Antibacterial Longevity of a Novel Gallium Liquid Metal/Hydroxyapatite Composite Coating Fabricated by Plasma Spray

Pham, Duy Quang, Gangadoo, Sheeana, Berndt, Christopher C., Chapman, James, Zhai, Jiali, Vasilev, Krasimir, Truong, Vi Khanh, and Ang, Andrew S.M. (2022) Antibacterial Longevity of a Novel Gallium Liquid Metal/Hydroxyapatite Composite Coating Fabricated by Plasma Spray. ACS Applied Materials and Interfaces, 14 (16). pp. 18974-18988.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: https://doi.org/10.1021/acsami.2c03695
24


Abstract

Hydroxyapatite (HAp)-coated metallic implants are known for their excellent bioactivity and osteoconductivity. However, infections associated with the microstructure of the HAp coatings may lead to implant failures as well as increased morbidity and mortality. This work addresses the concerns about infections by developing novel composite coatings of HAp and gallium liquid metal (GaLM) using atmospheric plasma spray (APS) as the coating technique. Five weight percent Ga was mixed into a commercially supplied HAp powder using an orbital shaker; then, the HAp-Ga particle feedstock was coated onto Ti6Al4V substrates using the APS technique. The X-ray diffraction results indicated that Ga did not form any Ga-related phases in either the HAp-Ga powder or the respective coating. The GaLM filled the pores of the HAp coating presented both on the top surface and within the coating, especially at voids and cracks, to prevent failures of the coating at these locations. The wettability of the surface was changed from hydrophobic for the HAp coating to hydrophilic for the HAp-Ga composite coating. Finally, the HAp-Ga coating presented excellent antibacterial efficacies against both initial attachments and established biofilms generated from methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa after 18 h and 7 days of incubation in comparison to the control HAp coating. This study shows that GaLM improves the antibacterial properties of HAp-based coatings without sacrificing the beneficial properties of conventional HAp coatings. Thus, the HAp-Ga APS coating is a viable candidate for antibacterial coatings.

Item ID: 77004
Item Type: Article (Research - C1)
ISSN: 1944-8252
Keywords: antibacterial, gallium, hydroxyapatite, liquid metal, mechanical properties, MRSA, nanoindentations, plasma-sprayed coatings, Pseudomonas aeruginosa
Copyright Information: © 2022 American Chemical Society
Date Deposited: 08 Mar 2023 02:49
FoR Codes: 40 ENGINEERING > 4003 Biomedical engineering > 400399 Biomedical engineering not elsewhere classified @ 100%
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page