementary material, §S2),
identified based on morpho-anatomical features (electronic sup-
plementary material, §S2) and molecular sequencing (electronic
supplementary material, §S3, §S4, following [40]), and cut into
replicate 5 × 5 mm live chips for use in experiments.

To test the effects of different coralline algae species on the
settlement response of competent COTS larvae, 12 replicate
settlement assays were conducted for each of the 17 experimental
treatments. We used six-well cell culture plates and fully ran-
domized the distribution of all replicate assays among the 204
wells. After adding 10 ml FSW and a single chip of one of 15
different algal species or sterile aragonite to the wells, we care-
fully introduced approximately 10 competent COTS larvae per
well using glass pipettes. All well plates were kept in a tempera-
ture-controlled room (28°C) matching the light conditions during
larval rearing (12 L : 12 D, light–dark). Using stereo microscopes,
larval settlement was scored 24 and 48 h after larvae were intro-
duced. For each replicate well, we recorded the number of
competent late-brachiolaria larvae remaining in the water
column (= swimming) and the number of individuals that had
successfully attached to the treatment chip or well bottom and
commenced or completed metamorphic transformation into a
juvenile with radial symmetry (= settled, figure 1).

Statistical analyses were performed using R software (v. 4.1.3.
[41]). To compare the responses of COTS larvae to coralline algae
and control treatments, we considered the proportion of settled
postlarvae and swimming larvae in each assay well. The effects
of treatments and time (24, 48 h) on this proportional data
frame were modelled using a binomial generalized linear
model with a logit link (stats package [41]). This model was
fitted with the bias-reduction method brglmFit [42,43] from the
brglm2 package [44] to avoid data separation due to outcomes
with only zeros in the control treatments. Model assumptions
were evaluated based on inspection of diagnostic plots and
figures were generated using the ggplot2 package [45]. We calcu-
lated estimated marginal means, confidence intervals and post
hoc comparisons using the emmeans package [46] and the cld
function from the multcomp package [47]. To account for multiple
comparisons and control for the false discovery rate, p-values
(alpha = 0.05) were adjusted using the BY correction method
following the Benjamini–Yekutieli procedure [48].
3. Results
While larval settlement was induced in all coralline algae treat-
ments (table 1, figure 2a), no larvae settled in both controls and
settlement success differed substantially among the 17 treat-
ments (figure 2a, F16,391 = 7.97, p < 0.001). Highest settlement
rates (mean ± s.e.: 90.7% ± 2.9 at 24 h; 98.3%± 1.1 at 48 h)
were recorded in the presence ofMelyvonnea cf. madagascarien-
sis, while limited settlement was recorded (less than 2% at 24 h;
<10% at 48 h) for two Porolithon species and Lithophyllum cf.
kotschyanum. Settlement rates were relatively high (30–60% at
24 h) for seven coralline algae treatments, with an evident hier-
archy in larval settlement responses to cues associated with
different coralline species (figure 2a). Settlement rates differed
significantly between scoring times (F1,390 = 62.97, p < 0.001),
although there was no interaction with treatments (figure 2b,
F16,374 = 0.52, p = 0.939), reflecting consistent differences in
settlement rates among different algal species.
4. Discussion
Settlement cues and inducers are critically important in
regulating the abundance of many different benthic marine



Table 1. Ecological information on the 15 coralline algae species analysed in settlement assays. Relative abundance along the GBR shelf is categorized as rare
(less than 20%), moderate (20–70%) and common (greater than 70%), largely calculated based on total abundance data reported in Dean et al. [38] (e.g.
species abundance in ‘outer’ reefs divided by the species abundance across all three shelf positions). Taxonomic, morpho-anatomical and collection information
are provided in the electronic supplementary material (§S2).

species habitat irradiance level

relative abundance (GBR shelf )

source (GBR
abundance)inner mid outer

Melyvonnea cf.

madagascariensis

shallow - deep

reef

low - mid rare common rare [38]

Neogoniolithon fosliei crest, shallow reef high rare rare common [38]

Adeylithon bosencei shallow - deep

reef

low - high rare rare common [39], G.D.-P. pers. obs.

Hydrolithon cf. reinboldii shallow - deep

reef

mid moderate rare moderate [38]

Lithophyllum cf. insipidum crest, shallow reef mid - high rare moderate moderate [38]

Lithothamnion cf. proliferum crevices, caves low rare common rare [38]

Titanoderma cf. tessellatum shallow - deep

reef

low - mid rare moderate moderate [38]

Amphiroa foliacea shallow - mid reef mid - high rare moderate moderate G.D.-P. pers. obs.

Sporolithon sp. crevices, caves low rare rare common [38]

Ramicrusta sp. crevices, caves low rare moderate moderate G.D.-P. pers. obs.

Lithophyllum cf. pygmaeum crest, shallow reef mid - high rare moderate moderate [38]

Porolithon sp. A reef crest high common rare rare G.D.-P. pers. obs.

Porolithon sp. B reef crest high rare moderate moderate [38]

Lithophyllum cf. kotschyanum reef crest mid - high rare moderate moderate [38]

Porolithon sp. C reef crest high rare moderate moderate [38]
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invertebrates [21], yet there is very limited understanding of
the factors that influence settlement rates of COTS [23]. Our
results demonstrate that a wide range of crustose and articu-
lated (geniculate) coralline algae induce COTS settlement,
though there were marked differences in settlement rates
associated with different algal species. Although it remains
to be resolved whether such differences are driven by algal
compounds and/or associated microbial communities (but
see [35]), this study corroborates the role of chemical cues
in governing benthic habitat selection by planktonic COTS
larvae. Similar to other echinoderm groups [22], COTS
larvae display active searching and testing behaviour
[49,50] to detect chemical cues that presumably signal the
presence of preferred early-juvenile food (i.e. coralline algae
[51,52]) or the absence of toxic surfaces and coral polyps
that can injure juveniles [53]. Physical microhabitat character-
istics (electronic supplementary material, §S2) and the
irradiance conditions that algal species occur in (table 1) do
not appear to be primary factors in COTS settlement induc-
tion; however, in the presence of a suitable settlement cue,
larvae likely select low-light microhabitats within the reef
matrix for shelter during metamorphosis [54].

Importantly, our results indicate that COTS larvae do not
require cues associated with the coralline alga Lithothamnion
cf. proliferum or other deep-water species for settlement induc-
tion. Many algal species that are prevalent at moderate and
shallow depths (table 1) induced high rates of settlement in
this study, including species that primarily occur in shallow
reef environments (e.g. Neogoniolithon fosliei and Adeylithon
bosencei).Most notably, the algaMelyvonnea cf.madagascariensis,
which is widely distributed across the depth continuum,
promoted considerably higher settlement success than
Lithothamnion cf. proliferum (likely Lithothamnium pseudosorum
in [36]). In part because the latter species was previously con-
sidered to be the gold standard for COTS settlement
induction [35,36] and assumed to be relatively rare at moderate
and shallow depths [36], the deep-water recruitment hypoth-
esis proposed that COTS larvae predominantly settle in deep
(greater than 30 m), inter-reef habitats [36]. However, this
species can be abundant in crevices, caves and overhangs in
shallow water (G.D.-P., pers. obs.). Our findings further chal-
lenge this hypothesis by demonstrating a shallow-water
prevalence of suitable settlement cues, which is supported by
recorded settlement [34] and newly settled juveniles [55] at a
range of shallow to intermediate depths (1–18 m).

Apparent selectivity for particular coralline algae by
settling COTS larvae has potential importance for under-
standing population dynamics, because settlement delay
and settlement in adverse environments can negatively
impact recruitment success [17,56]. Marine invertebrate
larvae with a specialized settlement stage generally respond
to environmental cues to maximize recruitment rates [20],
but limited plasticity in settlement behaviour and narrow
habitat requirements imply dependence on encountering
suitable habitat at small spatio-temporal scales. There is lab-
oratory-based evidence that COTS larvae can extend their
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Figure 1. Larval development through metamorphosis in crown-of-thorns starfish: (a) brachiolaria larva; (b) metamorphosing larva absorbing the larval body;
(c) post-metamorphic juvenile ( photographs by Ciemon Caballes and Peter Doll).
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Figure 2. (a) Settlement cue responses of crown-of-thorns starfish larvae to 15 coralline algae species at 24 and 48 h (means ± s.e., n = 12). Letters denote
statistical differences among treatments, with treatment means not sharing any letter being significantly different (Benjamini–Yekutieli-adjusted p < 0.05).
(b) Differences between the mean settlement rates at 24 and 48 h after experiment commencement. FSW = filtered seawater.
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competency periods in the absence of environmental cues
[57], and our results show that some larvae temporarily
defer settlement even in the presence of settlement cues.
However, delayed settlement will increase exposure to preda-
tors [58,59] and can reduce growth and subsequent survival
in early juveniles [17,56]. Specificity in substratum selection
may decrease during the competency period and larvae are
more likely to eventually settle in adverse environments
[60], increasing susceptibility of juveniles to benthic predation
[33,61] and starvation [33,62]. Elevated mortality rates before
and after settlement may consequently limit recruitment
success in habitats with limited settlement cues.

More specifically, the availability of suitable settlement
habitat may play a critical role in explaining inter-reef differ-
ences in the abundance of COTS and the incidence of
population irruptions. Our findings indicate that specific
algal species (e.g.Melyvonnea cf. madagascariensis) may be par-
ticularly important for promoting or regulating natural
settlement rates of COTS. Population irruptions degrading
the GBR predominantly occur on reefs in the mid-section of
the continental shelf [63], raising questions pertaining to poten-
tial drivers of low adult densities on inshore reefs [23]. Limited
inter-reef connectivity may constrain larval supply in some
locations, yet many inshore reefs have been highlighted as
significant larval sinks [64], pre-disposing them to COTS
infestations. Food limitation of planktotrophic larvae is also
unlikely to disproportionately inhibit recruitment on inshore
reefs given the relatively high concentrations of large phyto-
plankton in these locations [65]. Instead, the low overall
abundance of coralline substrata on inshore reefs [38,66,67]
likely contributes to reduced settlement success in these
locations. Moreover, the coralline algae species inducing



5

royalsocietypublishing.org/journal/rsbl
Biol.Lett.19:20220399
relatively high settlement rates in this study, exceptHydrolithon
cf. reinboldii, are absent or relatively rare in most inshore reefs
(table 1, [38,39,68]. We hypothesize, therefore, that low abun-
dance of coralline algae, particularly of species promoting
high settlement rates, poses a significant constraint for COTS
recruitment on many inshore reefs. However, in situ studies
of settlement rates and coralline algae assemblages across
this shelf gradient are required to substantiate this hypothesis.
Notably, the combination of limited larval supply and scarcity
of suitable settlement habitat would greatly reduce localized
risk of COTS population irruptions and associated coral loss.

In the face of ever-increasing threats to coral reefs, it
appears essential to consider all mechanisms that determine
recruitment success in this keystone coral predator, both from
a theoretical (e.g. life-history theory) and applied perspective
(e.g. population control). While previously overlooked in the
discussion of factors contributing to the incidence of COTS
population irruptions, larval settlement behaviour and settle-
ment cue availability emerge as factors capable of explaining
some of the marked spatial heterogeneity in recruitment and
adult population sizes.
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laws and ethics guidelines, and collections were approved by the
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