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Winter mortality of a passerine bird increases following
hotter summers and during winters with higher
maximum temperatures
Lei Lv1,2,3*, Martijn van de Pol4, Helen L. Osmond2, Yang Liu1*, Andrew Cockburn2,
Loeske E. B. Kruuk2,5

Climate change may influence animal population dynamics through reproduction and mortality. However, at-
tributing changes in mortality to specific climate variables is challenging because the exact time of death is
usually unknown in the wild. Here, we investigated climate effects on adult mortality in Australian superb
fairy-wrens (Malurus cyaneus). Over a 27-year period, mortality outside the breeding season nearly doubled.
This nonbreeding season mortality increased with lower minimum (night-time) and higher maximum (day-
time) winter temperatures and with higher summer heat wave intensity. Fine-scale analysis showed that
higher mortality in a given week was associated with higher maxima 2 weeks prior and lower minima in the
current fortnight, indicating costs of temperature drops. Increases in summer heat waves and in winter
maximum temperatures collectively explained 62.6% of the increase in mortality over the study period. Our
results suggest that warming climate in both summer and winter can adversely affect survival, with potentially
substantial population consequences.
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INTRODUCTION
Anthropogenic climate change is now influencing the population
dynamics of many species (1) as individual fitness is affected
when organisms experience climatic conditions at the extreme
ends of, or even outside, the climate niches to which they are
adapted. Its impact is oftenmediated by effects on the local environ-
mental conditions that determine key biological processes such as
fecundity and mortality (2, 3), which will directly affect population
size and, hence, population dynamics (2, 4, 5). For animals living in
seasonal environments in temperate regions, individuals usually
suffer most mortality over winter (6, 7), and winter mortality may
therefore contribute considerably to the dynamics of wild animal
populations (2). An understanding of how climate change affects
winter mortality is therefore critical for providing insights into
how natural populations are being affected by current climate
change and, hence, for informing appropriate management and
conservation strategies (8, 9).

The effects of climate and climate change on winter mortality in
wild animals may be complex. First, minimum and maximum tem-
peratures may affect individual mortality in different ways, each of
which depend on species-specific thresholds (7). Lower minimum
temperatures in winter usually increase energy requirements for
nonhibernating endotherms because thermogenesis is necessary,
and food is often scarce (10, 11), potentially resulting in starvation
(12, 13): For example, a recent study of northern bobwhite (Colinus
virginianus) found that extreme cold temperature events reduced

survival (14). As a result, milder winters with higher minimum tem-
peratures may be associated with less winter mortality. In contrast,
increases in maximum temperatures in winter and the occurrence
of warm spells may cause problems in cold-acclimatized animals by
resulting in loss of thermogenic capacity [e.g., if high summit met-
abolic rates decrease in warm spells and reduce cold tolerance, (15)].
The increased occurrence of mild spells with increased daily
maximum temperatures in winter may therefore be detrimental if
individuals are slow to readjust their phenotype when the weather
cools again (15, 16). Rising temperatures associated with climate
change may be expected to reduce the frequency of cold spells but
may also increase the frequency of mid-winter warm spells (17), and
thus, it is as yet unclear how warming temperatures are likely to
affect winter mortality in wild animal populations.

Secondly, winter mortality may also depend on levels of precip-
itation and its interaction with temperature. Winter precipitation
can generate direct thermoregulatory challenges (18). Indirect
effects of adverse precipitation levels on food availability (e.g.,
heavy snow cover can reduce access to food) may also have impor-
tant survival consequences. As predictions for future patterns of
precipitation are highly variable (17), general predictions for the im-
plications of precipitation for climate change are therefore currently
unclear. Lastly, winter mortality may also be affected by climate at
other times of year through longer-term “carry-over” effects. For
example, the increasing frequency of extreme high-temperature
events (i.e., heat waves) and droughts during the breeding season
of previous summer may have long-term implications for survival
through the winter (19).

An understanding of this complex array of potential impacts of
climate and climate change on winter mortality requires identifica-
tion of the relevant climate variables in the relevant time periods,
including potential threshold effects and their possible interactions.
Long-term studies provide a valuable means with which to disen-
tangle the complex impact of climate on winter mortality in wild
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animal populations. However, to date, relevant studies have fre-
quently been carried out on annual time scales, considering popu-
lation-level annual average rates of mortality, and often based only
on monitoring conducted during the breeding season. In these
studies, the effective sample size equals the number of study
years, so statistical power is necessarily limited (20). Exploratory ap-
proaches for detecting relevant climate variables of moderate to
strong effect sizes require at least 20 years of data to have reasonable
power to distinguish true from false-positive climate signals and
avoid false negatives (21). Furthermore, even with time series that
span multiple decades, it can be challenging to distinguish between
the effects of climate variables that are often highly correlated, and
thus, attribution to particular variables may be challenging. Last, the
effects of climate on individual mortality may operate on a range of
scales, from short [e.g., daily, (22)] to much longer term. Robust
attribution of changes in mortality to specific climate variables
can therefore be challenging for studies of wild populations. The
use of mortality data collected on a very fine temporal scale poten-
tially allows for more reliable determination of the exact climate
signals and can also provide valuable insights into the mechanisms
by which climate affects winter mortality. However, information on
precisely when individuals die within each year is difficult to attain
in the field as it requires either year-round monitoring or equipping
a sufficient number of individuals with bio-loggers. To our knowl-
edge, field studies of the effects of climate that exploit the increased
explanatory power of precise mortality timing data have, to date,
only involved short-term periods [e.g., a few years of radiotelemetry
data in (14)].

In this study, we used 27 years of individual-based weekly census
data to investigate the effects of climate onmortality of superb fairy-
wrens (Malurus cyaneus) in southeastern Australia. Superb fairy-
wrens are cooperatively breeding passerines that live on year-
round territories and in groups composed of a dominant breeding
pair and up to five male helpers (23). The combination of year-
round censusing and a near-perfect detection rate in our long-
term study allows us to pinpoint the time of death of all individuals
to a given week and then to relate it to recent weather patterns
within and across years.

We focused on the effects of climate on variation in the adult
mortality rate outside the long fairy-wren breeding season; this
“nonbreeding season” is the relatively cold 6-month period of the
year when most adult mortality occurs (24), presumably as a
result of starvation, predation, or loss of thermogenic capacity.
Across our study period of 1993–2019, the population density in
our study area declined by 42% (fig. S1A), while concurrently the
climate changed substantially toward higher annual average
maximum temperatures, increased frequency of heat waves, and
lower annual rainfall (25). While this population decline may
have been driven by multiple factors, we investigated here the
effect of the changing climate on adult mortality in the nonbreeding
season. Previous work on the same population reported anecdotal
observations of adult males dying following abrupt transitions from
unusually warm, moist conditions to nights of heavy frost in some
years (24). We therefore hypothesized that lower minimum temper-
atures, higher maximum temperatures, and more rainfall in the
nonbreeding season increased mortality rate. In addition, our pre-
vious work on the population has also shown that more heat waves
and less rainfall during the breeding season reduce average body
mass of nestlings that year (25), indicating adverse effects of hot

dry summer conditions. Therefore, we also hypothesized that
more heat waves and less rainfall in the breeding season increased
mortality rate in the following nonbreeding season through carry-
over effects. Finally, we tested for effects of climate change by using
a path analysis to quantify the extent to which changes in different
aspects of the climate over time contributed to changes of adult
mortality over the study period.

RESULTS
Nonclimatic causes of variation in mortality
Our analyses of 1670 adult (aged 1 year or more) fairy-wrens across
27 years showed that 59% died in the nonbreeding season (26 weeks
running from 12 March to 9 September, i.e., calendar weeks 11 to
36), 37% died in the other half of the year [the breeding season;
(26)], and the remaining 4% were still alive at the end of the
study period. The mortality rate in each nonbreeding season (here-
after, “seasonal mortality rate”) varied from 11.3 to 44.4%, with an
average value of 23.7% (± 8.7% SD; n = 27 seasons). Our weekly
census data also indicated considerable variability in the mortality
rate in each week (hereafter,“weekly mortality rate”), ranging from 0
to 11.3% per week (mean ± SD = 1.1 ± 1.4%; n = 702 weeks across
the 27 seasons). On average, in a given year, weekly mortality rates
initially started low (in early autumn) and increased through
autumn into winter, peaking in the period of weeks 24 to 35 (a
12-week winter “peak,” during which the mean ± SD mortality
rate was 1.6 ± 1.7%) (Fig. 1B; Fig. 1A shows the corresponding
change in weather variables).

We ran a series of models to investigate the associations between
climate and both annual (hereafter, “seasonal”) and weekly mortal-
ity in the nonbreeding season. To do so, we first established “base-
line” Cox proportional hazards models to determine effects of
nonclimatic variables on both seasonal and weekly mortality
hazard rates (tables S1, S2, S3, and S4). These baseline models
showed that larger group size (i.e., the number of adults and juve-
niles in an individual’s group, excluding juvenile females, who may
disperse) was associated with lower seasonal and weekly mortality
hazard rates in this cooperatively breeding species (tables S1 and
S3). In addition, both seasonal and weekly mortality hazard rates
showed no change with age in early life (from age one to five) but
increased markedly in late life (from age six onward; seasonal mor-
tality, table S1; weekly mortality, table S3). In establishing the base-
line models for each analysis, there was no indication of any
difference in mortality hazard rate between the sexes or between
that of dominant breeders and male helpers (tables S2 and S4).

Climate effects on the seasonal mortality hazard rate
We analyzed which climate variables over which period(s) had the
strongest association withmortality, at both the seasonal and weekly
levels, so that the consistency of results across the two time scales
could be assessed. The choice of climate variables was based on pre-
vious work (see Introduction), but we had limited a priori knowl-
edge of the time window during the year during which climate
variables act most strongly. Therefore, we used a systematic
“sliding window” approach (21, 27) to identify the periods of the
year during which climate variables were most strongly associated
with mortality, considering both interannual and intrannual varia-
tion in climatic conditions.
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We considered effects of both temperature and precipitation, in
each case, considering the sum of the respective variable within a
given time window (and for temperature, also only considering
values above or below certain thresholds; see Methods). For the sea-
sonal mortality analyses, we tested whether the climate in a given
period of year [i.e., in an absolute timewindow; (21)] was associated
with mortality across that nonbreeding season, while for the weekly
mortality analyses, we tested whether the mortality in a given week
was associated with the climate in the recent period to that week
[i.e., in a relative time window; (21)]. Our analyses found strong as-
sociations of climate with both seasonal and weekly mortality.
Below, we first outline the best climate index identified for each
climate variable, with reference to more detailed output in the Sup-
plementary Materials, and then present models including all
climate indices.

Considering climate in the nonbreeding season, higher seasonal
mortality was associated with lower minimum temperatures (winter
minimum temperature index, with a threshold of -4°C downward;
Fig. 2A), with higher maximum temperatures (winter maximum
temperature index, with a threshold of 14°C upward; Fig. 2B),
and with lower rainfall (winter rainfall index; Fig. 2C and Tables
1 and 2). The windows identified for each of these climate indices
overlapped extensively and coincided with the same period of time
in the austral winter (late June and through July, about weeks 25 to
30), just after the winter solstice (Fig. 1A, Table 1, and table S5).

There was also evidence that climate in the previous breeding
season affected the mortality in the subsequent nonbreeding
season. Breeding seasons with higher temperatures (summer heat
wave index, where heat waves were defined as temperatures over a
threshold of 28°C, i.e., higher accumulated degree days of heating;

Fig. 1. Climate andmortality rate of adult superb fairy-wrens through the year. X axes denoting theweek in the year (week 1 is from 1 to 7 January). (A) Temperatures
and rainfall through the year: the mean of daily maximum temperatures (dots) and the mean of daily minimum temperatures (squares) of each date and mean weekly
rainfall (gray bars with the error bars showing 95% confidence intervals) from 1993 to 2019. The dashed and solid brackets on the bottom [below the x axis in (A)] indicate
the periods considered as “breeding season” and nonbreeding season (see the main text for the definitions of each period), respectively. The solid brackets at the top
indicate the climate windows identified in our analyses as most relevant for the seasonal mortality hazard rate in the nonbreeding season (Table 1). (B) The average
mortality rate of adult superb fairy-wrens in that week across the 27 years. Each point represents the mean mortality rate of that week with the error bars showing 95%
confidence intervals. The dashed rectangle indicates the peak period of mortality in the nonbreeding season (weeks 24 to 35, from 11 June to 2 September, during which
the average weekly mortality rate was ~1.6%). CI, confidence interval.
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Fig. 2D) and lower rainfall (summer rainfall index; Fig. 2E) were
associated with higher mortality rates in the subsequent nonbreed-
ing season (Tables 1 and 2). In this case, the relevant windows sur-
rounded the austral summer solstice (mid-December to early
January, about week 51 of the previous calendar year to week 1 of
the current year; Fig. 1A, Table 1, and table S6).

We then included all five climate indices identified in a final Cox
proportional hazards model of seasonal mortality hazard rate
(Table 2). This model again showed that lower winter minimum
temperatures, higher winter maximum temperatures, and higher
intensity of summer heat waves were all associated with higher sea-
sonal mortality hazard rates. Once these three temperature indices
were included, there was no evidence of any additional effects of
either the winter rainfall index or the summer rainfall index
(Table 2) presumably because of collinearity between the tempera-
ture and rainfall indices (e.g., there was a positive correlation
between the winter minimum temperature index and the winter
rainfall index; fig. S2A). Although there was no evidence of any in-
teractions between any of the climate indices (table S7), the effect of

summer heat waves on seasonal mortality hazard rate varied with
group size: Higher intensity of summer heat waves was associated
with higher seasonal mortality hazard rates, especially when
group size was smaller (Table 2 and table S8).

In a multiple linear regression of the association between annual
average seasonal mortality rates and the different climatic variables,
there was an effect of each of the three temperature indices, and they
collectively explained 74.3% of the between-year variance (table
S10). There was no evidence for effects of the two rainfall indices
when jointly included with temperature indices, and doing so
only improved the proportion of variance explained to 75.9%
(table S11).

Climate effects on the weekly mortality hazard rate
Our fine-scale weekly-level analyses using data on the exact dates of
individual death similarly showed thatmortality was associated with
both minimum and maximum temperatures experienced in the
nonbreeding season. The sum of daily minimum temperatures in
the focal week and in the week previous to it influenced the mortal-
ity hazard rate in a given week, with lower minimum temperatures
being associated with higher mortality hazard rate (Table 2, table
S12, and fig. S3A). As with the seasonal mortality analyses, mortal-
ity was also associated with higher maximum temperatures: Specif-
ically, there was an increase in mortality in a given week with higher
daily maximum temperatures in the week approximately 2 weeks
prior (Table 2, table S12, and fig. S3B). Notably, the “best”
window for minimum temperature did not overlap with that for
maximum temperature (Table 1). In summary, the mortality
hazard rate in a given week increased both with colder minima in
the current and previous weeks and with higher maxima in theweek
before that. To explore this further, we calculated a “temperature
drop” index defined as the difference between the standardized
(to zero mean, unit SD) maximum temperature index and the stan-
dardized minimum temperature index (i.e., the extent of any fall in
temperature from one warm week to two cold weeks). This post hoc
test showed that the mortality hazard rates were higher after indi-
viduals experienced higher temperature drops (Table 2 and fig.
S3C). In addition, the model with only this temperature drop vari-
able had similar support to that of the model that included both
minimum and maximum temperature indices [Tables 2; Akaike’s
information criterion corrected (AICc) values differing by 2.48].

The weekly mortality hazard rate was unlikely to be associated
with rainfall as randomization analysis indicated that the best rain-
fall window identified by the analysis had a substantial probability
of being a false-positive signal (P∆AICc = 0.09; table S12). Consider-
ing interactions, there was no evidence of any interaction between
the minimum and maximum temperature indices or between tem-
perature indices and nonclimatic variables (the 95% confidence in-
terval overlapped 0).

Temporal trends in climate indices and mortality rate
We used simple linear regressions to test for temporal trends in the
climate indices that our sliding window analyses had identified as
being associated with the seasonal mortality hazard rate. These in-
dicated no evidence of changes over the study period in the winter
minimum temperature index, the winter rainfall index, or the
summer rainfall index (Fig. 3, A, C, and E, and table S14).
However, the winter maximum temperature index increased
across years (Fig. 3B and table S14), as did the summer heat wave

Fig. 2. Effects of each climate index on the seasonal mortality rate of adult
superb fairy-wrens. (A-E) Each point represents 1 year. The lines are simple
linear regressions through the 27 data points, and the gray shaded areas represent
95% confidence intervals of the lines. Coefficient of determination (r2) values are
from the linear regressions in table S9.
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index (Fig. 3D and table S14). Furthermore, the annual average
mortality rate in the nonbreeding season increased substantially,
nearly doubling over our 27-year study period (Fig. 3F and table
S14; from 16.1 to 31.4%, equivalent to an increase of 5.9%
per decade).

Contribution of climate change to increasing mortality
over time
What was the contribution of these changes in climate variables
over time to the observed changes in annual average seasonal mor-
tality rate over the study period? A path analysis showed that (i)
winter maximum temperatures and the intensity of summer heat
waves have increased, while average group size has decreased (fig.
S1B) over time and (ii) that lower winter minimum temperatures,
higher winter maximum temperatures, and higher intensity of
summer heat waves were, in turn, all associated with higher seasonal
mortality rates [Fig. 4A, fig. S4A (for unstandardized version), and
table S15]. It showed that the increase in the seasonal mortality rate
over time was mostly due to the increases in the winter maximum
temperature index and in the summer heat wave index over time
(Fig. 4B and fig. S4B); together, these two indices accounted for
62.6% of the total increase in the seasonal mortality rate. The indi-
rect effects of the other pathways of the winter minimum tempera-
ture index and average group size, and the direct effect of year on the
change in seasonal mortality rate over time, were very small and
statistically indistinguishable from zero (Fig. 4B and fig. S4B). In
addition, whether or not the average group size was included in
the model gave qualitatively the same results in the path analysis.

DISCUSSION
Our analyses of nearly three decades of weekly and annual mortality
patterns showed strong associations between climate and mortality
of adult superb fairy-wrens in the nonbreeding season. In line with

the proposed hypotheses, lower minimum (night-time) tempera-
tures and higher maximum (day-time) temperatures in winter
and higher intensity of heat waves in the previous summer increased
nonbreeding season mortality rate. However, we found no support
for the hypothesized effects of winter or summer rainfall on mor-
tality rate in the nonbreeding season when the effects of tempera-
tures were included. In our fine-scale weekly mortality analyses of
the effects of climate in the nonbreeding season, an individual’s
mortality hazard rate in a given week increased with low
minimum temperatures in the current and previous weeks and
high maximum temperatures in a week before that. These two
climate effects may have acted together, reflecting large “tempera-
ture drops” between weeks, as this alternative index received similar
model support from the data. The congruence between the results of
the fine-scale weekly mortality analysis and the seasonal mortality
analysis suggest that the temperature variables associated with indi-
vidual mortality are likely the causal drivers. Furthermore, mortality
increased at older ages and decreased with group size in this coop-
eratively breeding species. Both the winter maximum temperature
index and the summer heat wave index increased across years, and
the seasonal mortality rate nearly doubled across the study period. A
path analysis indicated a substantial contribution of the warming
temperature trend to the increasing mortality in the study popula-
tion. We discuss these points in turn below.

Determinants of mortality rate
Both the seasonal and weekly mortality analyses showed strong as-
sociations of low winter minimum temperatures with mortality in
the nonbreeding season, which suggests that, as in many other bird
species (12–14), individual survival is reduced by low nighttime
temperatures in winter. In particular, individuals were at risk
from higher mortality hazard rates in a given week if the
minimum temperatures in the current and previous weeks were
low (Table 2 and fig. S3A). During a cold spell in winter, fairy-

Table 1. Summary of exact dates (days) and durations for climate indices identified as the best predictors for the seasonal mortality hazard rate and
weeklymortality hazard rate of adult superb fairy-wrens in the nonbreeding season.∆AICc is the difference in AICc values after adding a given climate index
to the final baselinemodels (which are shown in tables S2 and S4, respectively). Temperature indices are calculated as the sum of minimum temperatures below or
the sum of maximum temperatures above a given threshold (shown in “temperature threshold” column) across the specified period. Winter rainfall for the weekly
mortality hazard rate was a false positive and is therefore not shown. As examples, “winter maximum temperature” for the seasonal mortality hazard rate means
the sum of daily maximum temperature over 14°C from 5 July to 5 August; “winter maximum temperature” for the weekly mortality hazard rate means the sum of
dailymaximum temperature over 11°C from 22 days before to 17 days before the last day of a givenweek (i.e., maximum temperatures in theweek approximately 2
weeks prior). (Samples sizes: n = 1670 adults across 27 nonbreeding seasons, making 4158 adult seasons for the seasonal mortality hazard rate; n = 1670 adults
across 702 weeks of 27 nonbreeding seasons, making 98,098 adult season weeks for the weekly mortality hazard rate).

Climate indices: Start date/days End date/days Duration (days) Temperature thresholds (°C) ∆AICc

Seasonal mortality hazard rate

Winter minimum temperature 20 June 28 July 39 −4 −51.9

Winter maximum temperature 5 July 5 August 32 14 −65.9

Winter rainfall 1 July 28 July 28 n.a. −37.0

Previous summer heat waves 14 December 9 January 27 28 −46.2

Previous summer rainfall 16 December 5 January 21 n.a. −26.2

Weekly mortality hazard rate

Winter minimum temperature 12 days prior −1 days prior 14 2 −29.6

Winter maximum temperature 22 days prior 17 days prior 6 11 −23.5
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wrens may have to increase their metabolic rates for thermoregula-
tion, thus increasing their energy expenditure at the same time as
when food resources for this insectivorous species may be at the
lowest. Death from starvation may occur after exhaustion of
energy stores (12). In addition, for fairy-wrens, the risk of predation
by avian predators may also be increased during cold spells—
because they need to spend more time foraging in the shorter
winter days, which may prevent effective predator surveillance
(28, 29). Overall, both starvation and predation may therefore
lead to higher mortality rates for fairy-wrens during cold spells.

Higher mortality in the nonbreeding season was also associated
with higher winter daily maximum temperatures. Specifically, indi-
viduals were more likely to die in a given nonbreeding season if the
daily maximum temperature index across a near 5-week period in
mid-winter was warm (Tables 1 and 2 and Fig. 2B) and more likely

to die in a given week if the maximum temperature index in the
week approximately 2 weeks prior was higher (Table 2 and fig.
S3B). To rule out the possibility that the latter result was due to neg-
ative effects of heat waves at the end of the previous autumn on in-
dividual mortality (Fig. 1A), we reran the weekly mortality analyses
using only mortality data in the coldest period of winter, in which
mortality was at its peak [i.e., weeks 24 to 35; Fig. 1B]. We found the
same effects of maximum temperatures (in the same window) on
individual mortality in these cold weeks (table S13). In addition,
we also carried out analyses in which we used the daily temperature
range (i.e., the difference between maximum and minimum tem-
peratures on a given day) in the hope of identifying a better
climate index than the maximum temperature index, but these
were not informative (results not shown). Overall, our analyses in-
dicate that the best winter climatic predictors of mortality rate in the

Table 2. Summary of the final Cox proportional hazards models of determinants of the seasonal mortality hazard rate and weekly mortality hazard rate
of adult superb fairy-wrens in the nonbreeding season. “Min. temp. in the current and previous weeks” and “Max. temp. 2 weeks prior” are the climate indices
of temperature identified as the best predictors for the mortality hazard rate in each week. “Temperature drop“ is a measurement of the change in temperature
from one warm week to following two cold weeks, which is calculated by using the standardized (to zero mean, unit SD) “Max. temp. 2 weeks prior“ minus the
standardized “Min. temp. in the current and previous weeks“. exp(β) is the hazard ratio.“Group size“ is the total number of individuals (except for juvenile females,
as these are likely to disperse) in the group at the start of that nonbreeding season.“Age” is an individual’s age in years stratified by early life (from age one to five)
orlate life (from age six onward). “Min. Temp. in the current and previous weeks“ denotes the sum of daily minimum temperature below 2°C in a period of 14 days
(from 12 days before to 1 day after the last day of each week; i.e., minimum temperatures in the last 2 weeks).“Max. temp. 2 weeks prior“ indicates the sum of daily
maximum temperature over 11°C in a period of 6 days (from 22 days before to 17 days before the last day of each week; i.e., maximum temperatures in the week
approximately 2 weeks prior). Significant effects (P ≤ 0.05) are indicated in bold. (Sample sizes: n = 1670 adults across 27 nonbreeding seasons, making 4158 adult
seasons for the seasonal analysis; n = 1670 adults across 702 weeks of 27 nonbreeding seasons, making 98,098 adult season weeks for the weekly analysis.)

Fixed effects: β SE (β) exp (β) z statistic P value

Final model of seasonal analysis

Group size 0.027 0.074 1.028 0.36 0.721

Age (covariate, from 1 to 5) −0.056 0.070 0.945 −0.80 0.425

Age (covariate, from 6 to 9+) 0.325 0.089 1.385 3.68 < 0.001

Winter min. temp. index −5.7 × 10−3 1.6 × 10−3 0.994 −3.59 < 0.001

Winter max. temp. index 2.6 × 10−3 0.6 × 10−3 1.003 4.62 < 0.001

Winter rainfall index −3.0 × 10−3 1.7 × 10−3 0.997 −1.72 0.086

Summer heat wave index 2.0 × 10−3 0.5 × 10−3 1.002 3.92 < 0.001

Summer rainfall index −1.0 × 10−4 1.5 × 10−3 0.99990 −0.07 0.945

Group size: Summer heat wave index −3.2 × 10−4 1.3 × 10−4 0.99968 −2.52 0.012

Group size: Age (covariate, from 1 to 5) 0.027 0.018 1.027 1.47 0.142

Group size: Age (covariate, from 6 to 9+) −0.009 0.011 0.991 −0.83 0.407

Final model of weekly analysis (AICc value = 14,926.92)

Group size −0.075 0.023 0.928 −3.26 0.001

Age (covariate, from 1 to 5) 0.023 0.027 1.023 0.84 0.402

Age (covariate, from 6 to 9+) 0.283 0.080 1.327 3.64 < 0.001

Min. temp. in the current and previous weeks −0.015 2.6 × 10−3 0.986 −5.68 < 0.001

Max. temp. 2 weeks prior 9.1 × 10−3 1.9 × 10−3 1.009 4.70 < 0.001

Final model of weekly analysis with temperature 'drop' (AICc value = 14,929.40)

Group size −0.076 0.023 0.927 −3.29 0.001

Age (covariate, from 1 to 5) 0.023 0.027 1.023 0.83 0.405

Age (covariate, from 6 to 9+) 0.282 0.079 1.326 3.64 < 0.001

Temperature drop 0.213 0.029 1.237 7.52 < 0.001
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nonbreeding season were the combination of minimum and
maximum temperature indices for both seasonal and weekly mor-
tality analyses (Table 2).

Why might warmer winter temperatures be associated with
higher mortality?Warm spells in winter may lead to the loss of ther-
mogenic capacity of cold-acclimatized individuals, who then suffer
increased mortality with the return of colder temperatures. Summit
metabolic rate (i.e., peak oxygen consumption under cold exposure)
has been confirmed as a correlate of cold endurance, with higher
summit metabolic rates associated with improvements in both
cold resistance (30) and survival in winter (15). A recent study of
white-throated sparrows (Zonotrichia albicollis) suggested that
within a period of 8 days, summit metabolic capacity was more
rapidly lost in a warm environment than it was regained on expo-
sure to a cold environment (16). In addition, it has been shown that
small birds need around 4 weeks to adjust their summit metabolic
rate when facing a sudden cold spell (31). The slow response of
summit metabolic rate to low temperatures may be due to the in-
trinsic limitations in the rate of changes in organ size and function
[e.g., pectoralis muscle; (32, 33)]. Possibly, fairy-wrens may also

reduce their summit metabolic rate after experiencing a relatively
warm spell but then have difficulty increasing it again in response
to colder temperatures and, hence, not be able to produce enough
heat to maintain normal body temperature in cold nights—which
may increase mortality risk. This suggestion was supported by our
results that individuals were more likely to die in a given week after
experiencing a large temperature drop from a warm to cold spell
(Table 2 and fig. S3C).

As we are lacking experimental and physiological studies on how
the summit metabolic rates of individuals respond to cold spells,
warm spells, or large temperature drops in this species, we are cur-
rently uncertain of the exact biological mechanisms that underlie
the associations between winter temperatures and individual mor-
tality. However, it is clear that knowing the time of death precisely
(here, the week of death, due to year-round censusing) is crucial to
identifying these patterns, which go unnoticed in seasonal mortality
analyses. In addition, there may also be other alternative explana-
tions for the associations of winter temperatures with mortality.
For example, in relatively warm spells, fairy-wrens may become ac-
customed to accumulating a relatively smaller amount of reserves
during the day for getting through the night. However, they may
then not adjust their feeding behavior sufficiently if the tempera-
tures drop to cooler levels, and more reserves are needed for ther-
moregulation. Future studies on how physiological and behavioral
traits respond to extreme temperatures outside the typical climate
niche of the species may provide valuable insights into the mecha-
nism of climate-induced winter mortality in wild bird populations.
In addition, comparative analyses of multiple populations or species
may also provide useful insights into how birds adapt to local winter
climate. Last, we note that previous studies of the effects of climate
on winter mortality have usually considered only daily minimum
temperature or daily mean temperature in winter and may therefore
have overlooked the potential different effects of winter daily
maximum temperatures (22, 34). Our analyses here indicate that
winter mortality could be determined by combinations of winter
minimum and maximum temperatures and also underline the dif-
ficulty of separating their different effects in seasonal mortality
analyses.

Higher mortality rate in the nonbreeding season was also asso-
ciated with higher intensity of heat waves in the previous summer
(Table 2 and Fig. 2D). More intense heat waves in summer are
usually associated with decreases in individual body mass or body
condition through, for example, reduced foraging efficiency (35,
36). Therefore, individuals may enter winter in poorer condition,
risking increased mortality rate in the harsh environment of
sudden cold spells. This is supported by evidence in other studies
that heat-exposed individuals are less likely to survive winter (37,
38). We suspect that carry-over effects of climate in the previous
summer on the mortality rate in winter may be more common
than currently appreciated for animals living in seasonal
environments.

Neither winter rainfall nor summer rainfall affected mortality
rate in the nonbreeding season if the temperature indices were
also included in the model (Table 2 and table S11). In our study
area in southeast Australia, the nature of the climate means that
cloud cover and rainfall during both summer and winter moderate
daily maxima and minima (table S16, and fig. S2, A and B). Thus,
the effects of winter and summer rainfall identified in their respec-
tive univariate models may be due to their correlations with the

Fig. 3. Temporal change in each climate index and annual average seasonal
mortality rate of adult superb fairy-wrens. (A-F) The solid lines and dashed lines
represent significant and nonsignificant relationships, respectively. r2 values are
from the linear regressions in table S14.
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winter minimum temperature index and the summer heat wave
index, respectively. In addition, the weekly mortality analysis indi-
cated that the best rainfall window identified by the models was a
false-positive signal (table S12). The results therefore illustrated the
difficulty of capturing the biological effects of rainfall on winter
mortality, even given high-resolution mortality data due to year-
round censusing.

Mortality in the nonbreeding season showed no change with age
in younger birds but increased substantially with age in older birds.
This result appears differently from our previous work on the same
population, which reported that individual mortality rate increased
linearly with individual age in both sexes (39). However, these two
studies considered different periods, as the previous work focused
on the mortality rate in the whole year, rather than only the non-
breeding season as considered here. There was no evidence of any

interaction between an individual’s age and the effects of the iden-
tified climate indices (table S8). This indicates that older adults who
had relatively higher mortality rate in the nonbreeding season were
no more sensitive to harsh climatic conditions than younger adults.
Future studies are needed to reveal whether the observed age-related
changes in mortality in the nonbreeding season were influenced by
extrinsic factors (e.g., changes in life history or behavior) or intrinsic
factors (e.g., aging).

Larger group size was associated with lower mortality rate in the
nonbreeding season in both seasonal and weekly analyses (Table 2).
Although a simple linear regression also indicated that larger
average group size in each season was associated with lower
annual average mortality rate (table S9), there was no effect of
average group size on annual average mortality rate when climate
indices were also included in the path analysis (Fig. 4A and table

Fig. 4. The standardized effect of temporal change in climate on the change of annual average seasonalmortality rate of adult superb fairy-wrens over time. (A)
Results of the path analysis model of the seasonal mortality rate in relation to three temperature indices, average group size, and year. Black and red arrows indicate
positive and negative relationships, respectively, and the width of arrows is proportional to standardized path coefficients next to each arrow. The solid lines and dashed
lines represent statistically significant and nonsignificant relationships, respectively. r2 values (within boxes) refer to the proportions of the variance of each response
variable explained by the predictor variables in the model of that response variable. (B) The indirect effects of year on the seasonal mortality rate through pathways of
each relevant climate index, average group size, and direct effect of year itself (accounting for effects of the other variables) in the path analysis model shown in (A). The
“total change” represents the total change in the seasonal mortality rate over the study period due to both climate change (i.e., the three temperature indices) and
change in other factors. Error bars are one SE. The dotted horizontal line represents the reference of 0. Statistics of goodness of fit for this model are χ2 = 2.380,
df = 6, P = 0.882; SRMR = 0.06.
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S15; path coefficient, −0.182 ± 0.117 SE). The inconsistency
between these two results may be due to collinearities between
average group size and climate indices (fig. S2C and table S16). In
addition, both the seasonal and weekly individual-level mortality
analyses have much larger sample sizes than the path analysis
and, therefore, may have more statistical power to disentangle the
effects of group size and summer heat waves. We expected that
group size might be relevant if individual fairy-wrens benefit
from larger group sizes through huddling together to keep warm
during cold nights, thereby reducing mortality rate. However, this
possibility was not supported because there was no interaction
between group size and winter minimum temperature index in
the seasonal mortality analysis (table S8). In addition, lower mortal-
ity rates may be associated with higher territory quality (e.g., roost
site, food resource, etc.) and therefore generate on average an accu-
mulation of helper males on territories (i.e., a larger group size). De-
termining the mechanisms underlying the correlation between
group size and mortality given the potential effects of confounding
variables considered is therefore difficult, especially as mortality
only occurs once for each individual. Higher nonbreeding season
mortality rates were especially associated with higher intensity of
heat waves in the previous summer when group size was smaller
(Table 2 and table S8). This may be because group size is again an
indicator of territory quality (with smaller groups on poorer terri-
tories), and individuals in poorer condition after intense summer
heat waves may be more at risk of winter mortality if they are on
a lower quality territory. Overall, our results indicate that social en-
vironment may be relevant for winter mortality and may also play a
role in mediating the association between climate and winter mor-
tality, but this complexity requires further study with careful anal-
ysis in the future.

Contribution of climate change to increasing mortality
over time
Our path analysis showed that increases in winter maximum tem-
perature index and summer heat wave index over the study period
made the most important contributions to an increased mortality
rate in the nonbreeding season over time (Fig. 4 and table S15).
Our results thereby contrast with those from a recent study,
which indicated that nonclimatic effects contributed substantially
to the temporal trends in avian life-history traits (40). They also
contrast with other studies of climate-induced change in winter
mortality, which have considered only mean temperatures in
winter, and have found that warmer winters reducewinter mortality
rate (5, 41, 42). We report a different pattern in birds that increases
in winter maximum temperatures (and also increased intensity of
heat waves in the previous summer) over time contribute to an in-
creased mortality rate in winter. We therefore suggest that the
effects of maximum and minimum temperatures on winter mortal-
ity should be tested separately in these studies.

Although our analysis revealed that climate change contributed
considerably to the increase of mortality rate in the nonbreeding
season, there may be other environmental changes that could also
have contributed in this process. For example, although not system-
atically documented, the vegetation in our study area may have de-
graded over the study period because of the decrease in annual
rainfall in this semiarid region. Degraded vegetation may lead to
lower insect abundance and thereby reduce food resources for
fairy-wrens, which may in turn increase mortality in harsh

winters. In addition, fairy-wrens may have difficulty hiding or es-
caping from avian predators in degraded vegetation. Overall,
climate may affect nonbreeding season mortality directly and/or in-
directly, which illustrate the difficulty of capturing the precise causal
structure of this process, even given long-term data.

The congruence between the results of our weekly and seasonal
mortality analyses suggest that changing climate over time could
affect individual life-history traits and have demographic conse-
quences. Recent studies have reported that climate-induced
change in life-history traits may strongly affect individual fitness
but still only weakly affect demographic rates [e.g., (43)].
However, for climate effects on life-history traits to contribute to
population dynamics requires that the climate-induced changes in
life-history traits are apparent at demographic levels (44). Our study
not only shows the effects of climate on individual mortality (in
weekly mortality analyses) but also illustrates the association of
mortality rate in winter with climate (in seasonal mortality analy-
ses). As the intensity of both winter warm spells and summer heat
waves in our study area increased over the study period (Fig. 3, B
and D) and is projected to increase further in the future (45), the
adverse effects of rising maximum temperatures on winter mortal-
ity may not only contribute to historical population decline but may
also constitute a substantial threat to future population persistence.
To quantify the effect of maximum temperatures on population
growth and predict future population dynamics, a demographic ap-
proach that considers contributions of each demographic variable
to population dynamics is a logical next step (46).

METHODS
Study population and species
We analyzed data from a long-term study of superb fairy-wrens in
the Australian National Botanic Gardens, Canberra, southeast Aus-
tralia (35°16′S, 149°6′E). The study site is on an inland plateau (ca.
650-m altitude) and, hence, has a highly seasonal continental
climate, with the highest daily maxima of 44°C and the lowest
daily minima of −8°C during the study period. Temperature fluctu-
ations show a clear seasonal pattern, with coldest temperatures in
July and the hottest temperatures in January (Fig. 1). Daily fluctu-
ations can exceed 20°C but are moderated by the presence of cloud
cover and resultant rainfall. There is scarcely any snow, but frosts are
common on dry winter mornings. Although rainfall shows a
summer peak, driven by heavy summer thunderstorms, rainfall pat-
terns are much less regular, and there have been prolonged periods
of drought during the study (25).

The study area encompasses a total of ~60 ha of plantation of
Australian native shrubs and trees, which supports between 35
and 90 fairy-wren territories in a given year (23). We have
studied the population continuously since 1988, although because
the study area was expanded substantially in 1991/1992, we report
here the data from 1993 to 2019. Almost all birds in the study pop-
ulation were color-banded, either as nestlings if they were born in
the study area or as juveniles or adults if they had dispersed into the
study area.

Superb fairy-wrens form socially monogamous pairs that live in
year-round territories. During the breeding season, the dominant
pair breed either alone or assisted by up to five male helpers (23).
The species is multibrooded, with breeding usually starting in Sep-
tember, at the start of the austral spring, and the last nests fledging
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around February of the subsequent calendar year (26). Females are
solely responsible for nest building and incubation, but all males
contribute to nest and brood defence and provisioning of nestlings
and fledglings (23). Although birds forage outside their breeding
territory in the nonbreeding season, territories are maintained
throughout the year and are used for nighttime roosts. Female
fairy-wrens always disperse to a new territory in the first year of
their life, often moving over long distances. They start breeding in
the first breeding season after they fledge and thereafter only rarely
move more than one or two territories (47). In contrast, males are
highly philopatric to their natal territories and will live and gener-
ally die on their natal territory or an immediate neighboring terri-
tory (48).

Measuring mortality rate
We analyzed here the mortality of adult birds subsequent to their
first breeding season because it is not possible to distinguish mor-
tality from natal dispersal outside the study area in juvenile females
(before the first breeding season). In addition, we focused on mor-
tality during the nonbreeding season, which is the main period in
which deaths of adults occur (24). Thus, for example, for a bird born
in the 2000/01 breeding season, we would consider its potential
nonbreeding season mortality from 2002 onward. For a given
breeding season, the “start” was defined as the date by which 10%
of females had laid their first clutch; and the “end” was defined as
the date of the last nest completion for 90% of females [where nest
completion is when either chicks fledged or a nest was preyed upon;
following, for example, (49)]. We then used these calculations of the
timing of the breeding season each year to define as an overall non-
breeding season period between the latest end of any breeding
season across all years (12 March or week 11 of the calendar year,
which occurred in 2011) and the earliest start of any breeding
season (9 September or week 36, which occurred in both 1998
and 1999; Fig. 1A). The analyses then considered mortality in this
same 6-month nonbreeding period each year.

We estimated a seasonal mortality rate as the proportion of in-
dividuals alive at the start of the nonbreeding season each year
(week 11) that then died across the entire nonbreeding season
that year (weeks 11 to 36; Fig. 1B). During each nonbreeding
season, we aimed to observe every individual in the study popula-
tion every week. If all members of a group were seen in routine
weekly censuses in a given week, no further effort was devoted to
that group. However, if one or more members was not seen in the
weekly censuses, further attempts were made either on the same day
or on subsequent days until the sighting had been achieved. Usually,
this confirmation can be achieved in 2 days, but it may take longer
on rare occasions. However, there have never been any cases of an
individual being missing for more than 2 weeks and then being seen
again. Thus, our censusing generated nearly perfect detection. Indi-
viduals were also assumed to have died if they had been replaced as
the dominant on the territory by another bird. The death date of an
individual was then calculated as the midpoint between the date
when it was last observed and the date of the first census on
which it was not observed. As our mortality data were therefore col-
lected with weekly resolution through the nonbreeding season, we
could estimate each individual’s week of death (for example, if the
death date of an individual was calculated as 14 June, we estimated
its death date as being week 24). From these individual death weeks,
we then also calculated the weekly mortality rates in each

nonbreeding season, defined as the proportion of individuals that
died in that week of that year (Fig. 1B).

Climate data
We used data on daily weather at Canberra Airport (~8 km east of
the study area) obtained from the Australian Bureau ofMeteorology
(http://bom.gov.au/climate/data). We explored the effects of
minimum temperature, maximum temperature, and rainfall in
our analyses.

Mortality analyses
We fitted one set of models of individuals’ seasonal mortality rate
and another of individuals’ weekly mortality rate: These models
asked, respectively, whether or not an individual survived the non-
breeding season in a given year, or whether or not it survived a given
week in the nonbreeding season that year. We analyzed mortality
data using time-dependent Cox proportional hazards models
fitted with the “coxph” function in the R package survival (50,
51). All models used a generalized estimating equation approach
and specified three cluster items (i.e., grouping the correlated obser-
vations of year of observation, individual cohort, and individual ID)
to control for the nonindependence of data points (52). We initially
included the following fixed effects in every model:
Sex/breeding status
For each individual, we tested for differences in mortality hazard
rate with sex and also with breeding status by fitting a factor that
comprised three categories: female, dominant male, and helper
male, with male status being defined from the breeding season im-
mediately before the current nonbreeding season. Replacing “breed-
ing status” by “sex” (i.e., just male/female) gave qualitatively the
same results in the following analyses.
Age
We fitted an individual’s age in years and stratified the effect of age
by early life (from age one to five; 90.0% of the population, n = 3741
adult seasons) and late life (from age six onward; 10.0% of the pop-
ulation, n = 417 adult seasons) with the “strata” function in the sur-
vival package because our preliminary analyses suggested that the
effect of age on winter mortality was different between early life
and late life [using the same method as (39)]. All analyses only con-
sidered individuals in thewinters following the first breeding season
they experienced, i.e., from the age of 1 year onward. Of the total of
1670 adults, there were 8 (7 males and 1 female) who reached age 10
or more. For this very small numbers of very old individuals, we
pooled individuals aged nine or more years old into a single catego-
ry and treated them all as age nine.
Group size
Group size is the total number of adult and juvenile individuals
(except for juvenile females as these are likely to disperse) in each
group at the start of the mortality period being considered (i.e.,
either the entire season or the respective week). This provides an
index of social environment conditions.
Number of successful broods
The number of successful broods produced in the breeding season
immediately prior to the current nonbreeding season was fitted as a
four-level factor (0, 1, 2, and 3), counting the number of broods that
survived to fledging. This variable was tested for any effects of pre-
vious reproductive effort on subsequent survival and was fitted for
both sexes.
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The two-way interactions between the four fixed effects were also
tested but are not reported in detail as there was no evidence for
statistical support for any of them; in particular, there was no
support for any sex differences in the effects of age, group size, or
number of successful broods. All continuous variables met the lin-
earity assumption based on plotting themartingale residuals against
continuous variables, and all models met the proportional hazards
assumption based on plots of scaled Schoenfeld residuals (53). Col-
linearity among the predictor variables was assessed using the var-
iance inflation factor (VIF) analysis. All VIF values were well below
a threshold of three, indicating low collinearity among them (54).
Models were compared using AICc [which balances model fit and
complexity; (55, 56)] by using the “dredge” function in the R
package MuMIn (57). We compared models with different combi-
nations of fixed effects and a null model with just an intercept and
identified the best models as those with the lowest AICc values.

Identifying a baseline model
We first fitted Cox proportional hazards models for the seasonal or
weekly mortality hazard rate to establish a baseline model with
which to test effects of nonclimatic variables. These models had
fixed effects of sex/breeding status, age, group size, and number
of successful broods, as described above (see tables S1 and S3 for
details of initial baseline models). For the final baseline models of
both seasonal and weekly mortality hazard rates, only group size
and age were included because sex/breeding status and the
number of successful broods were both dropped in the model selec-
tion process (tables S2 and S4).

Sliding window analyses
For both seasonal and weekly mortality hazard rates, we used the
final baseline models to identify a single best window for each
climate variable considered (temperature variables or rainfall; see
below). Using a sliding window approach implemented in the R
package climwin (21), we compared models fitting the sum of the
climate variable within different windows varying both start and
end dates (using the mean rather than the sum gave very similar
results in all analyses) and identified a best window that had the
model with the lowest AICc value and, hence, the greatest difference
in AICc values (∆AICc) between it and the final baseline model
with no climate variables. Given the large number of time
windows being considered, we used a randomization approach to
check whether this best window for a given climate variable could
be a false-positive result (21): Full details are provided in the Sup-
plementary Materials. If a false positive likely occurred, we report
the window for completeness but do not consider it further. In ad-
dition, as an influence of time windows, shorter than 3 weeks on
seasonal mortality seems very unlikely due to the long duration of
nonbreeding season; we also required any best window to span at
least 3 weeks in the analysis of the seasonal mortality hazard rate.
However, we did not set any minimum length of time windows in
the analyses of the weekly mortality hazard rate. Moreover, we only
tested for linear effects of each climate variable because we are in-
terested in the direction of the average effect of climate on mortality
(for example, whether lower minimum temperatures in winter are
associated with higher mortality) rather thanmore complex nonlin-
ear relationships. We fitted slightly different climate variables for
the seasonal versus weekly mortality hazard rate as follows:

Identifying climate windows for the seasonal mortality
hazard rate
For the seasonal mortality analyses, we considered absolute time
windows of climate, defined by the calendar dates of the window
(21). We tested for the following effects of climate in the nonbreed-
ing season in a given year and also for the longer-term effects of
climate in the previous breeding season:

For the effects of climate in the nonbreeding season, we ran
sliding window analyses to identify the best window for
minimum temperature, maximum temperature, or rainfall sepa-
rately. Furthermore, for minimum and maximum temperatures,
in addition to summing the daily temperature values within a
given window, we also allowed for “threshold” effects by consid-
ering only the sum of values below (for minimum temperature)
or above (for maximum temperature) a given threshold (e.g., the
sum of “degree days” more than 12°C over a 30-day period). We
compared models across a range of possible threshold values,
and the final best model was identified as that where the
climate window and (if relevant) threshold value generated the
lowest AICc value. Our analyses indicate that threshold models
usually gave better fits than using just the observed temperatures
on each day, although results were always qualitatively similar.
Full details of this process are presented in the Supplementary
Materials (Supplementary Methods and table S5). As the best
windows of the three climate variables all fell in austral winter
(Table 1), we refer to the relevant climate windows as winter
minimum temperature, winter maximum temperature, and
winter rainfall.

For the longer-term (carry-over) effects of climate in the previ-
ous breeding season, we considered only maximum temperatures
(and potential threshold effects; see the Supplementary Materials)
and rainfall because minimum temperatures are unlikely to be lim-
iting in the relatively warm breeding season. As the best windows of
both climate variables fell in the austral summer (Table 1), we refer
to the relevant climate windows as summer maximum temperature
and summer rainfall. In addition, as the best window identified for
summer maximum temperature had a temperature threshold of
28°C, we refer to this index as summer heat waves (Supplementary
Methods and table S6).

The above analyses gave us indices for five climate variables:
winter minimum temperature, winter maximum temperature,
winter rainfall, summer heat waves, and summer rainfall. We
tested for the effects of any interactions (i) between climate
indices and (ii) between climate indices and nonclimatic vari-
ables by adding all terms plus their two-way interactions to
the final baseline model of seasonal mortality hazard rate,
respectively.

Last, for illustration purposes, we regressed the annual average
seasonal mortality rate in each of the 27 years against each
climate index in five simple linear regressions and then their com-
binations (see tables S10 and S11) in twomultiple linear regressions.
We just presented figures (with raw data) of associations between
single climate index and annual average seasonal mortality rate
without accounting for any other variables (Fig. 2) because they
are more informative than the prediction lines of Cox proportional
hazards models (e.g., fig. S3).

Lv et al., Sci. Adv. 9, eabm0197 (2023) 4 January 2023 11 of 14

SC I ENCE ADVANCES | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org on January 10, 2023



Identifying climate windows for the weekly mortality
hazard rate
We next used our high-resolution monitoring data from the weekly
censuses to explore fine-scale effects of climate on the weekly mor-
tality probability of individuals. As only the climate up to and in-
cluding a given week can be relevant for mortality in that week of
that year, we tested for the effects of climate in time windows
defined by their dates relative to the focal week. Specifically, for
each week, we considered the effects of climate in periods backdated
from the last day of the focal week on the probability that an indi-
vidual died in that week. Thus, the mortality hazard rate of each
week will be related to its own window of climate (21). In this
case, we only tested for recent effects of climate in the nonbreeding
season, up to 30 days (i.e., a month) before and 3 days after (i.e.,
negative numbers in Table 1 and tables S12 and S13) the last day
of the focal week. Up to 3 days after the death date were included
in the analyses because the calculated death date for a given individ-
ual might be as much as 3 days earlier than the real death date. For
example, if an individual died on 20 June, it would have been noted
as alive in a 14 June census but not observed on 21 June, sowewould
calculate its death date as 17 June (i.e., the last day of week 24).

Again, using the time-dependent Cox proportional hazards
models in climwin (21), we identified the best windows for effects
of minimum temperature, maximum temperature, and rainfall on
individuals’ hazard rate of mortality in a given week, respectively.
We also tested for the effects of interactions between these three
climate indices (if identified) or between climate indices and non-
climatic variables on the weekly mortality hazard rate.

Tests for temporal trends in climate indices and
mortality rate
To test whether any of the relevant climate indices or the annual
average seasonal mortality rate had changed directionally during
the study period, we fitted simple linear regressions. Year was
fitted as a continuous effect, and the response variable was each
climate index of the three winter climate variables or the two
summer climate variables for the seasonal mortality hazard rate
or the seasonal mortality rate (i.e., 27 years for each regression;
one value per year).

Path analysis of effect of temporal change in climate on
mortality rate
Finally, we examined to what extent the change in climate over time
explained the change in annual average seasonal mortality rate over
the study period using path analysis in the form of structural equa-
tion models (58). We investigated the impacts of: relevant climate
indices identified in the sliding window analyses of seasonal mor-
tality rate; the average group size in the population at the start of
each nonbreeding season to test for effects of the social environ-
ment; and year to control for the effects of other temporal trends
not accounted for by climate or average group size (40). The path
analysis was fitted with the function “sem” in the R package lavaan
(59).We assumed that all dependent variables could be approximat-
ed by a Gaussian distribution. Furthermore, for the path analysis
presented in the main text, we rescaled all variables to mean zero
and SD of one such that the path analysis model outputs standard-
ized path coefficients (Fig. 4). (For an easier interpretation of the
results biologically, we also present the effects of year on the season-
al mortality rate through each pathway from the unstandardized

path coefficients in fig. S4.) We considered a model with year influ-
encing seasonal mortality rate both directly and indirectly through
effects on climate indices and average group size (Fig. 4A).

To assess whether the model fitted the observed data, we per-
formed a chi-square test of goodness of fit and calculated the stan-
dardized root mean square residual [SRMR; (60)]. A nonsignificant
chi-square test indicates that the predicted covariances among var-
iables in the model are not distinguishable from the observed co-
variances, while SRMR calculates deviations between observed
and predicted covariances. In addition, as there is collinearity
among predictor variables in our hypothesized causal path structure
(table S16 and fig. S2), we checked the bias and imprecision of es-
timators using numerical simulations. We generated simulated da-
tasets with 27 observations for each variable (i.e., equal to our study
sample size) based on the covariance patterns found in the case
study population using the “simulateData” function in lavaan. For
each estimator, we next calculated the mean bias
[B̂ ¼ 1

nsim

Pnsim
i¼1 ðθ̂i � θÞ] and the average empirical standard error

[Ê ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
nsim� 1

Pnsim
i¼1 ðθ̂i � θÞ

2
q

] of the estimate, with θ being the pa-

rameter value used to simulate the data (“true value”), θ̂i being the
estimated parameter from the simulated i-th repetition, θ being the
mean of the estimated parameters, and nsim = 27 being the number
of simulated datasets (61). The simulation results indicated that our
path analysis model was practically unbiased (fig. S5).

We estimated the path coefficients with a maximum likelihood
method (58) and determined the significance of each with a Wald
test. For each variable, we calculated the indirect effect of year on
seasonal mortality rate mediated by that variable by multiplying
the path coefficient of the effect of year on that variable with the
path coefficient of the effect of that variable on the seasonal mortal-
ity rate (therefore, for example, the indirect effect of year on seasonal
mortality rate mediated by the winter maximum temperature index
was 0.524 × 0.393 = 0.206; Fig. 4A). To obtain the SEs of these in-
direct effects, we bootstrapped for 10,000 samples. We defined the
“total effect” of year on seasonal mortality rate as the sum of all the
indirect effects plus the remaining direct effect of year. To estimate
the percentage change in seasonal mortality rate over time due to a
given climate pathway, we calculated the ratio of the effect for this
climate pathway relative to the sum of the absolute values for all
pathways [following, for example, (40)]; therefore, for example,
the percentage change due to the winter maximum temperature
index was 0.206/0.633 = 32.5%.

Supplementary Materials
This PDF file includes:
Supplementary Methods
Figs. S1 to S5
Tables S1 to S16
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