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Frogs vs fungus: the emergence of amphibian chytridiomycosis 
Rebecca J. WebbA,B,* and Anthony W. WaddleA  

ABSTRACT 

By the late 1980s, widespread dramatic declines in amphibian populations were causing alarm. 
The culprit was identified as Batrachochytrium dendrobatidis (Bd), a chytrid fungus that infects the skin 
of various amphibian hosts, particularly anurans (frogs), and the first example of a chytridiomycete 
parasitising vertebrates. The disease, chytridiomycosis, has spread globally and is linked to the 
decline and extinction of many amphibian species. This review summarises the discovery of Bd, its 
emergence as a panzootic pathogen, and some current mitigation strategies to conserve amphibians.  
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Introduction 

The emergence of chytridiomycosis in amphibians has changed the way we think of wildlife 
diseases. Never has a fungal disease had such a profound impact on biodiversity.1 The organism 
responsible, Batrachochytrium dendrobatidis (Bd),2 can infect an unusually broad range of 
amphibian hosts, with a propensity to cause severe population declines and extinctions.1 The 
discovery of chytridiomycosis,3 and subsequent attempts to control the pathogen, presents 
unique challenges and highlights the need for cross discipline collaboration.4 

Discovery of chytridiomycosis 

Like many organisms, amphibian populations are declining due to human activities such as 
deforestation and pollution. When frogs and toads started disappearing from pristine protected 
areas, however, scientists were puzzled. Throughout the 1980s, reports of amphibian declines 
were coming from the cloud forests of Costa Rica, the alpine Sierra Nevadas in the USA, and the 
Atlantic forests of Brazil. Frogs decompose quickly in the forest, hampering efforts to determine 
the cause of death. In Australia, two species of the unique gastric brooding frog (the northern 
and southern gastric brooding frogs, Rheobatrachus vitellinus and R. silus), and two species of 
day frog (the southern and Eungella day frogs Taudactylus diurnus and T. eungellensis) went 
missing from the rainforest of Central and Southern Queensland. Concern was mounting for 
the North Queensland frogs, and particularly for a related species of day frog,the sharp snouted 
day frog (T. acutirostris). Intense monitoring began at ‘Big Tableland’, one of the last remain-
ing T. acutirostris populations. It was not long before fears were realised and a mass die-off was 
observed in real time. In addition to T. acutirostris, multiple species of stream breeding frogs 
simultaneously vanished. At the Big Tablelands upland site, the co-occurring common mist 
frogs (Litoria rheocola), Australian lace-lids (Litoria dayi), and waterfall frogs (Litoria nan-
notis), disappeared over the space of a few months.5 Although devastating, this was an 
opportunity to collect enough freshly dead frogs for pathology to determine the cause of 
death. A tiny skin parasite in the outer layers of skin, originally dismissed as a secondary 
infection, was the only common factor. Although such a superficial skin infection seemed 
unlikely to cause such catastrophic declines, experiments demonstrated that skin from dead 
frogs could transmit disease to healthy frogs. Electron microscopy and sequencing showed it to 
be a novel chytrid fungus.3 When mass die-offs were detected in Panama, an extraordinary 
international collaborative effort suggested it was the same fungal species causing disease 
across continents.3 A parallel investigation into captive frog mortalities in the United States led 
to the taxonomic description of the culprit, a chytrid fungus: Batrachochytrium dendrobatidis 
(Bd).2 This was the first report of a chytrid parasitising a vertebrate host. 

Like other chytrid fungi, Bd produces motile zoospores that swim via flagella. But unlike 
the majority of chytrids, the zoospore is infective, penetrating the hosts skin via germ tube, 
before developing into a zoosporangium.6 The zoosporangium asexually produces more 
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zoospores, which can infect the same host or spread to a new 
one. The resulting disease, named chytridiomycosis,3 presents 
as lethargy, with characteristic reddened and shedding skin. 
Death can often occur rapidly after the onset of clinical signs. 
Such severe outcomes from a seemingly mild, non-systemic 
skin infection were contrary to conventional wisdom, and it 
was thought that the fungus must produce a toxin. Thorough 
investigation revealed that instead, Bd infection destroys the 
integrity of the skin, leading to electrolyte imbalance and 
cardiac arrest.7 Supportive supplementation with electrolytes 
can slow disease progression but cannot keep up with the 
damage caused by the fungus as it continues to multiply in 
the skin.7 Early histological analysis revealed a lack of immune 
response in infected hosts, with poor infiltration of professional 
immune cells (e.g. macrophages) to the site of infection and 
minimal inflammation.8 The down regulation of immune genes 
during infection suggested that Bd dampens the host immune 
capabilities.9 This was further supported by the discovery that 
Bd cells produce a suite of metabolites that can paralyse 
amphibian immune cells10,11 and prevent fungal clearance, 
eventually leading to death of the host. By targeting the skin, 
an organ universally important for amphibians, the fungus can 
cause disease in an incredibly broad range of hosts. Bd infects 
all three orders of amphibians, predominantly the frogs and 
toads, but also salamanders and caecilians, and at least 500 
amphibian species have suffered population declines due to 
chytridiomycosis.1 In addition, the fungus appears to infect 
freshwater invertebrates as well, making it especially difficult 
to eradicate from the environment. 

Emergence of chytridiomycosis 

Histological analysis of museum specimens and a newly 
developed PCR diagnostic assay provided evidence linking 
Bd to many more past and current amphibian declines 
globally.12,13 But where had Bd come from and what was 
behind the sudden emergence at so many sites globally? The 
pathogen is in fact an ancient, early diverging fungal species 
thought to have originated in Asia. Genetic analysis revealed 
that Bd is comprised of several distinct lineages, some of                    

which appear to be endemic and not associated with 
amphibian declines.14–16 However, the hypervirulent global 
panzootic lineage ‘BdGPL’ emerged in the early 20th cen-
tury, and spread most likely via the amphibian trade.15 The 
BdGPL lineage appears responsible for the dramatic amphib-
ian declines observed in Australia, the Americas and Europe, 
which are estimated to have caused the extinction of at least 
90 amphibian species.1 Chytridiomycosis has had flow on 
effects extending beyond amphibians, as seen in the loss of 
neotropical snakes once their prey disappeared.17 The fungus 
thrives in cool, wet environments, therefore patterns of chy-
tridiomycosis emergence can be explained predominately 
by temperature and rainfall.18 However, in some cases, 
co-occurring species can have vastly different responses 
despite a shared niche. For example, the iconic corroboree 
frog (Pseudophryne corroboree) is incredibly susceptible to 
Bd and has declined to near extinction,19 whereas the 
co-occurring common froglet (Crinia signifera) appears toler-
ant20 (Fig. 1). Uncovering the mechanism behind differential 
susceptibility is an important area of future research. 

Combatting chytridiomycosis 

Antifungal drugs borrowed from veterinary medicine are suffi-
cient for the treatment of captive animals.21 Targeted antifungal 
treatment of wild amphibians can reduce infection and increase 
survival.22,23 However, as the fungus appears impossible to 
eradicate from the environment, antifungal treatment of 
wild amphibians only provides a short-term solution. Feasible, 
long-term solutions to combat chytridiomycosis are urgently 
required to prevent further loss of biodiversity.4 Potential miti-
gation strategies can be broadly divided into those that target 
the pathogen and those that aim to increase host resistance. 
Anti-pathogen strategies include modifying natural areas and 
creating unsuitable microhabitats, for example by increasing 
salt content24 or providing basking opportunities to help hosts 
overcome infection (Fig. 2). There has also been interest 
in developing viral biocontrol to reduce fungal virulence, as 
this technique has been successful in curing fungal diseases in 
wild plants.25 By reducing the virulence of Bd without 

Pseudophryne corroboree

A myobatrachid frog restricted to high elevation bogs and woodland
in Kosciuszko National Park. Wild populations have declined
dramatically. Exposure to low dose of Bd can result in 100%
mortality in a few weeks.  

A myobatrachid frog occupying a range of habitats along the
east coast, including co-occurring with P. corroboree. No evidence
of Bd related population declines and infected individuals can
resolve infection. 

Crinia signifera 

Fig. 1. Two Australian species exhibiting different responses to chytridiomycosis. Photos by R. Webb.    
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eradicating it, these approaches could allow wild amphibians 
the opportunity to slowly develop natural resistance. 

Alternatively, artificially increasing resistance of captive 
bred and released animals could create self-sustaining wild 
populations.4 Early attempts at vaccination were unsuccessful,26 

which is not surprising given the suppressed host immune 
system. However, recent research suggests that vaccination 
might be protective in some species. Inoculations with low 
virulence strains or infection with highly virulent strains fol-
lowed by antifungal treatment can bolster host defences to 
future infections.27,28 However, a vaccination strategy might 
still require ongoing intervention. Research into selective 
breeding of resistant individuals is underway, with the aim of 
using whole genome sequencing to identify alleles associated 
with survival (discussed in Kosch et al.4). Release of resistant 
animals could reduce the need for constant intervention. 
However, this is an expensive and long-term approach, which 
will likely only be feasible for a few select species. Therefore, a 
‘silver bullet’ is unlikely, and a combination of approaches will 
be required for amphibian conservation. 

Continued threat of chytridiomycosis 

Although Bd has now spread around the globe, restricting 
pathogen movement remains a priority. Hybrid strains can 
display increased virulence,29 highlighting the importance of 
minimising opportunities for contact between divergent Bd 
lineages. In Australia, strict biosecurity and field hygiene pro-
tocols are necessary to prevent further Bd introductions, and 
to slow pathogen spread into uninfected areas such as parts of 
the Tasmanian Wilderness World Heritage Area and Cape York 
Peninsula, Queensland. These protocols are also essential to 
prevent the spread of other amphibian diseases. For example, 
another species of parasitic chytrid fungus; Batrachochytrium 
salamandrivorans or ‘Bsal’, was described in 2013 after caus-
ing fire salamander (Salamandra salamandra) mortality in 

Belgium.30 It is now reported in various locations around 
Europe, having likely emerged and spread from Asia in 
much the same way as Bd.31 There is mounting concern that 
the pathogen will reach North America and have devastating 
effects on the diverse salamander communities there.32 A 
collaborative taskforce is currently assessing the risk of Bsal 
invasion to North America using species susceptibility and 
environmental suitability modelling, as well as monitoring 
wild and imported salamanders. Although there are no native 
salamanders in Australia, Bsal may still pose a risk to our 
native amphibians. Preliminary laboratory experiments indi-
cate that Bsal can infect frog species, highlighting the need for 
targeted monitoring and preventative measures.33 Australia 
has already lost six amphibian species due to chytridiomyco-
sis.34 The good news is that some species, such as Fleay’s 
barred frog (Mixophyes fleayi), are showing signs of recovery 
and coexistence with Bd, but at least seven species are still in 
dire risk of extinction without intervention. Continued 
research and multidisciplinary collaboration are required to 
mitigate the current Bd epidemic, understand the mechanisms 
by which some species are developing resistance, and to pre-
vent the introduction of a second amphibian chytrid species. 
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