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INTRODUCTION

Knowing the distribution of a species is fundamental 
to understanding its ecology, resolving threats and im-
plementing conservation actions. Species distribution 
can rarely be described by knowing the whereabouts of 

every population; instead, it must usually be estimated 
based on known occurrences and habitat requirements. 
Species distribution models (SDMs) can be developed 
to help estimate and define the likely distribution of a 
species (Cayuela et al., 2009; Drew et al., 2011; Gobeyn 
et al., 2019; Zhang & Li, 2017). Accurate SDMs can be a 
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Abstract
The Mahogany Glider (Petaurus gracilis) is one of the most endangered marsu-
pials in Australia. Its known distribution is an approximately 120 km strip of frag-
mented coastal woodland in north- east Queensland, from north of Townsville to 
the Tully area. Records are clustered in a number of well- surveyed areas, with 
significant areas of lowland habitat unsurveyed. Around 30% of historic records 
fall in areas that were subsequently cleared for farmland, and ongoing clearing 
and fragmentation of lowland sclerophyll forest continues within the potential 
distribution. Resolving the distribution is an urgent requirement to guide conser-
vation but Mahogany Gliders are difficult to detect in the field. Species distribu-
tion modelling offers a technique for estimating the fine- scale distribution and for 
targeting further field survey and conservation efforts. We used known occur-
rence records (N = 481) to predict the distribution of Mahogany Gliders across 
the Wet Tropics bioregion. We used climatic, topographic and other environmen-
tal predictors to generate distribution models using Maxent and Random Forest 
algorithms, each with two bias correction methods. The predictions revealed 
that many unknown populations may exist within the currently defined distribu-
tion and in important areas beyond this (e.g. Hinchinbrook Island). There was 
reasonable congruence between models, and we include syntheses of the mod-
els to present the most likely current distribution. The most important predictor 
variables across the models were precipitation seasonality (high seasonality), 
elevation (generally <100 m), soil type (hydrosols) and vegetation type (includ-
ing Eucalyptus and Melaleuca woodlands). Our results identify core habitat and 
reveal key areas that require targeted field surveys. Importantly, the predicted 
suitable habitat is highly fragmented and ongoing conservation efforts need to 
improve habitat connectivity and limit further fragmentation.
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time-  and cost- effective way to provide essential information for species con-
servation (Drew et al., 2011). Empirical studies have used SDMs to search 
for additional populations and suitable habitats for endangered species, 
such as the Gulbaru Leaf- tailed Gecko (Phyllurus gulbaru) in north- east 
Australia (Bertola et al., 2018) and Juliana's Golden Mole (Neamblysomus 
julianae) in South Africa (Jackson & Robertson, 2011). Distribution models 
are also powerful in assessing threats and distributional change through 
time; for instance, quantifying the range and population decline of Spotted- 
tailed Quolls (Dasyurus maculatus gracilis) in north- east Australia over 
the past century (Uzqueda et al., 2020), or evaluating the risk of climate 
change on the threatened Iberian Desman (Galemys pyrenaicus) in Europe 
(Morueta- Holme et al., 2010). The predictions from SDMs can also identify 
areas of high conservation value and improve conservation planning; for in-
stance, systematically selecting reserves with high avian diversity (Moradi 
et al., 2019), or ranking threats and prioritizing management actions (Ricca 
et al., 2018).

A variety of algorithms have been developed for species distribution 
modelling. By overlaying environmental predictors (spatial data) with 
known sighting records of one or multiple species, the algorithms com-
pute the probability (likelihood) of a species occurrence given a set of 
conditions. The distance- based BIOCLIM algorithm (Busby,  1991) was 
the first algorithm widely used to answer a variety of questions in ecology 
and conservation (Booth et al., 2014; Busby, 1991; Nix & Busby, 1986) but 
was largely replaced by machine- learning algorithms in the 2000s (Elith 
& Leathwick,  2009; Gobeyn et al.,  2019; Pecchi et al.,  2019). Machine- 
learning algorithms, especially Maxent (which is based on probability 
density, Berger et al., 1996; Rosenfeld, 1996) and Random Forest (which 
utilizes decision trees, Breiman, 2001), dominate current SDM methodol-
ogy. They are known for being ecologically interpretable, stable and accu-
rate, and being able to integrate categorical predictors and missing data 
(Pecchi et al., 2019; Zhang & Li, 2017). To account for uneven sampling/
sightings, bias- correcting methods that manipulate the background se-
lection (pseudo- absence) to reduce sampling bias were also established 
(Phillips et al., 2009; Vollering, Halvorsen, & Mazzoni, 2019). Contemporary 
SDMs with corrected bias and testable accuracy have therefore become a 
powerful tool to model suitable habitat of a species currently, in the past, 
or in future scenarios (Zimmermann et al., 2010). Examples include man-
aging natural resources (Booth, 2018) and predicting distributional change 
of invasive or endangered species under climate or other human- induced 
changes (Jaeschke et al., 2013; Rodríguez- Rey et al., 2019).

The Mahogany Glider (Petaurus gracilis) is an endangered arboreal mar-
supial endemic to the Australian Wet Tropics of north- eastern Queensland 
(Goldingay & Jackson, 2004; Figure 1c). The species was originally collected 
from a few specimens in the 1800s and then not seen for over a century 
(Van Dyck, 1992, 1993). Following rediscovery (Van Dyck, 1993), the spe-
cies has been subject to survey and conservation efforts (Jackson, 1998; 
Jackson et al.,  2019; Jackson & Diggins,  2020; Parson & Latch,  2006). 
Mahogany Gliders inhabit open canopy sclerophyll forests in the eastern 
lowlands of the Wet Tropics, with habitat determined by a complex interplay 
between rainfall, fire and possibly other factors (Jackson, 2000a; Jackson 
& Claridge, 1999; Jackson & Robertson, 2011; Van Dyck, 1993). The spe-
cies does not occur in rainforests, which cover some of the lowlands and 
much of the mid and higher elevations of the region. Even within lowland 
woodland habitats, the glider has a patchy distribution, probably driven 
by a high diversity of flowering trees as a stable food source (Figure 1b; 
Jackson, 1998, 2000a, 2001; Van Dyck, 1993).
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All Mahogany Glider records are located in the southern and central 
Wet Tropics bioregion, along a coastal strip from Ollera Creek and Crystal 
Creek at the base of the Paluma Range, near Townsville, to 120 km north 
near Tully (Figure 1a). The lowland forests in this region have suffered ex-
tensive clearing in the last 150 years, due to clearing from forestry, cat-
tle grazing and intensive large- scale sugar cane farming. It is estimated 
that about 50% of the glider's suitable habitat was lost between 1930 and 
2007 (Jackson et al.,  2011). Habitat loss and accompanying population 
fragmentation threaten Mahogany Gliders (Jackson et al., 2019; Jackson & 
Diggins, 2020; Jackson & Robertson, 2011; Parson & Latch, 2006), and it is 
therefore essential to understand their current distribution in detail.

The distribution of Mahogany Gliders has been modelled three times 
using BIOCLIM. The model from Van Dyck (1993) used 16 sighting re-
cords and 28 climatic variables, predicting a confined distribution around 
known points between Ingham and Tully. The second model (Jackson 
& Claridge,  1999) used 144 records and 35 climatic variables, and it 
extended predicted habitat south to the northern end of the Paluma 
Range lowlands. The most recent model (Jackson & Robertson, 2011) 
used 310 records, 10 climatic variables, manually incorporated vegeta-
tion types, and focussed more on identifying habitat remnants within the 
known range than assessing the full potential distribution. Two issues 
have limited the accuracy of modelling efforts to date: (i) bias caused 
by uneven survey effort has not been adequately accounted for, and (ii) 
BIOCLIM does not perform as well as subsequent modelling techniques 

F I G U R E  1  Sighting records and typical habitat of Mahogany Gliders (Petaurus 
gracilis). (a) Sighting records (red dots) demonstrate the known distribution of the gliders 
within the Wet Tropics, north- eastern Queensland, Australia. (b) Mahogany Gliders prefer 
sclerophyll forests of open structure and with a diversity of flowering plants at the tree and 
shrub level. (c) Photo of a Mahogany Glider, with characteristic long, tapering tail (Photo 
credit: Daryl Dickson).

 14429993, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/aec.13266 by E

ddie K
oiki M

abo L
ibrary, W

iley O
nline L

ibrary on [04/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



292 |   CHANG et al.

(Hijmans, 2012; Pecchi et al., 2019; Phillips et al., 2009). Therefore, the 
modelled distributions to date are likely to misrepresent the Mahogany 
Glider distribution, and hence populations both within and outside the 
known range may not be detected and protected. The more advanced 
modelling methods now available (Gobeyn et al.,  2019; Hijmans & 
Elith, 2016), enable better correction for sampling bias, identification of 
important categorical variables (e.g. vegetation type) and quantification 
of habitat suitability with higher resolution and accuracy.

In this study, we modelled the potential distribution of Mahogany 
Gliders using two high- accuracy and ecologically interpretable SDM 
algorithms: Maxent and Random Forest (Elith et al.,  2011; Zhang & 
Li, 2017). We used a comprehensive, vetted database of known sight-
ing records and modelled all potential habitat in the Wet Tropics region. 
In the modelling process, we assessed the determinants of the glider's 
current distribution, including climatic and environmental factors, as well 
as human land use factors. We expected the new algorithms to pro-
vide finer- scale prediction of habitat suitability within the known range, 
and to better estimate the likelihood of occurrence beyond the known 
range. We aimed to use species distribution modelling to map all area 
of potential habitat, identify core and peripheral populations, and as-
sess potential connectivity across the range. The ultimate objective of 
the modelling was to produce maps to guide on- ground actions such 
as surveys, replanting and habitat improvement, and inform broad- scale 
conservation actions such as genetic sampling to assess connectivity 
among populations.

METHODS

Our broad modelling approach was as follows, with all detail in the sections 
below. We collated all known sighting records and environmental predictor 
variables deemed relevant to Mahogany Gliders and modelled their distri-
bution with both Maxent and Random Forest algorithms. We constructed 
all models in R (R Development Core Team, 2020), using three modelling 
packages (two Maxent packages and one Random Forest package) and 
two bias correction methods within each of these, resulting in six models in 
total (Table 1). We then tuned the hyperparameters of the models. For the 
final distribution maps, we summarized the predictions from Maxent and 
Random Forest models in two ways: by overlaying a threshold prediction 
from all six models, and by averaging the predicted probabilities weighted 
by their accuracy.

TA B L E  1  Summary of species distribution models used in this study, including the bias correction approaches, the modelling algorithm, 
the R package (shown in italic) in which the model was implemented, and whether variable selection and model tuning were performed

Model Bias correction Algorithm R package
Variable 
selection

Model tuning 
package

1 TGB + spThin Maxent MIAmaxent Yes NA

2 TGB + spThin Maxent SDMtune Yes SDMtune

3 TGB + spThin Random Forest randomForest Yes caret

4 BT Maxent MIAmaxent Yes NA

5 BT Maxent SDMtune Yes SDMtune

6 BT Random Forest randomForest Yes caret

Abbreviations: BT, background thickening; TGB, target group background.
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Sighting records

Sightings of Mahogany Gliders were obtained from Terrain Natural 
Resource Management (Terrain NRM) (N  =  394) and the WildNet 
Database (Queensland Government) (N  =  292). We combined the two 
datasets, removing duplicate records and records without GPS coordi-
nates (i.e. with only a locality name). We also transformed all Cartesian 
coordinates (easting, northings) to a standardized datum WGS 84 (EPSG 
4326) (R package sf, Pebesma, 2018). The final dataset consisted of 481 
records, with 98.5% of these (i.e. 474 records) falling between 1990 and 
2010 (Appendix S1).

Predictor dataset

We used 19 climatic variables from accuCLIM that were specifically ad-
justed for the Australian Wet Tropics bioregion, averaged from the time 
period between 1996 and 2015 (Storlie et al., 2013; Appendix S2). These 
climatic predictors have been widely applied to model Wet Tropics species 
(Bertola et al.,  2018; Reside et al.,  2019; Uzqueda et al.,  2020). We in-
cluded four topographic variables: elevation, aspect, slope and distance to 
major waterways (Queensland Government, 2017). These were all continu-
ous numeric values. We also included five environmental variables: veg-
etation type, soil type, major land use, forest coverage and fire frequency 
(Appendix S2).

Vegetation type represented pre- clearing vegetation (to ensure 
the sighting records are not situated on farmland, due to subsequent 
clearing), and consisted of 41 vegetation types in the Wet Tropics 
(Department of the Environment,  2012). Land use type contained six 
categories: Conservation and Natural Environments, Relatively Natural 
Environment, Dryland Agricultural and Plantations, Irrigated Agricultural 
and Plantations, Intensive Uses, and Water (Department of Environment 
and Science, 2019). Soil type contained 14 major soil groups from the 
collation of Australian Soil Resource Information System (ACLEP, 2014). 
Land use data were obtained for 2 years: 1999 (to represent land use 
for records before the year 2000) and 2010 (to represent land use for 
records after the year 2000). Forest coverage contained Landsat sat-
ellite data that was classified using canopy cover: Non- woody (<5%), 
sparsely covered (5%– 19%), and densely covered (>20%) (Department 
of Industry, Science, Energy, and Resources,  2020). Forest coverage 
was also obtained for two time periods by averaging yearly data from 
before (1908– 1999) and after (2001– 2010) the year 2000. Importantly, 
the two periods represent the time before and after the announcement 
of new tree- clearing laws (Vegetation Management Act 1999), which re-
sulted in a peak in vegetation clearing in the region around the year 
1999 (McGrath,  2007). Fire frequency was derived from AVHRR (the 
Advanced Very High Resolution Radiometer), representing the number 
of fires detected per pixel between 1997 and 2011 (Craig et al., 2002).

All 28 variables (19 climatic, 4 topographic and 5 environmental) 
were standardized to the same geographic extent and resolution (cell 
size = 0.0025 degree, about 250 m) as the climatic spatial layers and 
to the same coordination system matching the sighting records (WGS 
84, EPSG 4326) (R package sp, Pebesma & Bivand,  2005; R pack-
age raster, Hijmans & van Etten, 2016). Correlated predictors were re-
moved during model fitting as described below for each of the modelling 
approaches.
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Model prediction

Current suitable habitat for the Mahogany Glider was identified based on 
the most recent available layers for vegetation type (current post- clearing 
vegetation, last updated for Queensland in 2006), land use (2019) and for-
est coverage (2018). All spatial layers used in model training and prediction 
are presented in Appendix S2.

Bias correction

Sighting records can result in bias in the modelling process due to geo-
graphically uneven survey effort or detection success, which can affect 
model performance (Hijmans, 2012; Veloz, 2009). We addressed sampling 
bias using two bias correction methods to identify and correct uneven 
sampling effort and localized clustering: (i) Target group background (TGB) 
(Phillips et al., 2009) in combination with species thinning (spThin) (Aiello- 
Lammens et al., 2015) (demonstrated in Appendix S3) and (ii) background 
thickening (BT) (Vollering, Halvorsen, & Mazzoni, 2019). Applying two bias 
correction methods allowed us to examine the effect of sampling bias in 
our datasets and the potential differences in model prediction based on the 
correction approach.

Species thinning in combination with target group background 
(TGB + spThin)

Target group background has been widely used to correct sampling bias 
in SDM with presence- only data (Phillips et al., 2009; Ranc et al., 2017). 
The methodology selects background points using sighting records of 
similarly surveyed species to assess survey effort across the environ-
ment and account for bias. We selected 27 Wet Tropics arboreal mammals 
that are surveyed in a similar way to Mahogany Gliders (i.e. spotlighting, 
cage trapping, camera trapping). These included other species of glid-
ers, possums and tree- dwelling rats (Appendix S4). The sighting records 
of these animals were obtained from the WildNet Wildlife Records spa-
tial dataset (Queensland Government, 2020) and were used to create a 
two- dimensional kernel density estimation, also known as TGB bias grid 
(R package MASS, Ripley et al.,  2013; Appendix  S5). We thinned the 
Mahogany Glider sighting records from 481 to 136 for the TGB dataset 
using a 1 km grid because over- clustered records further bias the predic-
tion (R package spThin, Aiello- Lammens et al., 2015; Appendix S3).

Background thickening

Background thickening was proposed as an alternative correction for un-
even sampling effort to species thinning because, unlike species thinning, 
background thickening does not remove sighting records. Instead, it in-
creases the clustering of background points to match the bias in the sighting 
records (Vollering, Halvorsen, & Mazzoni, 2019). The method creates buff-
ers around the sighting records, and then uses the buffers' intersection rate 
as an indicator of sampling effort. Following the methodology described in 
Vollering, Halvorsen, Auestad, et al. (2019), we created variograms to com-
pute spatial continuity for the environmental variables selected by a pilot 
model (TGB model) (Gräler et al., 2016). Second, we created a geodesic 
buffer using the above continuity distance around the sighting records and 
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calculated the intersection rates of these buffers (Ștefan,  2019). The in-
tersection rates served as sampling probability in the bias grid. We then 
selected the background points to match the sampling bias for sighting 
records (i.e. more background points being sampled in areas with clustered 
sighting records).

Model algorithms, variable selection, 
tuning and evaluation

We produced SDMs of Mahogany Gliders with two algorithms: Maximum 
Entropy (Maxent) and Random Forest. We applied these two broad ap-
proaches in R (R Development Core Team,  2020), using three model-
ling packages: MIAmaxent (Vollering, Halvorsen, & Mazzoni,  2019) and 
SDMtune (Vignali et al., 2020) for Maxent modelling, and randomForest 
(Breiman,  2018) for Random Forest modelling. We applied the two bias 
correction approaches (TGB +  spThin, BT) as described above in each 
modelling process, resulting in six SDMs in total (Table 1).

We examined and evaluated the models using standard evaluation met-
rics for SDMs: area under the receiver operating characteristic curve (AUC), 
variable response curves and Akaike information criterion (AIC). Being 
widely applied to SDM evaluations, AUC is a simple but important index 
that discriminates true positives and false positives (Fielding & Bell, 1997). 
However, using one index alone for model evaluation can be mislead-
ing (Jiménez- Valverde, 2012; Lobo et al., 2008; Ruete & Leynaud, 2015). 
Therefore, we also examined the variable response curves to make 
sure that the predictions were realistic. Lastly, we used AIC to represent 
model fitting and complexity (Sakamoto et al., 1986; Velasco & González- 
Salazar, 2019). In addition, we assessed similarity between predictions by 
calculating the percentage of overlapping pixels using Schoener's D test 
(Warren et al., 2010).

Maxent (MIAmaxent and SDMtune) models

The algorithm compares probability densities of the predictors between 
sighting records and bias- corrected background points, and estimates 
the habitat suitability for the target species (Elith et al.,  2011; Phillips 
et al.,  2004). We used two recently published R packages to construct 
Maxent models: MIAmaxent (Vollering, Halvorsen, Auestad, et al., 2019) 
and SDMtune (Vignali et al., 2020). Both packages adopt the Maxent al-
gorithm and were created to increase ecological interpretability of SDMs. 
However, the two packages use different methods in variable selection 
and model selection (Vignali et al., 2020; Vollering, Halvorsen, Auestad, 
et al., 2019). Comparing the two procedures allows us to examine the con-
sistency of the resulting predictions.

To select a useful subset of variables, MIAmaxent uses forward step-
wise selection, which adds variables one by one until the penalty on com-
plexity outweighs the goodness of fit. We withheld 20% of the dataset to 
test model accuracy (testing data). Instead of demonstrating the presence 
probability, the predictions of MIAmaxent used probability ratio output 
(PRO; Halvorsen, 2013) as a measure of ‘relative suitability of one place 
versus another’, where PRO = 1 represents a randomly chosen place with 
average suitability (Vollering, Halvorsen, Auestad, et al., 2019).

In SDMtune, variable selection was performed using a built- in function 
that pairs the correlated variables using Jackknife tests, retaining only the 
variable with the highest contribution for each pair. We divided the sighting 
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records into training, validation and testing datasets in a 3:1:1 proportion. 
The validation dataset was used to tune the hyper- parameters: feature 
class (variable transformation), regularization (penalty on model complex-
ity) and iteration (repetitions) (Vignali et al., 2020).

Random Forest models

Random Forest is an algorithm widely applied for species distribution mod-
elling (Evans et al., 2011; Mi et al., 2017; Zhang & Li, 2017). Using thousands 
of decision trees, Random Forest algorithms find the best determinants 
to correctly classify a location into presence or absence (Breiman, 2001). 
We constructed Random Forest models in the R package randomForest 
(Breiman,  2018). Variables were selected using the varSelRF package 
(Diaz- Uriarte, 2010, 2017) by removing the variables contributing the least 
but causing the highest classification error. We tuned the number of vari-
ables available for classification at each tree node with cross- validation in 
the caret R package (Kuhn,  2008). Classification accuracy (ratio of cor-
rectly classified samples to total samples) and confusion matrix (expres-
sion of true/false positives and negatives) were used to evaluate Random 
Forest models (Kuhn, 2008).

Summarizing habitat suitability across models

Choosing the ‘best’ SDM from different modelling approaches and algo-
rithms is not trivial, due to the lack of standardized and universal measures, 
as well as pros and cons of different models for each species and study 
area (Allouche et al., 2006; Araújo & Guisan, 2006; Mouton et al., 2010). 
Thus, to summarize the findings from all six models, we produced two ad-
ditional outputs: a summary map displaying the number of models in which 
an area was identified as suitable for the species; and a weighted average 
map.

For the summary map, we first classified each model output into suitable 
(1) and unsuitable (0), using a 0.5 probability threshold for SDMtune and 
randomForest outputs, and a threshold of 1 for MIAmaxent outputs. We 
overlayed these re- classified outputs, obtaining a map with values ranging 
from 0 (no model predicted the area as suitable) to 6 (all models predicted 
the area to be suitable).

The weighted average map was obtained by averaging the prediction 
probabilities of the SDMtune and randomForest SDMs, weighted by the 
model accuracy, using the formula:

AUCs 1– 4 represent the AUC value from the four models included in 
the calculations (i.e. the SDMtune and randomForest models, each with 
TGB + spThin and BT bias correction), and the P as predicted probability 
of occurrence of each pixel from each model. MIAmaxent models were 
not included in the weighted average map because MIAmaxent predicted 
the habitat suitability using the unit of Probability Ration Output (PRO, see 
Model algorithms, variable selection, tuning and evaluation) rather than 
probabilities.

We used the weighted averaged map to determine how many habitat 
patches, of various sizes, contain Mahogany Glider records. To do this we 
set habitat suitability at a threshold of 0.5, and identified all habitat patches 

(

AUC
1 ∗P1 + AUC

2 ∗P2 + AUC
3 ∗P3 + AUC

4 ∗P4
)

∕4.
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using the R package terra (Hijmans et al., 2022). We considered all eight 
neighbours surrounding a central cell as a patch (Queen's adjacency), and 
each patch is separated from the other with a minimum distance of 60 m 
(i.e. the maximum gliding distance of Mahogany Gliders; Jackson, 1998). 
We quantified all habitat patches with and without sighting records from the 
full database (i.e. sightings at any point in time). We assessed this at four 
patch sizes: <0.1, 0.1– 1, 1– 10 and >10 km2. The minimum estimated home 
range of a Mahogany Glider is about 0.1 km2 (11 ha) (Jackson, 2000b), so 
we consider patch sizes <0.1 km2 unlikely to support a population.

Assessing road bias

The Wet Tropics, and particularly lowland areas of the Wet Tropics, are 
heavily bisected by roads. It is rare to be further than 5 km from a road, 
or even 2.5 km from a road in these areas. Mahogany Gliders are strictly 
arboreal and do not use roads but, like many species, observer acces-
sibility likely results in sightings being clustered closer to roads (Kadmon 
et al., 2004). We assessed the Euclidean distance to roads of our SDMs to 
assess the degree to which the road bias was removed. We used a map of 
roads in Queensland (Queensland Government, 2017) and created a layer 
of Euclidean distance to roads in ArcGIS v.10.7, using the Spatial Analyst 
tool (ESRI, 2018). We compared and visualized the distance distributions 
of the whole Wet Tropics (N = 499 089), chosen background points (BT, 
N = 4000; TGB, N = 4000), predicted suitable habitat from the weighted 
average map (N = 61 196) and sighting records (N = 481), using an esti-
mator of the empirical cumulative distribution function (ECDF). We then 
tested whether these five distributions are the same (Kolmogorov– Smirnov 
test, Lilliefors, 1967), to verify whether our bias correction approaches ad-
dressed road bias.

RESULTS

Species distribution models for the Endangered Mahogany Glider were 
produced using all known sighting records for this species, a set of bio-
logically relevant environmental and climatic predictors, three modelling 
approaches, and two bias correction methods. In the sections below, we 
identify the most important predictor variables, present each of the six mod-
els produced (Table 1, Figure 2), present two summary models (Figure 3), 
and assess road bias and whether it was accounted for by the models 
(Figure 4).

Sighting records and predictor variables

After filtering, 137 and 187 Mahogany Glider sighting records were retained 
in the TGB and BT models respectively. Variable selection resulted in the 
subsets containing 5– 13 predictors. The predictors that contributed most 
and were selected by more than three models were: elevation, precipita-
tion seasonality, soil type and vegetation type (Table 2; Appendix S6). To 
facilitate comparisons between models, we divided the contribution of a 
single predictor by the total contribution of retained predictors for each 
model and present the relative contributions. Elevation was selected in all 
six models and ranked first in contribution in four models. Its relative im-
portance ranged from 11% (randomForest with TGB) to 76% (SDMtune 
with TGB). All areas predicted as suitable were below 100 m above sea 
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level. Median elevation thresholds in five models fell below 90 m. Only the 
MIAmaxent model with BT correction predicted higher median elevation 
(219 m) (Table 2).

Precipitation seasonality was selected in all Maxent models but not in 
randomForest models, with a relative importance ranging between 2.8% 

F I G U R E  2  The six models from the combination of three different modelling packages and two bias correction methods within each. 
The MIAmaxent models predict suitability via the probability ratio output (PRO), a measure of ‘relative suitability of one place versus 
another’ (Vollering, Halvorsen, Auestad, et al., 2019). PRO = 1 represents a randomly chosen place with average suitability. In the 
SDMtune and randomForest models, the habitat suitability is shown as probability of occurrence with a threshold of 0.5 (locations above 
this threshold are depicted in red). Sighting records are shown as black dots. The white patches represent cleared, non- native vegetation 
(sugarcane and other crops, cattle grazing land, intensive pine plantation and urban areas), or areas outside of the modelled area (the Wet 
Tropics bioregion). Pale blue shading shows the sea.
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(SDMtune with TGB) and 9.8% (SDMtune with BT). Median precipitation 
seasonality of predicted areas falls between 0.92 and 1 across the four 
models. The predicted high precipitation seasonality suggests the suitable 
habitat for Mahogany Glider has a marked seasonal rainfall, with a long dry 
season (seasonality Index 0.80– 0.99, O'Donnell & Ignizio, 2012; Walsh & 
Lawler, 1981).

Soil type was selected in five models, with a relative importance be-
tween 2.8% (SDMtune with TGB) and 26% (MIAmaxent with TGB). Among 
14 soil types, Hydrosols were consistently predicted with higher suitability 
(Table 2; Appendix S7).

Vegetation type was selected in four models. Relative importance of 
vegetation type ranged between 2% (SDMtune with BT) and 17% (random-
Forest with BT). Eucalyptus woodlands with a tussock grass understorey 
and Melaleuca open forests and woodlands were identified as the most 
important vegetation types for Mahogany Gliders in the models (Table 2). 
Details of other less frequently selected vegetation types can be found in 
Appendix S7.

F I G U R E  3  Summary and weighted average maps of predicted habitat suitability from the six models, focused within the known extent 
of Mahogany Gliders' distribution. (a) Model predictions were classified into suitable (1) or unsuitable (0) habitat using a 0.5 probability 
threshold for SDMtune and randomForest, and a probability ratio output of 1 for MIAmaxent models. The summary map shows the sum 
of these values. The grey scale from white (0) to black (6) thus represents the number of models predicting an area as suitable Mahogany 
Glider habitat. The red dots show all the sighting records, and the bar plot at the bottom left shows the number of sighting records that 
fall in each of the accumulated model categories. See Appendix S9 for a simplified summary map version that just shows areas predicted 
by more than three models. (b) For the weighted average map, probability predictions from MIAmaxent and randomForest models were 
weighted by AUC, summed and averaged. The weighted average map shows these synthesized probabilities. See Appendix S10 for a more 
detailed, regional set of weighted average maps for the core distribution of Mahogany Gliders.
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Model evaluation

Area under the curve (AUC; Maxent models) and accuracy (randomForest 
models) were high across all six SDMs (Table 3). Models corrected with tar-
get group background and species thinning (TGB + spThin) generally had 
higher AUC than the models corrected by BT (Table 3). In Maxent models, 
the AUC scores differed only slightly (0.92– 0.96), while in Random Forest 
models the accuracy differed by nearly 20% between the two bias cor-
rection methods. The randomForest model with BT corrections recorded 

F I G U R E  4  Estimator of empirical cumulative distribution function (ECDF) of the 
Euclidean distances to roads in five different datasets. Cumulative distribution of distance 
in BT backgrounds (yellow dots) has the least deviation (D = 0.10) from the control (all 
locations in the Wet Tropics, black dots). The cumulative distribution of TGB backgrounds 
(pink dots) and predicted suitable habitats (green dots) are the second (D = 0.13) and third 
(D = 0.16) most similar to the control, respectively. The cumulative distribution of sighting 
records (blue dots), in comparison, appears heavily road biased (D = 0.49).

TA B L E  2  Details of the four most selected predictors (selected in more than half of the models)

R package MIAmaxent SDMtune randomForest

Bias correction TGB BT TGB BT TGB BT

Elevation (m) 84 (61– 112) 219 (148– 290) 40 (24– 56) 51 (34– 67) 30 (13– 62) 33 (15– 58)

Precipitation 
seasonality

0.96 (0.92– 1) 0.96 (0.91– 0.99) 0.92 (0.88– 0.97) 1 (0.98– 1.01) — — 

Soil Chromosols
Hydrosols
Kandosols

Hydrosols Hydrosols Hydrosols Hydrosols — 

Vegetation — 9, 15 9, 14, 15, 44 5, 9, 15, 26, 44, 63 — 5, 9, 15

Note: Variables selected by more than half of the models are marked in bold. Numbers show the median, with first and third quantile shown in the brackets. 
The two vegetation types consistently selected were: (9) eucalyptus woodlands with a tussock grass understory; and (15) melaleuca open forests and 
woodlands.

Abbreviations: BT, background thickening; TGB, target group background.
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the lowest AUC among all models, while the randomForest model with 
TGB correction reached the highest AUC of 0.99 (confusion matrix sensi-
tivity = 1, specificity = 0.98).

Species distribution models for the Mahogany Glider

Schoner's D similarity tests showed a very wide range of similarity (7%– 
73%) (Appendix  S8). We attribute this to some models predicting heav-
ily around known localities (Figure 2a), while others predicted much more 
broadly (Figure 2b,f). However, three of six models (Figure 2a,c,d) had mod-
erate to high similarity (range 54%– 73%). Nevertheless, all models con-
sistently identified suitable habitat around known records between Ingham 
and Tully (Figure 2), including areas with many sightings and areas with 
few known sightings (notably, Lannercost State Forest and forest along 
the Herbert River near Abergowrie in the Ingham area, and the base of the 
range around Tully). Additionally, all models identified suitable habitat in 
multiple areas beyond the known distribution (Figure 2), including: lowland 
areas on the west and north of Hinchinbrook Island (all six models); north of 
the known distribution in the vicinity of Little Mulgrave River/Gillies Range 
(all six models); the eastern lowlands of Paluma Range National Park south 
to Clemant State Forest (three models, Figure 2b,c,f); the Yarrabah region 
near Cairns (five models, Figure  2b– f); and even further north around 
Cooktown (four models, Figure 2c– f).

Comparing predictions between bias correction methods, TGB mod-
els predicted more conservatively and identified suitable habitat mostly 
around known sightings (Figure 2a– c), while BT models identified suitable 
habitat up to ~300 km north and ~100 km south of known sightings. For 
instance, three different BT models identified large patches of suitable 
habitat near Cooktown (Figure 2d– f). Comparing predicted areas between 
packages, SDMtune models produced the most conservative predictions 
(Figure 2b,e), with most suitable habitat being in close proximity to known 
records. Random Forest models on the other hand were the least conser-
vative, predicting further from known records, and more often outside the 
known extent of the species (Figure 2c,f).

Summarizing habitat suitability across models

We summarized the findings from the six models to identify areas consist-
ently modelled as suitable regardless of the modelling approach. To achieve 
this, we produced both a summary map (Figure 3a) and a weighted average 
map (Figure 3b). Both maps identified similar areas within the core range 
as suitable habitat for Mahogany Gliders (Figure 3). Additionally, detailed 
regional summary maps are presented, showing: the suitable habitat sup-
ported by four or more of the six models (Appendix S9), and the weighted 
average map at a fine scale (Appendix S10). These detailed maps may be 
valuable for local stakeholders and conservation managers. The summary 
map considered all models equally and ignored model accuracy; whereas 
the weighted average map depicts habitat suitability as a probability, and 
thus may be particularly useful at a fine scale (Appendix 10).

Assessing road bias

We examined the effect of road bias on model prediction because the sight-
ing records are clearly biased by observer accessibility (Figure 4). In our 
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exploratory models, Euclidean distance to road was consistently selected 
as an important variable when included as a predictor. However, when pro-
jected, the model prediction with Euclidean distance to road shows very 
strong, unrealistic, habitat suitability tied to roads (Appendix S11). Because 
the road effect is not biologically relevant to the gliders' habitat (i.e. they 
do not use roads), we removed distance to roads from the set of predictor 
variables. As shown in the six models we present here (Figures 2 and 3), 
and explained in detail below, our two bias correction methods accounted 
for road bias in observations.

To examine the magnitude of road bias in the sighting records and in our 
modelling results, we compared the cumulative distributions of distance to 
roads from sighting records, bias- corrected background points, predicted 
suitable habitat, and all locations in the Wet Tropics. Figure 4 compares 
the distributions of Euclidean distance to roads in different datasets, as 
ECDF. The ECDF shows that sighting records are extremely close to roads 
compared to the other curves. All except two sighting records are within 
2.5 km of a road and their median distance (0 km, quartiles: 0– 0.25 km, 
blue dots) is much smaller than the median distance of all locations in the 
Wet Tropics to roads (0.94 km, quartiles: 0.31– 2.64 km, black dots). The 
ECDF of the bias- corrected background points we selected to build the 
SDM models, however, shows less deviation from all locations in the Wet 
Tropics (Figure 4).

We tested the deviation of sighting records and selected backgrounds 
to the cumulative distribution of all locations in the Wet Tropics. All devi-
ations are significant (p  < 0.001), but the magnitude of deviation for the 
sighting records (D = 0.49) is much greater than that of the background 
points (BT- corrected background points: D  =  0.10; TGB- corrected back-
ground points: D = 0.16). The predicted suitable habitats from the models 
(from the weighted averaged map, with probability >0.5) also shows sig-
nificant deviation (D = 0.13, p < 0.001) (Figure 4), of a magnitude similar to 
the background points. However, suitable habitat was predicted as far as 
12 km from the road and was not constrained to being near roads. These 
results suggest our bias correction methods sufficiently removed road bias 
in our modelling.

DISCUSSION

Using all known sighting records and biologically relevant environmental 
and climatic predictors, we produced SDMs for the endangered Mahogany 
Glider (P. gracilis). Elevation, precipitation seasonality, soil and vegetation 

TA B L E  3  Evaluation metrics and tuning parameters for the six tuned models

R package MIAmaxent SDMtune randomForest

Bias correction TGB BT TGB BT TGB BT

Algorithm Maxent Maxent Maxent Maxent Random Forest Random Forest

Tuning package NA NA SDMtune SDMtune caret caret

Test data 
evaluation

AUC = 0.96
AIC = 1380

AUC = 0.92
AIC = 2738

AUC = 0.96
AIC = 2886

AUC = 0.95
AIC = 9534

AUC = 0.99
Accuracy: 0.98 (95% 

CI = 0.94, 1.00)

AUC = 0.89
Accuracy: 0.79 

(95% CI = 0.72, 
0.86)

Tuning parameters NA NA fc = lh
reg = 1.2
iter = 500

fc = lqp
reg = 2.1
iter = 500

mtry = 2 mtry = 2

Abbreviations: AIC, Akaike information criterion; AUC, area under the curve; fc, feature classes; iter, iteration; mtry, number of variables available for splitting at 
each tree node; reg, regularization.
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type were identified as key predictors of Mahogany Gliders' distribution 
(Table 2). All models identified suitable habitat in the coastal lowlands in 
the known extent of Mahogany Gliders, between Paluma and Tully, in-
cluding many areas of moderate to high suitability habitat with no known 
sighting records. The models showed that suitable habitat within the 
known distribution is highly fragmented, and some areas with historical 
records have since been cleared of native vegetation (Figure 3). Beyond 
the known distribution, the models also predicted potentially suitable habi-
tat to the south (coastal woodland north of Townsville), east (lowlands of 
Hinchinbrook Island) and north (particularly several lowland areas in the 
vicinity of Cairns).

Ecological insights of the selected predictors

The four predictor variables consistently identified as important in the six 
final models (elevation, precipitation seasonality, soil and vegetation type) 
summarize the most suitable habitat for Mahogany Gliders— Eucalyptus 
and Melaleuca open woodlands with grassy understory, growing on 
Hydrosols, in areas below 100 m elevation, and with highly seasonal pre-
cipitation. The modelling methodology accounts for correlation between 
continuous variables (indeed, most of the temperature and precipitation 
predictors are inter- correlated; Appendix S11) but is limited in accounting 
for correlations involving categorical factors. Therefore, the key predictors 
may not be independent and the biological links between them, and their 
direct or indirect influence on the species, are worth investigating.

Elevation

The restriction of Mahogany Gliders to low elevations has been dis-
cussed in detail previously; for example, Van Dyck (1993) noted that all 
records were found below 90 m in elevation, with most records falling 
below 20 m. Median elevation thresholds in five of our six models fell 
below 90 m. Only the MIAmaxent model with BT correction predicted 
higher median elevation (219 m) (Table  2), but it is not clear why this 
was the case for this one model/correction method combination. It is 
unlikely that elevation has a direct effect on gliders (e.g. that gliders are 
physiologically restricted to the hotter lowlands) and the importance of 
elevation more likely reflects correlations with the other three key predic-
tor variables (distribution of Eucalyptus and Melaleuca open woodlands 
with grassy understory; distribution of Hydrosols; highly seasonal pre-
cipitation). Diversity in the Wet Tropics bioregion is generally greatest in 
mid elevation and upland rainforest areas, particularly when considering 
the endemic species (Leahy et al., 2020; Staunton et al., 2014; Uzqueda 
et al., 2020; Williams et al., 1995), and the Mahogany Glider is an inter-
esting exception.

Precipitation seasonality, soil type and vegetation type

Precipitation seasonality has been previously identified as an impor-
tant predictor in BIOCLIM models for Mahogany Gliders (Jackson & 
Claridge, 1999; Van Dyck, 1993), with suitable habitat having marked sea-
sonal rainfall and a long dry season (O'Donnell & Ignizio, 2012; Walsh & 
Lawler, 1981). Such seasonal variation may limit the growth of unsuitable 
rainforest habitats, which generally prefer lower precipitation seasonality 
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(Neldner et al., 2019). It may also facilitate the formation of Hydrosol soils, 
which are defined as a group of soils that are seasonally saturated with 
water for 2– 3 months per year (Isbell, 2016). Hydrosols per se will not be 
directly impacting arboreal Mahogany Gliders but they promote the de-
velopment of certain vegetation types, including forests dominated by 
Eucalyptus, Corymbia and Melaleuca species in the Wet Tropics (Neldner 
et al., 2019). Eucalyptus and Melaleuca open woodlands were identified 
as a key predictor in all models, and have been broadly recognized as key 
habitat for Mahogany Gliders (Jackson, 2000a; Jackson et al., 2011). These 
vegetation communities provide year- round food sources and den trees 
(Jackson, 2000b; Van Dyck, 1993). Vegetation type is intuitively thought 
to be important for habitat suitability of particular arboreal mammals, but 
has not been included as a predictor variable in previous SDMs on gliders 
or possums (Jackson & Claridge,  1999; Lindenmayer et al.,  1991; Rees 
et al.,  2007). Our study shows that it is an important predictor and may 
reflect the underlying contributions of other less intuitive variables (e.g. pre-
cipitation seasonality, soil type).

Fire management

Fire management has been widely recognized as an important factor in 
maintaining Mahogany Glider habitat, by limiting vegetation thickening 
(Jackson,  2000a; Jackson et al.,  2011; Van Dyck,  1993). However, fire 
frequency (as measured by TERN AusCover, 2013) was not selected as 
an important predictor in our models, possibly because it does not reflect 
the fine- scale fire patterns of relevance to the gliders. Fire management 
in Mahogany Glider habitat usually consists of planned burns in the un-
derstory, and this fine- scale, below- canopy burning may not be detected 
by satellite remote sensing that aims to detect wildfire of larger scale and 
higher intensity. The impact of fire on mammal species has been found to 
be complicated and dependent on site, context and other factors (Driessen 
et al., 2021). Our modelling did not adequately incorporate the role of fire in 
habitat suitability, and it requires further investigation.

Removing road bias from models

The sighting records of Mahogany Gliders were strongly biased by ob-
server accessibility— most fall within 100 m of a road and none come from 
more than 2.5 km from roads (Figure 4). The ECDF curves and the distri-
bution tests showed that road bias was largely accounted for in both the 
TGB and BT bias correction methods (Figure 4). Predicted suitable habitat 
occurs up to 12.8  km away from roads, which is as far as any point in 
Wet Tropics lowland sclerophyll forest is from roads. Although some spe-
cies, especially some invasive species, use roads to forage and move 
through the landscape (Brown et al., 2006; Rauschert et al., 2017; Wysong 
et al., 2020), this is not the case for arboreal Mahogany Gliders, and road 
bias is driven by observer accessibility. Our results show the importance or 
testing for road bias in SDM and assessing whether the road is a sensible 
predictor for the species.

Predicting current suitable habitats for Mahogany Gliders

Our models are an improvement on previous modelling for Mahogany 
Gliders (Jackson et al., 2011; Jackson & Claridge, 1999; Van Dyck, 1993) 
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because they incorporate more variables, including categorical variables, 
and have higher spatial resolution (~250 m) and accuracy (AUC of 0.89– 
0.99). The six models generally predicted similar areas as suitable habitat 
for Mahogany Gliders within the known distribution area, but the predic-
tions outside the core area varied. Models using the TGB + spThin bias 
correction method were more reflective of the known distribution (but iden-
tified many suitable patches that do not contain Mahogany Glider records; 
see below) and had high prediction accuracy (Figure 2a– c). They would 
therefore be useful to focus on the fine- scale distribution within the known 
range limits. In contrast, models using BT bias correction were more likely 
to identify similar habitats distant from the known distribution; for example, 
woodlands near Cooktown (Figure 2d– f). The spatially broader predictions 
from models with BT bias correction may result from the large geodesic 
buffer (75.6 km) used in the process (Ștefan, 2019; Vollering, Halvorsen, & 
Mazzoni, 2019), potentially resulting in the inclusion of a broader range of 
backgrounds around the sighting records and thus less conservative mod-
els. The positive is that models using BT bias correction could lead to the 
discovery of unknown populations well outside the currently known range.

The summary map and the weighted average map provide syntheses 
of our modelling results. There is notable consistency in areas identified 
as high suitability habitat. These maps, particularly the fine- scale depic-
tions in Appendices S9 and S10, will be useful for identifying the size and 
connectivity of remnant habitat patches (Jackson et al., 2019; Jackson & 
Diggins, 2020), and targeting survey effort to patches with no, or few, re-
cords. We found that a large number of predicted suitable habitat patches 
have no sighting records (Figure 5). Importantly, 266 of these patches (i.e. 
55% of all habitat patches without sightings records) are of sufficient size 
to potentially support a population of Mahogany Gliders (i.e. 0.1– 10 km2; 
Figure 5). These patches are a priority for future survey efforts, working 
from largest to smallest patch size. Our results also showed that 156 out of 
the total 481 sightings of Mahogany Gliders (i.e. ~30% of all sightings) are 
now situated in deforested areas; in most cases cleared for sugarcane or 
cattle grazing. This highlights the need to quantify and monitor habitat loss 
and ensure high suitability habitat on private land is adequately mapped 
and protected.

The synthesized maps allow broad assessment of the distribution and 
connectivity of the modelled habitat. Most of the larger areas of suitable hab-
itat are in the Ingham region and north to Cardwell (Figure 3; Appendix S10). 
This includes the large patch at Wharps Holding (Appendix  S10C) and 
the fairly continuous large area of habitat from Lannercost State Forest 
to the Herbert River valley (Appendix  S10B,C). Additionally, an exten-
sive ribbon of predicted high suitability habitat runs along the base of the 
ranges through much of the species' distribution, with the continuous strip 
of high suitability habitat along the base of the Paluma Range of particular 
note (Appendix S10D). This ribbon of habitat connects with many of the 
core habitat patches on the coastal flats, particularly in the southern two- 
thirds of the range. However, many patches, particularly in the north of the 
range (Kennedy to Tully valley; Appendix S10A) and in the Ingham region 
(Appendix S10C) are disjunct and isolated.

Management recommendations

1. Survey areas of high suitability habitat within the known range, par-
ticularly those without sightings records (Figure 5), to identify all rem-
nant populations within the core distribution of the species. Priorities 
include: large areas west of Ingham (Warps Holding, and Lannercost 
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State Forest; and north along the base of the range up the Herbert 
River valley); coastal forests east of the Bruce Highway between 
Big Crystal Creek and Ingham, and between Edmund Kennedy and 
Tully; and the Big Crystal Creek area in the south (Appendix  S10).

2. Survey areas predicted as moderate to high habitat suitability habi-
tat outside of the known range to resolve the true distribution of the 
Mahogany Glider. Priorities are: Hinchinbrook Island; lowland woodlands 
in the Cairns– Yarrabah– Gordonvale areas, and south of Cooktown; and 
the Clemant State Forest area at the southern end of Paluma Range 
(Figures 3 and 4; Appendices S9 and S10).

3. Identify key populations across the range to establish long- term camera 
trap monitoring, including in the north (e.g. Edmund Kennedy– Euramo 
area), centre (e.g. Cardwell Range area) and south (e.g. Paluma Range 
area) of the range.

Future directions

Attempts have been made to identify key populations of Mahogany Gliders 
and map corridors between them (Jackson et al.,  2019). The results 
gained herein could be used to refine landscape assessments (Tarabon 
et al., 2019) and perform connectivity analyses (Esselman & Allan, 2011; 
Torabian et al., 2021) based on the modelled moderate and high suitability 
patches and corridors (e.g. using the weighted average mapping). Genetic 
analyses could also be used to test connectivity, focussing on areas with 
patches of varied size and connectivity.

An updated SDM for Mahogany Gliders is recommended once more 
recent sighting records accumulate and more advanced spatial data are 
available. Spatial data that could better refine the models include additional 
fine- scale fire layers (Driessen et al., 2021), mapping of forest age or struc-
ture, to capture important factors such as abundance of tree hollows (Linnell 

F I G U R E  5  Histogram showing the number of patches within patch size bins, split 
by patches with Mahogany Glider sighting records (black) and without a record (red). 
The minimum estimated home range of a male Mahogany Glider is about 0.1 km2 (11 ha) 
(Jackson, 2000a, 2000b), so we consider patch sizes <0.1 km2 unlikely to support a 
population.
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et al., 2017), mapping of the impact of recent extreme weather events, in 
this case cyclones (Bateman et al., 2012) and mapping of thin lines of road-
side vegetation that may act as species dispersal or movement corridors 
(Vasudev et al., 2015). Additionally, the SDM could be used to model the 
potential effect of climate change on Mahogany Gliders, as done for other 
possums and gliders (Handayani et al., 2019; Molloy et al., 2013), but noting 
that post- model refining from expert knowledge (e.g. micro- refugia, barri-
ers; Reside et al., 2019) would be required for this species.
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