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Abstract

The Internet of Underwater Things (IoUT) is an emerging technological ecosystem devel-

oped for connecting objects in maritime and underwater environments. IoUT technologies

are empowered by a large number of deployed sensors and actuators. From scientific per-

spectives, these ubiquitous sensing devices are considered as data collecting tools, which

can be augmented with machine intelligence and big data analytics both for automated

monitoring and for prospective studies. In this thesis, we have comprehensively surveyed

the IoUT and marine data analytics to address several research gaps.

Using publicly available marine datasets, we have proposed three deep learning models

for marine data timeseries. The proposed models include a timeseries forecasting ensem-

ble of Deep Neural Networks (DNN) for sea surface temperature prediction, a next-frame

prediction DNN framework for predicting total nitrogen in the Great Barrier Reef (GBR),

and a Transformer-based next-frame prediction DNN framework for predicting total sed-

iment in the GBR. Finally, an accurate and energy-efficient platform has been proposed

for IoUT image processing for fish segmentation in realistic underwater video footages.

This fast and low-bandwidth platform consists of a compressed DNN with low energy

consumption and real-time edge-based inferencing on an embedded GPU.

The outcome of this thesis can facilitate developing tools for 1D and 2D spatiotempo-

ral timeseries predictions. The proposed highly-accurate forecasting models can support

decision makers to reach target water quality outcome in wide geographical areas like the

GBR. Furthermore, the edge processing technique proposed in this thesis can take the

marine video processing capabilities to the next level of intelligent in-situ IoUT systems.
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Chapter 1

Introduction

1.1 Background and Motivation

The Internet of Things (IoT) is a promising technology, which is revolutionizing every

aspect of our lives. Nowadays, the domain of IoT influence has been expanded from smart

homes and cities [19] to medical [20] and agricultural things [21, 22], and further to the

Internet of Underwater Things (IoUT) [23].

The underwater section of IoT, i.e., IoUT has not attracted as much attention as it

deserves and it is a rather unexplored research area. IoUT technology is intricately linked

with intelligent vehicles, intelligent ports, positioning and navigation, maritime security,

oceanic exploration, as well as with smart monitoring. The IoUT influence scale ranges

from a scientific observatory, to a small port, and further to global trades. The heteroge-

neous network architecture of IoUT and its harsh environment imposes major challenges

in terms of underwater communications, whilst relying on limited energy resources.

Additionally, the volume, velocity, and variety of data produced by sensors, hydrophones,

and cameras in IoUT is enormous, giving rise to the concept of Big Marine Data (BMD),

which has its own processing challenges. Hence, conventional data processing techniques

will falter, and bespoke deep learning solutions have to be employed for automatically

learning the specific marine data behaviour and features facilitating knowledge extraction

and decision support.

In summary, motivations of this thesis are, first, to advance knowledge in the area of

IoUT and big marine data processing by providing a detailed synthesis of these topics, and

second, to improve and advance the state-of-the-art deep learning methods for achieving

higher accuracy in marine data analytics. Besides, augmenting IoUT sensors with the

advanced and intelligent edge devices is another motivation to make underwater video

and image processing possible.
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1.2 Research Problems

IoUT augmented with machine intelligence and marine data analytics is expected to revo-

lutionize maritime studies in almost every technological area, and enhance our knowledge

of this unknown environment. As stated in the previous section, IoUT has not attracted

as much attention as it deserves. Our knowledge of the underwater environment is very

limited for its harsh and dynamic spatiotemporal behaviours. Despite oceans cover more

than 70% of the earth’s surface and about 90% of international trades are through ma-

rine transportations, but 95% of sea area remains unexplored. Extending this knowledge

toward a better understanding of oceans is essential and should be targeted in more scien-

tific research works. Toward that end, this thesis addresses the following major research

problems.

� Although the IoUT has many technical similarities with its ground-based counter-

part (IoT) such as its structure and function, it has many technical differences aris-

ing from its different environment, communication/telecommunication limitations,

computational difficulties, etc. To address these technical differences and devise

new solutions for IoUT challenges, technical concepts in the field of IoUT need to

be extensively reviewed. This review must include the underwater sensors and de-

vices, as well as the heterogeneous nature of the IoUT communications. It is also

required to review and discuss novel technological solutions for BMD handling, in-

cluding software packages, open access databases, distributed and cloud-based BMD

processing platforms, machine learning algorithms for underwater applications, and

their hardware realizations. The large quantity of underwater sensory and imagery

data sources also require modern marine data processing techniques. Consequently,

the state-of-the-art technologies in underwater data processing using ML/DL needs

to be reviewed as well.

� The problem of accurate sea surface temperature forecasting is studied next. Oceanic

thermal energy has a great impact on global climate and worldwide ecosystems, as its

anomalies have been shown to have a direct impact on atmospheric anomalies. The

major parameter for measuring the thermal energy of oceans is the Sea Surface Tem-

perature (SST). However, SST prediction is challenging due to the involvement of

complex and nonlinear sea thermodynamic factors. To address this challenge, novel

deep neural network for accurate SST forecasting need to be designed to incorporate

the major thermodynamic factors into an accurate SST forecasting model.

� Nutrients and fine sediments are considered to be the primary land-based pollutants

that significantly reduce ocean water quality. It has been shown that this can affect
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the corals of Great Barrier Reef (GBR) in Australia. In this thesis, the problem of

nitrogen as well as sediment distribution forecasting in GBR is addressed. This can

provide decision support in reaching target water quality outcomes. To elaborate, we

will consider the whole GBR as a frame and we will design two innovative next-frame

prediction models to forecast nitrogen and sediment spatiotemporal distribution over

the whole GBR. In this regard, we must

– Overcome the problem of insufficient ground truth training data in the wide

GBR, and

– Devise a new solution to improve the forecasting ability of the state-of-the-art

next-frame prediction models which produce blurred prediction frames.

Such a high-resolution model can produce accurate predictions by leveraging existing

hindcasting simulation models.

� Wireless acoustic communication plays an important role in IoUT. However, this

low-frequency communication technique has some limitations like the low transmis-

sion bandwidth, high signal attenuation, and high propagation delays. The last

research problem addressed in this thesis is to employ efficient DNNs to enable high-

resolution image and real-time video data processing at the IoUT underwater edge.

In other words, the proposed edge processing technique is employed to improve pro-

cessing power of image-based IoUT devices, which in turn can mitigate the inevitable

drawbacks of narrow bandwidth underwater acoustic communication. Furthermore,

using big marine data to train deep learning models is not efficient, or sometimes

even possible, on local computers. We have investigated on how distributed learning

in the cloud can help more efficiently process big data and train more accurate deep

learning models.

1.3 Original Contributions

The original contributions presented throughout this thesis can be summarized as follows:

� A comprehensive review of the recent advances in IoUT and the extension of its

influence both to coastal and open sea areas is provided in this thesis. This is the

first IoUT review text that synthesizes research directions in a smooth progression,

starting from IoUT data collection, followed by networking, through to marine data

analytics and processing. This flow of logic evolves from the distinct research di-

rections to their amalgamation into marine data analytics for IoUT. None of the

existing IoUT survey papers are similar to ours in terms of their coverage. Putting
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the depth of each discussion in other papers aside, there are many topics that are

only covered in our chapter on IoUT and marine data analytics. The review and

discussions mentioned above are presented in the IEEE Communications Surveys &

Tutorials [24].

� A new ensemble of stacked DNNs is designed to accurately forecast long-term sea

surface temperatures in a variety of locations. The proposed lightweight and highly

accurate new DNN structure leverages the correlation between SST datasets and

air temperature at nearby isolatitude weather stations. It is demonstrated that our

model significantly outperforms the state-of-the-art SST prediction algorithms. The

results of this study are published in the IEEE Geoscience and Remote Sensing

Letters [25].

� Distribution of total-nitrogen and total-sediment in the oceans are highly tempo-

rally and spatially dynamic, and they are usually modelled using a complex set of

Partial Differential Equations (PDEs). In this thesis, two novel DNNs are designed

for the first time to predict the nitrogen and sediment distribution in the wide GBR.

Both these models are inspired by the well-known Finite Element Analysis (FEA)

to mesh the GBR into small elements, and to calculate a stiffness matrix for each

element using the historical training dataset. To predict the total nitrogen and total

sediment, we have devised two separate deep learning models which are fed with our

FEA-inspired stiffness matrices. For nitrogen prediction, we have designed a DNN

utilising CNN layers, while for our sediment prediction model, we have used trans-

formers. Additionally, the Physics-Informed Neural Network (PINN) technique is

successfully employed for training the proposed models using sparse marine measure-

ment data. By innovatively integrating the FEA concept with the state-of-the-art

deep neural networks, the proposed models were able to efficiently learn and predict

long-term nitrogen and sediment dependencies. The results of the spatiotemporal

nitrogen prediction in GBR are published in the Environmental Modelling & Soft-

ware [26]. The spatiotemporal sediment forecasting results are published in the

Neural Networks [27].

� Finally, an energy-efficient platform has been proposed in this thesis to tackle the

long-lasting barriers in underwater acoustic communications, i.e., the narrow band-

width and high latency. To elaborate, a deep neural network for fish segmentation in

underwater video frames is trained on distributed cloud computers and deployed on

a GPU-powered edge device. The proposed DNN is 18% more accurate than train-

ing on local computers, and 4 times faster than an on-premises Hypertext Transfer
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Figure 1.1: Outline of the thesis structure.

Protocol (HTTP) server. By compressing the DNN model for fish segmentation,

61% of power saving has been achieved compared to a FP32 DNN, which makes the

underwater video processing feasible. An underwater acoustic network can easily

transmit a few bytes of edge processing results. This is in contrast to the multi-MB

raw image data submission in traditional wired communication for processing the

image on-premises. The application report of this modern platform is published in

IEEE Access [28].

1.4 Thesis Organization

As illustrated in Fig. 1.1, this thesis is organized in seven chapters to convey all the research

objectives in a coherent way. The current Chapter 1 introduces the research background

and motivation, research questions, and thesis objectives.

Chapter 2 conducts a literature review on IoUT and BMD analytics. At first, it presents

an overview of the IoUT by associating its ecosystem to the concepts and methodologies

defined for IoT. Then it discusses the challenges in the field of BMD and provides insights

concerning oceanic sensor, image, and video data. In order to advance the knowledge

and coordinate efforts in the field of BMD, sophisticated data analytic techniques and

5



Chapter 1 Introduction

methodologies are required, which have also been reviewed in this chapter. This chapter

is published as [24].

Chapter 3 starts by explaining the importance of SST on affecting the global mean air

temperature and influencing the marine ecosystem. This chapter follows by formulating

the SST forecasting problem and its relationship with air temperature, as two ingredients

of the proposed ensemble of two stacked DNNs. The performance of the stacked networks

as well as the ensemble model are also discussed. This chapter is published as [25].

Chapters 4 and 5 respectively propose FE-DNN and FE-Transformer as novel solutions

to the problem of nitrogen and sediment distribution prediction in the GBR. The concepts

of total nitrogen and total sediment in the GBR will be defined, and challenges in their

high-resolution spatiotemporal prediction will be also discussed. The physics-informed

neural network technique for measured and simulated data fusion is described. The im-

portance of this technique in sparse data applications will be discussed. The accuracy of

the proposed distribution forecasting models will be evaluated, where a detailed investiga-

tion of both the computational complexity and the ablation properties of the models are

also provided.

The combination of DNNs with edge computing will be studied in Chapter 6. This com-

bination forms a modern platform to tackle the underwater communication barriers. The

proposed platform can be employed in a wide range of marine applications. This chapter

starts by designing a modified U-Net model for fish segmentation in real-life underwater

images. The modified model will be accurately trained on a cloud-based distributed com-

puter system, and it will be compressed and deployed on a GPU-enabled edge device for

fast and efficient inferencing. Capabilities of the proposed edge computing platform in

underwater data processing will be also investigated.

Finally, the thesis is concluded in Chapter 7, where the findings in other chapters

are summarized. Besides, the recent advances in IoUT technologies are considered in

this chapter to address the future works in the area of undersea data acquisition, data

communication, BMD handling, and oceanic data processing.
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Chapter 2

Literature Review

The scientific background for the research presented in this thesis is reviewed in this

chapter. It firstly focuses on the Internet of Underwater Things (IoUT) and its challenges

in the hostile underwater environment. Then the Big Marine Data (BMD) has been

reviewed and the machine/deep learning approaches are introduced as robust solutions for

marine data analytics. Finally, the challenges and future directions are described. This

chapter is published in IEEE Communications Surveys & Tutorials as

[24] M. Jahanbakht, W. Xiang, L. Hanzo, and M. Rahimi Azghadi, “Internet of Under-

water Things and big marine data analytics–a comprehensive survey,” IEEE Com-

munications Surveys & Tutorials, vol. 23, no. 2, pp. 904–956, Jan. 2021.

2.1 Introduction

The Internet of Things (IoT) augmented with machine intelligence and big data analytics is

expected to transform and revolutionize the way we live in almost every technological area.

Broadly speaking, IoT can be defined as an infrastructure of the information society that

connects equipment/devices (things) to the Internet and to one another. By this means,

the IoT could connect devices in any place on earth to help us have better interaction

with our living environment [29].

To date, the existing networks in terrestrial and urban areas have been the domain of

influence for the IoT and have been researched extensively. This has made a fairly strong

foundation for the industrial IoT developments, which are emerging with an astonishing

pace at the time of writing [30]. However, the underwater section of IoT, i.e. IoUT has

not attracted as much attention as it deserves and it is a rather unexplored research area.

This is mainly because underwater applications are still in their infancy and the new era

of scientific endeavor to better understand, control, and interact with the oceans and seas

through underwater technologies is yet to flourish.
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Although 44% of the earth’s population lives within 150 km of the sea, 95% of sea

area remains unexplored by the humankind [31]. Oceans cover more than 70% of the

earth’s surface and 90% of international trades are through nautical transportations [32].

Astonishingly, 12 people have spent 300 hours on the surface of the moon, while only

3 people have spent about 3 hours at 6 km depth of the ocean. In addition, about 90

million tons of salt-water fish are caught worldwide each year, and the coral reefs are

estimated to provide food for almost 500 million people [33]. Hence, underwater research

and development could have a significant impact on many aspects of human’s life by

establishing and rolling out the IoUT.

“On the surface of the ocean, men wage war and destroy each other; but down here, just a

few feet beneath the surface, there is a calm and peace, unmolested by man.”

— Jules Verne

Although the IoUT has many technical similarities with its ground-based counterpart

(IoT) such as its structure and function, it has many technical differences arising from

its different communication/telecommunication environments, computational limitations,

and constrained energy resources. To address these gaps between the IoT and IoUT,

technical concepts in the field of IoUT will be extensively discussed. These include both

the underwater communications [7,34,35], as well as the underwater sensors and devices [4].

By connecting an increasing number of devices and machines to the Internet, the IoT

and IoUT ecosystems produce enormous amounts of data. This high volume of data is

referred to in parlance as big data. Big data is currently being generated by various

technological ecosystems and perhaps the most ubiquitous data types in today’s world is

the data produced throughout the IoT. This is also set to increase, since the number of

Internet-connected devices is projected to increase from the current 30 billion to over 50

billion by 2020 [36].

In the age of sparse data production, analytical mathematics and statistical techniques,

widely known as data mining, were employed to infer knowledge from data. However, in

the current era of data proliferation, when the produced data volume in the last five years

exceeds the whole amount of data generated before that, conventional data processing

techniques will soon fall short [37,38]. These traditional big data handling methods relying

on statistical descriptive, predictive, and prescriptive analytics usually suffer from the lack

of generalization. That is, they cannot automatically learn the behavior and features in

smaller datasets and use them in big data scenarios.

To address this significant problem, machine learning has risen as one of the practi-

cal solutions. ML has been created to facilitate an automatic approach to learning and

extracting knowledge from data. This could revolutionize various aspects of our lives,
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ranging from treating formidable diseases, to boosting the economies, to understanding

the universe, to defense and military decisions [39–41]. As listed bellow, ML has also been

used in a variety of sparse and big underwater data applications, including:

� Evaluation and discoveries: Examples of these include the evaluation of corals and

their inhabitants [42], seabed analysis and mapping (photo-mosaicking) [43], object

classification and discovery [44, 45], plant identification [46], the automatic recog-

nition of fish [40, 47], lobster [48, 49], plankton [50], and other species, as well as

tracking and direction finding [51].

� Monitoring and management : Examples of these include environmental monitoring

(e.g. water quality and pollution) [52], fish farming [32], pipeline monitoring and

corrosion investigation (e.g. in oil and gas industry) [5, 53], harbor security and

military surveillance [31], navigation assistance [54], marine forecast and warning

systems (e.g. tsunami, red-tide, flood) [55], and maritime geographic information

systems [56].

ML as an indispensable tool in the IoUT, offers intelligent solutions for analyzing BMD,

and thus it will be thoroughly investigated in this chapter.

This chapter is motivated by the fact that the IoUT, BMD, and machine/deep learning

are salient topics emerging in the scientific literature. Nevertheless, there is no comprehen-

sive survey to cover the joint applications of these three. In other words, many previous

articles can be found in the literature that cover IoT [29,36], big data [37], the joint aspects

of IoT and big data [57], and even big data analytics in IoT [38, 58]. In a clear contrast,

the amount of research published on the IoUT and BMD is very limited. Of these limited

publications, some cover the IoUT [31, 32], while others cover BMD [34, 59]. However, to

the best of our knowledge, this chapter is the first survey that provides a comprehensive

overview of the IoUT and BMD analytics relying on the most recent radical machine/deep

learning approaches. This makes the present text beneficial for data scientists, ML engi-

neers, data analyst, big data engineers, and policy makers in the marine-related disciplines.

To boldly and explicitly illustrate the contributions of this thesis in the fields of IoUT and

BMD analytics, Table 2.1 contrasts our unique contributions to other published treatises

in the area. For all other articles in this table, a tick mark (✓) is granted, even if those

dedicated only a few relevant sentences to the given subject. However, none of those

surveys are similar to ours in terms of their coverage. Putting the depth of each discussion

in other papers aside, there are many topics that are only covered in this chapter on IoUT

and BMD analytics.

The synthesis of research directions in this chapter is handled in a smooth progression,

starting from IoUT data collection, followed by networking, through to big data analytics
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Table 2.1: The Contribution of This Thesis in the Field of IoUT and BMD Analytics,
Compared to Other Previously Published Works
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Internet of Underwater Things

Sensors for Marine Data Collection . . . . .

Undersea Non-Destructive Testing .

Energy Consumption and Harvesting . . . . . . .

Communication Technologies . . . . . . . .

Wired and Wireless Channel Modeling . . . .

Edge Computing in IoUT . .

Big Marine Data

Data Acquisition, Aggregation, and Fusion . . .

Sensor, Image, and Video Data Evaluation .

Open Access Databases . .

Distributed and Cloud-based Data Proc. . .

Applications (Monitoring, Tracking, etc.) . . . . . . . . .

Machine Learning and Deep Learning for BMD Analytics

Machine Learning Techniques Briefing .

Sensor, Image, and Video Data Cleaning .

Feature Extraction from BMD . .

Hardware Platforms in BMD Analytics .

ML for Sensor, Image, and Video BMD . . . .

and BMD processing. This flow of logic is illustrated in Fig. 2.1, which evolves from

the distinct research directions to their amalgamation into big data analytics for IoUT.

The four blue blocks labeled in this figure correspond to the remaining Sections 2.2, 2.3,

2.4, and 2.5. Additionally, any text or symbol inside these blocks represents a dedicated

10



2.2 Internet of Underwater Things
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Figure 2.1: Qualitative relationship between the diverse system components of the IoUT
and BMD analytics, starting from underwater sensors and ending up to ML
solutions and future directions.

subsection. Accordingly, the reader will gradually become familiar with state-of-the-art

tools and techniques, whilst gaining an insight into the challenges and opportunities in

the broad areas of IoUT, BMD, and processing BMD in IoUT.

This treatise is organized as illustrated in Fig. 2.2. Section 2.2 presents an overview

of the IoUT by associating its ecosystem to the concepts and methodologies defined for

IoT. In Section 2.3, we discuss the usual challenges in the field of BMD and provide

insights concerning oceanic sensors, image, and video data, which are widely available

through several databases. In order to advance our knowledge and coordinate efforts in

the field of BMD, sophisticated data analytic techniques and methodologies are required.

As mentioned, one of the main approaches to meet this demand is to use ML techniques.

Section 2.4 reviews several ML techniques conceived for automatic data leveraging from

growing big marine databases. Finally, in Section 2.5, the challenges and opportunities in

the emerging fields of IoUT, BMD, and underwater data processing are discussed, whilst

offering further insights into the opportunities and potential solutions to the challenges.

The chapter is concluded in Section 2.6.

2.2 Internet of Underwater Things

The concept of networks is broadly defined as a collection of independent machines, which

exchange meaningful data through pre-arranged technologies (e.g. Ethernet, Wi-Fi, Blue-

tooth). Accordingly, the Internet (Worldwide Interconnected Networks) can be considered

as a distributed network, or simply a network of networks. This network has an open
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Figure 2.2: Outline of Chapter 2 at a glance.

standard and constitutes a widely accessible ecosystem with lots of users and a variety

of applications. Within the Internet, IoT is the largest sub-ecosystem, which connects

devices in any place on earth to the World Wide Web.
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Similar to the definition of IoT, IoUT may also be defined as worldwide interconnected

networks of digitally identified underwater objects, which all obey the communication

protocols of a pre-specified reference model such as TCP/IP or OSI [29]. Based on this

definition, a detailed discussion of the IoUT objects (e.g. sensors) and underwater com-

munications will be provided. Additionally, the family of IoUT network standard models

and protocols will be surveyed.

2.2.1 Underwater Sensors and Devices for Data Collection

Our knowledge of the underwater environment is rather limited. This is a consequence of

having underdeveloped monitoring technologies for this environment. In addition, due to

the large operational areas, sea and coastal monitoring tend to suffer from sparse sensor

deployment [63]. To overcome these shortcomings, low-energy sensors that are capable of

working in the vast, hostile, and dynamic underwater conditions are required.

As mentioned in the introduction section, the perception achieved by understanding the

data collected using sensors in oceanic areas are essential both to human life and to envi-

ronmental sustainability. These sensors, for instance, can evaluate the impact of human

activities on resources in marine ecosystems and also make us aware of the amount of pol-

lution dumped into the sea [64]. At the time of writing small-scale Underwater Wireless

Sensor Networks (UWSN) and hydrographic research vessels that contain a variety of ma-

rine sensors are deployed locally to assess environmental pollution and also to evaluate the

seawater quality. However, the main disadvantage of these UWSNs is their small coverage

area, which cannot cover the seas in scales of thousands of square kilometers [3].

Accordingly, it is important to connect all the existing sensor networks to the Internet,

giving birth to the IoUT, in order to create an infrastructure for monitoring marine life

on a global scale. This internationally accessible IoUT that measures essential chemical

and physical parameters at sea, provides both historical and real-time measurements from

myriads of marine locations worldwide. The collated oceanic sensor data will help experts

predict future phenomena and also help policy makers ratify informed decisions [65].

Therefore, the IoUT infrastructure should consist of sensing objects and communica-

tion components in its underwater layers of the architectural model. These objects and

components are known as nodes and sinks [31]. To elaborate [1],

� Underwater endpoint nodes are the end devices at the underwater side of the net-

work, including various types of sensors, cameras, hydrophones, data storage micro-

chips, actuators, acoustic tags, radio frequency tags, tag-readers, etc.

� Underwater mid-layer nodes are deployed above the underwater endpoint nodes, and

are composed of data redistribution points, modems, gateways, repeaters, relays, etc.

13



Chapter 2 Literature Review

� Sink nodes in IoUT terminology are the overwater nodes along with the land-side

facilities, like buoys, exploration platforms, ships, satellites, onshore stations, etc.

Perhaps, the most important data collection components among all the different IoUT

endpoint nodes are sensors, which not only collect data, but help activate other underwater

components such as cameras, hydrophones, data storage micro-chips, and actuators. Some

of the most popular environmental parameters in underwater applications are listed in

Table 2.2. Typical industrial sensors that offer accurate measurement of these parameters

are also listed. The BMD generated from the continuous operation of these sensors is

transferred, stored and processed in the IoUT ecosystem.

In Sections 2.3 and 2.4, further discussions on marine sensors, as well as on sensor data

storing and processing, will be provided. In addition, a number of IoUT-based observa-

tory systems will be introduced. Before any sensor can be deployed in an underwater

environment, efficient and reliable underwater data communications should be realized.

This poses one of the greatest challenges for the pervasive sensor deployment in IoUT

ecosystems due to the extremely low acoustic and electromagnetic channel capacities and

high signal attenuations over long maritime distances, which affect reliable underwater

data communications. The next section will discuss and survey data transportation as

well as communication methods and protocols of the IoUT.

2.2.2 IoUT Communications

Today’s marine vehicular communication systems utilize the Very High Frequency (VHF)

automatic identification system to provide essential shipping information [3] (e.g. vessel

name, position, speed, destination, etc.). In addition, high-speed satellite communications

are available as an expensive alternative to existing VHF systems. However, none of these

systems are capable of supporting long-range underwater applications, where the acous-

tic waves are the dominant communication media. Nonetheless, these acoustic carriers

also suffer from high propagation delay, fading, narrow-bandwidth, and high-attenuation.

Therefore, in underwater applications, it is sometimes inevitable to use a combination of

different technologies (i.e. acoustic, electromagnetic, and optical) to overcome the com-

munication challenges such as signal attenuation.

There is always a high level of signal attenuation, when passing through water. This

attenuation affects every telecommunication technology in a different way. The signal

attenuation is directly related to the main design constraints such as the maximum re-

liable data-rate and the maximum possible communications distance. In the following

subsections, the signal attenuation is discussed in detail.
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Table 2.2: IoUT Sensors to Measure Underwater Physical, Optical, Fluid, and Chemical
Parameters [1–5]

Environmental
Parameters

Typical Sensor Products Brief Description

Temperature (◦C)
• RBRCoda T by RBR
• SBE series by Sea-Bird

Digital underwater temperature
readings in up to 10, 000m depth

Conductivity (S/m)
and Salinity (ppt)

• TTurb by TriOS
• 4319 and 4419 by Aanderaa
• SBE 4 series by Sea-Bird

Digital conductivity measurement
in the range of 0 ∼ 200mS/cm and
up to 6000m depth rating

Depth (m) and
Pressure (Bar)
for Bathymetry

• PTM, PR36, and 2600 Se-
ries by Omni
• 8000 series by Paroscientific

Analog and digital sensors can
measure water depth and pressure
with an accuracy of ±0.1%

Hydrophone
(dBV/µPa)

• Variety of products by Ben-
thowave Instrument
• icListen and icTalk series by
Ocean Sonics

Analog and digital
10mHz∼2MHz active and
passive hydrophones with wide
beamwidth for up to 2000m
underwater

Turbidity and
Visibility (NTU)

• WQ730 by xylem
• 4112 by Aanderaa

Analog and digital turbidity mea-
surement in up to 6000m depth

Optical Attenuation
(Absorption) (m−1)

• FAS series by Sea-Bird
• OLAS by Werne & Thiel

Scanning of the light spectrum in
up to 5000m depth rating

Photosynthetic PAR
(µmolm−2s−1)

• LI-192 by LI-COR
• RBRCoda PAR by RBR

Analog and digital sensors for
PAR read in up to 7000m depth

Water Flow and
Current Velocity
(m/s)

• Current meters by Valeport
• Water flow meters by OTT
• ISM series by HS Engineers

Analog and digital current flow
sensors with an accuracy of ±0.5%
and up to 6000m depth rating

Tide and Wave
Elevation (m)
and Direction (◦)

• 4648, 5218, and 44xx series
by Aanderaa
• ACM-PLUS series by Fal-
mouth Scientific

Tide height, wave height, and
wave direction read for applica-
tions like wave Fourier spectrum,
tide pressure, etc.

Nutrients (e.g.
NO2, NO3, PO4,
etc.) (ppm)

• AP Series by Aquaread
• Ion-Selective Electrodes by
. Eureka Water Probes

Nutrient sensors by solid-state,
liquid membrane, or UV to mea-
sure nitrates, phosphates, etc.

Dissolved Oxygen
(µ Mol/L)

• AP Series by Aquaread
• Oxygen sensors by AMT

Analog and digital sensor in up to
12, 000m depth rating

CO2 and pCO2

(ppm)
• C-sense by Turner Designs
• pCO2 series by SubCtech

Analog and digital sensors in up
to 6000m depth rating
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Electromagnetic signal attenuation

Electromagnetic waves and radio frequency signals do not propagate well underwater.

This is mainly due to the high conductivity of seawater. The penetration depth of elec-

tromagnetic waves is inversely proportional both to the conductivity (σ [S/m]) and to the

frequency (f [Hz]) [66]:

δ ≈ 1√
πµfσ

, (2.1)

where µ is the water permeability and the penetration depth expressed in δ [m] is defined

as the distance that an electromagnetic wave travels before becoming attenuated to e−1

of its initial amplitude. Based on this formula, only low frequency signals (with small

channel capacity) can travel long distances in seawater, before they completely fade out.

Therefore, the antenna size (L [m]) increases, as the frequency decreases [66]:

L ∝ v

f
, (2.2)

where v is the speed of the electromagnetic wave in water that is almost equal to the speed

of light in free space.

Acoustic signal attenuation

Due to the hostile electromagnetic underwater environment, most communications in the

IoUT are based on acoustic links, which also suffer from a narrow frequency bandwidth.

However, the attenuation of low frequency acoustic waves (α [dB/km]) is lower than that

of electromagnetic waves [67]:

α ≈ F1 (f, pH) + F2 (f, T, S, z) , (2.3)

where f is the frequency in [kHz], pH is the water acidity (i.e. almost 6.0 ∼ 8.5 for both

freshwater and seawater), T is the water temperature in centigrade, S is the water salinity

in parts-per-thousand (ppt), and z is depth in kilometer.

Optical signal attenuation

Another possible communication technology for underwater environments relies on an

optical channel. However, similar to the previous pair of channel types, optical channels

also suffer from signal attenuation.

Absorption and scattering are the two main causes of optical signal attenuation under

water. Several previous studies have performed numerical simulations to estimate the

attenuation [7, 68, 69]. These include solving the radiative transfer equation, which is
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time-consuming and complex, but precise; or using simplified models (e.g. Monte Carlo),

which are typically fast but imprecise [7].

One of the most successful examples of these simplified Monte Carlo-based approaches

was proposed by Gabriel et al. [68], where the spectral beam attenuation coefficient is

calculated as,

c(λ) = a(λ) + b(λ) , (2.4)

where a(λ) and b(λ) are the spectral absorption and spectral scattering coefficients, respec-

tively, and λ [m] is the wavelength. Both of these coefficients constitute intrinsic optical

properties and are calculated by simple volume integration over a solid angle (Ψ).

Alternatively, the relationship between the received light intensity (L(t, r, θ, φ)) and the

transmitted optical power (S(t)) expressed in spherical coordinates (r, θ, φ) can be defined

by the well-known radiative transfer differential equation [70]. One of the most accurate

solvers for this differential equation in underwater optical communications was proposed

by Illi et al. [69], who have formulated their time-domain approach as,[
1

v

∂

∂t
+ n⃗ · ∇

]
L = − c(λ)L + S

+

∫∫
VSF× L sin(φ′)dθ′dφ′ ,

(2.5)

where v is the speed of light, n⃗ denotes the direction of propagation, and c(λ) accounts for

the same absorption and scattering coefficients of (2.4). The Volume Scattering Function

(VSF) will be discussed in Section 2.3.2.

The improvement in solving (2.5) was achieved by enhancing the finite-difference method

as well as by proposing a better approximation for the definite integral. Again, this is an

accurate, but computationally expensive method of optical signal attenuation characteri-

zation.

The signal attenuation encountered by different telecommunication technologies dis-

cussed above directly affect the bit error rate and the overall underwater link reliability

in the IoUT, which is discussed in the following section.

2.2.3 Improving IoUT Link Reliability

The underwater channel quality is significantly affected by several dynamic factors, in-

cluding tidal-waves, pressure gradients, temperature gradients, floating sediments, and

changes in water ingredients (chemical compounds). These channel dynamics affect the

signal amplitude (distortion), frequency (dispersion), and speed (refraction) [71]. They

also result in different delays, corresponding to delay jitter. Due to these challenges, all
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underwater channels are considered as unreliable links, which requires us to define a relia-

bility metric and then, use this metric for quantifying and optimizing the quality of service

in our IoUT network [72].

Previous contributions in this field tend to assess the link reliability either by software-

based or hardware-based metrics [72–75]. Hardware-based metrics tend to measure Signal-

to-Noise Ratio (SNR) and signal-to-interference ratio as their reliability metrics [73]. The

signal strength values can be directly read from the hardware transceiver. On the other

hand, software-based metrics predominantly rely on comparing the overall end-to-end

data delivery of the communication systems [72]. The channel or link reliability metric is

defined as the ratio of bits as well as packets that are delivered successfully through the

link. This metric can be evaluated either at the bit- or the packet-level. At the bit-level,

the Bit Reception Ratio (BRR) is the reciprocal of the Bit Error Rate (BER):

BER =
NErroneous Receptions [bits]

NTotal Transmissions [bits]
, (2.6)

BRR = 1− BER . (2.7)

By contrast, for a packet of m bytes (i.e. 8 ×m bits), successful reception of a packet

means that all the m bytes were received correctly. Thus, the link reliability metric at the

packet-level can be defined by the Packet Reception Ratio (PRR) as [72]:

PRR = (1− BER)8m . (2.8)

Another commonly used alternative to the BER of (2.6) for defining a link reliability

metric is the Required Number of Packet transmissions (RNP), defined as [74]:

RNP =
NTotal Transmissions [packets]

NCorrect Receptions [packets]
. (2.9)

In contrast to the BER that is measured at the receiver side, the RNP metric is designed

to be measured at the transmitter side.

Another software-based link reliability metric, namely the Expected Transmission Count

(ETX), is defined as the number of expected transmissions that a node requires for suc-

cessful delivery of a packet [75], which can be directly calculated as the reciprocal of the

PRR value of:

ETX =
1

PRR
. (2.10)

Based on the band-limited nature of both the overwater and underwater telecommuni-

cation channels, the BER, RNP, and ETX values that have been respectively calculated in
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(2.6), (2.9), and (2.10) are related to the originally transmitted data-rate, initially trans-

mitted power, as well as to the distance between the consecutive transceiver pairs [66]. In

this regard, reliable communication in the presence of random background noise, requires

a certain minimum received power. This guarantees reliable data flow throughout the

IoUT infrastructure for the ensuring big marine data processing.

The data-rate in bits-per-second (bps) and the transmission range, alongside the other

characteristics of communication technologies are shown in Table 2.3. The simplified

simulation plot of attenuation vs. transmission range in this table is calculated using the

same conditions as in the studies discussed in Section 2.2.2. Here, the electromagnetic

conductivity of the seawater and freshwater are considered to be 44, 000 and 100µ S/cm,

respectively [76]. The salinity values of the seawater and freshwater are also considered

to be 35 and 0.4 ppt. The water depth only has a minor effect on the results and it

is considered to be 1 km and 1m for seawater and freshwater, respectively. The water

temperature and its pH value are assumed to be 10◦C and 7.7.

By comparing the details provided in Table 2.3, one can readily conclude that reliable

underwater wireless communications are restricted to low data-rate acoustic waves for long

distances or high data-rate optical rays for short distances. Short-distance and low data-

rate electromagnetic waves are substantially outperformed by the other two technologies.

Despite the restrictive nature of the above-mentioned underwater communication tech-

nologies, innovative techniques can be developed to boost both the software-based and the

hardware-based reliability metrics of underwater communication links. These techniques

include ad hoc routing improvements and hop-count optimization, which are discussed in

the following subsections.

Routing improvement

The specific choice of the link reliability metrics to be optimized has a substantial influence

on the routing design of ad hoc networks [77]. Therefore, the design and implementation of

a reliable network under the above-mentioned restrictive conditions of underwater channels

requires an efficient data routing scheme [63]. One such scheme has been proposed by

Rani et al. [18] for UWSN, which can be adapted to IoUT nodes as well. As shown in

Fig. 2.3, the whole underwater wireless network in [18] is divided into multiple sub-regions

or clusters. In every cluster, relay nodes cooperate with the local normal nodes to forward

data to the cluster-heads. The cluster-heads of each cluster are responsible for routing and

transmission of data to the next cluster-head situated in the upper sub-region, termed as

cluster coordinator.

The scheme presented in [18] relies on a pair of efficient algorithms. The first algorithm
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Table 2.3: Data-Rates and other Characteristics of Communication Technologies in Un-
derwater Applications [6–8]

 

 
 

Normal Nodes 

Relay Nodes 

Cluster Heads 

Base Station 

Cluster  
Cluster  

Figure 2.3: Reliable and energy-efficient multi-cluster network topology [18].
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constitutes a location-free and energy-based policy that is devised to group individual

nodes into cluster sets, aiming to increase SNR reliability metric. The second algorithm

involves allowing cluster-heads and relay nodes to store data before routing and trans-

mission. This helps the whole system to increase the RNP metric in (2.9), by avoiding

retransmission of the same data packets. By implementing these ideas, the protocol tends

to transmit fewer packets of data with a higher reliability and also carries out load bal-

ancing in packet routing throughout the network.

Another noteworthy data routing scheme was proposed by Tran-Dang et al. [78] for

underwater acoustic sensor networks. Their work follows the same structure as [18] in

Fig. 2.3. By contrast, their cooperative routing algorithm does not divide the UWSN into

multiple clusters. Instead, every normal node independently selects its own relay node and

cluster-head. This selection is based on the SNR link reliability metric of Section 2.2.3,

on the physical distances represented by hop-count in Section 2.2.3, and the time of ar-

rival, which is extracted from the timestamps of the packages. Moreover, this algorithm

constantly monitors the environment in UWSN to estimate the SNR, hop-count, and time

of arrival throughout the network. These parameters are frequently updated to adapt to

the dynamic underwater environment. However, the simulation results reported in this

chapter require experimental fieldwork for validation.

More discussions on the effects of network topology on the software-based link reliability

metrics (e.g. BER) are provided in Section 2.2.5. In the next section, a hardware-based

reliability metric (i.e. SNR) will be used for the evaluation and optimization of the hop-

counts in IoUT.

Hop-count optimization

Another subcategory of methods capable of increasing the underwater link reliability is to

optimize the hop-count, which is defined as the number of intermediate hardware devices

(Modem, Gateway, Switch, Router, HUB, and Repeater) conveying the data between

successive sources and destinations [79]. For example we could minimize the number

of hops, provided that the transceiver is capable of reliably communicating over higher

distances with the aid of higher transmit power and or more sophisticated receivers.

To characterize the effect of the number of hops on the system’s reliability, we have

to consider the fact that almost all of the wireless underwater endpoint and mid-layer

nodes are battery-limited and the adequate operation of the entire network depends on

the charge of their batteries. On the other hand, increasing the transmission distance,

which is required for most underwater applications, decreases the effective bandwidth.

This in turn increases the power consumption of delivering the payload at a minimum
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SNR.

To address the challenges imposed by battery constrained underwater nodes on the

link’s SNR reliability metric, Li et al. [34] suggest reducing the hop-distance by deploying

relay nodes along the underwater link to improve the overall transmission performance.

This relay-aided transmission scheme is based on power-bandwidth-range dependency,

and at the time of writing it offers an energy-efficient method supporting sustainable high

data-rate delivery in underwater scenarios.

To overcome the challenges of wireless communications, we basically need to under-

take an analytical or numerical approach, to computationally evaluate data transmission

throughout the network. Taking this mathematical approach will consequently empower

us to optimize our communication system in the favor of having more reliable IoUT infras-

tructure. However, analyzing and optimizing the physical layer of the network requires

us to provide the simulation tool with an appropriate underwater physical channel model,

which is the topic of the next section.

2.2.4 Underwater Channel Modeling

As discussed in the previous sections, the underwater physical layer exhibits different be-

havior in response to both different propagation modes and different channel types. For

example, the signal attenuation was found out in Section 2.2.2 to be calculated differently

for electromagnetic, acoustic, and optical carriers. The physical layer also exhibits differ-

ent behavior in the case of wired and wireless channels. Regardless of the channel types

and propagation technologies, we require to have an appropriate channel model to have

a better insight on underwater data transmission. This proper model can then be used

for predicting the performance of our communication system, designing the optimum un-

derwater location of nodes, and decreasing the overall energy consumption of the system,

before its actual deployment [80].

The channel models of wired and wireless networks vary with the choice of the com-

munication technology. In other words, it is not possible to design an accurate channel

model for universal employment in every application [71]. On the other hand, a feasible

model has to undergo some degrees of simplifications, which is strongly correlated with

the requirements of the problem itself [81]. As an example, we might simply neglect the

water salinity in an acoustic channel model, while this simplification is not possible in

underwater electromagnetic propagation.

Considering the aforementioned factors, channel models are somehow tailored to their

own specific use cases. Accordingly, one usually needs to modify and combine the main

features of multiple stand-alone models to come up with a dedicated solution to a specific
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application. For instance, each of the following works considered a specific aspect of the

acoustic wave propagation underwater (i.e. layered ocean water, particles in seawater, and

the slope in seabed) and neglecting the rest, for simplification.

� It is very common in underwater channel modeling to consider a constant phase

velocity throughout the entire medium (isovelocity). But in the contribution of

Naderi et al. [82], the non-isovelocity acoustic wave propagation in shallow-water

environments has been evaluated. They split ocean water into multiple layers of

piece-wise linear sound speed profiles. Afterward, they use traditional sound wave

propagation techniques to extract the time-variant channel transfer function. The

complexity level of their solution can be adjusted by increasing the number of the

linear layers. This could easily result in instability or inaccuracy in case of extra-thin

or extra-thick layers, respectively.

� Relatively long wavelength of acoustic waves compared to the floating particles in

ocean, makes them less vulnerable to backscatter and forward scatter phenomena.

This is not the same for optical waves, as will be studied in Section 2.3.2. In a relevant

study, Zhou et al. [81] have considered the impact of the scattering particles on the

propagation characteristics of acoustic waves in underwater environments. They

randomly distribute those particles on an assumptive rectangular cross section of

ocean. Despite their interesting method, two main drawbacks exist in their statistical

approach. First, their evaluation is only a 2D vertical cross section of seawater,

neglecting realistic 3D sections. Second, they do not consider the stochastic size of

the scattering particles.

� It is generally considered safe to assume the sea surface as a flat plane in underwater

acoustic wave propagation, but this is not the case for the seafloor. In the work done

by Naderi et al. [83], the up/down slopes in seabed have been taken into account.

This important consideration is particularly essential in the case of shallow waters

in the presence of coral reefs and plants, and cannot be neglected.

As mentioned, in order to have a desired customized and simplified underwater channel

model, relevant existing models can be combined and unified. The majority of acoustic

channel models (including all of the above-mentioned) follow the same mathematical ap-

proach. This approach relies on the superposition of a single Euler wave ray, over all the

possible propagation paths in the time- or frequency-domain. This superposition relying

on resolving the time-variant channel impulse responses can be written as [82],

h(t) =
∑
n

cne
−j(2πf0t+θn)δ (t−∆tn) , (2.11)
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θn =
2πf0
v0

∆Ln , (2.12)

where f0 and v0 denote the frequency and the acoustic wave speed in water, ∆tn and

∆Ln stand for the propagation delay and the difference in propagation path length, θn

is the propagation phase shift, and δ(·) is the Dirac delta function. Here in (2.11), cn

encapsulates both the initial gain and the subsequent losses by incorporating the concept

of statistical random variables to model the stochastic environmental parameters (i.e.

effects of scattering particles, motion-induced Doppler shifting, location uncertainty of

nodes, changes in received power, dynamic seabed topology, and other natural variables).

Selection of these environmental parameters for encapsulating in cn differs from one use

case to another, depending on the scale of these parameters’ effect in every case [80].

The same concept of acoustic superposition in (2.11) can be used to model electromag-

netic channels. But as discussed in Section 2.2.2, high-attenuating electromagnetic waves

are not common in underwater data transmission and therefore, they are not evaluated

here. In a clear contrast, using line-of-sight optical communications as well as fiber-optic

channels are very popular in high data-rate underwater communications [7]. In this regard,

the subject of optical fibers is out of the scope of this thesis and the reader is encouraged

to follow it up from other resources [84]. Meanwhile, studying the line-of-sight optical

channel properties in underwater applications will be conducted in Section 2.3.2.

As stated at the beginning of this section, the channel modeling is the backbone of every

IoUT network simulation to evaluate its proper operation and to optimize its parameters

[85–87]. One of the very basic parameters in IoUT networks that relies on channel modeling

is the node location and it is referred to in parlance as network topology, which will be

discussed in the next section.

2.2.5 IoUT Network Topologies

By utilizing TCP/IP as the reference model for the IoUT network architecture, almost all

of the known network topologies can be used in gateway-enabled underwater applications

[1, 88]. Two of these topologies (i.e. tree and mash), which have high potential and are

suitable for implementation in IoUT are shown in Fig. 2.4.

The frequency bandwidth is limited undersea and energy is hard to harvest. Therefore,

advanced distributed topologies are rarely used in underwater applications, instead, the

conventional tree and mesh topologies are dominant. The tree topology is typically used

in small networks relying on one-way protocols [4, 18, 32, 88]. The tier (client-server)

negotiation in this topology is based on a request and response process. On the other

hand, the mesh topology tends to be the option of choice in sophisticated networks to meet

the high traffic requirements, while using all available signal routes and frequency bands
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 (a) Tree network topology

. [1, 4, 18,32,88]

 

 
 (b) Partially connected

mesh
. [1, 7, 31,34,88]

Figure 2.4: Reported network topologies in IoUT applications.

efficiently. This ensures that the limited channel capacity of underwater environments is

efficiently exploited [7, 31,34,88].

It is worth noting that any signal route of Fig. 2.4 has its own reliability quantified

in terms of its overall bit error rate in any typical IoUT network. This assists us in

beneficially choosing a suitable network topology for any application, given its specific bit

error rate target.

However, choosing a suitable network topology, designing a multi-layer communication

network, and selecting an appropriate protocol for each layer of its architecture is not

always a straightforward task. This job requires a tedious work to continuously design,

test, debug, integrate, and deploy the newer versions of the network. It will get even more

challenging in the harsh underwater conditions. To make this process a lot easier, some

simulation tools are available, which can be used in underwater network design as well as

layer-wise protocol testing.

All the approaches discussed above are introduced to enhance underwater communica-

tion and to address its challenges. However, if the devices and nodes in IoUT are capable

of local computations at the edge of the network, the underwater network traffic will be

significantly reduced and further improvements can be made to the IoUT ecosystem. The

concept of these edge computing nodes and their beneficial effects on underwater data

traffic will be discussed in the next section.

2.2.6 Edge Computing in IoUT

The concept of edge computing was originally introduced in IoT as an alternative to

cloud computing. As the terminology suggests, in edge computing, the endpoint (edge)

devices perform all or part of the required computations, so the need for data transfer

and communication becomes less of a challenge. This sparse data transfer is ideal for the
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IoUT ecosystem, which suffers from the hostile communication medium. Within IoUT,

edge computing can be defined as a distributed and elastic computing paradigm, in which

computing is predominantly carried out in the edge-devices such as, underwater endpoints,

mid-layer nodes, and data acquisition tools. In the absence of edge computing capability,

the processing should be performed on local computers, servers, or by the centralized

clouds [89], all of which require shuttling data back and forth, hence rendering it unsuitable

for IoUT [90]. In edge computing, devices have to expand their capabilities and in addition

to data collection and communication, engage in data processing as well. This feature will

shift the services from a single centralized point to numerous distributed nodes and closer

to the physical world. The major advantages of using such a decentralized edge computing

technology in the IoUT ecosystem are data-rate reduction, latency reduction, and prompt

inner-network decisions making [90–92].

However, to turn these advantages into reality, edge computing has to tackle significant

challenges. The energy resources of the edge-devices are limited. Furthermore, sustainable

power cannot be readily delivered to the processing units of underwater applications. Even

though edge computing has been the subject of extensive research in conventional IoT

applications, it has its own specific challenges in IoUT. Below, we briefly review two of

the IoT edge computing paradigms presented in [93] that are suitable for IoUT.

� Mobile Cloud Computing (MCC): It is defined in IoT ecosystem, as the combination

of cloud computing and mobile nodes to execute computational- as well as storage-

heavy mobile applications (e.g. machine learning) in the cloud. MCC can offer

rich computational resources to scarce-resource underwater applications. However,

its relevance to IoUT is low because of the long propagation distance from the

distributed BMD sources to the remote cloud servers [94], as well as the narrow

underwater bandwidth and limited access to energy. Another drawback of MCC is

its service accessibility, which is via Internet connection only. This is in contrast to

other edge computing paradigms that can offer a direct access [93].

� Mobile Edge Computing (MEC): The acronym MEC represents mobile edge com-

puting and multi-access edge computing, with the latter one being more inclusive.

According to the descriptions offered by the European Telecommunications Stan-

dards Institute (ETSI), the MEC technique provides cloud computing capabilities

at the edge of the network, with close proximity to the end-users (i.e. underwater

endpoint nodes). In IoUT, the edge of network represents both the land stations at

the edge (e.g. cellular towers, data centers, Wi-Fi routers, etc.) [95] as well as the

overwater sink nodes (i.e. floating buoys, floating vehicles, exploration platforms,

etc.). These edge gateways will carry out some preliminary and short-term tasks,
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Table 2.4: Location of The Processing Unit in Different IoUT Edge Computing Paradigms

 

Cloudlet, fog, MCC, and MEC edge computing 

Edge Paradigms  Edge Processing Locations     

Mobile Cloud 
Computing 
(MCC) 

Centralized cloud 
servers at the land side 
of the network 

Mobile Edge 
Computing 
(MEC) 

land stations at the 
edge (e.g. radio access 
networks) 

Overwater sink nodes 
or underwater mid-
layer nodes (e.g. 
buoys and ships) 

 

Indirect 
Access 

Internet 

Direct 
Access 

before handing their results to the cloud servers for more sophisticated and resource-

intensive analysis [96]. MEC techniques invoked for the IoUT can offer low latency

and reliability. Their other advantages in IoUT include their support of wired com-

munications as well as their facilitated direct access (i.e. no Internet connection is

required) [93].

Considering the above, MCC and MEC are two of the IoT edge computation techniques

that are practically realizable in IoUT, as shown in Table 2.4. Among them, MEC requires

lower bandwidth, lower network traffic, low-latency, and low-power underwater operation,

and more reliable access to underwater sensors and cameras in the IoUT [91]. Hence, MEC

networks constitute the most attractive edge computing paradigm in IoUT applications

[91, 92]. They can perform computations in the sink or mid-layer edge-devices that are

placed or have access to above water, where for example solar energy may be harvested.

2.2.7 Section Summary

In this section, we studied the essential topics involved in developing the IoUT. We dis-

cussed various sensors in the IoUT and learned about their important features and roles in

data collection. We then pointed out the major challenges in the IoUT domain and learned

that electromagnetic, acoustic and optical signal attenuation significantly affect the IoUT

communication and its link reliability. We also learned how to measure and improve the
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link reliability. Next, we discussed the IoUT architectural model and its layer-wised pro-

tocol stack, and learned how the TCP/IP model can be adapted to the IoUT architecture.

In order to be able to gain better insight into the network performance and to predict its

reliability, network modeling was discussed. The lessons learned were that various channel

models result in different levels of complexity and they should be carefully selected, based

on the application concerned.

The IoUT network topology was the next topic we covered, where we learned that the

tree and partially connected mesh are the most popular topologies in IoUT applications.

We also discussed the underwater network simulation tools and how they can be used to

facilitate the implementation of the defined protocol stack. We provided a list of these

simulation tools, which can be helpful to the community when designing and analyzing

underwater communication networks and protocols. Network security in IoUT was another

salient topic discussed. We learned that there is a paucity of literature on this important

issue, even though it is essential in critical scenarios such as harbor security. Another

important topic studied in this section was software-defined networks in IoUT. We learned

how it can help with the management of IoUT networks. Finally, we discussed edge

computing in IoUT and learned that it may be even more important for IoUT devices to

have edge computing capability than for their IoT counterparts, mainly due to the more

challenging communications in underwater scenarios.

The IoUT discussed in this section generates a vast amount of data, which may be

referred to in parlance as big marine data. In the following section, we discuss big marine

data and cover its associated data sources, data collection tools, and data processing

methods in the oceanic and underwater domain.

2.3 Big Marine Data

This section is dedicated to underwater data types, which are envisioned to have the lion-

share in the IoUT data transactions of the near future. We will also cover data acquisition

tools, localization as well as tracking, and will introduce some ready-to-use big ocean

sensory, imagery, video, and geographic databases, which are useful to researchers and

practitioners in the IoUT Domain.

BMD can be succinctly defined as the vast amount of heterogeneous data collected from

marine fields. The main characteristics of BMD are temporally long and spatially vast

coverage, diverse nature of the data sources (e.g. sensors, cameras, tags, aerial remote

sensing), and multi-disciplinary data types (i.e. physical, chemistry, biological, environ-

mental, economical, etc.) [59].

The BMD system components and processing stages are as follows [57]:
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1. Acquisition: Involves collecting raw data.

2. Transportation and security : Requires the data to be encrypted and transferred

across different communication media to its target storage, while considering its

reliability and security.

3. Storage and privacy : Deals with policies around data storage (legal concerns and

users privacy) and its archival requirements (file formats, retention lifecycle, and

replication).

4. Special-purpose processing : For complex datasets, bespoke software packages are

required for searching, pre-processing by filtering and cleaning, recognition and la-

beling, post-processing and visualization of results, and updating.

5. Exploitation and leveraging : Ensures that users gain benefit in terms of increased

revenue from their data. Some benefits of underwater data exploitation are that of

monitoring the water’s vital cleanliness, help new businesses to grow, support experts

by providing informative bespoke data, track worldwide maritime transportations,

and protect the environment.

From the above five BMD system components, transportation and security was already

discussed in Sections 2.2. The third component, i.e. storage and privacy covers legal

policies and data handling issues, which are beyond the scope of this thesis. Below, we

review the data acquisition stage and later in sections 2.3.3 and 2.3.4 we will discuss

some aspects of data leveraging stage in more details. Additionally, discussions on data

processing will be provided in Section 2.4.

2.3.1 Marine Data Acquisition

Data acquisition, which is the first component of any BMD solution can be discussed in

three different stages including data gathering, data aggregation, and data fusion.

Data gathering

Data gathering in IoUT can be performed using a variety of tools, some of which are listed

in Table 2.5. The data acquisition tools in this table are divided into vehicles and primary

data sources. Any vehicle in this table can be considered as a data acquisition tool, if

and only if it is equipped with one or more primary data sources and tools (e.g. mounted

cameras, hydrophones, sensors).

As we will discuss in more details in the forthcoming sections, BMD processing and

data leveraging (as the 4th and 5th BMD system components) are not possible without
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Table 2.5: List of Data Acquisition Tools in Underwater Applications with the Percentage
of Use of Each Item in Related ML Articles

Tools
Share
in ML

Types
Used in ML Articles

Before / After 2014

Vehicles 50% Remotely Operated Vehicles
• Free Swimming
• Bottom Crawling
• Structurally Reliant
• Towed System

 

 

62% 

45% Autonomous Underwater Vehicles
• Underwater AUVs
• Underwater Gliders
• Autonomous Submersibles

 

 

54% 

5% Human-Occupied Vehicles
• Submersibles
• Atmospheric Diving Suits

 

 

88% 

Primary
Data
Sources

65% Sensors
• Separately Listed in Table 2.2  

 

50% 

35% Cameras
• Fixed Cameras
• Baited Remote Videos
• Diver Operated Videos
• Drifting Underwater Camera

 

 

57% 

automatic ML approaches. Therefore, a survey was conducted to extract the contribution

of data acquisition tools in state-of-the-art ML articles. The survey result is shown in the

second and fourth columns of Table 2.5. In the second column, the inter-category contri-

bution of each item is compared to the others. In the vehicular category, the unmanned

ROVs and AUVs together were used in about 95% of the relevant ML publications.

In the fourth column of Table 2.5, an item-specific evaluation is performed to quantify

the share of each item both in the old and new ML publications (before and after 2014).

As can be seen in the table, more than 50% of all underwater research in the area of ML

have been carried out after 2014. There is only one exception for human-occupied vehicles.

Perhaps, this is due to the recent wide adoption of automated as well as of remote methods

and owing to the reduction in academic usage of costly manned vehicles.
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Data aggregation

Data aggregation is a statistical data processing stage before higher level calculations

and/or before transmission over a band-limited communication channel [97]. The level of

raw data summarization here is to create another set of shortened raw data, by imple-

menting mathematical techniques, such as down-sampling, linear regression, etc.

Data aggregation can be carried out in UWSNs, for example to minimize the bandwidth

utilization. It can also reduce the energy consumption in the network-level, by striking a

trade-off between low data processing power and high data communication energy. How-

ever, using this process in underwater applications may impose some unwanted drawbacks,

like [98]:

� Increasing the energy consumption and processing requirements in the node-level;

� Increasing the overall network latency;

� Compromising data accuracy by shortening its volume.

To address these challenges, LEACH, PEGASIS, HEED, and APTEEN, which are some

well-known aggregation protocols in wireless sensor networks can be used in UWSNs sub-

ject to modest adjustments [99–101]. Additionally, heavy computations and high en-

ergy demands in data aggregation processes can be mitigated by using edge computing

paradigms, as described in Section 2.2.6.

Data fusion

The BMD gathered and aggregated may be stored in distinct subsystems or in separate

databases. Data fusion is defined as the combination of relevant data from different data

sources into an integrated dataset, with the objective of searching for more consistent and

more accurate information than that provided by any individual database [102].

Data fusion systems in IoUT mainly rely on edge computing devices as well as on cloud

computing servers to handle large amounts of heterogeneous BMD (i.e. sensors, audios,

videos, commands, etc.) [60]. Three main questions are raised when designing a successful

data fusion system in marine applications. The first is the location of data fusing operation,

the second is the level of abstraction in the fusion system, and the third is the level of

overlapping of the original data.

Considering the first question, data fusion can be performed either in a centralized node

or in a distributed network [102]. In a centralized scheme, the data fusing node is usually

located on overwater edge devices or in an inland facility with good access to energy

resources [60]. The distributed data fusion will be hierarchically conducted over the entire
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system, where every cluster-head fuses data from its own cluster nodes, passing them to

the next cluster-head. Distributed BMD processing will be discussed in more details in

Section 2.3.3. Considering the second question about abstraction level, the answers offered

by [103] are:

� Low level (i.e. sensor fusion): If the inputs to our fusion system is the raw data

directly gathered from the sensors, cameras, etc.;

� Medium level (i.e. feature fusion): If the inputs to our fusion system is the output

of feature extracting blocks, as will be discussed in Section 2.4.4;

� High level (i.e. decision fusion): If the inputs to our fusion system is the output of

classification or clustering blocks, as will be discussed in Section 2.4.1.

Low level data fusion is not recommended in BMD, as a result of restricted underwater

resources. The only exception is in edge computing, where the raw data is fused together

on the edge device, right before extracting their features. On the other hand, medium and

high level data fusion can help us with building more sophisticated models or with finding

more complex solutions [104].

Considering the third question on the overlapping level, the lessons of [103] are:

� Redundant : If we have multiple datasets with the same data type, related to the

same subject, in the same time interval, by different data acquisition tools or in

different sampling time spots;

� Complementary : If we have multiple datasets of the same data type, related to the

same subject, from different angles or in different time intervals;

� Cooperative: If we have multiple datasets of different data types, related to the same

subject.

Fusing redundant or complementary data can increase our confidence over the original

datasets. However, based on the expensive data transmission in UWSNs, neither redun-

dant nor complementary levels of overlapping are recommended. In contrast, cooperative

data fusion (e.g. couple of sensed parameters from Table 2.2 or associated audio and video

data) can obviously increase our knowledge of the subject.

2.3.2 Marine Data Classification

Based on our findings in previous section, which has also been reflected in Table 2.5,

cameras and sensors are considered as primary underwater data acquisition tools. Most
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maritime industrial, research, or observatory project might integrate these data acquisition

tools into a wireless or wired sensor network. The sensor networks that are connected to

the Internet, all together play a predominant role in the overall IoUT infrastructure. The

data collected in the UWSNs within the IoUT may be classified according to its dimension

as discussed below.

One-dimensional time-series marine data

As described earlier in Sections 2.2.1, a sensor is considered as an endpoint node in the

application layer, which offers time-series data reception through the Internet according

to the end-user preferences. For instance, a biologist might be interested in the water

temperature, while an environmentalist might be interested in the water quality.

Conventional marine sensors and marine nano-sensors (as listed in Table 2.2) measure

a variety of oceanic signals and processes within a specific duration. Marine nano-sensors

are popular owing to their low power consumption [105, 106]. The sequential data pro-

vided by sensors and nano-sensors are used in monitoring and surveillance applications to

provide long-term and large-scale perception of the environment and to tackle unwanted

environmental changes [107].

Implementation of these sensor nodes in small-scale research-based IoUT structures are

repeatedly reported in literature. Some of these contributions are discussed below:

� A low-complexity VHF-based IoUT ecosystem is proposed by Al-Zaidi et al. [3]

for marine data acquisition based on storage devices in the cloud. The proposed

structure is equipped with temperature, depth, and wind sensors to produce a near

real-time system.

� A network of sensor nodes, based on the IEEE 21451 standard is constructed by

Adamo et al. [64] for continuous monitoring of the seawater quality. This system

is devised as an IoUT network for making strategic decisions concerning a range of

environmental issues.

� A low-cost technology for maritime environmental sensing is described by Wright et

al. [108]. The technology relies on the IoUT for measuring parameters such as the

optical properties of water, ocean temperature, and wave dynamics.

� The Great Barrier Reef of Australia is the largest coral system on planet Earth,

spanning a distance of over 2300 km. Palaniswami et al. [109] constructed an UWSN

to capture data from temperature, pressure, and humidity sensors in an IoUT plat-

form, for monitoring the complex ecosystem of the Heron Island in the southern
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Great Barrier Reef. The big data of sensory time-series collected for their study,

has been then analyzed by ML algorithms to detect underwater anomalies. There-

fore, [109] is a notable application of big data analytics in IoUT with prime objective

of predicting severe tropical cyclones.

In addition to these small-scale research units, a range of other observatory stations

have been established by institutes and organizations, to provide both research-oriented

and industrial access to the underwater sensory data. These observatory stations are

located all around the planet and they provide a reliable access to BMD through the

IoUT.

Here we provide a list of major observatory stations in Table 2.6. The observatories are

sorted in an ascending order from the smallest to the largest observatory coverage area.

All the entries in this table are open access and indicate active projects with sustainable

funding. This guaranties continuous data preparation and update. They are all accessible

through a web-form or dedicated software.

There are some other observatory projects, which are not included in Table 2.6, because

they are no longer supported and their databases have become obsolete. For instance,

the POSEIDON system in Greece (2008 to 2012) is no longer actively operating, but its

atmospheric and marine data are still downloadable through the web. Another example

is the JGOFS (Joint Global Ocean Flux Study) project which was funded by the inter-

national science council during 1987 to 2003. JGOFS was an international program with

participants from more than 20 nations. The rich multi-disciplinary data of this project

is also still available to download.

The data provided by any one of the observatory systems in this section, can be affected

by environmental noise, outlier records, misread values, and missing quantities. To deal

with these measurement errors, we require a series of techniques, which will be provided

in Section 2.4.3.

Two-dimensional underwater image data

Some observatory stations introduced under Table 2.6, are equipped with cameras to

provide ready-to-use 2D image data. In addition to those live IoUT images and videos,

there exist a variety of other still-image databases. These new databases are listed in

Table 2.7, and they are eminently suitable for supervised ML applications (as it will be

discussed in Section 2.4.1), as a benefit of their additional expert labels and annotations.

These databases are accessible through a web-form or a dedicated software, or even in the

form of a downloadable dataset. However, only a few of them are active projects with

continuous updates.
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Table 2.6: Open Access and Active Observatories Worldwide; Providing Up-to-date Pri-
mary Data

Project Funder Description

OBSEA
University
of UPC

A seafloor observatory in a fishing protected costal area in
Spain, which delivers live video, acoustic, and sensor data.

WHOI
Non-profit
Organization

An organization in Massachusetts, which owns some observa-
tory stations (like MVCO) and provides sensed data.

MARS
MBARI
Institution

Cabled observatory in 891m below the Monterey Bay in Cal-
ifornia provides videos, Acoustics, and sensor data.

LoVe Statoil
This station provides camera, acoustics, and sensors in
the cold-water corals in Norway [110].

NeXOS
European
Commission

Miscellaneous sensor data from 3 sites around Italy and
Spain are gathered [52].

MARNET BSH© Sensor data for the North sea and Baltic sea of Germany.

CCO
DEFRA
Department

The network of six regional sensory data monitoring sites
around UK.

IOOS NOAA
Integrates existing networks of instruments in the western
hemisphere (e.g. OOI, NERACOOS, MARACOOS) and pro-
vides videos and sensed data from regions around The USA.

AODN
and AIMS

Australian
Government

Australia’s marine territory is the third largest on Earth.
AODN and AIMS portals provide access to Australian ma-
rine and climate sensed data.

ONC
University
of Victoria

Delivers cabled observatories and sensors to monitor the
west and east coasts of Canada.

EMSO
European
Union

Consists of 8 observatories and 3 test sites around Europe,
with biological, chemical, and physical sensors.

EMODNet
European
Union

This European data network includes broad disciplinary
themes of bathymetry, geology, physics, chemistry, biology,
seafloor habitats, and human activities.

JCOMM
in GOOS

UNESCO
An Intergovernmental sensor network that integrates many
famous observatory programs worldwide, including ARGO,
DBCP, OceanSITES, SOT, GO-SHIP, and GLOSS.

The multidisciplinary data provided by these image databases can be used in different

branches of science. For example, while an ecologist may be interested in counting and
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Table 2.7: Open Access Datasets of Still-images, Taken from Underwater Organisms

Project Name Description

Inst. for Marine
and Antarctic
Studies (IMAS)

This Australian institute hosts three major image, taxonomy, and
atlas database projects including Reef Life Survey (RLS), Temperate
Reef Base (TRB), and Zooplankton.

Sea Life Base and
Fish Base

FishBase is a project of FIN© (Philippines) with around 59,000
images of fish. SeaLifeBase is a joint project of the University of
British Columbia (Canada) and The FIN© (Philippines), which in-
cludes 12,500 images of different marine species.

World Register of
Marine Species
(WoRMS)

Provides an authoritative list of valid and vernacular names for
250,000 global marine organisms. This Belgium-funded infrastruc-
ture contains extra information such as 32,000 images, literature,
biogeographic data, and parent taxon. It is generally used by scien-
tists for classification of marine species.

Fish 4 Knowledge

Provides three different datasets with annotated ground-truth for
fish recognition (30,000 images of 23 species), fish trajectory (9000
trajectory of 23 species), and benchmark for complex backgrounds
(14 videos of 7 backgrounds). It also offers access to live video feeds
from 10 underwater cameras in reefs of Taiwan.

Encyclopedia of
Life (EOL)

Provides 4,000,000 Images of all life-forms on Earth (e.g. animals,
plants, bacteria), including 15,000 images and videos from ma-
rine environment. It is financially supported by institutions from
Australia, The UK, The USA, Mexico, and Egypt.

Shape Queries
Using Image
Databases
(SQUID)

Includes 1100 images of marine creatures in a smooth background
(one creature in each picture). The ground-truth coordination of
boundaries of animal’s body in all images is annotated (256 to 1,653
points for each creature). This database is located in Tje UK and
will not be updated anymore.

RSMAS, EILAT,
EILAT II, and
SDMRI [42,111]

These independent datasets contain 766, 1123, 303, and 100 im-
ages of corals, which have been categorized by experts into 14, 8, 5,
and 20 different classes of coral genera and non-coral, respectively.

Moorea Labeled
Corals (MLC)

This is a subset of the MCR-LTER dataset and has 2055 coral reef
images with almost 200 human expert point-annotations over each
one of them. These images are taken from the island of Moorea in
French Polynesia and contain 5 coral and 4 non-coral distinct classes.
They also contain pallets with known reference colors; making them
suitable for image correction and color restoration.
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Figure 2.5: Schematic view of three different optical rays, which are reflected back to the
camera, in active underwater imaging.

tracking of individual inhabitants, a data scientist or computer programmer might need

these data to train a ML algorithm and to verify its performance.

When considering the usage of these imagery data, one should be aware of the lighting

conditions in the underwater environments. This can be significantly different from over-

water photography and it is expected to affect the images taken undersea. To understand

the nature of light in undersea imaging systems, we have to discriminate passive and ac-

tive images, i.e. whether the imaging equipment creates its own light or not. Although

the physics of optics are the same in both cases, different sets of parameters have to be

considered to provide a better understanding of the context of underwater optical imaging.

Active imaging relies on the explicit usage of artificial light in the process of underwa-

ter imaging. This type of photography benefits from a substantial improvement in image

quality, especially when the light is appropriately controlled by an optimized hardware con-

figuration. However, active imaging suffers from high underwater energy loss (especially

in case of long-term illumination), reduced portability, and unpleasant inhomogeneous

intensity and color of the final picture [112].

As depicted in Fig. 2.5, undersea active imaging always encounters 3 sources of light

rays into the camera. Direct reflection from the target object is the desired signal, while

the two other reflections, termed as backscatter (which has not interacted with the target)

and forward scatter (or blur component) are both undesired.

Backscatter or Volume Scatter: In active imaging scenarios back scattered light is de-

fined as the one which has never interacted with the target object and usually appears

as bright points in the output image. To accurately calculate the magnitude of light

that is backscattered to the camera, we have to calculate or measure the light intensity

(I [W/m2]) first. Light intensity (or irradiance) is the power received by an illuminated

surface perpendicular to the direction of propagation, per unit area. This parameter has
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to be evaluated for the specific volume that the camera is viewing. One of the popular

methods to achieve this goal is proposed in [70], which discretizes the entire volume to

small cubic cells and then calculates the Volume Scattering Function (VSF)1 parameter

for each cubic cell.

The VSF number of each unit cell is then used as a weighting function in the next

step. Finally, the method of [70] considers the VSF, the light intensity I, and the angle

between the incident and the reflected light for numerically estimating the magnitude

of light that is backscattered to the camera. Again, this is an efficient and accurate

algorithm of estimating the magnitude of the backscattered light. However, it can be used

as a fundamental step of any image enhancement procedure, especially in underwater

applications, where the presence of backscattered light is indeed a significant challenge.

Forward Scatter or Blur: Forward scattered light is defined as a light beam, which

interacts with the target and then it is indirectly reflected back to the camera. To approx-

imate the output image of Eblur(x, y) in a scattering environment, a common method is

to convolve the original image Eo(x, y) with the Point Spread Function (PSF(r)) as [70]:

Eblur = Eo ⊗ PSF(r) , (2.13)

where r is the distance from the camera to the object and ⊗ is the convolution operator.

PSF represents the spatial impulse response of a scattering environment between a light

source and the point of observation (e.g. camera), as already shown in Fig. 2.5. It is

used in Fourier optics to calculate the output image of a linear imaging system. The

formulation of PSF is simplified to [70]:

PSF(r) =
[(
e−Gr − e−cr

)
F−1

{
e−Brf

}]
, (2.14)

where c is defined in (2.4), G is an empirical constant (|G| ≤ c), B is an empirical damping

factor, and F−1(·) is the inverse Fourier transform.

Both e−Gr and e−cr in (2.14) represent the forward scattering amplitude attenuation,

while e−Brf stands for the frequency-dependent damping. The use of the convolution

operator in (2.13) indicates that this equation is only valid in linear optics, which is the

case in the majority of underwater light-based experiments [70]. Although PSF in (2.13)

is used for the forward scattering formulation, it can be employed to calculate the V SF

in backscattering as well. The PSF formulation as well as its relationship to the V SF has

been studied in great detail in [70].

The forward- and back-scattering process encountered in seawater disperse the light

1VSF is an inherent optical property of water, which does not vary with the incident light field. A number
of experimental methods are introduced in [70] to measure the VSF.
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beam, hence resulting in blurred underwater images. Observe from (2.14) that the image

gets more blurred, when the distance increases. One can exploit this equation to mitigate

the blurring problem with the aid of image deblurring methods, which will be covered in

Section 2.4.3.

By contrast to active imaging, in passive imaging, i.e. where no artificial light is gen-

erated by the image capturer, even though the power consumption will be significantly

lower, other concerns may be present. These concerns include limited visibility, contrast,

and color distortion.

Visibility: The first concern in passive underwater imaging is always the visibility. In

clear sunlit water, ambient sunlight provides a clear vision in relatively shallow water. In

ordinary line-of-sight underwater applications, the distance of visibility can be modeled

as,

dVisible ≈
5

c−K(θ, φ, z) cos(θ)
, (2.15)

where K is the diffuse attenuation coefficient, which is an apparent optical parameter,

while θ, φ, and z are the relative spherical coordinates of the subject of interest [113].

Based on this formula, underwater visibility decreases rapidly after a few meters. The

only known remedy for this physical constraint in deep-waters is to use an artificial light

source in active imaging [112].

Contrast: Contrast is defined as the color or gray-level difference between adjacent areas

in the presence of light attenuation, optical noise, and vision blurring. If we consider a

target object (O) against its background (B), the contrast of the object and its surrounding

areas can be formulated as [114],

COB
∆
=

LO(θ, φ, z)− LB(θ, φ, z)

LB(θ, φ, z)
, (2.16)

where LO is the light level (radiance) of the object and LB is that of background. The

knowledge of COB will help us design contrast-enhancement algorithms for improving the

contrast in underwater environments [115].

Color Distortion: As previously discussed in Section 2.2.2 and based on (2.4), light ab-

sorption (or attenuation) in underwater propagation strongly depends on the wavelength.

Accordingly, all of the visible light wavelengths present in sea surface, provide a crystal

clear view. By contrast, red light hardly penetrates bellow 10m, which is the reason of

the greenish color of seawater. Colors having shorter wavelengths (i.e. blue color family)

penetrate even deeper to 20 and up to 50 m in sea water, resulting in low-contrast bluish

images.

Color distortion and the visibility are the main reasons why passive imaging is inefficient
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bellow 10 meters and also why the use of artificial light sources is inevitable in deep-water

explorations. To address this important issue, the image enhancement or color restoration

methods of Section 2.4.3 have to be involved.

Having surveyed some of the 1D signals generated by sensors and the 2D image data

types encountered in IoUT, let us now focus our attention on video or 3D data, that forms

a large subset of IoUT datasets.

Three-dimensional underwater video data

As discussed, some of the observatory stations listed in Table 2.6 are capable of delivering

live or archival ready-to-use video data. However, the main challenges in underwater

video streaming are related to the limitations of undersea communication, discussed in

Section 2.2.2, aggravated by the underwater imaging difficulties studied in Section 2.3.2.

Although the underwater optical parameters and imaging constraints are all the same as

in 2D imagery (i.e. contrast, color distortion, visibility, backscatter, and forward scatter),

underwater video imaging has an extra intrinsic impediment that has to be addressed.

This barrier, is of course, the continuously growing data volume produced by cameras. A

typical camera operating at 1 frame/sec may generate 30 million frames (equal to almost

3 Tera bytes of data) per year [116]. This data volume is then multiplied by the number

of cameras, mounted in a single observatory system.

As a rule of thumb, in the current version of the semi-automatic marine image-annotation

software, every minute of video requires an expert to spend about 15 minutes for manual

annotation [116]. Therefore, to analyze the video produced by a single camera in a sin-

gle month, we approximately need 10,800 man-hour. Hence, there is a growing necessity

to develop automatic video processing methods to deal with this excessive data volume.

These automatic methods can be used in a variety of underwater video data applications

such as, visible light video tracking [117], sonar video tracking [118], photo mosaicing

underwater [46], and marine life studies [40].

In addition to the above-mentioned potential use cases of automatic video process-

ing, the growing field of depth-based video may also significantly benefit from automatic

processing. This technology uses optical multi-camera systems [119, 120], acoustic ar-

rays [121], Time of Flight (ToF) depth sensors [122], and laser beams [123] to provide

rich 3D information about the scene. This stereoscopic video technology has been used

in underwater vehicles (e.g. ROVs, submersibles, etc.) [124, 125], in tethered underwa-

ter platforms [126], towed systems [117], and baited stations [127]. They are used in

a wide variety of applications, including photogrammetric bundle adjustment [128, 129],

3D scene and organism reconstruction [120, 122], underwater 3D live tracking [117, 129],
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quantitative analysis and sizing of targets [117,126], counting and measurement of marine

creatures [127], as well as improving the segmentation and classification capabilities of

traditional 2D algorithms [127,130].

However, the sophisticated depth-based vision technology has its own challenges both in

the context of acoustic and optical recording methods. While acoustic depth vision always

suffers from variable sound velocity, reverberation, as well as unwanted noise and echoes,

optical stereoscopic cameras encounter blur and haziness in turbid water, aggravated by

unstable illumination, and light refraction [117]. Perhaps, the most direct way of address-

ing this problem is to use improved acoustic and optical channel models for compensating

the deficiencies of each technology [128]. Another solution is to combine both technologies

into a unified opti-acoustic 3D imaging system. The latter solution is capable of offering

improved precision, if both technologies cooperatively calibrate each other [125].

So far in this section, we have provided a detailed evaluation of the family of IoUT sen-

sors, as well as of image and video data sources. Additionally, some ready-to-use databases

were introduced. Once the raw big data has been gathered, a high-performance data pro-

cessing platform is required for inferring knowledge. Due to the scarcity of resources and

owing to the limited power budget at the data collection points, processing cannot be

performed locally. Therefore, the system has to rely on cloud-based or on distributed data

processing platforms, which will be studied in the next section.

2.3.3 Distributed and Cloud-based BMD Processing

To meet the growing demand for big data processing, many high-quality software and ser-

vices have been created to offer big data analytics. Some of these platforms are Apache,

Amazon EMR, Microsoft Azure HDInsight, Cloudera, Hortonworks (which has recently

been merged with Cloudera), SAP-Hana, HP-HAVEn, 1010data, Pivotal data suite, Info-

bright, etc. [38, 57]. Each of these services responds to the big data processing demands

by either providing distributed processing frameworks or cloud computing services.

Distributed processing systems consist of networked computers, which cooperate with

each other to offer high performance data processing [131]. As seen in Fig. 2.6, among all

distributed big data analytics frameworks, the Apache is the dominant platform, which has

been used in about 95% of all reported scientific articles. Apache software foundation is a

not-for-profit corporation, founded in 1999 to support more than 350 open-source Apache

software projects, and 47 of them (about 13%) are directly related to big data analytics.

More than 80% of the Apache platforms have been developed in only five languages (i.e.

Java (≈ 60%), different types of C (≈ 10%), Python (≈ 5%), JavaScript (≈ 3%), and

Scala (≈ 3%)) [132].
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Figure 2.6: Distributed big data frameworks used in data analytics papers published in
IEEE and Web of Science databases.

Table 2.8 introduces the advantages and disadvantages of the four widely used Apache

distributed processing frameworks including Spark, Hadoop, Storm, and Flink. All of

these open-source projects are supported by Apache software foundation and they are

eminently suitable for high-speed processing of IoUT-generated BMD analytics.

The term cluster in Table 2.8 refers to any computer system or embedded system in the

parallelized network of computers, each having its own processor, memory, and network

IO. Furthermore, the directed acyclic graph scheduler is based on a specific type of directed

mathematical graph having no cycles, in which it is impossible for the data to emanate

from a vertex (i.e. any standalone computer) and pass over a non-zero number of graph

edges (i.e. inter-computer connection cables), and to eventually loop back to the starting

vertex again.

In addition to the locally distributed processing systems, there exist companies who

offer cloud-based services for all aspects of big data storage, integration, streaming, ML,

and ad hoc data analysis. According to the Statista, the share of software and services in

overall big data revenue will double in the 6-year period spanning from 2019 to 2025. This

means that the organizations will rely more on cloud services to handle their sophisticated

use cases [133]. In other words, big data processing is expected to gradually shift from

distributed to cloud-based services. This is an ongoing trend, as the number of businesses

performing their big data analysis in the cloud has increased from 58% in 2017 to 73% in

2018 [134].

As already mentioned in Section 2.2.6, BMD can partly be processed in the IoUT-edge,
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Table 2.8: Major Apache Frameworks Suggested for Distributed Processing of BMD

before being transmitted to land. After transmission, there is no difference between the

conventional IoT and IoUT-based distributed or cloud-based data processing. Neverthe-

less, all available cloud services today are offered in accordance with one of the following

models [135]:

� Software as a Service (SaaS): This service model relies on centrally hosted software,

which delivers specific services to licensed or subscribed clients and usually offers its

dedicated functionality through a browser.

� Platform as a Service (PaaS): This service model targets developers by providing

them with operating systems, databases, software packages, application services,

etc. It helps developers to focus on the development of their diverse applications, in-

stead of software resource management and hardware maintenance of the underlying

infrastructure.

� Infrastructure as a Service (IaaS): This flexible low-level service model targets both

developers and businesses by providing access to the underlying infrastructure (e.g.
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processors, data partitions, security, backup, etc.). This service tends to rely on

high-level Application Programming Interfaces (API) in support of the network op-

erations. While the service provider is responsible for the hardware maintenance, the

users are required to configure and maintain both operating system and the required

software packages.

According to the aforementioned definitions, cloud computing is capable of processing

BMD with the aid of all the above service models. Among them, PaaS strikes an attractive

balance between convenience and cost, undertaking the management of the operating

system, software packages, and hardware elements. It is worth mentioning that, Big Data

as a Service (BDaaS), which has recently appeared in technical glossaries may indeed be

classified as a specific form of PaaS, where the statistical analysis software packages are

offered alongside the required databases and APIs.

On the other hand, IaaS constitutes a cost-effective solution, where the service providers

are responsible for maintaining the underlying hardware. Some of the top Paas and IaaS

service providers are Amazon Web Services, Microsoft Azure, Google Compute Engine,

DigitalOcean, Oracle Cloud Compute, Rackspace Cloud, IBM Cloud, Linode, HP Enter-

prise Converged Systems, Green Cloud Technologies, etc.

Despite the fact that SaaS providers tend to be user-oriented and application-specific,

some of them also support underwater applications. For instance, marine image-annotation

software are ready-to-use software products for semi-automatic annotation of videos and

still-images. These software packages are comprehensively reviewed by Gomes-Pereira et

al. [136], where 23 software products from more than 500 publications are summarized.

The semi-automatic solutions offered by marine image-annotation software are rarely

applicable in real-time BMD analytics and they tend to rely on data analytic platforms

as well as self-developed ML algorithms. As a result, every practical use case of BMD,

requires a distributed on-premise platform or cloud-based data processing software for

gleaning knowledge from BMD. Next, some of these IoUT data extraction applications

are studied.

2.3.4 Marine Data Applications

The marine data collected by various sensors and devices of the IoUT ecosystem can be

exploited by data processing platforms for compelling applications. These applications

offer businesses benefits based on their own data [57]. In the following subsections, we

discuss and evaluate some of these applications in the context of IoUT, including maritime

applications, underwater localization, and marine life tracking.
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Coastal monitoring and GIS data

By appropriately processing the available maritime sensory data, some secondary param-

eters can be collated with the aid of the IoUT. These include the accurate localization of

marine vehicles, the provision of weather and climate data for specific oceanic locations,

accessing biogeographic data such as the recognition, counting, and distribution of un-

derwater species, etc. Hereafter, we will refer to all these secondary parameters as IoUT

Geographic Data, because they are devoted to studying the physical environment, the

inhabitants, locations, and things in the particular area of the sea.

Having accurate geographical data is essential in IoUT applications. For this type of

IoUT data, there exist a number of open-source on-line geographical databases. These

databases are mainly focused on maritime information systems, a particular type of Geo-

graphic Information System (GIS), which is indispensable in efficient international trans-

portation [137]. Fortunately, most of these GISs can be readily merged with the IoUT

infrastructure in support of maritime organizations with the aid of tracking and rout-

ing information, etc. They can also provide up-to-date access for researchers in order to

monitor the global ecosystems.

Kalyvas et al. [56] surveyed more than 180 free real-world GISs having open access

databases based on the most trustworthy on-line data sources. They have categorized

the GISs into 19 classes, which are distilled into as few as four classes here for simplicity.

These classes and their applications include:

� IoUT tracking data: For vessel monitoring, marine accidents, anti-shipping activities,

and navigational aid systems;

� Marine cartographic data: For essential naval data (like borders), protected and

sensitive areas, port status, port locations and facilities, coastline as well as land

areas, and bathymetry maps;

� Oceanic climate data: For nautical weather, natural hazards, tides as well as eddies,

and satellite imagery;

� IoUT commerce data: For shipping companies, flags of convenience, and marine

conservation organizations.

An important category that could be added to the above-mentioned classes of Kalyvas

et al. [56] is Biogeographical Data for addressing the geospatial distribution of underwa-

ter species. In order to define this new category, the open-access OBIS project (Ocean

Biogeographic Information System), funded by UNESCO can be used. OBIS is connected
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to more than 500 databases in 56 countries and provides observation of 120,000 marine

species down to 11, 000m depth, from bacteria to whales.

In addition to the aforementioned need for Biogeographical data, under the Marine Car-

tographic Data category detailed in [56], there is a missing sub-category for Georeferenced

Locations. To elaborate a little further, georeferencing in GIS is a subcategory of naviga-

tional assistance that aims for precisely associating locations with their equivalent points

on the physical maps, which is achieved by the Marine Regions project. This project is

composed of a list of 55,000 georeferenced marine places, gathered from the VLIMAR

Gazetteer and MARBOUND databases.

In addition to the GIS databases, there should also be a directory of applications, which

require access to precise undersea locations. This is called underwater positioning. In the

following sections, undersea localization of sensors and vehicles, along with the marine life

tracking methods will be discussed in more details.

Underwater localization

A very useful data type that is included in IoUT is related to the positioning of undersea

devices, systems, animal species, and data sources. This is even more critical when there

is a need to geo-tag IoUT sensory and imagery data.

Underwater positioning is a challenging task, because the otherwise ubiquitous naviga-

tion signals of the GPS satellites do not penetrate seawater. Therefore, other underwater

navigation methods should be used, including blind positioning relying on miscellaneous

inertial sensors, acoustic transponders (with separate transmitters and receivers), ranging

sonars (with only a single standalone acoustic transceiver), image-based positioning (using

cameras to localize), and Simultaneous Localization and Mapping (SLAM).

Due to the associated challenges including the long latencies, multipath fading, Doppler

shifts, frequency limitations, sparse deployment of the nodes, and their high mobility

in underwater networks, a single navigation technique will never offer a flawless perfor-

mance [138, 139]. Therefore, all the vehicles, fixed stations, sinks, and nodes in IoUT

applications usually combine some of these localization methods to achieve improved per-

formance in underwater environments. Here, we briefly review the aforementioned local-

ization techniques and provide insights concerning their advantages and limitations.

Blind positioning: which is also known as inertial navigation, is based on the knowledge

of a device’s relative orientation, acceleration, velocity, and gravity anomaly (i.e. differ-

ence between the observed gravity and the predicted value [140]). In this localization

method, the underwater device has to determine its position automatically, i.e., without

any positioning support from a ship or transponder. In this method, a combination of
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sensors is used to estimate the current location.

These sensors include a typical magnetic compass for direction detection, a pressure

sensor for underwater depth estimation, a doppler velocity log for velocity measurement, a

ring laser gyroscope or Micro Electro-Mechanical Systems (MEMS) gyroscope for angular

velocity detection, and a pendulum or MEMS accelerometer for force and acceleration

calculations [54].

However, these sophisticated blind positioning methods suffer from propagating errors.

Even a small positioning error remains in the memory of the system and aggravates the

future measurement errors, leading to an unbounded error propagation. Nevertheless,

the method’s estimation of the exact position can be improved by a variety of integrated

sensors. Furthermore, blind positioning is a power-efficient method, compared to other

positioning techniques [141]. Hence these positioning techniques contribute to almost all

modern underwater positioning systems [138–142].

Acoustic transponders: This localization technique uses a transmitter and receiver pair

for measuring the ToF of a ping signal in order to perform navigation. ToF [sec] is applica-

ble both to the adjacent transmitter/receiver (i.e. where the transmitter and receiver are

closely located) and separate transmitter/receiver (i.e. where transmitter and receiver are

distantly located). It is also known as the time of arrival in separate transmitter/receiver

scenarios [139]. By measuring the ToF and the acoustic wave speed, one can precisely

measure the distance in [m]. This positioning method has diverse categories, including:

� Acoustic array : Similar to the concept of GPS satellites, and by using more than

one beacon transponders, the system will be able to determine the position in any

underwater location based on the phase-difference of the signals arriving at the

transceivers. Short- as well as ultrashort-baseline [35] and long-baseline [143] tech-

niques may be used in this category. In short- and ultrashort-baseline relying on

ship-mounted transponders, the undersea system localizes itself relative to the ship

floating at the surface; while in long-baseline that uses GPS-intelligence as well as

dispersed buoys and beacons, the location can be determined.

� Single fixed transponder : The idea behind fixed beacon based positioning is shown

in Fig. 2.7. The AUV in this picture has an uncertain prior knowledge about its

position (region A). However, it knows its distance from a fixed beacon subject

to a degree of uncertainty (region B). With the advent of combining these two

pieces of information, the AUV finds its position subject to a reduced uncertainty

(region C). Due to the fact that it uses only a single geo-referenced beacon, this

positioning system is cheaper and easier to install than multi-beacon long-baseline

techniques [144].
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Figure 2.7: Using a fixed beacon at known location to decrease the location-uncertainty
of an AUV from ‘A’ (intersecting with ‘B’) to ‘C’.

� Cooperative navigation: This method is also known as modem-based navigation,

because in recent advanced positioning systems, modem transponders are also used

to send beacons in support of navigation based on the ToF [145]. These modems

do not have to be stationary, hence they can be installed on a moving vessel having

a known geo-position or a swarm of underwater vehicles to communicate and to

cooperatively localize each other.

Range sonars: Sonars are robust, well-established standalone acoustic transceivers that

were originally used for imaging and ranging. The main ranging sonars used in underwater

navigation and mapping include [54]:

� Echo sounder : A single narrow beam is used for determining the distance from

obstacles [146] or from the seafloor.

� Multi-beam: Measures the ToF for each beam to assemble a bathymetric map [147].

Image-based positioning: This technique uses environmental images, taken either by

monocular or stereoscopic cameras (or even by imaging sonars) for navigation. In this

positioning method, substantial processing power is required for feature extraction and

for processing in order to detect and identify key points, objects, and regions of interest.

The main idea behind the vision-based navigation, also known as visual odometry, is

to capture images of the seabed and then to match subsequent images in order to navi-

gate [148,149]. stereoscopic cameras have the advantage of capturing 3D transformations

between consecutive image pairs.
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It is plausible that errors can propagate and accumulate in the context of this technique.

To address this problem and achieve a bounded positioning error, the SLAM tactic can

be merged with image-based positioning for improved localization.

SLAM: Concurrent or Simultaneous Localization and Mapping is defined as the process

in which an autonomous vehicle builds a map of a specific area and also localizes itself

within it [54]. The mapping process of SLAM may rely on a variety of devices such as

cameras, sonars, or inertial sensors, respectively, leading to vision-based, sonar-based, or

sensor-based SLAM techniques [150, 151]. In all cases, the features of the sensed data or

captured image are extracted. Then, based on those features, the position is detected and

stored.

Marine life tracking

At first glance, underwater animal tracking seems to be nothing more than a memory-aided

localization method in IoUT, which was the subject of the previous section. However, un-

dersea animals may be quite small and they cannot carry relatively heavy inertial sensors,

transponders, sonars, or cameras. Therefore, sophisticated new tracking methods have to

be devised.

Additionally, as discussed in Section 2.3.4 and also bearing in mind the penetration

depth formula of (2.1), the GPS signals having a frequency of 1.2 and 1.5GHz cannot

penetrate seawater beyond a few meters. Accordingly, alternative marine life tracking

methods have to be implemented in IoUT applications, some of which are evaluated in

this section. All these methods can make use of a data storage tag to archive data on a

memory chip for future retrieval [152].

RFID tags: This tracking technology uses Radio Frequency Identification (RFID) patches

and has a limited range of about 10m in freshwater. However, it does not work well in

seawater owing to its high salinity. RFID tags are equipped with a unique Identification

code and need an external energy source in the form of a low frequency signal, in order to

become activated and to retrieve data. These tags are also available in passive integrated

transponder form, which are specific implantable RFID devices [32].

Acoustic tags: This tracking technology emits signals in the form of acoustic waves and

has a reasonable transmission range both in fresh and seawater. In this method, a pinging

sound with an embedded ID is periodically transmitted to an array of remote acoustic

sensors (hydrophones). This ping is used to locate the animals and the ID is used to

identify them [152].

Image-based tracking: Perhaps image-based tracking is one of the most advanced un-

derwater tracking techniques reported to date. It uses images of a moving or fixed camera
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system to track, recognize, count, measure, and also study the animal’s behaviors. In

a fixed camera based system, usually a baited or trawled station is used for attracting

intended species [117]. On the other hand, the tracking of animals in a moving camera

based system uses cameras installed on a moving platform. The main challenge in these

systems is to promptly process the large variety of images [47].

2.3.5 Section Summary

In this section, we have studied the essential topics of big marine data. At the begin-

ning, we introduced the five BMD system components, followed by further elaborations

on the first component, i.e. on data acquisition. Thereat, we reviewed the underwater

data gathering tools and techniques, along with the data aggregation protocols for more

compactly representing the gathered data. We also studied data fusion methodologies,

conceived for the fusion of data from distinct datasets into an integrated database, for the

sake of having more generally representative information. Our discussions in this section

were then continued by classifying BMD into 1D sensor signals, 2D image data, and 3D

video streams. For all these categories, we surveyed the typical IoUT infrastructures and

observatory systems, which freely offer their BMD for researchers. The visibility, contrast,

color distortion, and light scattering in 2D underwater images as well as 3D video data

gathering were also addressed. Then, different distributed as well as cloud-based BMD

processing frameworks were introduced and a couple of essential BMD applications were

studied. These applications covered the oceanic GIS, underwater localization, and marine

life tracking, which all play essential roles in IoUT contexts.

All of the tools and methods that have been discussed in this section, including the

sensory and imagery data sources, GIS-based ready-to-use data in IoUT, and underwa-

ter object tracking as well as geo-tagging methods will generate BMD, which has to be

processed and analysed. In the following section, we will focus our attention on big data

processing techniques. Thereby, we will review state-of-the-art technologies in data cleans-

ing and data processing using ML techniques for underwater applications.

2.4 Machine Learning for BMD Analytics

As mentioned in Section 2.3, data processing is one of the five critical system components in

the chain of wealth-creation from data. To address the commercial and industrial demands,

ML and its Deep Learning (DL) variant constitute promising solution. In this section, as

visualized in Fig. 2.8, we focus our attention on the use of ML strategies including the

classical ML approaches, as well as the more traditional and emerging NN-based learning

methods for BMD processing.
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Figure 2.8: Conceptual categorization of the main topics in Section 2.4.

2.4.1 Machine Learning Techniques

Considering the large amount of data generated both in IoT and IoUT, there is a growing

need for powerful tools and techniques capable of distilling and visualizing knowledge

gleaned from data. These tools and techniques have evolved over the past century! As

a benefit, ML is readily available for the analysis of BMD [58]. ML can be viewed as

a collection of software algorithms that empower intelligent machines to improve their

performance on an accomplishing pre-configured specific task. This particular task in

turn, may be categorized under descriptive, predictive, and prescriptive models.

The ML approaches may be divided into supervised and unsupervised methods. The

unsupervised methods are mainly used for data clustering, according to the features em-

bedded in the data itself. These methods do not rely on an expert for labeling and for

entering inputs. On the other hand, in supervised learning, data will be labeled, prior to

its exploitation, by an expert. In this case, the resultant ML solution is referred to as a

classifier, which is then involved for the ensuing data classification phase.

Classification methods are devised for categorizing data, representing for example a

measurement from a sensor or a pixel in an image into one of the legitimate predefined

output classes. When there are only two possible answers to a given question (i.e. yes or

no), the classification problem is often termed as detection. In cases of three or more legit-

imate output classes associated with multiple choices, classification is also often referred

to as recognition. Methodologically, classification algorithms can be divided into statisti-

cal methods (also known as conventional data analytics) and Neural Networks (NN). The

neural-based methods may themselves be divided into traditional NNs and deep NNs [153].

All ML approaches are designed to assign a given input data (X) to a set of predefined

classes (Ci). This is a well-known classification/clustering problem, which can be solved

by either generative or discriminative models. The generative models are those which

solve this problem by using the joint probability distribution function of [154],

i = argmax
C

P (C)P (X|C) . (2.17)
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By contrast, the family of discriminative models uses the conditional probability distri-

bution function of [154],

i = argmax
C

P (C|X) . (2.18)

According to the Bayes’ theorem from a theoretical perspective, these methods are

identical. In practice however, it is usually easier to calculate P (C|X); especially when

we have a large amount of data (i.e. X) for training our model. The conventional data

analytic methods tend to use generative models, while most NNs rely on discriminative

models [155].

In generative models, the behavior of both C and X should be known. However, for dis-

criminative models, we directly deal with the unknown C, based on a given X. Discrimina-

tive models are generally simpler, faster, and have less parameters to adjust. Accordingly,

while the family of conventional statistic approaches may be good enough for handling

moderate-dimensional situations, traditional ML and modern DL based approaches (with

discriminative models) are needed for processing big marine data problems (i.e. image,

video, and other sensory information generated within the IoUT infrastructure).

The concept of DL is built around the idea that artificial neurons are capable of auto-

matically extracting features and learn a pattern, provided that there are enough hidden

layers and unweighted neurons in their networks. Based on this concept, deep networks

have evolved from the traditional NNs by invoking more than one hidden layer (technically,

dozens of layers). Using these extra layers, deep networks become capable of extracting

features and reduce the learning dimension as it will be introduced later in Section 2.4.4.

The growth rate of DL usage in all ML publications in the post-2010 era is demonstrated

in Fig. 2.9. This figure shows an astonishing factor 25 increase in the percentage of

publications in as few as four years. These publications have substantially advanced the

field by proposing new algorithms, networks, and strategies for improving the performance

of deep networks. Table 2.9 presents the most recognized supervised and unsupervised

deep learning networks. All the tandem arrows and circular nodes in this table (→⃝)

are representative of an artificial neuron processing the sum of weighted inputs and a

subsequent activation function (e.g. Sigmoid, tanh, etc.). Please note that every NN

has a bias input. These inputs are deliberately eliminated in the shown diagrams, for

presentation simplicity.

Again, deep networks have several hidden layers. This is shown in Table 2.9 by utilizing

a dash-dot line (−·−·), whenever the network is capable of incorporating multiple hidden

layers. However, it should also be considered that, as these networks grow deeper, they

also require more training data. Further details on various types of networks and on their

advantages/disadvantages are provided in Table 2.9 and will be discussed throughout
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Figure 2.9: Percentage of deep learning usage in all machine learning publications, as
searched between IEEE Explore as well as Web of Science databases.

this section. However, we study these networks mainly from an IoUT as well as BMD

perspective and discuss what specific network types and algorithms would be particularly

suitable both for BMD analysis and for IoUT applications. In doing so, we appraise many

reported use cases of ML in underwater applications in Section 2.4.6, but before that, let

us discuss the various software frameworks for architectural deep network design, suitable

for big marine data types.

2.4.2 Deep Learning Frameworks and Libraries

To facilitate the development of various DL architectures, such as those listed in Tables 2.9

and 2.14 for different applications, numerous software frameworks and libraries have been

developed for open access by the ever-growing deep learning community [156]. Table 2.10

lists and compares a range of open-source DL tools and frameworks. Some of the abbrevi-

ations used in this table are Deep Learning for Java (DL4j), Microsoft Cognitive Toolkit

(previously known as CNTK), and TensorFlow (TFlow).

All the frameworks seen in Table 2.10 are capable of operating on NVidia® CUDA-

supported GPUs relying on parallel processing. By contrast, OpenMP is another shared-

memory based multiprocessing programming interface, which is only supported by some

of the frameworks. As it will be discussed in Section 2.4.5, shared-memory based methods

are critically important for speeding up the deep network’s training process.

So far we have discussed various architectures capable of processing BMD and marine

data. Once the data has been collected, some pre-processing steps have to be performed
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Table 2.9: Deep Networks with Input, Hidden, Mid-output, and Output Layer Neural
Nodes to Evaluate Static, Dynamic, Sequential, or Hierarchical Input Data
Types [9–13]Deep Networks with Input, Hidden, Mid-Output, and Output Layer Neural Nodes to Evaluate Static, Dynamic, Sequential, or Hierarchical Input Data Types 
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This is a nonlinear multipurpose 
data classifier. The input data 
passes through the weighted 
vertexes and nonlinear 
activation functions, to the 
output layer, where its class will 
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BP training process are expected. 
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Description: 
DBN is structurally similar to FC 
networks, but they differ in their 
training. DBNs are trained by 
exploiting the concept of 
successive RBM pairs. Every 
layer in DBN is a visible RBM 
layer for the next neighbor and 
a hidden RBM layer for the 
previous one. This pairwise 
training is a beneficial 
substitution for the BP training 
scheme in FC networks. DBN as 
a supervised method can use 
labeled data to fine-tune the 
weights, after RBM initialization. 

Pros: 
 It overcomes the gradient vanishing 

and gradient explosion problems in 
BP method, by employing the RBM 
training scheme. 

 By using the Kullback-Leibler (KL) 
divergence metric, the information 
loss (or relative entropy) is 
considered as the cost function. 

 Can be used in both supervised and 
unsupervised learning. 

Cons: 
 It usually requires larger training 

time, especially when it undergoes 
a fine-tuning step. 
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Description: 
CNN is probably the most popular data and image processing deep 
learning network by far. The input, for example an image of size W×H 
and 3 color channels, is partitioned with overlapping channels at first. 
Then a series of filters (or kernels) are convolved with each window to 
extract features. Despite the filters can be initialized by the kernels of 
Table 2.14, but their weight might change during the train process. The 
filtered values are then guided to pass a nonlinear activation function 
(i.e. rectifier (RELU), 𝑡𝑎𝑛ℎ, sigmoid, etc.). Afterward, the 1st and 2nd 
dimensions of the resultant matrix will be reduced in the pooling step. 
The number of consecutive convolution and pooling steps can be 
adjusted. Finally, the multi-dimensional matrix will be flattened to a 1-
dimensional vector and will be passed to a classifier network (e.g. a FC 
network) to decide about the appropriate output class. 

Pros: 
 CNNs have a variety of architectures, many of which are widely used 

and well documented. 
 It has already been embedded in many software libraries and 

frameworks, making it available in high-level programming. 
 Less neural connections are required in CNN, because neurons are not 

fully connected. 
 Every neuron in the CNN learns a patch of the image. This contrasts 

with other methods (e.g. DBN) where every neuron has a contribution 
in learning the entire image. 

Cons: 
 CNN usually requires a lot of consecutive convolution and pooling 

layers to deal with a simple image. 
 It usually requires many labeled data to be appropriately trained. 
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Description: 
This network consists of two 
separate parts. The first part 
extracts the feature vector from 
the input data, while the second 
part reconstructs the same data, 
from the extracted features. 
After training the network, 
these 2 parts can be used 
concurrently or separately. 

Pros: 
 It offers a wide range of 

applications including data de-
noising, dimensionality reduction, 
data compression and 
decompression, etc. 

Cons: 
 The network structure is robust 

and the feature vector size cannot 
be adjusted, after training process. 
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Table 2.9: (Continued)Deep Networks (continued) 
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Description: 
The RNTN is a deep version of 
shallow autoregressive models. 
It is suitable to extract hierarchy 
in almost any sort of input data 
(i.e. syntactic parsing, image 
segmentation, etc.). It can also 
be used in sequential data 
analysis (e.g. sentiment analysis 
in text messages). 

Pros: 
 The tree structure of RNTN is 

completely customizable and can 
be tailored to any application. 

 Any neural node of the network 
can also be used as an output. 

Cons: 
 RNTN is a memoryless network, 

which is not recommended in 
dynamic system evaluation. 
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Description: 
RNN is a deep and deterministic 
version of the well-known 
Hidden Markov Model (HMM) 
of predicting any sequential 
data or time-series. In RNN, 
HMM layers are stacking on top 
of each other to create a deep 
network with intrinsic memory. 
The concept of point attractors 
in their state space acts as 
settling points to recall 
memories from the past.  

Pros: 
 RNNs are very suitable in modeling 

complicated and nonlinear dynamic 
systems. 

 Their distributed hidden state (i.e. 
the intrinsic memory in hidden 
layers) helps them to effectively 
store information about the past. 

Cons: 
 They might show a degree of 

chaotic behavior. 
 RNNs are hard to train. 
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Table 2.10: Comparing the Best Open-source Software Frameworks and Libraries for Deep
Learning

for ensuring that the data used to train the ML algorithm is clean and does not result in

future learning problems. In the next section, this important issue is discussed in more
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details.

2.4.3 Marine Data Cleaning for Machine Learning

Data preparation and cleansing is a critical step in almost every ML project and it usu-

ally takes over half of the entire project duration to collect and clean the data. When

dealing with the unaccessible harsh underwater environment of the IoUT, data cleansing

becomes even more important. This is because the underwater environment is affected by

many environmental factors, which make it almost impossible to acquire clean data. Addi-

tionally, data sources tend to be quite vulnerable to the hostile underwater environment.

Therefore, data preprocessing and cleaning, before training is crucial for the success of

any ML aided BMD processing in IoUT. Below, various IoUT data types and their main

preparatory considerations are discussed.

Underwater sensor data cleaning

Sensors are inevitable parts of every IoUT subsystem and are used in nearly all underwa-

ter exploration and surveillance applications [157]. They continuously measure physical,

chemical, as well as biological parameters and generate a huge volume of data. Examples

of these sensor and data are listed in Table 2.2.

Data cleansing for sensory data sources in underwater BMD applications is typically

concerned with missing values, contaminated measurements, and detecting outliers. There

are a variety of techniques for these preparatory steps. To deal with a missing value in

any sensor data, one can [158],

� Delete the entire record;

� Use a global constant;

� Use a statistical value (e.g. mean or median);

� Use an inter-class statistical value;

� Use the most likelihood (i.e. more probable) value;

� Use the most likelihood inter-class value.

Noise is another phenomenon affecting almost any sensory data. The process of de-

noising a sensory measurement is termed as noise cancellation. Although no universally

applicable de-noising methods exist, one should find the one meeting the SNR criteria.

The SNR is a very common parameter of characterizing the performance of different noise

cancellation methods. Some of these methods include:
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� Using a low pass filter [159];

� Using regression models [160];

� Applying a data binning method [161];

� Using wavelet methods in time-series [158].

Among these methods, low pass filter is the most common one and wavelet-based meth-

ods are the most complex ones to implement. Additionally, data binning is not particularly

popular for sensory data, but it is widely used for images as it will be discussed in the

next section.

The final step in underwater sensory data cleansing is the outlier detection. This step

can be readily carried out by considering three well-known criteria, named the IQR, T2,

and Q criteria [158]. There are also some more advanced methodologies like, probabilistic

models, clustering methods, distance-based detection, density-based detection, etc. [158].

Underwater image and video data cleaning and quality enhancement

As we have already discussed in Section 2.2.2, underwater image acquisition suffers from

strong absorption and scattering. Additionally, there are two other undersea signal degra-

dation factors, namely chromatic aberrations [162–164] (i.e. color distortion or chromatic

distortion) and noise imposed by both natural and artificial light sources [165]. These de-

structive factors significantly affect the quality of the captured video or image and should

be mitigated by a data cleansing algorithm.

Any image and video preparation algorithm has to assess the image quality first. Auto-

matic image quality evaluation algorithms assign an objective metric, which is a weighted

sum of the image colorfulness, contrast, sharpness, etc. [166, 167]. This metric is then

used as an objective function to be maximized by other image enhancement procedures.

Therefore, underwater image and video quality assessment constitutes an essential step

before image retrieval, image quality optimization, video compression, and other visual

signal processing steps. It can also act as a guide for determining the data bandwidth re-

quired by the underwater communication algorithms, as well as by other decision-making

processes [168].

After the automatic quality assessment of the underwater images and videos, software-

based image preparation algorithms are used for enhancing the image quality. As a general

rule, it is always cheaper to improve the image quality in software, instead of implementing

bespoke high-cost imaging devices.

In a comprehensive review paper by Han et al. [112], the image preparation methods

are divided into image dehazing and color enhancement. The authors then introduce and
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compare numerous methods for each category. However, they have missed the innovative

method proposed by Ancuti et al. [169] that addresses both image dehazing and image en-

hancement at the same time. This method improves the global contrast that was degraded

by light absorption, increases the edge sharpness impaired by light scattering, and exposes

the dark regions with the aid of color balancing. The proposed method relies on a single-

image camera-independent technique that can be applied to both photos and full-motion

videos. Furthermore, it does not require any prior knowledge about the environmental

conditions.

Underwater image data binning

In addition to image enhancement, image data binning is another data cleansing method

that can be used in IoUT, which relies on grouping pixels into distinct partitions based

on the similarity of their characteristics [161]. The goal of constructing these partitions is

both to reduce the amount of noise and to resolve data complexity. After binning, every

pixel has a label to explicitly indicate its parent partition, based on its membership index.

Although image binning is not an essential preparation step, it is recommended before

invoking feature extraction for reducing the computational complexity and to speed up

the ML process [161].

Image clustering methods, such as image binning, were developed much earlier than the

state-of-the-art ML and DL algorithms and date back to the age of statistical mathematics.

However, none of these methods are universally accepted and it is still a challenging task

to select the most appropriate image partitioning method for a given application. A list

of image clustering methods, that are beneficial in underwater applications is provided

in Table 2.11. These methods either tend to exploit image discontinuities (like edges) or

similar regions to partition a given image.

In addition to the algorithms introduced in Table 2.11, there are many others that have

however been more rarely used in the literature. These methods are reviewed by Flake et

al. [186] as well as Wang et al. [161] and might be worth investigating in future studies.

Some of them are the Minimum Cut, Mean-Shift, Turbo-Pixels, Lattice Cut, Compact

Super-Pixels, Constant Intensity Super-Pixels, Entropy Rate Super-Pixels, Homogeneous

Super-Pixels, Topology Preserved Regular Super-Pixel, SEEDS, VCells, Depth-Adaptive

Super-Pixels, Voxel Cloud Connectivity Segmentation, Structure Sensitive Super-Pixels,

Saliency-based Super-Pixel, and Linear Spectral Clustering.

In addition to data cleansing, feature extraction is another essential step for any ML

applications, which rely on statistical methods and traditional NNs. This substantial step

in ML is discussed in the next section.
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Table 2.11: Image Clustering Methods and Algorithms in Underwater Applications

Method Algorithms Underwater Applications

Edge-detection
(based on the image
derivatives)

• Watershed
• Snakes
• Blob detection

• Jellyfish Detection [170]
• Plankton Recognition [171]
• Megafauna Recognition [172]

Thresholding (based
on a threshold value
(clip-level) in feature
space)

• Otsu’s Method
• Expectation-Max
• Maximum Entropy
• Hist. Thresholding

• Fish Detection [173]
• Jellyfish Detection [170]
• Megafauna Recognition [174]
• Plankton Recognition [51,175]

Distance- or Region-
based (based on
the similarity in
attributes)

• Region Growing
• SLIC
• Region Splitting
• MSPA
• Statistical Clustering
• Neural Clustering
• Fuzzy Clustering
• Wavelet Transform
• Compression

• Shrimp Detection [49]
• Plant Detection [46]
• Plant Recognition [130]
• Plankton Recognition [50,176]
• Coral Detection [177]
• Object Detection [44]
• Object Detection [43]
• Object Detection [45]
• Underwater Clustering [178]
• Underwater Clustering [179]
• Coral Recognition [111]
• Coral Recognition [180]

Math Calculus
(based on solving a
Differential or Inte-
gral Equation)

• Level Set
• Mumford Shah
• Chan-Vese

To the best of authors’ knowledge,
this method has never been used in
underwater applications.

Graph Cut (based on
the undirected graph
partitioning to model
the impact of pixel
neighborhoods)

• Normalized Cuts
• Random Walks
• Iso. Partitioning
• Min. Spanning Tree
• GrabCut
• Model Based

• Fish Recognition [181,182]

Video Motion (based
on the object move-
ment)

• Subtracting Images
• Fish Detection [183,184]
• Fish Recognition [116]
• Lobster Detection [185]

2.4.4 Feature Extraction for Marine Data Analytics

Feature extraction is a mathematical step, in which raw data is replaced by its numerical

descriptors. This step is responsible for transforming large vectors of sensory data and
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large matrices of image data into their low-dimensional vector-based representatives. It

is usually the most intricate part of almost any ML-aided computer vision problem and

the solution should be tailored for the particular needs of the specific project at hand.

Although all of the modern deep learning algorithms extract their own feature vectors

automatically, these deep networks are hard to train, when relying on limited training

datasets.

Finding a series of useful features is even harder in underwater image processing appli-

cations in high-dynamic environments subject to non-uniform light illumination, variable

scene brightness, and degraded colors. Table 2.12 lists a number of salient descriptor rou-

tinely used in underwater applications. These features are categorized into four classes,

including color, texture, shape (boundary), and other descriptors. The papers listed in

Table 2.12 tend to use a series of descriptors, depending on their specific target applica-

tions. In one case, the number of descriptors used has been as high as 66 features in the

Fish Recognition project carried out by Huang et al. [182].

After selecting a number of features, it is recommended to mathematically evaluate their

correlation and then reduce the number of features to the number of truly independent

descriptors. This process is termed as data dimensionality reduction and can be performed

by feature reduction techniques, feature selection, and feature aggregation [194].

Some of the popular dimensionality reduction techniques found in literature are Princi-

pal Component Analysis (PCA), Linear Discriminant Analysis (LDA), independent com-

ponent analysis, non-negative matrix factorization, Self-Organizing Map (SOM), sequen-

tial forward search, sequential backward search, bag of words, etc. [194–198].

So far in this section, the software components suitable for ML and DL aided IoUT

have been studied. However, these ML-aided solutions also rely on appropriate high-

performance hardware platforms.

2.4.5 Hardware Platforms for ML in IoUT

The implementation of any ML solution, from its data cleansing and algorithm develop-

ment to its final deployment, may rely on a variety of hardware platforms. These hardware

platforms typically boost the overall throughput by parallel processing. These processing

methods can be broadly divided into the following two main categories:

� Shared-memory multi-processors: They rely on multiple processors that all share a

memory unit [199] and the ML algorithm resides within this memory unit. Some

of the more popular shared-memory methods are based on Application-Specific In-

tegrated Circuits (ASIC) [200], Field-Programmable Gate Arrays (FPGA) [201],

multi-purpose and multi-core CPUs, and Graphics Processing Units (GPU) [202].
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Table 2.12: Data Processing and Machine Learning Feature-sets in Published Underwater
Applications

Color Descriptors Underwater Applications

• Image statistics (e.g. Hu’s 7 invariant
.. moments, etc.)

[49–51,116,127,176,180,182,187]

• Segment contrast [49]

• Histogram descriptor [45,49,111,172,181,182,188]

• Five MPEG7 color features [172,174]

• Transparency ratio [175]

Texture Descriptors

• Three MPEG7 texture features [172,174]

• Wavelet transform [177]

• Gabor filter [46,111,116,130,172,182,188]

• Filter banks (e.g. Schmid, maximum
.. response, Leung and Malik, root
.. filter set)

To the best of the authors’ knowledge,
these descriptors have never been used
in underwater applications.

• Grey level co-occurrence matrices [48,50,51,111,116,176,182,187,189]

Shape Descriptors and Key Points

• Hough transform [53]

• HOG (e.g. SIFT©, SURF©, GLOH) [43,172,181,182,190]

• Binary descriptors [41,42,111,191,192]

• Weber local descriptor [193]

• Convexity [50,127,175]

• Fourier descriptors [50,51,116,176,182]

• Frequency domain descriptors [193]

• Curvature scale space transform [116]

Other Descriptors

• Granulometrics (size, area, and orientation)
.. to recognize an already detected object

[48,50,51,117,175,176,182]

• Eigenvalues and covariance matrix
.. to recognize an already detected object

[175]

• Motion related [48]

• 3D shape, surfaces, and texture descriptors [130]
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� System of networked processors: As already introduced in Section 2.3.3, a Dis-

tributed Computing System (DCS) is a system of networked processors, which co-

ordinates the processors’ actions by passing messages to each other [131,203]. They

can be used to parallelize ML algorithms in three different ways, including:

– Data parallelization: This is performed by running the same ML algorithm

in all of the distributed computers and then dividing the data between them.

Every computer estimates all parameters based on a separate dataset, before

they exchange their estimates for formulating a final estimate. MapReduce is

one of the most popular data parallelization methods [204,205].

– Model parallelization: In this paradigm, the ML algorithm will have to be

decomposed into different functions and operands. The algorithmic parts are

then shared among multiple computers and every part has its own specific set

of parameters. The input data, however, will be simultaneously fed to all of

them, where every computer is responsible for estimating the set of parameters

assigned. During the parameter training process, those parallelized computers

exchange their partial error vectors back and forth to meet the convergence

criteria and to come up with the final parameter estimations [206,207].

– Pipelined parallelization: In this method, the algorithm is shared among dis-

tributed computers, similar to the above-mentioned model parallelization method.

These parallelized algorithm parts are chained together from one input block

to one (or more) output blocks, termed as pipelines. In contrast to model

parallelization, data will also split into a series of records. At the beginning,

the first record is passed to the first computer in the DCS, to carry out its

own task (i.e. local parameter adjustment). The output of this computer is

then relayed to the next computer to carry out its own task over the first data

record. Meanwhile, the first computer starts processing the second data record.

This pipe-lined process continues until the last record in the database exits the

DCS and consequently, the local parameters of the last block in the pipeline

are updated [208].

A rudimentary qualitative comparison of different parallel processing hardware plat-

forms used for ML-aided and BMD processing is offered in Table 2.13. Here, the strength

of each platform in terms of a specific criterion is indicated by the + and − signs, where

more +s represents better performance in the context of that specific benchmark. The last

two rows of this table summarize the entire table with respect to the associated research

or industrial applications. For instance, as the Table shows, the CPUs require the lowest
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Table 2.13: Comparing Different Parallel Processing Hardware Platforms to Carry out a
Typical Machine Learning Algorithm

Criteria ASIC FPGA CPU GPU DCS

Inference Speed ++ ++ −− + −

Product Unit Cost ++ + + − −−

Design Complexity −− − ++ + −

Occupied Space ++ ++ − +a −−

Research Friendly −− − + ++ +b

Market Friendly ++ + −− − +c

aNew GPU platforms such as NVIDIA Jetson occupy small spaces.
b, cCloud-based DCS platforms such as AWS EMR are readily available.

design time and impose the lowest design complexity, but they suffer from the lowest op-

erational speed in all design and application phases, i.e. data cleansing, NN training, and

final inference. Therefore, they may be used for research, but they are less suitable for

industrial applications.

Perhaps the most prominent choice for typical scientific application would be the GPU

[209]. The hardware and software resources required for GPUs are affordable and their

speed is high enough to cover almost any application. Both the research-based as well

as the industrial-scale employment of GPUs in underwater data processing and ML ap-

plications have been frequently reported in the literature. These applications range from

obstacle detection and collision avoidance, to image-based SLAM localization, and even

further to underwater object detection (e.g., coral detection) [202,210].

However, the major problem with GPUs is their dependence on a bulky host computer.

This has limited their implementation in low-power and lightweight IoUT platforms as well

as underwater vehicles. To address this problem, new compact GPU designs have emerged

to offer AI-ready computing resources. For example, NVIDIA Jetson is a standalone

GPU-accelerated embedded system, which has a small volume. The high performance,

low power, and compact form-factor of the Jetson family makes them ideal for example

for deep learning aided computer vision applications [210].

Since the Jetson embedded systems are empowered by the Linux Ubuntu operating sys-

tem, they are eminently suitable for deep NN frameworks of Table 2.10, e.g., TensorFlow.

Thus, the low-latency inference capability of machine learning algorithms can be readily

realized in underwater vehicles and platforms [202].
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Additionally, NVIDIA’s Compute Unified Device Architecture (CUDA) library un-

leashes the GPU’s parallel processing capabilities for applications other than machine

vision. As previously mentioned in Section 2.4.2, CUDA is an API model that allows en-

gineers to use a CUDA-enabled GPU for general purpose processing, this is also referred

to in parlance as a General Purpose GPU (GPGPU). For instance, Pallayil et al. [211]

have used a GPGPU for performing high-complexity real-time beamforming in their un-

derwater acoustic phased array. They simply used the popular C Language in the Linux

environment to harness the fast Fourier transform in the CUDA library, to implement

their underwater frequency-domain beamformer.

ASICs and FPGAs are listed in Table 2.13, which have the lowest form-factor. They also

offer a high throughput and high power efficiency, which makes them eminently suitable

for industry-scale IoUT projects [212]. Given these compelling attributes, FPGAs are

repeatedly featured in real-time and low-power underwater applications. For example,

Karabchevsky et al. [212] have implemented a standalone FPGA architecture for noise

suppression in underwater sonars. Their proposed signal processing implementation is

claimed to overcome the sonar-based underwater visibility problems.

Following the above survey of various data processing methods, platforms, and their

hardware realizations, diverse ML algorithms used for underwater applications will be

discussed in the next section.

2.4.6 ML Techniques in BMD Applications

The advantages of ML techniques make them eminently suitable for most underwater

applications. The categorical investigation of these techniques as well as their implemen-

tation in BMD applications will be carried out in this section.

Deep NNs for static IoUT data

Static data is exemplified by still images in contrast to full-motion video clips. In the

context of Table 2.9, the fully-connected, Deep Belief Network (DBN) [9], CNN [10], Au-

toencoder [11], and Recursive Neural Tensor Network (RNTN) [12] networks are eminently

suitable for static marine data processing. In the case of RNTNs, they are usually fed by

a single static underwater image in every single data entry step. This image consists of

multiple segments, and RNTN is supposed to determine the hierarchy of every segment in-

side the given image (e.g. background, coral, plant, fish, etc.). The double-colored nodes

of RNTN in Table 2.9 are hidden neurons that can also be designated by the network

designer to be an output neuron, representing those expected hierarchical segments.

Among the static data processing networks seen in Table 2.9, Autoencoders are the only
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unsupervised clustering NNs. Every Autoencoder consists of two parts, which can be used

either separately or simultaneously. The first part processes a static input data such as

an underwater image and extracts its features. The second part on the other hand, takes

the feature vector and tries to reconstruct the input image again. If the inherent image

features were adequately captured, the reconstructed input data appearing at the output

will be similar to the input data itself. From an application-oriented perspective, one can

use the first part of the Autoencoder for dimensionality reduction and data compression,

while the second part is suitable for data decompression. Meanwhile, by using both parts

simultaneously together, Autoencoder will act like a noise reducing NN.

Another network architecture in Table 2.9 is the family of DBNs. These networks consist

of consecutive shallow learning Restricted Boltzmann Machine (RBM) pairs, which gradu-

ally reduces the dimension of input data from the top-level of the entire search/classification

towards the final unique classifier. Any mid-layer in DBN may act as output layer of the

feature extraction. Again, by continuously decreasing the feature vector size, the proce-

dure culminates by unambiguously classifying the input data. Therefore, DBN can act as

an unsupervised clustering NN, provided that it is terminated somewhere at a mid-layer.

By contrast, it can also act as a supervised classifier, if the number of nodes is reduced to

the specific number of classes and if labeled data is used to train the network.

The final deep network for static data that will be discussed here is the convolutional

neural network. This network relies on multiple stages of convolution and pooling, as seen

in Table 2.9. It is considered to be the best deep classification method, especially when

dealing with static images or previously recorded outputs of sensors and of hydrophones.

Several architectures of this popular network have been designed for scientific use, some

of which are also supported by Goggle and Microsoft (as exemplified by Inception [213]

and ResNet [214]). Several of these CNN architectures are compared in Table 2.14, based

on the excellent review article by Canziani et al. [14]. The Top-1 accuracy2 listed in this

table is measured with the aid of the single central-crop sampling technique3 of [15] for

all of the networks.

The number of network parameters in Table 2.14 is proportional both to their memory

footprint and to their required training time. On the other hand, the number of operations

required for a single forward pass, as shown in the table is capable of indicating the overall

inference speed of the network. The lower the number of operations, the higher the

inference speed. Here, ENet is not a CNN, but it is directly inspired by CNNs. By

2Classifiers usually assign a probability value to all of their output classes. Thereafter, the class with the
highest probability (top-1) will be considered as the final answer, which is not always true. Sometimes
the correct answer is among the top-N classes. Using top-5 accuracy is common, when comparing
different classifiers.

3A given image may have four corner crops and one central crop.
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Table 2.14: Comparison of a selected number of CNN architectures submitted to the An-
nual ImageNet Challenge [14,15]

Architecture
Name

Top-1
Accuracy

No. of
Parameters

No. of
Operations

AlexNet [215] > 56% ≈ 50M ≈ 2G

NIN [216] > 62% ≈ 6M ≈ 3G

VGGNet-19 [217] > 70% ≈ 150M ≈ 39G

Inception-v4 [213] > 80% ≈ 35M ≈ 18G

ResNet-152 [214] > 77% ≈ 50M ≈ 23G

ENet [218] > 67% ≈ 5M ≈ 2G

the same token, Network in Network (NIN) is not a CNN, but it relies on convolution

operations. Some of these architectures are also included in the deep learning libraries

of Section 2.4.2 and can be readily involved for any project. Let us now extend our

discussions to cover deep NNs in dynamic systems.

Deep NNs for dynamic IoUT data

Recurrent Neural Network (RNN) [13,219] and its variants (i.e. long short-term memory,

gated recurrent unit, etc.) constitute the only deep NN architecture in Table 2.9 that can

be used for nonlinear dynamic systems, as exemplified by continuous underwater sensor

outputs. RNNs are capable of using both time-series and sequential data streams to

construct supervised classifiers.

RNNs constitute a deep version of Hidden Markov Models (HMMs) [219], which repre-

sent a simple form of the broader family of dynamic Bayesian networks. Markov models

(i.e. Markov chains) are stochastic models, in which the output of a NN in response to

the current state, only depends on the output of certain selected neurons in the previous

state. The values of all neurons in all states are visible and are considered as the outputs.

Hidden Markov models are similar to Markov models, but they rely on non-observable

or hidden neurons. In these networks, the visible output is directly calculated by applying

a nonlinear function to the output of the hidden neurons. As illustrated in Table 2.9, an

RNN is constructed by stacking HMMs on top of each other. The rectangular shape of the

nodes in this picture indicates that in contrast to the circles of the other networks, these

nodes are not constituted by a single neuron, but rather they are a combination of neurons

in the form of a HMM. After studying the DNNs suitable for static and dynamic data
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analysis, let us study their capabilities to solve real-life problems in marine environment.

ML solutions in underwater image applications

The concepts of image and video quality assessment as well as image restoration were

studied previously in Section 2.4.3. We have also stated the fact that underwater imaging

applications heavily rely on image enhancement algorithms to cope with the destructive

effects of visible-light environments. To address this problem, deep learning techniques

have been employed for enhancing images suffering from noise, absorption, scattering, and

color distortion effects [162, 220, 221]. Furthermore, the benefits of DNNs in underwater

image quality assessment can be assessed in future studies with reference to their overwater

counterparts [222]. These applications, while in their infancy, are rapidly expanding.

Other applications that can benefit from deep learning are underwater image cluster-

ing and binning. We briefly reviewed these concepts in Section 2.4.3, noting that some

underwater clustering algorithms are also introduced in Table 2.11. By the way, using

novel deep learning techniques in underwater image clustering has not as yet attracted

the attention it deserves. For instance, one can beneficially exploit the embedded image

clustering technique of [223] as an unsupervised DNN methodology in underwater image

segmentation.

Additionally, using ML techniques in underwater object recognition have been previ-

ously used for various underwater applications and have shown different performance.

Here, we provide a summary of these techniques applied to some common underwater

object of interest recognition and compare their performance. In order to have a fair com-

parison, the Average Precision (AP) parameter, which is a widely accepted performance

measure, can be used. The average precision in any statistical or ML-based classifier can

be calculated as [40],

AP
∆
=

1

NC

NC∑
i=1

TPi

TPi + FPi
, (2.19)

where the True Positive (TP) and False Positive (FP) values are calculated for NC number

of classes. The AP parameter of many ML techniques published in the underwater plant,

fish, and coral recognition literature are compared in Table 2.15. All the algorithms

referenced in this table are based on the well-known Fish4Knowledge and EILAT datasets

introduced in Table 2.7 and are also based on the video footages recorded by AUV and

ROV vehicles.

It is quite common in ML to cascade different algorithms into a single method to attain

an improved performance (e.g. decision tree with SVM, and CNN with fully-connected).
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Table 2.15: Comparing the Precision of Multiple Machine Learning Techniques to Recog-
nize Three Different Underwater Species

Application Fish Recognition

Dataset Fish4Knowledge Dataset [40,41,181,182,224]

Methods
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Application Plant Recognition Coral Recognition

Dataset ROV and AUV Video [187,191] EILAT Dataset [111,225]
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93.8 94.1 95.1 95.3 95.8 96.1 96.1 69.6 82.1 83.3 84.6 85.2 90.8

As an instance of algorithm merging in underwater applications, Faillettaz et al. [51] as

well as Hu and Davis [176] cascaded a fully-connected classifier over shape-based feature-

sets with an SVM classifier over texture-based feature-sets. By combining the results

from these two classifiers, they claimed to have achieved an improved average precision,

as defined in (2.19).

Another noteworthy cascaded solution was conceived by Schoening et al. [174], where

they employ multiple cascaded SVM binary detectors to construct a deep sea megafauna

recognizer. The binary SVM detectors have object-specific operation, which makes them

more accurate. Accordingly, by combining these binary detectors, high precision multi-

object recognition was achieved. However, combining those object-specific binary detectors

requires more hardware resources than a single classifier.
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Table 2.16: Comparing the Precision of Multiple Machine Learning Techniques to Recog-
nize Objects in Sonar Imagery

Application Object Recognition

Dataset Echoscope Sonar Image Dataset [227]

Methods
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Finally, it is worth mentioning that underwater imaging applications are not limited

at all to the visible light domain. For example, undersea sonar imagery can provide

high-resolution images of the seabed, even in turbid water with low visibility. Some of

the reported applications of sonar images include ocean mapping, mine-countermeasures,

oil prospecting, and underwater search and rescue (e.g. finding the drowned corpses,

wrecks, and airplanes) [226]. In this regard, relying on human operators in sonar-based

underwater object recognition applications is not recommended, since they will experience

fatigue by staring at the display screen, and they might consequently miss the object of

interest. Therefore, intelligent image recognition methods can be trained to replace human

operators, especially in long-duration search scenarios.

To highlight the accuracy of machine learning techniques in underwater sonar-based

object recognition, the AP metric of (2.19) is used here in Table 2.16. This table compares

the performance of deep NNs to that of several statistical methods as well as to that of

traditional NNs. While the statistical and traditional networks seen in this table are

trained using HOG features from Table 2.12, CNN deep networks do not need any feature

extraction based preprocessing. Additionally, as seen in this table, appropriately designed

and well-trained DNNs may outperform traditional models.

ML solutions in underwater video applications

As already discussed in Section 2.4.5, the capability of hardware platforms to train and

analyze DNNs was impressively improved recently. This improvement has attracted in-

creasing attention to the subject area of real-time IoUT video applications. It was also

pointed out in Section 2.3.2 that the rapid growth in underwater video data volumes

will require the development of automatic video processing, which can be carried out

by machine learning techniques. These automatic solutions will be used in a variety of
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underwater video data processing applications such as:

� Visible light video tracking : This application is designed for scanning video sequences

to follow a specific element of interest [129]. A pair of basic problems in a video

object tracking solution is how to predict the location of a moving element in the

next frame and how to detect the element within this predicted region. Both of these

be handled by deep NNs [117]. This application was also discussed in more detail in

Section 2.3.4.

� Sonar video tracking : Sonar videos are recorded with the aid of acoustic waves,

instead of visible light. Within turbid undersea environments, sonar systems offer

a significant advantage by supporting long-range and low data-rate imaging [118].

Similar to visible light video object tracking, sonar-based video object tracking can

also be carried out with the aid of deep NNs [228].

� Underwater photo mosaicing : This is the act of combining separate visible light

or sonar video frames, for capturing a wider perspective of the region of interest.

Machine learning based photo mosaicing of underwater images is now routinely per-

formed by state-of-the-art underwater vehicles both for exploration and for naviga-

tion [46,54,229]. Automatic localization and positioning of submersible vehicles with

the aid of photo mosaicing is termed as SLAM [151] and it is studied in Section 2.3.4.

� Marine life studies: The analysis of underwater species is an indispensable part of

any observatory video system. Thanks to the wide availability of machine learning

based data processing toolsets, marine biologists are now capable of analyzing the

high-volume video data captured for extracting the desired information. Scientific

studies based on marine life video data applications have been published in different

areas, including underwater species behavior understanding (ethology) [116,185,230],

abundance and counting [48, 127, 171, 231], size measurement [127], detection and

recognition [40,41,171,182,184,231], and tracking [47,117,170,171]. We have covered

some of these aspects of marine life analysis in Section 2.3.4.

ML solutions in underwater sensor applications

Despite the unique benefits of applying RNNs to the processing of sensor outputs and in

nonlinear dynamic systems control, there is a paucity of reported use cases in real-world

IoUT applications. Their underwater applications are limited to a few scenarios, such as

IoUT sensor data forecasting [17], underwater vehicle sensor read and fault diagnosis [232],

and the dynamic control of underwater movements [233].
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Table 2.17: Comparing the Mean Squared Error of ML Techniques in Sea Surface Tem-
perature Prediction at Philippine Sea

Application Sensor Timeseries Forecasting

Dataset NOAA Dataset in Table 2.6

Methods SVM [236]
CFCC-

LSTM [236]
SVR [16]

FC-
LSTM [16]

GRU-
ED [16]

1 Day Forecasting 0.434 0.166 0.095 0.061 0.063

1 Week Forecasting N/A N/A 0.214 0.168 0.162

1 Month Forecasting 1.478 1.145 0.212 0.343 0.207

Among these applications, RNN-based predictive models conceived for IoUT sensory

data forecasting as well as for missed sensory data implantation are better investigated

[234]. More specifically, sea water temperature and salinity predictions are claimed to be

important, because:

� Water temperature and salinity have a direct effect on the acoustic communications

between IoUT nodes [235],

� Oceanic temperature has a substantial impact on both the land and the marine

ecosystems by regulating the global climate [17].

Hence, the employment of machine learning techniques to design accurate predictive

models is promising in BMD. For example, the influence of Long Short-Term Memory

(LSTM) [236] and Gated Recurrent Unit (GRU) [16], as a pair of common variants of RNNs

on highly accurate water temperature prediction is presented in Table 2.17. Even though

sea surface temperature forecasting is challenging due to the influence of numerous complex

and nonlinear thermodynamic factors, data-driven DNNs are capable of learning these

dynamic behaviors. By comparing RNN-powered networks to traditional machine learning

solutions in Table 2.17, the efficiency benefit of DNNs in IoUT sensor data prediction

becomes explicit.

To recap, the current usage of RNN and its variants in IoUT applications are rare.

Nonetheless, their versatile applications in IoT in smart homes [237], smart cities [238],

weather forecasting [239], and other areas promise a similar growth for IoUT applications

in the near future.
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2.4.7 Section Summary

In this section, the employment of ML-based techniques in BMD processing was studied.

We started this section by the definition of machine learning, classifying it into: classic

statistical methods, traditional neural networks, and modern (i.e. deep) neural networks.

The associated chronological perspective was also presented. Then, we discussed NNs

by surveying the major deep networks in the literature and their potential applications

both in static and dynamic underwater data processing. Despite the rapid development of

sophisticated, but complex deep NNs, light-weight traditional NNs might remain typical

in limited-complexity underwater applications. Therefore, more detailed discussions were

provided in this section to cover data cleaning and feature extraction techniques in BMD.

We then surveyed the available software frameworks and hardware platforms, including

a collection of freely available libraries and frameworks. We also provided a comparison

of the hardware infrastructures suitable for the software products discussed. Finally,

the average precision and accuracy of diverse machine learning approaches suitable for

underwater applications was studied.

2.5 Challenges and Future Directions in IoUT and BMD

Having reviewed the state-of-the-art research in the areas of IoUT, BMD, and machine

intelligence, the challenges and opportunities in these growing fields will be discussed.

We also propose solutions and future research directions to address the challenges and to

pursue the opportunities.

One of the main obstacles that has been hindering further advances in the IoUT domain

is that well-known terrestrial technologies, which perform well in the IoT domain, tend to

be unsuitable in underwater applications. Many issues in the oversea application domain

can be readily solved, easily, while they pose a significant challenge in underwater scenarios.

Below we will continue with a list of challenges, opportunities, and future trends in the

IoUT, BMD, and ML fields. Some of these challenges may be mitigated with the aid of big

data processing and analytics, while some others require research efforts from the broader

engineering community, hardware vendors, and policy makers.

2.5.1 Underwater Network Management System

Due to the significant growth in the number of Internet-connected underwater devices,

the IoUT infrastructure tends to exhibit increased complexity. Consequently, improved

Network Management Systems (NMS) are required, which represent the process of mon-

itoring and controlling every aspects of the underlying network, for ensuring its seamless
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operation [240]. The monitoring must be automatic and prompt in locating, measuring,

and reporting faults. Additionally, their control should be capable of efficient and reliable

resource allocation or troubleshooting [61].

While the concepts of network management in IoUT are somewhat similar to those in

IoT, the methodologies are different, as discussed in Section 2.2.4 owing to the differences

between overwater and underwater communication channels. Hence, the extension of NMS

in IoT to Underwater NMS (U-NMS) in IoUT requires further research [241] for each of the

six aspects of U-NMS in the FCAPSC model, namely the Fault-, Configuration-, Account-,

Performance-, Security-, and Constraint-managements [241]. It is worth mentioning that

FCAPSC of IoUT was derived from the original five elements in FCAPS of IoT, which was

introduced by the International Organization for Standardization (ISO) in the 1990s. The

constraint-management element requires U-NMS to deliver continuous connectivity even

in the face of the hostile underwater channel, node mobility, device fragility, environmental

dynamics, and technological heterogeneity.

To facilitate the implementation of the FCAPSC model, U-NMS protocols tend to divide

their influence domains into the family of network functionalities (e.g. routing manage-

ment, protocol assignment, security checks, etc.) and of device operations (e.g. UWSN

maintenance, energy conservation, device positioning, time synchronization, etc.) [61].

The relevant studies around these domains were comprehensively surveyed in Section 2.2.

To the best of our knowledge, the Underwater Simple Network Management Protocol (U-

SNMP) is the only U-NMS protocol, which covers the first domain of influence (i.e. the

network functionalities). U-SNMP in IoUT is again, an extension of SNMP in IoT, and it

is a manager–agent-based protocol, which is used in communication between devices [241].

On the other hand, Lightweight Machine to Machine (LWM2M) is an IoT protocol that

covers the second domain of influence (i.e. the device operations). LWM2M is applicable

to IoUT as well, subject to some modest adjustments [61].

Despite its popularity, U-SNMP lacks facilities for network configuration, and LWM2M

suffers from challenges owing to the associated heterogeneous network support [61]. By

contrast, there are other network management protocols in IoT that offer better perfor-

mance. Future studies might consider appropriately adopting those overwater protocols

to underwater applications. For example, the Common Management Information Proto-

col (CMIP) offers better security features and it is suitable for wide area networks [242].

Another alternative might be the LoWPAN Network Management Protocol (LNMP) in

IoT, which has low data rates, low power consumption, low cost, and supports flexible

topologies [243].

While the above protocols are better suited for distributed network managements, the

centralized Software-Defined Network (SDN) management techniques are also in need for
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underwater management systems. Here, the Open vSwitch Database (OVSDB) protocol

at overwater SDNs constitutes a promising base for designing its underwater counterpart.

However, any attempt to adopt OVSDB to underwater SDNs requires further research for

addressing its current security issues [244].

Even after dividing the U-NMS responsibilities into two major domains of influence and

limiting the U-NMS protocols correspondingly, the number of challenges in each domain

will remain significant [61]. This is a direct consequence of the broad nature of the U-NMS

topic itself. To better understand these challenges and study their future directions, we

have discussed each challenge in a dedicated subsection. The following subsections will

cover multiple aspects of U-NMS, ranging from energy conservation to device maintenance,

to its security issues and communications. Some of these subsections discuss using BMD

analytics as well as powerful deep learning techniques.

2.5.2 Energy Conservation and Harvesting in IoUT Devices

Energy conservation and harvesting in IoUT devices are of prime concern in almost all

underwater applications, while they can be readily addressed in overwater scenarios, where

energy can be harvested from the sun and preserved in the system [245]. Some innovative

methods of gleaning energy in underwater environments include:

� Overwater solar energy : As already discussed in Section 2.2.6, by performing com-

putations in above-water edge-devices, such as surface-floated buoys and vehicles,

solar energy can be harvested. Indeed, solar powered buoys are amongst the oldest

methods of environmental energy harvesting techniques [246,247].

� Underwater solar energy : It was stated in Section 2.2.2 that light is strongly ab-

sorbed in water and it additionally suffers from color distortion. However, as men-

tioned in Section 2.3.2, blue light will penetrate water deeper than other visible light

frequencies. Some previous studies suggested the use of solar cells to harvest the blue

frequency band of the solar energy underwater. These photovoltaics are claimed to

provide useful power at the depth of more than 9m [248]. However, many underwater

applications are invoked at depths well beyond the light penetration domain.

� Tidal-wave energy : Harvesting kinetic energy from waves in the littoral tidal basin

can be readily achieved by using today’s technology. This can also offer a source

of energy in the underwater benthic zone. These systems are based on piezoelectric

elements and the energy generated is high enough to power UWSNs and their devices

[249]. Similarly, some contributions report the employment of the same technique

to harvest energy from fluid-flow in pipelines [250].
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� Wireless energy transfer : This method was introduced for RFIDs and acoustic tags

in Section 2.3.4. Additionally, a remotely powered acoustic UWSN was reported

in [251] as another energy acquisition alternative for the IoUT. Thereby, sensor

nodes harvest the mechanical wave power supplied by an external acoustic source.

Another use case of wireless energy transfer may rely on in-situ magnetic charging

stations, where underwater vehicles (e.g. AUV, ROV, etc.) can use these stations

to recharge their batteries [252].

� Wired energy transfer : In a clear contrast to the previous items, every close-to-shore

IoUT application may rely on energy transmission through a cabled network. In

this method, the energy arrive from a solar, wind, or urban power network and it

is directly transferred to the UWSN. These systems, however, are costly because of

the cabled infrastructures on both land and at sea [4].

The above methods have the potential to be used in marine type projects. They can

extend the lifetime of IoUT networks and boost their QoS. However, except for the wired

energy transfer method, they tend to be unpredictable, hence none of them guarantees

the uninterrupted delivery of energy. To address this issue, the following pair of solutions

may assist:

� Using rechargeable batteries: All the aforementioned methods can be accompanied by

tandem batteries to store energy. These batteries are recharged during the instances

of energy acquisition and deliver their stored energy afterwards. This solution obvi-

ously prolongs the sensor network’s lifetime, but requires maintenance and increases

the cost of the system [4].

� Managing energy consumption: Just like any other electrical grid worldwide, the

IoUT has to manage its energy demands by optimizing the power allocation to guar-

antee uninterrupted data collection and transmission [253]. Indeed, all components

of the IoUT should be energy-aware. In this context, an innovative energy-aware

robot was proposed by Wu et al. [254], which had the shape of a killer-whale. This

robot has had reduced energy consumption for its propulsion as a benefit of its excel-

lent lift-to-drag ratio, which is important for effortless gliding in water. Compared

to the Seagliders introduced in Table 2.5, the controllable flukes of this robot offer

substantial energy savings, better maneuverability as well as enhanced endurance.

2.5.3 Development of Low-cost and Affordable Sensors

The underwater sensors listed in Table 2.2 and multi-sensor buoys are usually very costly

compared to their overwater counterparts. To address this multi-disciplinary challenge,
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the following approaches can be considered:

� Quality vs. cost trade-off : Low-cost sensing devices having lower precision measure-

ments could be purchased to strike a quality vs. cost trade-ff.

� Transferring specimen for inland assessment : The establishment and operation of

an underwater in-situ sensing unit is generally more expensive than a laboratory-

based experiment. Therefore, whenever possible, samples could be transferred to an

inland lab, to avoid the need for costly in-situ processing and evaluation.

� Inferential measurements: It is a common technique in industrial instrumentation to

estimate a parameter from the values of other parameters, which are easier to mea-

sure. For example, calculating the total amount of ions dissolved in water is always

easier by measuring its electrical resistance instead of utilizing costly electrochemical

sensors [255].

In addition to the above-mentioned general recommendations, designing specific cost-

effective sensors can help the evolution of IoUT technology. In order to design such

sensors, scientists from different research backgrounds have to cooperate. The result of

this cooperation will be ad hoc solutions, which are tailored to the predefined need of

any project. For instance, here we list several contributions involving low-cost underwater

sensors.

� Islam et al. [256] proposed a low-profile and low-cost microstrip patch antenna to

measure the salinity of water. They found that the antenna’s reflection coefficient is

proportional to the amount of salt or sugar dissolved in water.

� Vorathin et al. [257] constructed a high-resolution hydrostatic pressure and depth

sensor by attaching a fiber Bragg grating on a rubber diaphragm. Their sensor is

claimed to enhance the sensitivity and to compensate the temperature effects.

� Wang et al. [258] conceived a low-cost turbidity sensor, based on the 90◦ scattered

light detection principles. To elaborate, they used off-the-shelf infrared LEDs having

controlled light emission to construct a low-cost, yet accurate product.

� Kirkey et al. [259] proposed an inexpensive fluorometer based on an optical backscat-

ter transducer. Explicitly, their idea is to use low-frequency circuitry for modulating

the light source. Using this technique, their product will be very cost-effective.

� By relying on the fundamental concepts of Time-Domain Reflectometry (TDR),

Time-Domain Transmissometry (TDT), or Fiber Bragg Grating (FBG) in optical
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physics, optical fibers can act as a sensor to detect a wide range of underwater phys-

ical parameters. Examples include leak detection in pipelines and estimating its

location [260], stress response of the offshore platforms (i.e. legs of the jacket struc-

ture) and detecting its deformation [261], bending moments of the flexible risers

in a hang-off position to avoid exceeding its absolute maximum ratings [261], tem-

perature and pressure measurement as well as eliminating the temperature-pressure

cross-sensitivity [262], etc.

In addition to the above techniques of reducing the sensors costs, reducing the physical

size of underwater sensors also tends to reduce their production cost. Examples of low-

cost smaller sensors include miniature underwater robots [263] and low-power nano-sensors

[105].

Furthermore, using the edge computing capabilities discussed in Section 2.2.6, it is possi-

ble to establish a laboratory on board of an oceanic exploration platform [60]. This limited-

capability on-board lab may conduct preliminary experiments on samples, before trans-

mitting the numerical results through the web. Additionally, by using a video-empowered

command and control system, there would be no need for an expert to be present in-situ.

This laboratory on the edge will also eliminate the need for sending the specimen to an

inland lab for evaluation, which would be both expensive and time-consuming.

2.5.4 Large-scale IoUT Underwater Communications

In terrestrial telecommunication, electromagnetic waves, copper cables, and optical fibers

are the mainstream transmission media. However, as studied in Sections 2.2.2, fiber-optics

are expensive to deploy and maintain under water, hence typically acoustic, electromag-

netic, and optical technologies are deployed, which do not propagate well, hence making

IoUT telecommunication challenging.

Electromagnetic and optical technologies only cover short communication distances and

are therefore unsuitable for long-range IoUT communications. Acoustic technologies tend

to be more amenable to long-range IoUT networks, but they have a narrow frequency

bandwidth and are prone to cross-talk with other local acoustic applications [264]. Hence

they are also unsuitable for large-scale networks.

A promising, but costly technique of addressing the communication challenge in IoUT

is to combine heterogeneous communication technologies [265]. However, the design of

multi-technology multi-mode gateways for undersea applications is a challenging task,

especially when considering the energy harvesting difficulties. These gateways may be

combined with the SDN and cognitive radio concepts for efficiently sharing the limited

spectrum undersea [265]. Future research should conceive energy-aware software and low-
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power hardware solutions for these gateways to improve the quality of communication in

IoUT networks.

Another promising solution to underwater communication problems, especially in the

case of long-range inter-continental telecommunications, is the inter-connection of the

IoUT and aeronautical technology. In this technique, the data in the application layer of

underwater networks that is produced by sensors and imagery equipment can be trans-

ferred to the overwater buoys and to the floating ships. Therefrom, data will be handed

to the low-earth orbit or medium earth orbit communication satellites, or to the aerial

vehicles. A similar example of this technique is provided by NCEI, Landsat, Aquarius,

SARAL, CryoSat, Jason, HY2-A, and IRS satellites in Table 2.6 for remote sensing of

ocean surface parameters. Another example is offered by [92] for the connectivity of un-

manned aerial vehicles and IoUT.

Additionally, reducing the data volume to make it suitable for transmission using

narrow-bandwidth acoustic technology could be used for mitigating the communication

challenges in large-scale IoUT networks. This was discussed under the concept of MCC

and MEC edge computing paradigms in Section 2.2.6. According to this method, edge-

processing is capable of reducing the volume of raw data [90]. This consequently reduces

the bandwidth requirement.

In this regard, the combination of the MEC paradigm with smart unmanned vehicles can

offer an alternative solution to the problem of long-distance underwater communications.

In this solution, autonomous underwater vehicles [91], unmanned aerial vehicles [92], etc.

can be used for IoUT data collection. Here, edge computing can undertake some essential

computations, so that big data collection will be mitigated, while latency-sensitive situa-

tions are handled promptly [92]. However, the lack of energy in undersea environments,

makes the employment of MEC a challenge. In closing we note that MEC has a similar

architecture to the previously suggested inter-connection between the IoT and IoUT.

2.5.5 Dynamic IoUT Signal Routing and Traffic Control

The underwater propagation environment is quite hostile; hence it is of low channel ca-

pacity, which makes even point-to-point single-link data transmission challenging in the

IoUT. This becomes even more challenging when a network of concurrently communicat-

ing nodes is considered. For example, in the presence of a network supporting multiple

transmitters, the tele-traffic escalates, and traffic control becomes a challenging task, when

aiming for a reasonable QoS [29].

To avoid any tele-traffic congestion, efficient routing management is crucial. To elabo-

rate a little further, in ad hoc networks the design-dilemma is whether to use more short
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hops at the cost of an increased delay or fewer longer hops. It is beneficial to use low-

complexity non-coherent transceiver techniques and take into account the battery-charge

during routing.

Additionally, intelligent traffic control systems, using both the deep learning approaches

[266] and the SDNs [267, 268] may be devised in underwater applications. These systems

are capable of efficiently handling concurrent data transfers to avoid congestion.

To employ deep learning in traffic control systems, we first have to define the action

space. To do so, consider a heterogeneous IoUT network constructed of both wired and

wireless connections. As detailed in Section 2.2.3, all the nodes of such a network may

connect with one another, using multiple hops. As a consequent of both the limited

underwater transmission range [269] or the large-scale infrastructural size of the network

[265], the number of possible hops escalates, leading to numerous potential paths for

a data packet to travel between a pair of nodes. In this context, every path can be

considered as an action in the action space. After taking an action, the system’s feedback

(a.k.a. reward) can be quantified by the traffic load level of the nodes in the following

timeslot, which is formatted as an award value matrix. The combination of the actions

and their consequent rewards provides the required training data for semi-supervised deep

reinforcement learning, as advocated in [266]. To the best of the authors’ knowledge,

such datasets for IoT, do not exist for IoUT. Once collected, these datasets of IoUT

routing management and traffic control can then be used to train ML-based models. After

successfully passing the training phase, this deep model can be used to infer the best overall

path for a given data packet.

Although the above DNN can be conveniently used in most of the IoUT structures, it

might falter as the IoUT architecture gets wider. By expanding the network scale, the

number of possible paths will increase exponentially, and the deep NN can no longer learn

the patterns in the data flow. To address this problem, Fadlullah et al. [266] have proposed

a solution, which can also be employed in underwater applications. To elaborate a little

further, they suggested to:

1. Change the action space from the entire set of all path combinations to simply the

next hop destination;

2. Replace the semi-supervised reinforcement learning by a cascaded combination of

supervised CNN and DBN;

3. 3) Predict the award value matrix (by CNN) before deciding on the best action (by

DBN).

These recommendations for using DNNs for wide-scale IoUT traffic control will reduce
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the packet loss rate as well as improve the network throughput. As a result, the routing

performance will improve compared to that of the conventional methods.

The other technique of improving the network throughput is that of adhering to the

SDN methodology. This type of network, which relies on a centralized control system, for

monitoring the network’s traffic flow. According to Xie et al. [267], the centralized man-

agement of SDNs substantially benefits from using DNNs. For example, the functions of

routing optimization, traffic prediction, path load prediction, node deployment optimiza-

tion, delay prediction, QoS prediction, content delivery optimization, resource allocation,

SDN reconfiguration, optimized spectrum sharing, number of active nodes estimation,

and intrusion detection would all benefit from using DNNs in overwater SDNs. Hence it

is promising to critically appraise their synergies also in underwater applications.

2.5.6 Deleterious Effects of Imprecise Channel Modeling

Naturally, the channel plays an essential role in designing the underwater deployment of

endpoint nodes, relay nodes, and sinks. The strategic deployment of nodes is capable

of increasing the entire system’s battery life and improving the QoS. Almost all of the

underwater acoustic, electromagnetic, and optical channel models as described in Sec-

tions 2.2.2 and 2.2.4 and also the underwater magnetic induction channel model of [270]

rely on approximations to simplify the overall model. For example, many channel models

assume straight signal propagation undersea, which simplifies numerical calculations [34].

However, approximations and idealized simplifying assumptions will result in imprecise

models and inaccurate communication.

Imprecise channel modeling can also lead to inaccurate simulation-based modeling of

underwater communications. Below, we provide a list of recent publications, which showed

the impact of imperfect channel modelling in the simulations of underwater communica-

tion, and therefore used precise channel models for their simulations.

� Using a preamble alerts the receiver about the reception of an incoming data burst

and switches it from its low-power dormant mode to its high-power active mode.

Therefore, both missing the detection of a preamble and declaring its reception,

when it is actually absent reduces the receiver’s battery life. A beneficial preamble

detection method was proposed by Li et al. [85], for an underwater digital commu-

nication system, which coexists with other deployed networks. Using an accurate

channel model is critical in this identification method in order to prevent a receiver

from being triggered by other systems and consequently extends the underwater

battery life.
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� IoUT communication is affected by numerous signal impairments, such as a high

propagation delay and high signal attenuation. These reduce the link reliability,

which can be mitigated by sophisticated Forward Error Correction (FEC) and Au-

tomatic Repeat reQuest (ARQ) techniques. However, at low SNRs the throughput

may be reduced by excessive data retransmission. Liang et al. [86] optimized the

overall transmission redundancy to be used in UWSNs by relying on an accurate

channel model.

� In the simulation-based investigation of adaptive transmission in time varying un-

derwater acoustic channels conducted by Wang et al. [87], the transmitter’s data

queue length and the predicted channel conditions were relied upon for designing

the adaptive transmitter parameter values. Although their method relies on rein-

forcement learning to yield considerable energy saving, it cannot correctly learn the

accurate parameter values without a precise channel model.

To address the need for precise channel modeling, further research is required for devising

precise yet computationally efficient models, for ensuring that the simulation of underwater

communications in context of the emerging IoUT is as reliable as possible. This would

mitigate the need for and the likelihood of future network upgrades.

2.5.7 Sparse and High-maintenance Sensing Devices in IoUT

In contrast to the IoT, the sensing devices of the IoUT are sparsely deployed and exposed to

severe environmental effects [32]. The sparse configuration and the harsh environmental

conditions make the maintenance of the IoUT, costly. Explicitly, maintenance should

mitigate the effects of erosion, corrosion, sediments, pollutions, and other phenomena

imposed by seawater.

To address these issues and to reduce the maintenance cost of sparse high-maintenance

nodes in the IoUT, a compelling solution is to incorporate self-management capabil-

ity [271], including self-evaluation, self-configuration, and automatic reports to human

operators. Therefore, developing intelligent ML-based hardware nodes for the IoUT, which

have a self-management and decision-making capability and conceiving their required soft-

ware are promising avenues for research in IoUT, which need further attention.

2.5.8 Poor Underwater Positioning and Navigation

As mentioned earlier, GPS signals do not penetrate the sea, hence other navigation tech-

niques have to be used. A number of navigation methods such as blind positioning, acous-

tic transponders, ranging sonars, image-based positioning, and SLAM were introduced in
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Section 2.3.4. However, none of these stand-alone techniques offer a non-accumulating

positioning error, therefore, none of them are adequate [138].

Hence, further research is required for improving underwater navigation systems. The

challenges to address are:

� Selecting and combining the large amount of data from the aforementioned stand-

alone navigation techniques is a challenging task, while considering the system’s cost

and complexity as well as precision. A research opportunity to address this issue is

to study different combinations of navigation techniques, while striking a trade-off

between cost and accuracy. For instance, Bonin-Font et al. [46] have combined image-

based positioning with SLAM to achieve improved navigation. Another study has

combined blind positioning with a long-baseline acoustic transponder to reduce the

positioning errors caused by acoustic ray bending and variable sound velocities [139].

� Preliminary environmental survey for acquiring offline data is a challenging manda-

tory step, which has to be conducted before scene analysis based localization tech-

niques (i.e. image-based positioning systems as well as acoustic transponders). This

step is required for extracting positional fingerprints (i.e. features), which will be

subsequently used for accurately training a localization ML algorithm. However,

gathering these big datasets to train ML algorithms is not trivial in underwater

environments.

Furthermore, traditional ML models can be easily mislead by any variation in the

underlying high-dynamic underwater scenes. To address this, using deep NNs having

automatic feature extraction capability is highly recommended. The benefits of

diverse statistical methods, traditional NNs, and deep NNs in scene-based indoor

positioning systems are reported in [272]. These quick lines can be adapted for

underwater applications.

� Finding and implementing new natural phenomena for improving underwater posi-

tioning as well as navigation is another challenge. In this context, a gravity-aided

navigation system was conceived in [140], which is based on exploiting the difference

between the observed and the predicted gravity. These methods however, suffer from

biases and error accumulation, which has to be addressed in future research.

� Adapting the existing Low-Power Wide Area Network (LPWAN) technologies to

carry out IoUT localization is a potential opportunity. In a review article of Za-

fari et al. [272], a collection of these wireless technologies (i.e. SigFox, LoRaWAN,

Weightless, etc.) was studied in IoT localization. Using the same approach would
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be beneficial for IoUT, as they all consume extremely low energy and operate in a

wide reception range.

2.5.9 Non-Destructive Testing in Underwater Applications

Non-destructive testing (NDT) is the process of inspecting a system, device, or component,

without imposing any changes on its shape or material. NDT can be performed while the

Device Under Test (DUT) continues its normal operation. For example, both the TDR

and TDT methods discussed in Section 2.5.3, are variants of NDT methodologies relying

on optical fibers, which are undertaken without interrupting the normal operation of their

DUT [260].

Apart from optical fibers, NDT can also be carried out by other equipment. Some of

these NDT tools include visible light cameras, electromagnetic flux detectors, ultrasonic

transceivers, and magnetic inductors (i.e. eddy current sensors). Using these equipment

in underwater NDT are reported in many diverse applications, such as:

� Leakage detection [260], vibration recognition [273], and non-stationary disturbances

as well as strain sensing [274] in pipelines, by fiber-optics;

� Bending and deformation inspection in flexible risers, by fiber-optics [261];

� Temperature and pressure monitoring in downhole tools, by fiber-optics [262];

� Determining water-level in unmanned water resource management systems, by visual

cameras [275];

� Inspecting the outer surface of large ship hulls, by electromagnetic flux detectors

[276];

� High-sensitivity hydrophones for opto-acoustic imaging, by ultrasonic [277];

� Welding inspection and defect characterization in offshore platforms, by magnetic

induction [278].

Developing a classic NDT algorithm for a typical component is not an easy task, re-

quiring knowledge about both the DUT and the underlying physics of the NDT itself

(i.e. ultrasonic, electromagnetic, or optical wave scattering). Nevertheless, in the modern

age of ML techniques, one can gather a big dataset from any DUT. These data samples

can then be fed to a deep NN for training purposes. By implementing this deep learning

approach, developing NDT algorithms can be carried out faster, with minimal knowledge

about the underlying physical concepts [273–275].
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Another opportunity in underwater NDT is to use the recent developments in the field

of distributed and cloud-based BMD Processing tools, which has been discussed in Sec-

tion 2.3.3. Relying on the frameworks listed in Table 2.8, one can readily glean data from

multiple independent NDT equipment, and then employ a data fusion technique from Sec-

tion 2.3.1, to combine and process the gathered big data. It is proven by Bayes’ theorem

that the uncertainty in the final test result will dramatically decrease by fusing data from

independent data sources [278].

2.5.10 Lack of Strong Data Leveraging Tools

The processing of BMD requires powerful hardware and software tools that can auto-

matically extract knowledge from large databases. Some of these hardware tools were

introduced throughout this chapter, specially in Sections 2.3.3 and 2.4.5. However, more

advanced software techniques are required for automatic long-term data-gathering and

data-monitoring applications. For instance, even though unmanned auto-annotation based

industrial software is in very high demand for classification and labeling underwater ob-

jects, plants, or creatures, the existing marine image-annotation software packages are

only semi-automated, at best [136].

The shortages in automatic data leveraging techniques is partially due to the uncer-

tainty in selecting feature-set. Ambiguity in feature selection and in the ensuing feature

reduction is a consistent challenge in automated ML-aided projects. In a conventional

neural network, there are a variety of features and descriptors, hence selecting the most

useful ones is challenging. These diverse underwater feature-sets have previously been

discussed in Section 2.4.4 and summarized in Table 2.12. Recall that relying on a single

feature is usually inadequate for accurate underwater classification and clustering [182].

Although modern deep learning approaches (e.g. fully-connected, CNN, Autoencoder,

etc.) are promising in terms of overcoming this challenge, the advantages of classical ML

methods may nonetheless provide better results. These benefits of classical ML meth-

ods include having fewer parameters, more rapid convergence during their training, better

insights into the tangible physical interpretation of their operation, and much easier debug-

ging as well as tunning the network. Further research is required for developing techniques

and algorithms to infer useful features from a dataset, or even to automate the feature

selection process. This will be invaluable for the ML community, because feature selection

has a direct impact on the performance of ML-based solutions.
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2.5.11 Training Deep Networks

When using deep networks, the feature extraction will be automatically handled by the

hidden layers of the network. Despite this automatic feature extraction, the deep networks

have the disadvantage of requiring large amounts of data for tuning their weights and

biases, during the training step. The deeper and wider these networks become, the more

useful features can be extracted [279]. Ultimately, we have to strike a trade-off between

the training data volume required, the network size/power and its overall performance.

To address this trade-off, a pair of general solutions could offered. The first solution

is to satisfy the deep network’s hunger by more data. The extra data can be generated

automatically (for example by various data augmentation techniques or by employing

generative neural networks, such as the Generative Adversarial Network (GAN) [280,281])

or manually (by using web-based technologies to enlist the assistance of international

experts and to produce a large volume of user-generated contents).

The second solution is to enhance the deep network’s efficiency by modifying their

building blocks and the inter-connection of neurons (like the convolution, pooling, and

activation operations of a typical CNN [282] or pruning a deep NN to ease their operation

on mobile devices [283]), in order to reduce the number of network parameters. The

vibrant deep learning community will no doubt continue to improve the deep network

training and tackle the challenges. This will definitely improve the IoUT applications and

advance BMD analytics.

2.5.12 Degraded Underwater Images

Undersea photography is always affected by environmental factors. Although the contri-

butions surveyed in Section 2.4.3 have addressed some of these issues, there is a lot of room

for improvement. For instance, developing an imaging system capable of both real-time

forward- and back-scattering elimination is critically needed.

Furthermore, the underwater image quality could be significantly improved by applying

some well-known hardware methods and techniques, such as light polarization [284], multi-

spectral imaging [285], or stereoscopic imaging [286]. Additional improvements may also be

attained by software methods, such as wavelength compensation and color reconstruction

[112,169] both in active and passive underwater photography. Finally, the new concept of

image reconstruction with DL [162,220,221] has promise for future research.
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2.6 Conclusion

The recent advances in IoT technology and the extension of its influence both to coastal

and open sea areas has led to the proliferation of the number of Internet-connected ob-

jects both in over- and underwater applications. This technological evolution inspired

the new scientific concept of IoUT constituted by marine sensors, cameras, hydrophones,

etc. This concept opens many new research directions for undersea data acquisition, data

communication, BMD handling, and oceanic data processing.

In this chapter, we commenced by surveying the state-of-the-art in underwater com-

munications. Given the harsh underwater propagation environment, data communication

is quite a challenging task in the IoUT. The families of advanced underwater communi-

cation models of acoustic, electromagnetic, and optical technologies were introduced and

innovative solutions were proposed for increasing the overall link reliability by topology

and routing optimization, security improvement, and protocol enhancements. Further-

more, the underwater channel modeling was studied along with software tools to simulate

both those channel models as well as the communication protocols. Both SDN and edge

computing techniques were also reviewed as a promising technique of improving under-

water communications. We also reviewed the IoUT network architecture, based on the

well-known 5-layer TCP/IP standard model.

Naturally, the IoUT leads to BMD generation and the associated challenges include data

storage, transportation, preparation, and analysis. Because manual and semi-automatic

data processing methods are no longer appropriate in the new era of the IoUT, the five sys-

tem components of BMD solutions were discussed and the most recent frontier-research

and a range of practical solutions were discussed for each component. These solutions

covered the areas of sensor, image, and video data sources, marine geographic data, local-

ization and tracking, open access databases, distributed data processing, and cloud-based

services. A complete section was also dedicated to machine intelligence (i.e. ML and DL)

and its applications to marine data processing. The most recent research articles in both

the hardware and software aspects of the IoUT and BMD processing were also surveyed,

along with the critical appraisal of these works. Finally, numerous open research issues

and future study directions were presented to provide an insight into the prospective appli-

cations, trends, and challenges. Do join this vibrant interdisciplinary research community,

valued colleagues.
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Sea Surface Temperature Timeseries

Forecasting

The timeseries forecasting of sea surface temperature is described in this chapter. The

structure of our proposed ensemble of stacked DNNs is also explained and its perfor-

mance for highly-accurate sea surface temperature prediction is analysed. The results are

compared with the state-of-the-art in the literature. This chapter is published in IEEE

Geoscience and Remote Sensing Letters as

[25] M. Jahanbakht, W. Xiang, and M. R. Azghadi, “Sea surface temperature forecast-

ing with ensemble of stacked deep neural networks,” IEEE Geoscience and Remote

Sensing Letters, vol. 19, pp. 1502605–1502609, Aug. 2021.

3.1 Introduction

Seasonal weather forecasting and SST prediction has attracted increasing attention in

scientific literature [16, 17]. Because oceans cover approximately three quarters of the

surface of our planet, accurate SST prediction can provide noticeable benefits to many

environmental-related studies and applications. To address the SST forecasting problem,

various prediction algorithms have been introduced in the literature [287–289]. These

diverse predictive models can be categorized into: (i) physics-based numerical models, (ii)

classic statistical methods, (iii) traditional neural networks, and (iv) deep neural networks.

Physics-based numerical models use complex kinetic and thermodynamic equations

along with exciting parameters and boundary conditions. General circulation models [287]

and regional ocean modeling system [290] are commonly used methods in this category.

The second category of the SST predictive models, uses classic statistical methods to create

a mathematical model that embodies numerical relationship between one or more random

variables. Markov model [288] and linear regression [289] are two repeatedly reported

statistical methods. Traditional (a.k.a shallow) neural networks including Support Vector
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Regression (SVR) [16] and wavelet neural networks [290], are the third type of methods

used for SST forecasting.

The fourth category of SST predication models are Deep Neural Networks (DNN),

which incorporate multiple hidden layers to extract data features and to automatically

learn SST variation rules. These methods are very popular due to easy access to big

and up-to-date collections of in-situ and remotely sensed SST data collected by various

organizations and made publicly available. Some well-established models in this category

include Fully-Connected Long Short-Term Memory (FC-LSTM) [16], Gated Recurrent

Unit Encoder–Decoder (GED) [16], and Convolutional LSTM [17], which are shown to

have higher accuracy compared to the first three categories [16].

The SST forecasting DNN models can be divided into timeseries and next-frame pre-

dictors. While a timeseries predictor works with spatial averaged SST [17], next-frame

predictors use SST distribution matrix in an area [236]. From a functionality perspective,

a next-frame predictor results in a higher mean squared error, compared to its timeseries

counterparts. This is simply because the next-frame predictor needs to predict a 2D ma-

trix, while timeseries predictors predict a single value. Consequently, various practical

applications need to choose between next-frame or timeseries predictors, depending on

the trade-off between spatial coverage or prediction accuracy.

Here, we propose a new SST timeseries prediction model, which consists of two stacked

DNNs. While previous DNN models have only used water temperature as their input

[16, 17], we also use readily available air temperature data for improving the efficiency

of our model. Two correlated air and water temperature variables are fed separately

to two stacked DNNs. These two networks then form an ensemble to create our highly

accurate model. Simulation results show that our model outperforms the state-of-the-

art, even without using the air temperature data. However, the accuracy is enhanced by

introducing an ensemble node, which merges the SST and air temperature timeseries into

the final prediction output.

3.2 Background and Problem Formulation

Various factors can affect SST variations. These include solar radiation, surrounding air

temperature, heat exchange with atmosphere, wind speed at sea surface, evaporation,

ocean internal processes, etc. [16]. Due to the diverse nature of these factors, accessing

them in a desired location is not always possible. Among these factors, the air temperature

is a common observation that can be found in almost any weather station worldwide.

Therefore, the air temperature can be easily obtained to be used in conjunction with

historical SST to devise a better SST prediction model. If the air temperature is not
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Table 3.1: Temporospatial Coordinates of the Sea Areas Under Study and Their Corre-
sponding Land Weather Stations

Location
Name

Type of
Timeseries

Data
Source

Spatial
Coordinates

Sampling
Duration

Bohai Sea Endogenous
Averaged SST

NOAA
PSL

117.5◦- 121.5◦E,
36.5◦- 40.5◦N

1998-2020

Dalian City Exogenous
Air Temp

NOAA
NCEI

121.633◦E,
38.9◦N

1998-2020

South China
Sea

Endogenous
Averaged SST

NOAA
PSL

112.5◦- 119.5◦E,
6.5◦- 21.5◦N

1998-2020

Dagupan City Exogenous
Air Temp

NOAA
NCEI

120.35◦E,
16.083◦N

1998-2020

North Pacific
Ocean

Endogenous
Averaged SST

Argo 130◦- 190◦E,
10◦- 50◦N

2004-2019

Amami Island Exogenous
Air Temp

NOAA
NCEI

129.5◦E,
28.383◦N

2004-2019

available for a desired point, it can be obtained from an iso-latitude station to act as an

exogenous variable.

In order to perform precise SST forecasting, here we propose to utilize SST and air tem-

perature, simultaneously. The SST timeseries are extracted from the National Oceanic and

Atmospheric Administration (NOAA) Physical Science Laboratory (PSL) and the Argo

data sources, while the air temperature timeseries come from NOAA National Centers for

Environmental Information (NCEI) [291]. Geolocations of these timeseries are presented

in Table 3.1. The SST values in this table are area averaged over the corresponding spa-

tial coordinates. The choice of these referenced coordinates are in accordance with other

published works [16, 17], which enable us to compare the accuracy of our approach with

literature.

The bilateral relationship between the SST and air temperature has already been studied

in climatological research. More specifically, SST has been used as a reliable predictor of

weather anomalies [292], while air temperature is used to assist in predicting SST [293].

A close inspection of Fig. 3.1 reveals the close relationship between SST and air temper-

ature factors in two typical geolocations of our datasets (i.e., Bohai Sea and Dalian City).

However, the air temperature usually has higher dynamics compared to the SST, which

results in a lower statistical correlation between them. To address this problem, a moving

average window can be slid over the air temperature data sequence. This window acts as a
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Figure 3.1: Polar plot of (a) the area-averaged SST at Bohai Sea and (b) the air temper-
ature at its iso-latitude Dalian City, both from the NOAA data source.

low-pass filter (LPF), which smooths the high dynamics of data. This smoothing process

will increase the accuracy of our proposed SST forecasting algorithm. To elaborate, by

applying an LPF to the air temperature, the Pearson correlation coefficient increases to

over 0.8 for all the geolocations in Table 3.1. This indicates the existence of a high linear

relationship between the smoothed air temperature and SST.

In this chapter, the SST forecasting problem is represented by function F1(SST), which

returns a prediction value. Similarly, predicting SST from historical air temperature values

can be formulated as function F2(Air), which returns another SST prediction value. The

predictive outputs of these two functions can then be merged to build an enhanced SST

predictor, i.e.,

F+(SST,Air) = wSST F1(SST) + wtextAir F2(Air) , (3.1)

where wSST and wAir coefficients adjust the relative contributions of F1(SST) and F2(Air)

in the final prediction.

It is worth mentioning that the SST observations for the North Pacific Ocean in the Argo

data source, along with its corresponding air temperature reads (i.e., the air temperature

from the Amami Island) are monthly averaged throughout this chapter. Consequently,

any further smoothing is unnecessary for this geolocation.

3.3 Network Architecture

The high-level block diagram of the proposed voting ensemble of stacked DNNs is shown

in Fig. 3.2(a). This model consists of two separate stacked DNN branches that are trained

with different datasets. The first stage of the top branch (F1(SST)) takes the SST time-

series as input and performs general preprocessings e.g. outlier detection and missed data

90



3.3 Network Architecture

interpolation. It then passes the clean data to the seasonality decomposition block. This

block decomposes the year seasonality from its raw input timeseries, outputting trend and

residual.

Trend is a straight line that matches as closely as possible to the original timeseries.

It can be easily found by linear regression. Year seasonality on the other hand, is the

repeating one-year-long cycle in data. It can be calculated by yearly averaging SST, after

subtraction of the trend line. Calculation of both the year seasonality and trend must be

carried out with the training dataset only, leaving the test dataset completely unseen to

the system. Finally, the residual is the remaining random variation in the SST timeseries,

which has not been taken into account in the trend and seasonality [294]. The sum of the

trend and residual outputs are then fed to the core processing block, which has an stacked

architecture [295] of an LSTM and a Multilayer Perceptron (MLP) network. This block is

illustrated in Fig. 3.2(b). It consists of two cascaded LSTM layers and one fully-connected

MLP layer.

The two cascaded LSTM layers are referred to in parlance as encoder-decoder or Seq2Seq

[234]. The first LSTM layer translates the dynamicity of the input sequence into a higher

dimensional representation, whilst the second LSTM layer extracts useful features to feed

to the next MLP layer. The MLP layer then combines all the automatically discovered

features in the data, into its predictive output. Additionally, two dropout layers are placed

between each consecutive DNN pairs to prevent the model from overfitting.

The second DNN branch in Fig. 3.2(a) (i.e., F2(Air)) takes the air temperature as input

and performs the same preprocessing as that on the SST. The next block smooths the given

high-dynamic data with a moving average window, which acts like an LPF to increase the

correlation between the air temperature and SST. Similar to the first branch, the smoothed

data is then fed to the core stacked processing block to produce the final outcome of the

second branch.

Later in Section 3.4, we will show the prediction efficiency of F1(SST) as a standalone

branch. However, to further improve the prediction accuracy of our model, we implement

(3.1) by placing an additional block to combine the outputs of F1(SST) and F2(Air), at

the end of the network architecture in Fig. 3.2(a). This block takes F1(SST) and F2(Air)

as the inputs to a McCulloch-Pitts neuron with zero biasing and with a linear activation

function. This single neuron is referred to in parlance as the voting ensemble [296]. As

shown in (3.1), the main objective of this block is to merge the independently predicted

results to form the final output of the network, i.e., F+(SST,Air). Nevertheless, the weights

of this single neuron would be optimized by backpropagation through gradient descent

algorithm to produce the ultimate outcome.

The proposed voting ensemble model in Fig. 3.2 includes some hyper-parameters that
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Figure 3.2: Block diagram of (a) the voting ensemble model for SST forecasting, which
consists of two (b) stacked LSTM-MLP deep neural networks.

require optimization. The first one is M1, which represents the number of data elements

inside the input timeseries to the first LSTM layer in Fig. 3.2(b). This parameter can be

defined as,

M1 =
Input Horizon

Sampling Period
, (3.2)

where the Input Horizon refers to the length of time, in which we look back in our historical

data to provide future predictions. Additionally, N1 and N2 are the number of LSTM units

in the first and second layers of the stacked LSTM-MLP network shown in Fig. 3.2(b).
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Table 3.2: Mean Squared Error of Area-Averaged SST Forecasting at the Bohai Sea, Com-
pared with the Different Schemes Used in [16]

Model Name
Daily Mean Weekly Mean Monthly Mean

1 Day 3 Days 7 Days 1 Week 3 Weeks 1 Month

GED [16] 0.166 0.415 0.742 0.350 0.514 0.581

FC-LSTM [16] 0.170 0.424 0.787 0.382 0.592 0.687

SVR [16] 0.472 0.692 1.005 0.578 0.627 0.711

Our F1(SST) 0.166 0.322 0.514 0.310 0.696 0.272

Our F2(Air) 2.289 2.829 1.633 0.835 1.135 0.242

Our F+(SST,Air) 0.157 0.318 0.508 0.294 0.696 0.194

These two parameters should be adequately large. Here ’adequately’ means, firstly,

N2 > N1 > M1 . (3.3)

Secondly, N1 and N2 should be large enough so that the dropped-out neurons in Fig. 3.2(b)

do not adversely affect the network performance.

The output of the second LSTM layer is fed into the first and second dense layers of

the following MLP network with N3 and N4 neurons, respectively. It is worth noting that

very large or small values of Ni will respectively result in overfitting and underfitting,

which consequently reduces the overall accuracy. To achieve the best performance, we

performed a hyperparameter optimization process that resulted in Ni ∀i ∈ {1, 2, 3} values

with 200, 300, and 100 neurons. Finally, the number of output neurons from the MLP layer

(N4) should be equivalent to the number of elements in the predicted output timeseries.

This parameter can be defined as the ratio of the forecasting horizon to the sampling

period, where the forecasting horizon simply indicates the length of time of the prospective

forecasting period.

3.4 Results and Discussions

In this section, we introduce and discuss the utilized air and water temperature data

sources. We also evaluate the efficacy of our proposed model compared to literature.
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Table 3.3: Mean Squared Error of Area-Averaged SST Forecasting at the South China
Sea, Compared with the Different Schemes Used in [16]

Model Name
Daily Mean Weekly Mean Monthly Mean

1 Day 3 Days 7 Days 1 Week 3 Weeks 1 Month

GED [16] 0.063 0.125 0.211 0.162 0.267 0.207

FC-LSTM [16] 0.061 0.140 0.218 0.168 0.285 0.343

SVR [16] 0.095 0.157 0.242 0.214 0.285 0.212

Our F1(SST) 0.055 0.084 0.131 0.078 0.135 0.104

Our F2(Air) 0.692 0.738 0.802 0.676 0.812 0.874

Our F+(SST,Air) 0.055 0.084 0.131 0.077 0.135 0.099

Table 3.4: Mean Squared Error of Area-Averaged SST Forecasting at the North Pacific
Ocean, Compared with the Proposed Model in [17]

Model Name
Monthly Mean

1 Month 2 Months 3 Months 4 Months 5 Months 6 Months

Convolutional
LSTM [17]

0.038 0.042 0.040 0.035 0.102 0.072

Our F1(SST) 0.015 0.013 0.017 0.019 0.016 0.018

Our F2(Air) 0.283 0.456 0.294 0.288 0.440 0.488

Our F+(SST,Air) 0.014 0.013 0.017 0.017 0.016 0.012

3.4.1 Description of Data Sources

The conducted experiments in this chapter are carried out using two major data sources.

The first data source is NOAA, which is a USA national scientific agency. NOAA focuses

and monitors the conditions of both the oceans and atmosphere, facilitated by its various

centers and laboratories. The NOAA PSL contains SST timeseries from September 1981

to present. This data covers the global oceans in daily sampling period, with 0.25◦ spatial
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resolution. In addition, the NOAA NCEI has a global information system tool, which

enlists global weather stations. For each station, daily sampled atmospheric measurements

such as air temperature, precipitation, wind speed, etc. are publicly available [297].

The second data source used in our experiments is Argo, which is dedicated to oceano-

graphic research and is collected and made publicly available through an international

program since the early 2000s. The floating buoys of Argo record temperature, salinity,

oceanic currents, bio-optical properties, etc. In contrast to NOAA, Argo does not measure

atmospheric parameters, and it has as low as 1◦ spatial resolution [291].

3.4.2 Prediction Accuracy and Comparison

The prediction results of our voting ensemble model are compared with other published

works in Tables 3.2, 3.3, and 3.4. The last three rows in these tables correspond to the

three distinct nodes in our proposed model architecture, namely F1(SST), which is the

output of the top branch in Fig. 3.2(a) (SST data only); F2(Air), which is the output of

the bottom branch in Fig. 3.2(a) (air temperature only); and F+(SST,Air) that represents

the output of our voting ensemble model in Fig. 3.2(a) (both SST and air temperature

data).

Similar to [16], our models in Tables 3.2 and 3.3 are separately trained with the daily

mean, weekly mean, and monthly mean data. Therefore, the Mean Squared Error (MSE)

values for 7 days in the daily mean category is different from the MSE values for one week

in the weekly mean category.

As can be seen from Tables 3.2 to 3.4, the prediction capability of the standalone first

branch in Fig. 3.2(a) (i.e., F1(SST)) is very strong. Among all the comparisons made, this

single branch provides better SST forecasting in 16 cases out of the total 18 compared

to literature. On average, our F1(SST) offers 15% and 39% better MSEs, compared to

GED [16] in Tables 3.2 and 3.3, respectively. It also provides 65% better MSE, compared

to convolutional LSTM [17] in Table 3.4. Note that, GED is the best performing model

presented in [16].

After combining the F1(SST) and F2(Air) branches using a McCulloch-Pitts neuron to

build a voting ensemble, our model outperforms F1(SST) results and all previously reported

works in 17 out of the 18 comparisons. To summarize, on average our proposed F+(SST,Air)

ensemble model provides 19% and 40% better MSEs, compared to GED [16] in Tables 3.2

and 3.3, respectively. It also provides 68% better MSE, compared to convolutional LSTM

[17] in Table 3.4.

These results show that our model outperforms previous works, when only using SST

data in most of the cases, while it achieves a slight accuracy improvement, if an ensemble
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Figure 3.3: Time and memory complexities with respect to the number of data points for
one-day F+(SST,Air) forecasting in Bohai Sea.

is used to include some readily available air temperature data.

To further analyze the efficiency of our proposed model, we used the big-O approach

to evaluate our model’s demand when changing the input size [298]. The analysis of both

memory and time complexities for one-day SST prediction at the Bohai Sea are illustrated

in Fig. 3.3. These plots quantify the growth in required computational resources, against

the number of data points M1 in the input timeseries in (3.2). The results are obtained

during inference, where the weights and biases are fixed. The plots reveal an O(n) linear

growth for simulation time, and an O(1) constant growth for the memory demand. These

suggest our model is efficient.

When comparing our model to the state-of-the-art for SST prediction, it offers the

following advantages.

� To the best of our knowledge, the proposed simple and efficient ensemble of stacked

DNNs for SST prediction is unique and has not been reported previously in literature.

� Creatively incorporating the air temperature data from close-by iso-latitude weather

stations makes the model more accurate and versatile. As a result, our model out-

performs the previous works by 19% to 68% better prediction accuracy by adding

readily available air temperature data. This improvement is more prominent in some

geolocations than others. For instance, the accuracy improvement for the Bohai Sea

increases from 15% to 19% when including air data.

� The innovative injection of air temperature is beneficial to our model not only for

accuracy enhancement, but also in reliability improvement. Our model is more

resilient to missing SST values and outliers, as the air temperature data is present.

By inspecting Tables 3.2, 3.3, and 3.4, it is obvious that we can predict the SST,
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using the air temperature only. This prediction has less than ±1◦C error in most

of the cases. That is, we can use the second F2(Air) branch as a missing SST value

estimator.

One may further improve our model by adding extra branches into its modular design

to incorporate more exogenous factors, e.g., solar radiation or wind speed. Besides, the

stacked LSTM-MLP DNN in our model can be replaced by novel Transformer networks,

which may better learn long-term dependencies compared to an LSTM.

3.5 Conclusion

Accurate long-term SST prediction is challenging. To address this problem, we proposed a

light-weight and highly-accurate new DNN structure that leverages the correlation between

SST datasets and air temperature at nearby iso-latitude weather stations. We devised

two stacked LSTM-MLP networks and trained them with the correlated SST and air

temperature datasets. We then integrated the outputs of the two stacked networks in a

voting ensemble to form a highly accurate model. We used the two well-known NOAA

and Argo data sources to train and test our models. We demonstrated that our model

significantly outperforms the state-of-the-art SST prediction algorithms.
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Chapter 4

Finite Element DNN for Nitrogen

Distribution Prediction in the Great Barrier

Reef

The prediction of nitrogen distribution in the Great Barrie Reef (GBR) is proposed in

this chapter. The proposed technique considers the whole GBR as a frame and treats

forecasting of nitrogen as a next-frame prediction task, to produce spatial maps of nitrogen

over the whole GBR at forecast time-steps. To achieve this, an innovative Deep Neural

Network (DNN) is designed inspired by the Finite Element (FE) analysis concept. This

chapter is published in Environmental Modelling & Software as

[26] M. Jahanbakht, W. Xiang, B. Robson, and M. R. Azghadi, “Nitrogen prediction

in the Great Barrier Reef using finite element analysis with deep neural networks,”

Environmental Modelling & Software, vol. 150, pp. 105311–105327, Apr. 2022.

4.1 Introduction

The Great Barrier Reef (GBR) is the world’s largest coral reef system, located off the east

coast of Queensland, Australia. This world heritage site is facing severe threats that chal-

lenge its resilience, including extreme weather events and climate change, agricultural pol-

lutants, coastal activities, surface runoff associated with the catchment areas, etc. Among

these threats, land and agricultural activities are the main sources of pollutants from GBR

catchments [299].

Nutrients, fine sediments, and pesticides are considered to be the primary land-based

pollutants that significantly reduce ocean water quality [300]. According to the Australian

and Queensland Government’s long-term sustainability plan for the GBR (Reef 2050 Plan)

[301], excess nitrogen is particularly challenging in the GBR. High rainfall, flash floods,

numerous short river basins, and the close proximity of the reef to the Wet Tropics of

Queensland mean nutrients are flushed to the reef lagoon quickly.
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Accordingly, the total nitrogen is amongst the most commonly measured and monitored

water quality variables worldwide. In coastal and marine waters, nitrogen is usually con-

sidered the primary limiting nutrient. In other words, there is a strong consensus that it

is the limited supply of nitrogen that limits marine ecosystem productivity in most cases,

although phosphorus, silica, and iron may co-limit productivity in some situations [302].

When the total nitrogen increases, the growth and productivity of marine algae and other

photosynthesising organisms increases, often to the detriment of marine ecosystems. This

process is known as eutrophication and there is an extensive literature assessing its preva-

lence, causes, and management [303].

There is extensive evidence that the coastal waters of the GBR have been subject to

some degree of eutrophication due to changes in its catchment land use since European

settlement [304–306] and that this has had a negative effect on GBR ecosystems [307,308],

though the offshore GBR and much of the midshelf remain oligotrophic (i.e., has low

nitrogen and phosphorus concentrations) in absolute terms [309].

Management of nitrogen loads to the GBR in order to improve GBR water quality

has been the focus of major investments by state and federal governments, not-for-profit

organizations and farmers for many years [310–312]. Towards this end, a greater focus on

experimentation, evaluation, and modelling to understand future nitrogen scenarios could

further support water quality programs [313]. In particular, predictive models can be used

to forecast and manage the high risk areas in the coral reef ecosystems [300].

However, implementing an accurate nitrogen predictor for the vast areas of the GBR

is a challenging task. Nitrogen values in the GBR form a big frame (matrix) that vary

with both spatial coordinate (x, y) and the time. One technique to handle this giant time-

varying frame is to transform it into a timeseries by averaging all nitrogen values on each

day.

This technique has been employed by many predictive models for a variety of target

parameters, e.g., physical, chemical, and biochemical characteristics of water [314], wa-

ter quality index [315], nitrogen uptake in crops [316], marine environment salinity, O2,

NO3, phosphorus, silicon, chlorophyll, and alkalinity [317], etc. The employed timeseries

forecasting models in these published works range from decision tree and multivariate

regression in statistical models to support vector regression in shallow neural networks,

and further to the Long Short-Term Memory (LSTM) in deep neural networks. For ex-

ample, one of the most recent models that has used this averaging technique is the fuzzy

partitioning LSTM model introduced by [317]. In this model, the data attributes are

partitioned by fuzzy c-means before feeding to an LSTM network for supervised learning.

This architecture makes the model ready for high-speed distributed learning, as well as

inference.
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As opposed to the above technique, there is a second approach to design a next-frame

predictor. In this approach, nitrogen values of each day across the GBR form a frame. The

goal is to forecast future frames from the historical frames. This approach is referred to as

next-frame prediction in parlance [318]. While time series forecasting could be applied to

predict a value for each pixel separately, next frame forecasting has the great advantage of

incorporating both spatial and time-series information rather than considering the history

of each pixel in isolation. This provides a much richer source of information for each

prediction.

It is worth mentioning that next-frame prediction is a type of forecasting problem, which

is different from simulation problems widely carried out by hydrodynamic models [319].

Standalone hydrodynamic models cannot forecast unless future boundary conditions can

be reliably predicted, except by coupling with a data-driven surrogate model. For this

reason, hydrodynamic models for water quality forecasting are rarely reported in the

literature, are mainly timeseries forecasting models, and typically have high errors [320].

To the best of our knowledge, all existing data-driven next-frame predictors in the

literature treat each frame as a whole. In other words, they simply stack up historical 2D

frames, making a 3D matrix, and then feed the resulting 3D matrix to their Deep Neural

Network (DNN) models to output a 2D prediction frame. Some of the commonly used

DNNs are recurrent neural networks [321], 3D Convolutional Neural Network (Conv3D)

[322], Convolutional Long Short-Term Memory (ConvLSTM) [323,324], etc.

One of the most successful next-frame predicting models in the literature is PhyDNet

proposed by [324]. PhyDNet disentangles physical knowledge described by partial differ-

ential equations from data, before feeding it to the ConvLSTM model. The experiments

with sea surface temperature data showed the ability of PhyDNet to outperform state-of-

the-art methods. In ensuing sections, we will apply PhyDNet to our nitrogen distribution

dataset for comparison. We will show that the main disadvantage of these next-frame

predictors is their low coefficient of determination (R2). In other words, frames predicted

by these models are blurred (i.e., reduced R2) to reduce their overall prediction error (as

measured by the mean squared error (MSE)). To address this problem, we propose a new

DNN inspired by the Finite Element analysis (FE-DNN). By dividing the GBR study area

into small elements, and by introducing the so-called stiffness matrices concept from the

finite element analysis into the proposed FE-DNN model, prediction accuracy is increased,

while the details of data variations are preserved.

To investigate the performance of the proposed FE-DNN model, we employ it to fore-

cast nitrogen distribution frames in the GBR from hindcast distributions provided by an

existing Partial Differential Equations (PDE) based simulation model. This distribution

follows a complicated set of PDEs [325]. The eReefs modelling suite [299] provides plenty
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of simulated nitrogen distribution data based on biogeochemical transformations and the

spatial distribution of total nitrogen across the GBR but does not forecast future values.

In addition, there are some sparsely collected nitrogen measurements across the GBR,

which are useful in understanding and predicting nitrogen distribution in the GBR. These

criteria make nitrogen prediction a good case study for FE-DNN implementation.

The rest of this chapter is organized as follows. In Section 4.2, nitrogen in the GBR

will be defined, and challenges in high-resolution nitrogen prediction will be discussed.

Section 4.3 will describe FE-DNN as our proposed solution to the problem of next-frame

nitrogen prediction in the GBR. This data is introduced in Subsection 4.4.1. We will then

evaluate the accuracy of the FE-DNN model for nitrogen distribution forecasting in the

rest of Section 4.4, where a detailed investigation of both the computational complexity

and the ablation properties of our model is also provided. The chapter is concluded in

Section 4.5.

4.2 Background and Problem Definition

The GBR is recognized by UNESCO as a World Heritage Area of “Outstanding Universal

Value” due to its great cultural and natural significance and unmatched biodiversity. As

stated in the previous section, reduced water quality since European settlement has been

identified as a key threat to the health and resilience of GBR ecosystems [307]. While

climate change is the single greatest threat to the world heritage status of the GBR,

water quality adds cumulative pressure, reduces the resilience of reef ecosystems to climate

change [308], and may be more readily subject to improvement through local management

actions. To support such actions, it is important to be able to monitor and predict water

quality on the scale of the whole GBR.

In this regard, land-sourced pollutants from farms and runoff in GBR catchments cause

major damage to coral reefs. Among all the primary pollutants, the greatest water quality

risks to the GBR are from nitrogen discharges [301]. Accordingly, the key component of

the Australia’s Reef 2050 Plan is to manage all nitrogen forms in GBR waters, including

nitrogen oxides (NOx), ammonia ions (NH4
+), detrital particulates, dissolved organic

nitrogen, living biological forms of nitrogen, etc. [325].

There is continual recycling between all the above forms of nitrogen. Therefore, the

Total Nitrogen (TN) is defined as the sum of all the nitrogen forms and employed in this

chapter as the parameter of interest.

TN distribution in the GBR can be simulated through a complicated set of PDEs which

are solved by the eReefs modelling suite. The eReefs marine models are process-based

simulation models that predict (in hindcast) the past spatial and temporal distribution
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(a)

(b)

Figure 4.1: (a) The study area frame is meshed into small pixels that hold the temporal
TN values of each of the past days until today. The pixels of each of the
N historical frames are grouped into 5 × 5 elements, which are then used to
predict the TN value of a target pixel F days after today. (b) The elements are
then swept across the study area to predict all the target pixels one-by-one,
while leaving a narrow 2-pixel margin of unpredictable TN values.

of physical and water quality variables in space and time as a function of environmental

drivers including river discharges, meteorological conditions, and global ocean currents.

This suite of models includes components that simulate hydrodynamics, sediment dy-

namics, biogeochemical transformations of water quality variables, and optical conditions

in the water by numerical integration of a set of PDEs [299]. The models are used to

supplement sparse in situ water quality observations to support monitoring of the Great

Barrier Reef, and have also been used to project how water quality might change under
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alternative land management scenarios, to support policy decisions for GBR catchments.

Hence, they provide two types of predictions:

� Hindcasting (i.e., prediction of past conditions); and

� Projection (i.e., counter-factual scenario analysis).

However, eReefs does not currently provide forecasting predictions (i.e., prediction of

conditions at a specific point in future time). Prediction of water quality in lakes, rivers

and marine ecosystems has long been a focus of research and pragmatic modelling efforts.

This began with simple empirical and physics-based models of phosphorus and nitrogen

dynamics in aquatic systems and has steadily progressed over time to more and more com-

plex coupled hydrodynamic-biogeochemical-ecosystem modelling systems. The range and

development of these models has been reviewed by [326], [327], and [328]. Hydrodynamic

water quality models in current use are generally complex, computationally intensive, and

have limited application in forecasting contexts.

More recently, machine learning approaches have been adopted in water quality mod-

elling. For example, [329] applied the Adaptive Neuro-Fuzzy Inference System, Radial

Basis Function Neural Network, and Multi-Layer Perceptron Neural Network to forecast

time-series of three water quality parameters in a river basin as a function of a range of

other water quality observations, while [330] compared the performance of an artificial

neural network, a support vector machine, and a group method of data handling in a sim-

ilar context. Most machine learning applications to date have been limited to forecasting

time-series of water quality at one or a few discrete locations. Other works have focused

on hybrid approaches such as using machine learning models as surrogate or meta-models

for physics-based water quality models, or the use of machine learning to support data

assimilation to imrpove the performance of physics-based models. One example of this

approach is the work of [331], who used error-subspace emulators to assimilate remote

sensing ocean color data into the eReefs marine sediment dynamics models.

In contrast to all previous works, we employ the DNN to forecast TN distribution in

the wide GBR. Based on the eReefs findings, the TN in nearshore regions of the GBR is

due mostly to river discharges. On the other hand, in the midshelf we can also see marine

sources for TN. These various nitrogen sources in the wide coverage of the GBR, make the

TN distribution a challenge task to predict. In the current study, we show how hindcast

results from a process-based environmental model can be used to train an FE-DNN model

to provide forecast predictions. Measured TN values in the GBR are scarce, making data-

hungry DNN training unfeasible. To address this, a physics-informed neural network will

be designed.
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4.3 Proposed Model

As discussed in Section 4.1, there is no high-resolution model in the literature that is able

to forecast TN distribution over the GBR. In our proposed model, shown in Fig. 4.1a, we

solve the TN forecasting problem by meshing the GBR study area into small overlapping

elements. To elaborate, each day in N days of the input frames consists of a frame of TN

values of all the meshes. The TN value for each mesh is termed a pixel, which represents

the average TN in a 16 km2 mesh area. Several pixels are then grouped into a matrix to

create a square element.

The historical element-wise TN values, until the present day, are used to predict a

pixel value for F days later, where F is known as the forecasting horizon. As illustrated

in Fig. 4.1b, the element is slid across the entire frame so that all possible pixel values

can be predicted. The element size shown in Fig. 4.1 is 5 × 5. However, this size is a

hyperparameter in our model that needs to be optimized. As shown, there is a narrow

margin of pixels where TN values cannot be predicted. The size of this unpredictable

margin is equal to half of the element size, e.g., 2 pixels for 5× 5 elements and 3 pixels for

7× 7 elements.

It is worth noting that classic image processing techniques for filling the marginal pixels

(e.g., padding, flipping) are not suitable for our TN distribution prediction problem. This

is mainly because every pixel in the GBR is highly dependent on its neighbors’ historical

TN values, which are chaotic, asymmetric, and highly dynamic [332]. Therefore, we cannot

simply fill these pixels by techniques such as constant padding or symmetrical flipping.

Alternative solutions are needed to predict these marginal pixels, e.g., linear regression,

convolutional neural network, LSTM, etc.

4.3.1 FE-DNN Model

To accurately predict the output TN frame from the timed input frames, we design a

novel DNN. This network is inspired by the concept of Finite Element Analysis (FEA),

and thus is dubbed FE-DNN. FEA is a well-known numerical method for solving boundary

value problems in engineering. This method is extensively used in mathematical physics

simulations, i.e., current transient response to the current transient inputs. However, FEA

cannot be readily applied to forecasting scenarios for obtaining future response to the

historical inputs, unless future inputs (boundary conditions) can be accurately estimated.

To address this problem, our proposed FE-DNN integrates the concept of FEA with

modern machine learning techniques to predict unknown future values.

Table 4.1 provides a conceptual comparison between FE-DNN and FEA, by using the

well-known linear spring problem. FEA starts by dividing a study area into small elements
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Table 4.1: Conceptual comparison between FE-DNN and FEA

[333]. In each element, the governing equation in FEA (i.e., X = f(F ,K)) takes both

the stiffness matrix K and the excitations as input, and yields target values. Similarly,

our DNN can be expressed as a system of linear equations (i.e., P = W f(E,K)), where

P represents the unknown output pixel values in the predicted frame, W is the known

weights of the neurons, E is the known input frames, and K is the known stiffness matrix1.

Additionally, the recursive approach to solve the FEA is similar to the recursive gradient

descent approach to solve the system of linear equations in FE-DNN.

The stiffness matrix K in FEA for the spring problem represents the elastic behavior

of the underlying material. We will discuss K in more detail in Section 4.3.2. However, in

contrast to FEA that multiplies the inversed stiffness matrix into the excitation, we feed

K as a separate input to our DNN (i.e., f(E,K)). This way, the FE-DNN will learn the

behavior of the stiffness matrix, in conjunction with input TN values variations across the

historical frames.

1During the training phase in our supervised learning, P is known and W is unknown.
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Figure 4.2: The architecture of the proposed FE-DNN network to predict a TN frame in
F days later, where d represents today. Here, N input elements (as shown in
Fig. 4.1) surrounding a target pixel with coordinates of (x, y) as well as N
stiffness matrices (calculated for month M by (4.3)) are required to predict
the TN value at the target pixel P x,y

d+F . The output of the model for the target
pixel is fed into Fig. 4.5. The shown kernel sizes, filter numbers, activation
functions, etc. are optimized for this study, and they can be different in other
next-frame prediction applications.

Fig. 4.2 illustrates the architecture of the proposed FE-DNN model. It takes N elements

along with N stiffness matrices as input. These inputs are fed into their N corresponding

2D Convolutional layers (Conv2D). The Conv2D represents f(E,K) in Table 4.1, which

merges the stiffness matrices with their relevant TN elements. The resulting merged

matrices then form a 3D matrix and fed to a Conv3D layer. Finally, the outputs of the

Conv3D layer are flatten to enter a Multilayer Perceptron (MLP) with four dense layers.

Except for the last dense layer that uses the Rectified Linear Unit (ReLU) activation

function, the rest of the MLP dense layers use sigmoid. Our experiments show that using

ReLU in all dense layers enforces the lower TN bound to be 0. This makes the model lazy

in truly learning the complex transformations in GBR nitrogen distribution. As a result,

the model cannot capture TN variations, which results in a lower R2. In other words, a

model with ReLU activation functions cannot capture TN variations in the vast GBR as

good as it could do with sigmoid.
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Figure 4.3: Flowchart of the FE-DNN workflow from input data to forecasted results.

The total number of trainable weight parameters in the proposed FE-DNN model is

154,136. To avoid overfitting, while training these weights, five dropout points with a 20%

dropping ratio are placed in layer intervals of Fig. 4.2. All the layers are equipped with

the Ridge regularization of L2 = 0.01. Meanwhile, the learning rate is set to 0.001 in an

effort to both improve convergence of weight learning and avoid overfitting.

To better understand how the proposed FE-DNN model works, a flowchart is presented

in Fig. 4.3. This flowchart covers both the training and inference phases. The workflow
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starts by meshing the study area into pixels, and completes by saving the trained model

or yielding the forecasted results. Data flow in this diagram has a main loop to sweep

the input elements’ locations to predict the TN values in every pixel of the output frame.

This loop is marked by a dashed-line inside the figure.

4.3.2 Stiffness Matrices

In FEA, stiffness matrix calculation is a pre-processing step of numerical modelling. The

stiffness matrix can be defined as an approximate solution to the underlying PDEs, which

represent the elastic deformation of matters in accordance with both their own properties

and the constant external perturbations [333].

Accordingly, calculating the stiffness matrix requires obtaining a solution to the complex

underlying PDEs of the system under consideration. However, in our proposed FE-DNN

method, instead of finding an approximate solution to these complex PDEs to achieve

the required stiffness matrices, we use existing training data to extract the variation of

the output pixel in response to the changes in the input frames. While the resulting

matrix resembles the definition of the stiffness matrix in FEA, its calculation requires no

knowledge of the underlying PDEs.

To elaborate, consider the linear spring problem in Table 4.1, with two external forces

F1, F2, and one displacement value X1. The spring constant is k = 2.0, which results

in the stiffness matrix K = [2.0,−2.0]. We simulate this problem for F1, F2, and X1 in

Fig. 4.4a, where F1 and F2 are sine functions in the presence of random Gaussian noise,

and X1 is the target displacement. The simulation is conducted for 2 seconds with 20

sample points, which form our training dataset. By dividing this time into 4 segments

with 5 samples per segment, one can numerically calculate the stiffness matrix of each

segment r, Kr, as

Kr X = F ⇒ Kr =
F

X
In the form of
=========⇒
matrix algebra

Kr = F XT
(
XXT

)−1
, (4.1)

where F is a 2× 5 matrix of five F1 and F2 samples, and X is a 1× 5 matrix of five X1

samples. The final stiffness matrix K of the linear spring problem can then be calculated

by averaging Kr as follows

K =
1

4

4∑
r=1

Kr . (4.2)

The true versus calculated values of K are presented in Fig. 4.4a. As can be seen from

the figure, the result has about 97% accuracy across the entire dynamic range.
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(a)

(b)

Figure 4.4: (a) Stiffness matrix calculation for the linear spring problem in Table 4.1 in
the presence of white Gaussian noise. (b) The stiffness matrices in normalized
logarithmic scale of three typical geolocations AO at (11.18oS, 143.25oE), BO at
(11.18oS, 148.17oE), and CO at (13.70oS, 147.57oE) in three months of January,
May, and September, where the element size is 7× 7.
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Considering the TN stiffness matrix in the GBR, applying (4.1) and (4.2) to our TN

prediction problem requires the following adjustments:

1. Each pixel in the targeted output frame is influenced by the past N days, so we will

have N stiffness matrices for each pixel.

2. We can split the wide GBR TN values in time, by calculating the stiffness matrices

for each month of the year. In this way, the high-dynamics of the GBR will be better

captured.

3. As illustrated in Fig. 4.2, in our proposed method K is calculated and provided to

the model as a separate input. This is unlike FEA, where the stiffness matrix K is

mathematically multiplied by its relevant element.

4. By assigning a 1 × 1 kernel and 1 filter to all the Conv2D layers in Fig. 4.2, these

layers implement E + K. However, given the negative values in K, the output of

the Conv2D layers are E−K. Therefore, in our proposed model, unlike the original

FEA implementation where the stiffness matrix is calculated as K = F /X, it is

calculated by subtracting the known outputs of the model (P ) from element E, i.e.

K = E − P .

Given the above adjustments, we reformulate (4.1) and (4.2) to better address the

requirements of our GBR application. As also shown in Fig. 4.1, consider the situation,

whereN input elementsE around the target pixel at coordinate (x, y) are used to calculate

its value P in F days after today P x, y
d+F , in month M . The stiffness matrix K will be

Kx, y
n,M =

1

Ny

1

Nd

∑
y

∑
d

(
Ex, y

d−n − P x, y
d+F J

)
∀n ∈ [0, N − 1] , (4.3)

where y sweeps the years of the training dataset, Ny is the number of training years, d

sweeps the days of month M , Nd is the total number of days in month M , and J is an

all-one matrix of the same size as our elements. As can be seen from (4.3), we will have

N stiffness matrices for a given coordinate (x, y) in a given month M of the year, with a

given forecasting horizon F . In other words, Kx, y
N−1,M , Kx, y

N−2,M , ..., Kx, y
0,M represent the

average variations of a pixel in month M , in response to the element-wise TN variations

in the last N days. It is worth mentioning that the stiffness matrix K in (4.3) depends

on the month but is independent of both the day and year.

To better illustrate these calculations, the normalized stiffness matrices for three random

geolocations (x, y) in the GBR are plotted in Fig. 4.4b. These plots are made for the
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Figure 4.5: PINN loss function applied to our proposed FE-DNN model.

months of January, May, and September. The element size is set to be 7 × 7, and the

forecasting horizon (F ) is one day. The number of input frames (N) is equal to 3, resulting

in three stiffness matrices per month. These stiffness matrices are labeled as two days ago,

yesterday, and today, denoted by Kx, y
2,M , Kx, y

1,M , and Kx, y
0,M , respectively.

4.3.3 Physics-informed Neural Network

To train the proposed FE-DNN model, one would require a large quantity of observa-

tional TN data in the GBR. However, the existing sparse TN measurements in GBR are

insufficient for our data-hungry DNN. To overcome this problem, a novel method termed

Physics-Informed Neural Network (PINN) [334] is employed. The use of PINN enables us

to merge scarce observational data with readily available eReefs simulation results, and

use both types of data to train our neural network.

Despite its name, the PINN is not a new neural network on its own right, but a technique

in defining a physics-informed loss function, which mixes PDE solutions with measured

values (i.e., the ground-truth). Therefore, it can be applied to almost any neural network

corresponding to a physical model that can be described by underlying PDEs.

The PINN-inspired loss function that we develop for our FE-DNN model is illustrated

in Fig. 4.5, using the Mean Squared Error (MSE) metric. The output of the model in this

figure is the output of our FE-DNN network in Fig. 4.2. We use this output to calculate

two loss functions as follows

LMeasured =
1

Ndata

∑
(TNOutput − TNMeasured)

2 , (4.4)
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LPDE =
1

Ndata

∑
(TNOutput − TNPDE)

2 , (4.5)

where Ndata is the total number of data points, TNMeasured is the observational TN values,

and TNPDE is the simulated TN values obtained from eReefs.

The loss functions in (4.4) and (4.5) are then combined together to create the following

overall loss metric

L = (1− λ)LMeasured + λLPDE , (4.6)

where λ is an adjustable hyperparameter. We then use the loss function in (4.6) to train

our model and to recursively optimize the unknown weights of the FE-DNN network. To

summarize, we overcome the observational data sparsity problem by integrating the PINN

technique with the process of DNN training.

4.4 Results and Discussions

In this section, we will start by introducing the measured TN data, along with the PDE

simulation results for TN in the GBR. We will then optimize the element size, before

proceeding to the accuracy analysis, computational complexity, and ablation studies.

4.4.1 Data Sources

The proposed FE-DNN network is used to predict the TN distribution in the GBR. The

observational TN values (i.e., TNMeasured in (4.4)) are gathered from the GBR Marine

Park Authority Marine Monitoring Program (MMP), which is led by Australian Institute

of Marine Science (AIMS) [335]. These measurements are sparsely gathered and thus are

insufficient for training the proposed FE-DNN model. Hence, by integrating the PINN

technique described in Section 4.3.3, the simulated data (from solving PDEs) are used to

compensate for the scarcity of the measured data.

As discussed earlier in Section 4.2, to obtain the PDE solutions for the TN distribution

in the GBR (i.e., TNPDE in (4.5)), the eReefs modelling suite is employed. eReefs has

a regional model on a 4 km grid (GBR4), which extends into the Coral Sea and covers

the entire GBR area [336]. However, this raw GBR4 biogeochemical model has another

version, which is interpolated onto a regular grid. This version of the eReefs simulation

data is downloadable from the AIMS website [337], and we have, therefore, used it in our

study.

The eReefs simulation data from the AIMS website [337] is provided on a daily basis,

from 2011 to 2018. We divide this time span into 2011 to 2017 for the training and

validation dataset, and 2018 for the testing dataset. To increase the model training speed,

112



4.4 Results and Discussions

(a)

(b)

(c)

Figure 4.6: Effect of element size on the MSE metric in (a) 3-day, (b) 5-day, and (c) 7-day
forecasting horizons, where number of past days used for training is N = 3.
The horizonal dashed lines show the average MSE for the 7× 7 element size.
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Figure 4.7: True values, predictions, and their absolute differences (multiplied by 103) for
the 2018 test TNlog dataset in the GBR, for (a) 1-day (b) 3-day, (c) 5-day, and
(d) 7-day forecasting horizons.

we have spatially downsampled the dataset by a factor of 4, which has resulted in 16 km

wide pixels, as mentioned in Section 4.3.

The TN concentrations within river deltas in the GBR are so high that using the full

range of the data values for processing makes variations in other areas appear insignificant,

even though there are significant and ecologically important variations in water quality

(including sediment and nitrogen concentrations) throughout the nearshore regions and
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Table 4.2: Statistics of the values of TNPDE from eReefs marine models

Table 4.3: MSE and R2 metrics in TN prediction of the test dataset in 2018, using elements
of size 7× 7 pixels

out to the Midshelf waters. To capture these variations, we use the logarithmic scale for

model training as follows

TNlog = log10(TN + 1) . (4.7)

The added 1 in (4.7) is to avoid log(0). This equation is used both for TN scaling

and for the stiffness matrix calculation. It is worth mentioning that the logarithmic

scaling is not required in other next-frame prediction applications if the data is linearly

distributed between its boundaries. To better understand the nature of these eReefs

simulation outputs, the statistics of TN values are presented in Table 4.2. All the data in

this table are in linear scale.
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Table 4.4: Comparing the performance of the proposed FE-DNN model with two recently
published works in the literature

4.4.2 Prediction Accuracy

As in the eReefs modelling suite, the physical unit of TN in this thesis is [mg N/m3],

which is the same as [µ g N/L]. By contrast, TN measurements in the MMP are made in

[µ mol/L]. So, we need to convert the MMP values by multiplying them by 14.01, given

that the molar mass of nitrogen is 14.01 g.

As stated earlier in Section 4.3.1, the element size is a hyperparameter that needs to be

optimized. The effect of the element size on prediction accuracy is investigated in Fig. 4.6.

The MSE values in this figure are averaged per quarter of the training year of 2018. In

all cases of the 3-day, 5-day, and 7-day forecasting horizons, increasing the element size

generally improves the performance. By contrast, a greater element size leads to more

unpredictable marginal pixels, as shown in Fig. 4.1b. The horizontal dash lines in this

figure indicate the average MSE values for the 7× 7 element size. In the reported results

of our FE-DNN, we have used the element size of 7× 7.

Fig. 4.7 demonstrates our FE-DNN TN prediction results for a typical day of the first
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Figure 4.8: Pairwise mathematical distances between the input values of the last day, true
values in F days later, and our prediction, using elements of size 7 × 7 pixels
and N = 3, along with their corresponding DI.

8 months in 2018 (i.e., for the test dataset). The true values and the absolute differences

between the true and predicted values are also plotted. All the predictions are made using

7 × 7 elements with N = 3, and all the absolute differences are multiplied by 1000. The

results are in logarithmic scale, and they show 1-day, 3-day, 5-day, and 7-day forecasting

horizons. This demonstrates the ability of our model to very closely predict TN values

across the entire GBR area.

Due to the adoption of the element size of 7×7 and based on the illustration in Fig. 4.1,

three marginal pixels are left unpredicted by the proposed FE-DNN model. These pixels

are predicted in Fig. 4.7 by employing a simple linear regression model. The higher

error values of the regression model are obvious in the surrounding margins of this figure,

especially in the longer forecasting horizons.

For all F = 1 in Fig. 4.7a, F = 3 in Fig. 4.7b, F = 5 in Fig. 4.7c, and F = 7 in Fig. 4.7d,

the 1st, 2nd, and 3rd days of each month are fed to the model’s input. The 4th, 6th, 8th,

or 10th days of the months are forecast in those forecasting horizons, respectively. The

absolute differences (i.e., the prediction errors) spread geographically, when increasing the

forecasting horizon F , resulting in a larger MSE.

Fig. 4.7 shows that not only the proposed FE-DNN can result in very accurate predic-

tion, it also generates unblurred output frames (i.e., a high coefficient of determination

R2), which are not achievable by conventional next-frame prediction methods. Both of

these advantages are demonstrated in more detail in Table 4.3, where the MSE is used

to measure the prediction accuracy of our proposed model, while R2 indicates the high-
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resolution and unblurred prediction frames. Here, the MSE is as low as 3% of the test

data on average, and it is almost constant for all studied F values. In addition, the R2

values imply that, in all prediction cases, we have accurately captured around 98 − 99%

of the predicted TN variations throughout the GBR.

We always use a direct forecasting approach in the reported scenarios of this chapter.

This means that we separately train the model for each forecasting horizon. However, it

is also possible to employ the direct-recursive forecasting approach. In other words, we

can use a previously predicted frame as input to predict the next frame and so forth.

To investigate how well our model predicts future values compared with simple propa-

gation of the historical input values, a study is conducted in Fig. 4.8, where the MSE is

employed as a mathematical distance metric to measure the pairwise distances between

our prediction, true future values, and historical input values. To better comprehend this

figure, a new Distance Index (DI) metric is defined as

DI =
dist (true future values, historical input values)

dist (prediction, historical input values)
, (4.8)

where dist(·) stands for the MSE distance. As expected, the distance between future values

(in F days later) and historical values (in the current day) increases with F . Besides, by

increasing the forecasting horizon, our prediction broadens its distance from the input

values. Also, the prediction keeps its constant distance with the true values, even for the

case of a week ahead prediction, i.e., (F = 7). All these desirable distancing behaviours,

keep the DI value close to 1.0 for all forecasting horizons.

Finally in Table 4.4, the performance of the proposed FE-DNN model with 7×7 elements

is compared with both the Conv3D model by [322] and the ConvLSTM PhyDNet model

by [324]. At the time of writing, PhyDNet [324] is ranked as the best video predicting

model in multiple categories (papers with code). All the comparisons in Table 4.4 are

conducted for the 2018 test dataset. As can be seen in this table, neither of Conv3D nor

PhyDNet can accurately predict the TN dynamics in the wide GBR. The MSE is greater

than 10 for larger F values and the Mean Absolute Error (MAE) is always greater than

one, which results in R2 < 90% and DI̸= 1.

The FE-DNN error bias values in Table 4.4 are close to zero, indicating unbiased pre-

dictions. Another performance metric in Table 4.4 is the scatter index, which is calculated

in percentage by dividing the root-MSE by the mean of the true values in each day and

expressing the result as a percentage. The near-zero scatter index of FE-DNN indicates a

low relative error with respect to the mean TN.

The reliability analysis in Table 4.4 calculates the percentage of relative absolute errors

that are less than 0.2 (according to the Chinese Standards) [338]. High reliability values
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Figure 4.9: Time and memory complexities with respect to the element size for one-day
forecasting horizon, with N = 3.

show that this approach is consistently accurate. U95 is another performance metric in

Table 4.4, which is a type of uncertainty metric [338]. This metric considers the 95%

confidence interval, and calculates the uncertainty range of models’ predictions. The

proposed FE-DNN model offers the lowest uncertainty values of the models evaluated,

with 95% confidence.

We also conduct an F-test in Table 4.4 to analyze the variance of the forecasted TN.

The F-test is a statistical test to find out whether the predictions and the true values

have the same variance. The Null Hypothesis (H0) is that the variances are equal. P-

values greater than 0.05 reject the H0, indicating that variances are not equal. Based on

this test, our model perfectly catches the variations in TN, while other models cannot

adapt to the rapid TN changes in the wide GBR. It is worth reminding from Section 4.1

that both the Conv3D and PhyDNet next-frame predictors treat each frame as a whole.

Consequently, they fall short against the proposed FE-DNN model that borrows the finite

element concept from FEA, and uses the modified stiffness matrices to produce accurate

predictions.

4.4.3 Computational Complexity

The proposed FE-DNN model was implemented using Keras APIs of TensorFlow in

Python. The model was trained on a windows machine with Intel® Core i7-7700HQ

CPU, NVIDIA® GeForce 1050 GPU, and 16 GB RAM.

The computational complexity is analyzed in terms of computational resource require-

ments, as well as the running times [298]. In this regard, we evaluate our model’s demand

when varying the input element size. This analysis for one-day TN prediction in the en-

tire GBR is illustrated in Fig. 4.9. The results are obtained during inference, where the

weights and biases are fixed. The memory in this figure refers to local RAM consumption,

not the GPU memory in use. It also excludes the TN input and output data, and only
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Table 4.5: Comparing time and memory complexities of the proposed FE-DNN with two
recently published works in the literature

includes the model variables.

The small reduction in resource demand when increasing the element size is due to

an increase in the number of unpredictable marginal pixels. This results in a need for

predicting fewer pixels by the model. Overall, the plots reveal almost a constant demand

for both the simulation time and the memory, which suggest our model is efficient.

The time and memory demands of the proposed FE-DNN model with 7 × 7 elements

are compared with those of the TensorFlow implementation of Conv3D [322] and the

PyTorch implementation of PhyDNet [324] in Table 4.5. FE-DNN has a similar memory

footprint to the contribution of [322], because both of them are based on the CONV3D

neural networks. By contrast, the PhyDNet model demands larger RAM, as it is based on

the ConvLSTM neural networks. One-day TN prediction in the entire GBR takes longer

in the FE-DNN model. This is due to the fact that our model sweeps the study area

pixel-by-pixel, while the other two models digest the whole input TN frame at once.

4.4.4 Ablation Study

In this subsection, an ablation study is conducted to better understand the impacts of

different blocks of our model shown in Fig. 4.2. The ablation study calculates the overall

accuracy of the model, when leaving a target block out of the structure [339]. To elaborate,

we quantify the importance of any desired block, simply by omitting it from the ensemble

of the proposed FE-DNN.

The results of the ablation study are shown in Table 4.6, using 7× 7 elements over the

test dataset in 2018. The MSE in the first row is calculated in presence of all the blocks,

and it is averaged over the 12 months. As expected, the MSE increases in subsequent

rows, by removing functional parts from the structural body. The difference between the

MSE values in the first row and any other row is an indicator of the significance of the

excluded block in the prediction performance of our proposed model.

Comparing all the MSE values in this table reveals the importance of the stiffness

matrix in the next-frame analysis. Removing this FEA-inspired parameter reduces the
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Table 4.6: Evaluating the elimination of selected blocks on accuracy of the one-day TN
forecasting

model accuracy by 18%. Moreover, the overall effect of the four dense layers of MLP in

Fig. 4.2 seems to be more significant than removing the Conv3D layer.

4.4.5 Limitations

Similar to other DNN-based models, the proposed FE-DNN is subject to some limitations.

These limits are applicable when using the FE-DNN in other geolocations or employing it

to forecast other environmental parameters. Some of these limitations are listed bellow.

� Our FE-DNN technique does not rely on PDEs or their solutions. As a DNN, FE-

DNN learns the behavior of the underlying system only by looking at the training

data. So, the main limitation of the developed model is the availability of training

data. It is worth noting that, access to suitable training data is one of the main

limitations of any DNN model.

� The current FE-DNN model is trained to forecast the TN distribution in the GBR.

Applying the developed model to another study area requires re-training the model

with local data, which must be available for each pixel on a daily time-step to achieve

comparable results. Besides, the proposed model can be retrained regularly to take

note of future challenges such as climate change and how they impact water quality.

� The proposed FE-DNN is only suitable for any spatio-temporal data that are gath-

ered or interpolated in regular spatial nodes in regular time intervals. For example,

the model can be applied to remotely sensed observation forecasting, only if its data

are regularly interpolated in both the time and spatial domains to fill gaps due to

sun-glint, clouds, or other observational quality issues. Though, this limitation will
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be present for other similar forecasting models that require constant spatiotemporal

training data.

� Computational time and memory resources are two important limitations of this

model. To be able to train the model for the entire GBR in a decent time, we have

downsampled the dataset into spatially 16-km wide pixels. In the absence of down-

sampling, the lack of computation resources would impose a significant problem.

However, this problem can be addressed by using a more powerful computing unit.

This approach supports short-term forecasting of sediment concentrations in the

GBR, complementing the capabilities of simulation models that are used to provide

longer-term projections to support management and policy decisions to protect the

GBR from land-derived pollutants and climate change impacts. While short-term

forecasting does not support long-term policy decisions, it can be used to support

short-term operational decisions, such as where and when to conduct in situ moni-

toring and process studies to improve the value of monitoring data.

4.4.6 Future Directions

Future research can involve actions either to address the limitations discussed in Sec-

tion 4.4.5, or to enhance the capabilities of the proposed model. Some of these actions are

discussed below.

FEA is a numerical technique to solve large-scale PDEs, arising in engineering and

mathematical physics. FEA can also deal with arbitrarily shaped regions, as long as a

discrete representation of the region (i.e., the meshing) exists [333]. Relying on the FEA

concept, the proposed FE-DNN is applicable to almost any physical or environmental next-

frame forecasting problem with ruling PDEs. While the next-frame prediction of TN is

carried out in this contribution, and the next-frame prediction of sea surface temperature

is conducted by [324], the proposed FE-DNN model can be applied, in future research,

to many other environmental parameter such as heat transfer, water flow, small particle

movements, etc.

Remote sensing data could be extremely useful in training our data-driven DNN-based

model. While remote sensing TN data for the wide GBR is not available, ocean color

algorithms have been developed to provide remote sensing observations of other water

quality variables, including chlorophyll-a, total suspended sediments, Secchi depth, and

benthic photosynthetically active radiation [340, 341]. There are some published works

in the literature that have tried to estimate nitrogen distribution over wide areas using

correlations with other remotely sensed environmental parameters. For example, [342]

estimated nitrogen in southern Indian waters using remotely sensed sea surface tempera-
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ture, and [343] estimated nitrogen in the coastal regions of East China Sea using remotely

sensed sea surface salinity and sea surface reflectance. Having said that, an accurate al-

gorithm for retrieving TN levels at oceanic scales in optically diverse waters from remote

sensing observations has yet to be developed.

Finally, training of computationally expensive DNN solutions like the FE-DNN requires

a variety of hardware resources. This demand for computational resources can be handled

by existing parallel processing techniques, e.g., the shared-memory multiprocessors or

the Distributed Computing Systems (DCS) [24]. GPUs, FPGAs, and multi-core CPUs

are few examples of the shared-memory parallelization techniques. DCS, on the other

hand, consist of a network of cooperating computers that offer high-performance data

processing. Using an on-premise DCS or a cloud-based distributed computing service like

Amazon AWS, Microsoft Azure, etc. can be the next step for FE-DNN implementation

research.

4.5 Conclusion

Inspired by the well-known FEA, we proposed the FE-DNN model for next-frame predic-

tion of physical parameters in wide spatial coordinates. Our model is applicable to any

environmental modelling scenarios, which are governed by underlying PDEs. We applied

our novel model to the problem of TN distribution prediction in the GBR. To the best of

our knowledge, our study is the first to use a data-driven machine learning approach for

nitrogen prediction in the GBR. One challenge in training our DNN-based model is the

scarcity of observational TN data in the GBR. To address this problem, we employed the

PINN technique to merge the large amounts of simulated data with the sparse measure-

ment data. This enabled us to successfully train our proposed FE-DNN model for TN

forecasting. The performed analyses revealed that our next-frame predictor model achieves

a very high accuracy with a low prediction MSE, while yielding high-resolution prediction

frames with very high R2 values. The calculated R2 metric was more than 98%, resulting

in unblurred TN prediction frames in the entire GBR. We believe that our model and this

study can be beneficial and support internally significant water quality programs like the

Australia’s Reef 2050 Plan. This can help improve ecosystem recovery and resilience by

informed decision making based on accurate prediction modelling. Furthermore, it can be

adopted by existing hindcasting simulators to provide accurate forecasting predictions.
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Chapter 5

Finite Element Transformer for Sediment

Distribution Prediction in the Great Barrier

Reef

Suspended sediment is a significant threat to the Great Barrier Reef (GBR) ecosystem.

Existing sediment forecasting methods suffer from the problem of low-resolution predic-

tions, making them unsuitable for wide area coverage. In this chapter, a novel sediment

distribution prediction model is proposed to augment existing water quality management

programs for the GBR. For model training, the emerging physics-informed neural network

is employed to incorporate both simulated and measured sediment data. This chapter is

published in Neural Networks as

[27] M. Jahanbakht, W. Xiang, and M. R. Azghadi, “Sediment prediction in the Great

Barrier Reef using vision Transformer with finite element analysis,” Neural Networks,

vol. 152, pp. 311–321, Aug. 2022.

5.1 Introduction

The Great Barrier Reef (GBR) in Australia is a world heritage site and the world’s largest

coral ecosystem. Coral reefs provide jobs and foods for over half a billion people worldwide,

protect coastlines from storms and erosion, offer opportunities for recreation, and source

new medicines [344]. Unfortunately, these ecosystems are under great pressure both by

natural events and human activities. These threats include storms, floods, man-made

pollution, and warmer ocean temperatures that can stress corals, leading to coral bleaching

or physical damages [345].

The GBR water quality has been declining over the last 150 years [346]. Sediments,

nutrients, and pesticides are the main coral reef pollutants [300], which result in poor

water quality that is believed to be one of the main contributors to the current adverse

situation in the GBR coastal and marine areas [300].
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More specifically, sediments have significant impacts on the GBR ecosystem. Suspended

sediments eventually settle down on seafloor in a process called sedimentation. Then, nu-

trients and other pollutants attached to sediment release in the underwater environment,

which in turn, limits coral recruitment, health, and productivity [302]. Suspended sedi-

ments can also reduce sunlight available for seagrasses, algae, and other plants’ photosyn-

thesis and reduce their growth.

GBR sedimentation is primarily attributed to the land-based sediments from 35 catch-

ments into the GBR lagoon [346]. Among all these catchments, those with higher levels of

land clearing show more contribution to the total GBR sedimentation. To elaborate, 70%

of river-based sediments stem from 20% of GBR catchment. This suggests that much of

the sedimentation problem can be mitigated by managing a relatively small area [347].

Management of sediment and nitrogen loads to the GBR and improving its water quality

has been the focus of major investments for many years [310,311]. According to literature,

the coastal waters of the GBR have noticeably lost their quality due to changes in their

catchment land use since European settlement [306]. Besides, GBR sedimentation has

been particularly elevated during flood events [348], which has been linked primarily to

the land-use practices and reduced vegetation cover in QLD catchments [346].

These sediments include minerals, muds, dusts, and granite from soil erosion, as well as

white calcium carbonate (CaCO3) from coral erosion [325]. The sum of all these compo-

nents is termed the Total Sediment (TS). Any TS value over the 2 mg/L threshold can

adversely affect marine ecosystems and corals in open coastal and mid-shelf waters [349].

To better control adverse sediment erosion, a long-term water quality improvement plan

was established by the Australian Government, dubbed The Reef 2050 Plan [301]. This

plan aims to better manage the relevant catchments and to reduce run-off pollutants into

the GBR.

However, implementing an accurate TS predictor is not an easy task, attributed to the

high dynamics of sediment processes in the wide GBR region. These processes start from

catchments in the vicinity of river discharge areas, where bulk masses of sediments settle

on the sea bed of each river mouth, extending tens of kilometers along the coastline. These

sediments are then dispersed by waves and relocated by ocean currents to remote GBR

areas, and partly buried into deeper benthic sediments [346].

To understand the TS dynamics and to model its complex behaviour, a few nonlin-

ear ocean models have been developed. For example, eReefs is a comprehensive suite of

hydrodynamic, biogeochemical, and sediment transport models, which was especially de-

signed for the GBR [299]. This suite of models provide access to historical environmental

variables, and offer limited management options to mitigate risks associated with its pre-

defined scenarios [350]. The sediment transport model in eReefs can analyse the fate of
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suspended sediments in the GBR [299].

However, eReefs is a computationally expensive model, which has a very complex cali-

bration process and may take weeks to simulate any desired ocean sedimentation. It also

lacks the much-desired capability of forecasting. This means that eReefs cannot be used

to forecast future values of TS distribution [350]. Therefore, eReefs and other similar

modelling suits have limited capacities to underpin decision-support for the spatially vast

GBR. This motivates demands for a data-driven deep learning model to predict future

sediment distributions as fast and accurate as possible.

To meet the above demand, many studies have been carried out to design an accurate

sediment prediction model [351–353]. For example, [351] designed a shallow neural net-

work for sediment lead (Pb) prediction for two Australian bays. In other examples, [352]

and [353] developed an Adaptive Neuro Fuzzy Inference System (ANFIS) and a shallow

neural network model to predict the sediment distribution in river open-channel flows,

respectively.

Thus far, all the aforementioned models have avoided the problem of next-frame sedi-

ment distribution prediction. These models simply average sediment in their study areas,

making them the well-studied timeseries prediction models. However, many applications

require an accurate distribution prediction of their parameters of interest across an area.

This distribution forecasting is known in parlance as next-frame prediction, which has

evolved from the former timeseries prediction models [318].

The existing next-frame forecasting models mainly utilize 3D Convolutional Neural Net-

works (Conv3D) [322] and Convolutional Long Short-Term Memory (ConvLSTM) [324].

These models result in blurred prediction frames with low coefficient of determination.

To address this problem, we propose a novel Deep Neural Network (DNN) to predict

the next-frame suspended sediment distribution in the GBR. This model is based on the

state-of-the-art Transformer network [354].

Transformers are a new class of DNNs that were initially developed for tackling time-

series and sequential problems [355]. Traditional timeseries processing models such as

the Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Gated

Recurrent Unit (GRU) suffer from the following drawbacks:

� Long-term dependencies: RNNs are unable to explore long-term correlations within

data, due to the so-called vanishing gradient phenomenon. This problem is alleviated

by the gating mechanism in LSTMs and GRUs to some extent. However, RNN-based

networks are still incapable of addressing wide time-gaps in long-term dependencies

[356].

� Parallelization: All RNN-based models are limited to directional data, where the
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value in time t is strictly dependent on the value in time t − ∆t. This directional

property limits the model’s capability for parallel processing, distributed processing,

etc. [357].

To address the above two significant limitations, an attention mechanism was initially

proposed by [358]. This mechanism models long-term dependencies without considering

the entity location in the sequence, which can better extract long-term dependencies than

RNN-based models [359]. Additionally, this non-recurrent mechanism consists of multi-

head attention and Multi-Layer Perceptron (MLP) layers, which make it a good candidate

for parallelization. This initial self-attention architecture was used in the first Transformer

model for natural language processing, by [354]. [360] later extended the Transformer

network to process images by proposing the so-called Vision Transformer (ViT). The ViT

is the model of choice in this chapter, which is used in conjunction with concepts of Finite

Element Analysis (FEA) to accurately predict the next sediment frame in the entire GBR.

The proposed FE-Transformer takes as input the TS distribution frames (matrices) in

the past N days, and forecasts the TS distribution frame in F days later. However, the

observational TS data in the wide GBR are scarce and insufficient for training data-hungry

DNNs. To address this problem, we employ a technique to merge sparse TS measurements

with the readily available simulated TS data (e.g., eReefs). This approach proves effective

in training our proposed FE-Transformer network, which demonstrates an excellent TS

prediction performance across the GBR, when compared with state-of-the-art next-frame

prediction approaches.

The remainder of this chapter is organized as follows. Section 5.2 proposes the FE-

Transformer as a novel solution to the problem of sediment distribution prediction in the

GBR. The physics-informed neural network technique for measured and simulated data

fusion is described in the remaining of this section. We evaluate the accuracy of our FE-

Transformer model for next sediment frame forecasting in Section 5.3, where a detailed

investigation of the computational complexity and an ablation study are also carried out.

The chapter is concluded in Section 5.4.

5.2 Proposed Model

As discussed in the preceding section, increased sedimentation since European settlement

reduces water quality and imposes a major threat to the health of GBR ecosystems [308].

This makes TS improvement important through local management actions, which in turn

improves the resilience of GBR ecosystems. To support such actions, it is important to be

able to monitor and accurately predict sediment on the scale of the whole GBR.
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(a)

(b)

Figure 5.1: Three input frames (N = 3) are used to predict the next TS frame in F days
after today (d). Towards this end, the pixels of historical TS values in the
GBR are grouped into 3 × 3 elements Ex, y

d−2, E
x, y
d−1, and Ex, y

d . The central
coordinate (x, y) of these historical elements will be adjusted to predict TS at
(a) pixel (2, 2) (i.e., P 2, 2

d+F ); and (b) pixel (2, 3) (i.e., P 2, 3
d+F ), while leaving a

1-pixel margin of unpredictable TS values. The 3× 3 element size is used here
for illustration purposes only. This size can be optimized to better address the
requirements of TS prediction in the GBR.

The problem of accurate TS distribution prediction in GBR requires a sophisticated

next-frame predicting model. The state-of-the-art next-frame predictors are surveyed

by [318], where a collection of convolutional neural networks, long short-term memory,

generative adversarial network, and gated recurrent unit DNNs along with their possible

combinations are benchmarked.

A common weakness of all these next-frame predictors lies in their inability to learn

input variations [318], which results in blurred predicted frames. In other words, these

models try to reduce output frame dynamics with the objective of minimizing prediction

errors. As a result, the forecasted output frame suffers from low variance and smoothed

details. To address this problem, we propose to combine the FEA mechanism with the
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state-of-the-art Vision Transformer network to create a highly-accurate TS distribution

predictor.

5.2.1 Finite Element Analysis

The FEA is a numerical method for solving Partial Differential Equations (PDE) in en-

gineering. This method is extensively used in simulating physical phenomena, by finding

current transient responses to the current transient inputs. A FEA system is intrinsically

unable to address forecasting scenarios in which one predicts future responses to the given

historical inputs. In other words, FEA-based forecasting systems rely heavily on their

coupled surrogate models to estimate future boundary conditions. However, our proposed

FE-Transformer integrates the forecasting DNN techniques with the FEA to accurately

predict unknown future TS values.

Similar to other hydrodynamic phenomena, sediments dynamics can be described and

modeled by some governing PDEs when being suspended, transported, and deposited by

ocean waves and flows [350]. As illustrated in Fig. 5.1a, the TS distribution for each day

forms a frame that covers the entire GBR. By knowing the past N frames before today

(d), the goal is to predict the future TS frame in F days later (forecasting horizon).

To accurately predict a future frame, the FEA concept can be employed by dividing

the large GBR area into pixels and elements. Every pixel P retains the average TS in a

16 km2 area in the GBR. For each given coordinate (x, y), the pixel in that coordinate

and several surrounding pixels are grouped into a small square termed an element. The

historical elements across Ex, y
d−N+1, E

x, y
d−N+2, . . . , E

x, y
d constitute the known inputs to

the model, which yields the unknown pixel P x, y
d+F as output. As shown in Figs. 5.1a and

5.1b, the input elements overlap and sweep to cover all pixels P inside the TS distribution

frame in the GBR, leaving the half element size unpredictable in margins, e.g., one pixel

for 3× 3 elements and three pixels for 7× 7 elements.

After discretizing the study area into elements, the FEA formulation results in the

following abstract system of algebraic equations [361]

P = f (K, E) , (5.1)

where K is the stiffness matrix. This matrix is a core parameter in FEA, which relies on

scientific understanding of the underlying physics of the targeted system. In Section 5.2.2,

we propose a new method to numerically calculate K using the training dataset, where

no prior knowledge of the TS dynamics in the GBR is required.

Furthermore, unlike the FEA that resorts to matrix algebra to solve (5.1), we feed both

K and E to our proposed machine learning model. As a result, the governing equation in
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(5.1) changes to

P = W f (K, E) , (5.2)

whereW represents the unknown weights of the supervised machine learning model. Using

this innovative approach, the model will learn TS variations in each element, using the

historical TS values for that element and its corresponding stiffness matrix. It is worth

mentioning that the recursive technique for solving (5.1) is very similar to the gradient

descent technique used by machine learning to solve (5.2).

5.2.2 Stiffness Matrices

In the FEA, a stiffness matrix denotes an approximate solution to underlying PDEs by

relating nodal responses to external nodal forces [361]. Similarly, the stiffness matrix of

an element in the GBR represents its physical properties and relates TS variations to its

historical values. Having said that, solving the stiffness matrix for ocean sedimentation

requires a deep understanding of GBR multiphysical behaviours, including fluid flow,

mass transport, etc. [299]. To address this challenge, an innovative approach is proposed

to numerically compute the stiffness matrix K.

Consider a simple linear spring problem illustrated in Fig. 5.2a, where a linear spring

with k = 10 acts against external forces F1 and F2, and it compresses to the X1 extent. We

simulate this system for two seconds with 40 samples (20 samples per second) using sine

waves and random Gaussian noise. By dividing this simulation time into four segments

(r), we have 10 samples per segment. This way, the true stiffness matrix for each segment

can be numerically estimated by

KrX = F ⇒

Kr =
F

X

In matrix algebra
↼−−−−−−−−−−−−−−−−−−−−−−⇁ Kr = F XT

(
XXT

)−1
, (5.3)

where F 2×10 is the matrix of 10 F1 and F2 values, and X1×10 is the matrix of 10 X1

values in one segment. The final stiffness matrix K of the linear spring problem can then

be calculated by averaging Kr as follows

K =
1

4

4∑
r=1

Kr . (5.4)

The simulation results in Fig. 5.2a suggest 96% accuracy in numerical estimation of

K. However, adapting this technique to our TS prediction problem requires the following

adjustments:
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(a)

(b)

Figure 5.2: (a) Stiffness matrix of the classic linear spring problem in the presence of
Gaussian noise. (b) Normalized logarithmic scale stiffness matrices of three
typical geolocations: AO at (11.18oS, 143.25oE), BO at (11.18oS, 148.17oE), and
CO at (19.10oS, 147.93oE), where the element size is 7× 7.
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Figure 5.3: Architecture of the proposed FE-Transformer network to predict pixel P x, y
d+F in

F days after today (d), where the N input elements are illustrated in Fig. 5.1,
and the N stiffness matrices for month M are calculated by (5.5). The shown
kernel sizes, filter numbers, activation functions, Transformer layers, etc. are
optimized for TS prediction in the GBR.

1. As stated earlier, the number of input elements to our model is N , which is composed

of elements from today (d) to N days ago. Consequently, we must have N stiffness

matrices for each of these input elements;

2. To better capture the TS distribution, we mesh the GBR into small spatial elements.

Furthermore, to properly capture temporal TS changes, we need to take a further

step by dividing the study period into smaller time steps, e.g., months. This temporal

division leads to a dedicated set of stiffness matrices for each month, which results
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in a more accurate prediction of marine sedimentation. In this regard, smaller time

steps will increase memory consumption, while larger time steps will reduce accuracy;

3. Different from (5.1) in conventional FEA that places the stiffness matrix K in an

equation with E, we propose to feed K as an additional input to our DNN. This

way, the variations in each TS element will be learned in line with its corresponding

stiffness matrix; and

4. The Conv2D layers in Fig. 5.3 implement E−K. This is in contrast to the original

FEA implementation in (5.3), where X = F /K. Therefore, in our proposed model,

K is calculated by subtracting the known output P from element E, i.e., E − P .

Considering the above adjustments, we can rewrite and merge (5.3) and (5.4) into

Kx, y
n,M =

1

Ny

1

Nd

∑
y

∑
d

(
Ex, y

d−n − P x, y
d+F J

)
∀n ∈ [0, N − 1], (5.5)

where M represents the corresponding month of the year, y sweeps all Ny years in our

training dataset, d sweeps all Nd days of month M , and J is an all-one matrix of the same

size as our elements. After calculation of the stiffness matrices using the training dataset,

the resulting K matrices will become independent of both year and day, and will be a

function of coordinates (x, y), month M , and their time difference n ∈ [0, N − 1] from

today.

Using the new equation in (5.5), the stiffness matrices of January, May, and September

are plotted in Fig. 5.2b for three random locations in the GBR. For these matrices, the

number of inputs elements considered is 3, i.e., N = 3, while the forecasting horizon is

F = 1. These settings result in three matrices Kx, y
2,M , Kx, y

1,M , Kx, y
0,M per location per

month, denoted by two days ago, yesterday, and today, respectively. In the normalized

contour plots of this figure, 0 means the maximum negative difference from the central

pixel today, 1 means the maximum positive difference, and 0.5 means no difference.

As a result, the stiffness matrices such as those shown in Fig. 5.2b reveal the overall

behavior of TS in the GBR. For instance:

� TS in point AO is influenced by its vicinity to the water flows in the Torres Strait;

� TS in point BO is influenced by both the Fly River and Papua New Guinea (PNG)

catchments; and

� TS in point CO is under influence of the Burdekin River.
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5.2.3 FE-Transformer Architecture

In the previous section we explained that, in our proposed FE-Transformer the GBR

is meshed into distinct pixel-level geolocations (x, y), and in each location there are N

elements representing historical TS values around that location (i.e., Ex, y
d−n for n ∈ [0, N −

1]). We then calculate N relevant stiffness matrices Kx, y
n,M for each month M . Next, we

use these two inputs in (5.2) to predict the TS distribution P . This prediction is conducted

in a pixel-by-pixel manner, by calculating the TS in each coordinate (x, y) (i.e., P x, y
d+F ).

The f(.) operator in (5.2) is implemented by using a novel DNN structure shown in

Fig. 5.3. To elaborate, we employ the state-of-the-art ViT [360] to propose a new FEA-

inspired DNN dubbed FE-Transformer for next-frame prediction of sediment in the GBR.

As shown in Fig. 5.3, this process starts by merging N historical TS elements with their

corresponding stiffness matrices using N two-dimensional convolutional layers (Conv2D).

Feeding K as a separate input to the DNN model is in contrast to the conventional

FEA that multiplies an inversed stiffness matrix with the excitation TS element values.

Besides, the attention mechanism in Transformer networks have limited capacity to exploit

the sequential nature of the input. Using N Conv2D layers to merge historical elementwise

TS values with their corresponding stiffness matrices will help the subsequent Transformer

layers by capturing part of the temporal relations inside the elements.

The resulting N patches are then flattened before being fed to the next layer, where

they are projected onto N new vectors with a reduced size of 32. These vectors are then

embedded (added) with N position vectors. This allows the model to learn the day-by-day

ordinal behavior, as well as the natural moving directions in the TS distribution.

Next, the resulting sequence of positional embedded vectors enter eight cascaded stan-

dard Transformer layers, as originally described in [354]. The output of the last Trans-

former layer is flattened and enters an MLP network to predict the TS value of the target

pixel. To improve the convergence of weight learning and to avoid overfitting, we have

� Multiple dropout points with a 20% dropping rate are placed in the layer intervals

in Fig. 5.3;

� All the dense layers are equipped with the Ridge regularization of L2 = 0.01; and

� The learning rate is set to 0.001.

5.2.4 Physics-Informed Neural Network

To train our FE-Transformer model, we need daily TS data, i.e., PMeasured, measured

for each pixel in the GBR. However, the existing PMeasured datasets are intermittently
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observed and sparsely distributed. This scarce dataset is not suitable to sufficiently train

DNNs and our Transformer network.

[362] recently introduced a novel Physics-Informed Neural Network (PINN), which can

be used to merge measurements with PDE simulations for DNN training. PINN works by

summing two separately calculated measured and simulated loss functions. To elaborate,

suppose that we use the scarcely measured data to calculate the Mean Squared Error

(MSE) loss function as follows

MSEMeasured =
1

Nmeasured data

∑
(P − PMeasured)

2, (5.6)

where P is the output of our model in Fig. 5.3, and Nmeasured data is the number of used

data points. At the same time, PDEs can be solved to simulate the TS concentration

distribution in the GBR (i.e., PPDE) for the following loss function

MSEPDE =
1

NPDE data

∑
(P − PPDE)

2 . (5.7)

The MSE loss functions in (5.6) and (5.7) are then combined to create the following overall

loss metric

MSE = (1− λ)MSEMeasured + (λ)MSEPDE , (5.8)

where λ is an adjustable hyperparameter that is used to implement a weighted sum to

balance between the measured and PDE simulated data.

The MSE loss function in (5.8) is used to train the proposed FE-Transformer. It is

worth mentioning that whenever MSEMeasured is not available, it is removed from (5.8).

5.3 Results and Discussions

This section starts by introducing the employed TS datasets in the GBR. We will then

proceed with evaluating the accuracy of the proposed FE-Transformer for predicting the

TS distribution. We will also study the computational complexity of our model and

undertake an ablation study for a block-level evaluation of our model’s structure.

5.3.1 Data Sources

According to (5.6) and (5.7), two sets of measured (PMeasured) and simulated (PPDE) data

are required to train the FE-Transformer in conjunction with PINN methodology. The

measured TS values stem from the Australian Institute of Marine Science (AIMS) Marine

Monitoring Program (MMP) [335]. This data is sparsely gathered, both temporally and
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Table 5.1: Statistics of the TS Values from eReefs (PPDE)

spatially, and thus is insufficient for DNN training purposes.

Hence, simulated data (from solving PDEs) is used to compensate for the scarcity of

the measured data. To obtain the PDE solutions for the TS distribution in the GBR,

the eReefs modeling suite is employed, which is a suite of models designed to deliver a

near real-time coupled biogeochemical, hydrodynamic, and sediment transport simulation

of the GBR [325]. This raw simulation data has been cleaned and interpolated onto a

regular grid and is downloadable from the AIMS servers [337].

The sediment simulation in eReefs is conducted for multiple layers, from which the

accumulated sedimentation in the top 3 m surface is used in this chapter. In addition,

the AIMS version of eReefs is calculated on a daily basis during 2011 to 2018. We divide

this period into three timespans. The first one from 2011 to 2016 is used as the training

dataset, 2017 is used as the validation dataset, and 2018 is the testing dataset. The model

weights are first calibrated using the training dataset and, without changing the calibrated

weights, accuracy is evaluated by the validation datasets. Finally, the overall accuracy of

the model is measured by the testing dataset, which is not a priori known to the model.

Overall, after meshing the whole GBR into 150 × 122 pixels, we would have 18,300,

17,760, and 16,704 overlapping 1× 1, 3× 3, and 7× 7 elements, respectively, in each day.

Accumulating these elements in 365 days of 7 years in our training dataset results in 47,

45, and 43 million training patch images (i.e., elements). According to [360], ViT-based

models can benefit from this large dataset to gain higher accuracy, compared to traditional

CNN architectures.

To better understand the nature of TS simulation in eReefs, the statistics of TS values

are presented in Table 5.1. As can be seen from this table, the maximum TS values are far

greater than their average values. This is because the TS concentrations within river deltas
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(a)

(b)

Figure 5.4: Effect of element size on the metrics of (a) MSE and (b) R2 with 3-day fore-
casting horizons and N = 3. The results are averaged per quarter of the testing
year of 2018.

are usually very high, while in many other places these concentrations can be very low.

As a result, the ecologically important TS variations throughout the near-shore regions

and out to the Mid-shelf waters may look insignificant. To capture these small variations,

we use the logarithmic scale for model training as follows

TSlog = log10
(
TS + 10−7

)
, (5.9)

where the constant 10−7 in (5.9) is added to avoid log (0).
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Figure 5.5: True values, predictions, and their absolute differences for TSlog in the GBR at
2018 test dataset, for (a) 1-day, (b) 3-day, and (c) 7-day forecasting horizons,
using 7× 7 elements with N = 3.

5.3.2 Prediction Accuracy

The performance of the proposed FE-Transformer on TS distribution prediction in the

GBR is studied in this section. We show that our model provides accurate predictions,

as well as unblurred output frames, which are two desirable properties of any next-frame

predictor.

To measure accuracy, we use the MSE metric in (5.8). Meanwhile, the coefficient of

determination (R2) is adopted as an indicator of our unblurred output, which is calculated

by

R2 = 1−
∑

(P − PTrue)
2∑

(PTrue − µPTrue
)2

(5.10)
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Table 5.2: MSE and R2 of TS Prediction for the Testing Dataset in 2018, using Elements
of Size 7× 7 Pixels

where PTrue stands for either PMeasured or PPDE, and µPTrue
is the average of PTrue. Here,

R2 shows how much of the true TS variation has been captured in the predicted output

frame. This metric is also known as goodness of fit, where the larger is better, meaning

even low levels of TS variation within a frame are captured.

As stated earlier in Section 5.2, the element size is a hyperparameter that requires

adjustment. Towards this end, the effect of the element size on the MSE and R2 metrics

is investigated in Figs. 5.4a and 5.4b, respectively. As a rule of thumb, increasing the

element size will lead to an improved model performance, but it also increases the number

of unpredictable marginal pixels in Fig. 5.1. For consistency, 7 × 7 elements are used in

our simulations. The horizontal dash lines in Fig. 5.4 indicate the average metric values

for the 7× 7 elements.

In addition to the element size, other hyperparameters of the proposed FE-Transformer

are also optimized. These hyperparameters include but are not limited to the Conv2D

kernel sizes and filter numbers, neural network activation functions, number of Transformer

layers and their internal variables, etc. The hyperparameter optimization helps the model

accurately forecast the TS in the GBR. This also tunes the number of model weights to
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the optimum value, which in turn, assists the model to avoid overfitting and underfitting.

Some typical logarithmic-scale TS prediction results of the FE-Transformer model in

2018 (i.e., the test dataset) are plotted in Fig. 5.5. In the cases of the 1-day, 3-day, or

7-day forecasting horizons, the (7th, 8th, 9th), (5th, 6th, 7th), or (1st, 2nd, 3rd) days of

each month are fed to the model, while the 10th day of the months are forecasted. This

figure includes the predicted frames, ground-truths, and their absolute differences (i.e.,

the prediction errors), which are mostly close to zero. The prediction errors of larger F

values have further spread geographically, resulting in a larger MSE. Besides, due to the

adoption of the element size of 7 × 7, three unpredictable marginal pixels are imposed

along the shoreline. These pixels are predicted with a linear regression model.

It is worth mentioning that classic image processing techniques for compensating for

the unpredictable margins (e.g., padding, flipping, etc.) do not suit the TS distribution

prediction problem considered in this thesis. This mainly is due to the fact that current

TS values in the GBR are dependent on their neighbors’ historical TS values, which are

asymmetric, chaotic, and dynamic [332]. Therefore, if these historical neighboring values

are not available, we should not simply fill them with constant padding, symmetrical

flipping, or other normal paddings. Besides, the unpredictable margin is rather small and

has a minimum effect on the overall modeling performance.

Both the MSE and R2 metrics of the proposed FE-Transformer model are investigated

in Table 5.2. The reported metrics in this table do not include the unpredictable margins.

Here, the average MSE increases from 7.87 × 10−9 for the 1-day forecasting horizon to

11.49 × 10−9 for the 7-day forecasting horizon. The R2 values remain above 90% for all

F values, which imply that our model is able to accurately capture the majority of the

TS variations. Let us emphasize that this highly-accurate and unblurred prediction is

achieved throughout the wide GBR with more than 35 river discharges [299], which makes

the prediction even more challenging.

Since our model is a next-frame predictor, in Table 5.3, we compare its performance

with two of the recent next-frame prediction methods, i.e., a Conv3D-based model [322]

and a Convolutional LSTM model named PhyDNet [324]. The comparison is conducted

on the 2018 test dataset with 7 × 7 elements. At the time of writing, PhyDNet [324]

is ranked as the best next-frame video predicting model in multiple categories (papers

with code). Having said that, the MSE and Mean Absolute Error (MAE) of the previous

models are always greater than those of the proposed FE-Transformer, which results in

their R2 < 60% for all F values.

Another performance metric in Table 5.3 is the scatter index, which is calculated by

dividing the root-MSE by the average TS values in each day. The low percentage of the

scatter index of the FE-Transformer indicates a small relative error with respect to the
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Table 5.3: Comparing the Performance of Our FE-Transformer Model with Two Recently
Published Works in Literature
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Figure 5.6: Time and memory complexities with respect to the element size for one-day
forecasting horizon with N = 3.

average TS.

We also conduct an analysis of variance (F-test) in Table 5.3 to find out whether the TS

predictions and their relevant true values have the same variance. Larger p-values reject

the null hypothesis (H0), indicating that the variances are not equal. Based on this test,

our model perfectly captures the TS variances with probabilities greater than 99%, 99%,

and 85% for F = 1, F = 3, and F = 7, respectively. These p-values are acceptable in the

wide GBR with high-dynamic sediment distributions, especially when the other comparing

models are barely close to the 55% probability at their best.

As can be seen from Table 5.3, neither Conv3D nor PhyDNet can accurately predict

the next TS frame in the wide GBR. This is mainly because both of these next-frame

predictors treat each frame as a whole, compared to FE-Transformer that borrows the finite

element concept and uses the modified stiffness matrices to produce accurate predictions

in meshed GBR frames. Additionally, according to [360], ViT-based models perform

better than their convolutional counterparts on larger training datasets. As discussed in

Section 5.3.1, we have a huge number of training image patches (i.e., elements), which

justify the employment of the ViT in the proposed FE-Transformer model.

5.3.3 Computational Complexity

The proposed FE-Transformer model was implemented by TensorFlow 2.4.1 in Python,

and the DNN layers were employed from the relevant Keras APIs. The model was trained

on a machine with Intel® Core i7-7700HQ CPU, NVIDIA® GeForce 1050 GPU, and 16

GB RAM.

The computational complexity of the proposed FE-Transformer model is shown in

Fig. 5.6, where both the memory consumption and running time are plotted versus the

element size. The memory consumption refers to the allocated RAM for the model, which

excludes the dataset memory and GPU memory. The running time on the other hand, is
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the time required for inference. The slight reduction in running time versus the element

size in this figure is due to the increased number of unpredictable marginal pixels. Overall,

the plot reveals an O(1) constant demand for both time and memory, which suggests our

model is efficient.

5.3.4 Ablation Study

The ablation study in machine learning is the mechanism of removing a component of a

model to study its importance in the overall system. This study is conducted in Table 5.4,

where each row corresponds to the elimination of a given component from the proposed FE-

Transformer in Fig. 5.3. The first row includes all the construction blocks, the second row

excludes the stiffness matrix channel from input, the third row excludes linear embedding

as well as the Transformer encoder, and the fourth row excludes two dense layers of the

MLP. In each case, the MSE is averaged over the test dataset in year 2018. As expected, the

MSE increases in subsequent rows, by removing functional components of the structural

body.

Comparing all the MSE values in this table reveals a high contribution of the stiffness

matrix to the TS next-frame prediction. Removing this FEA-originated parameter reduces

the model accuracy by 33%. The stiffness matrix is a core component of the proposed FE-

Transformer model. Not only does it approximate the underlying PDE solutions, but it

also relates TS variations to its historical values. Therefore, removing the stiffness matrix

has the most adverse effect on the model performance.

The transformer layer is another key component playing a significant role in our next-

frame predicting model. In short, the transformer makes the model capable of addressing

wide time-gaps in TS long-term dependencies. Eliminating this layer drops the model

accuracy by 21%. Finally, the MLP module consists of two hidden layers and 160 neurons.

This module is responsible for producing the TS prediction at the Transformer output for a

given pixel. Similar to conventional DNN architectures, the MLP after the flattened values

in Fig. 5.3 helps reduce the dimension of the transformer output to one final neuron for

the target pixel. Without the MLP, the dimension reduction does not happen and an 18%

drop in prediction accuracy would occur.

5.3.5 Limitations and Future Directions

Similar to other DNN-based models, the main limitation of the proposed FE-Transformer

is the availability of training data. After dividing a study area into elements and pixels,

training data must be collected for each pixel in regular time-steps. In other words,

this model is only applicable to spatio-temporal problems with regularly measured or
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Table 5.4: Evaluating the Elimination of Selected Blocks on Accuracy of the Model

interpolated data in both the time and spatial domains. Additionally, computational

resources are another limiting factor of the proposed model. To overcome this limitation,

training data must be downsampled into widely separated pixels. Another workaround

can be using a more powerful computing unit or even a distributed training scheme.

Accordingly, future research can both address the above limitations and enhance the

capabilities of the proposed model. One such enhancement would involve combining the

FE-Transformer with remote sensing data. While environmental data is hard to gather

in remote areas, remotely sensed data in multiple frequency bands are readily available.

These data can be merged with scarce measurements using the PINN method to train the

model with more data, potentially improving its prediction accuracy.

5.4 Conclusion

Distribution of TS in the oceans is highly spatially and temporally dynamic, and is usually

modeled using a complex set of PDEs. In this chapter, we proposed a novel FEA-inspired

DNN to predict the sediment distribution in the wide GBR. In our proposed method, the

GBR is meshed into small elements. For each element, a stiffness matrix is calculated using

the historical training dataset. This stiffness matrix along with its relevant TS element are

fed to the proposed FE-Transformer to predict the next TS frame in a forecasting horizon

between 1 to 7 days. For training the proposed FE-Transformer model, we employed the

PINN technique to merge measured TS data from AIMS MMP with PDE simulated data

from eReefs. Through integrating the FEA concept with the state-of-the-art Transformer

network, the trained FE-Transformer model was able to efficiently learn long-term TS

dependencies. This resulted in highly accurate TS frame predictions with a small MSE.

Besides, the model’s output frame had great R2, which is an indicator of the model’s

unblurred prediction. Our proposed model will be beneficial in reliably predicting TS

concentration and distribution across the GBR. This will aide in better managing and

planning water quality targets set for the GBR.
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Chapter 6

IoUT Distributed Training and Edge

Computing

Data communications in underwater wireless sensor networks are dominantly conducted

by acoustic waves, which are suffering from a narrow frequency bandwidth. To address this

problem, an optimized deep learning design for low-energy and real-time image processing

at the underwater edge is proposed. The proposed platform can remove the big data

processing barrier in the Internet of Underwater Things (IoUT). It can be employed by a

variety of underwater exploration, monitoring, navigation, tracking, disaster prevention,

and scientific data collection projects. In addition, distributed learning to train deep

learning models has been investigated. It is shown that distributed learning in the cloud

can help more efficiently process big data and train more accurate deep learning models.

This chapter is published in IEEE Access as

[28] M. Jahanbakht, W. Xiang, N. J. Waltham, and M. R. Azghadi, “Distributed deep

learning in the cloud and energy-efficient real-time image processing at the edge for

fish segmentation in underwater videos,” IEEE Access, Aug. 2022.

6.1 Introduction

As Deep Neural Network (DNN) models grow to have billions of learning parameters, while

the training data volumes expand to petabytes, model training on local computers becomes

highly inefficient, if not impossible, demanding the use of Distributed Computer Systems

(DCS). Besides, a well-designed DNN training on DCSs may achieve higher accuracy by

disentangling the weight optimization into separated nodes [363]. On this basis, the next

generation of cloud-based distributed computer networks may enable DNN processing

on edge devices for both improved model training and efficient model inferencing [364],

ultimately leading to enhanced decision making.

To that end, in this chapter we first explore cloud-based distributed DNN training
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and analyze its benefits and shortcomings in training a large-scale DNN performing fish

segmentation in real-world underwater videos. Next, we deploy our trained DNN on an

embedded edge processor to show the benefits it provides for the Internet of Underwater

Things (IoUT) and its wireless communication technology.

Wireless communication plays an important role in all branches of the Internet of Things.

However, this type of communication faces many challenges, when it comes to the IoUT

[24]. These challenges include high attenuation, multipath fading, frequency dispersion,

and signal distortion of electromagnetic waves, which cannot penetrate and propagate

deep in underwater environments.

These harsh underwater conditions led scientists toward the Underwater Acoustic Sensor

Network (UASN), which by far is the dominant wireless technology in IoUT [24]. UASN is

defined as sonic interconnection of marine objects that enables maritime exploration and

monitoring activities. However, UASN has some limiting technical characteristics such as

low transmission bandwidth, high signal attenuation, and high propagation delays [365].

To overcome these UASN drawbacks, the relatively new concept of edge processing

seems to provide a promising solution [24]. In edge computing, endpoint devices perform

parts of the required computations on their own data. The results of these computational

processes have smaller volumes, compared to the raw input data. By sending the re-

sults instead of the initial unprocessed data, underwater network traffic will significantly

reduce. Meanwhile, the lower data transmission rate will consequently result in lower

communication latency and efficient energy consumption [366].

To get the most out of the edge computing, efficient computational processes must be

employed. This is specially important when dealing with the marine high-resolution image

and real-time video data streams. To address this problem, modern deep learning processes

can be used. State-of-the-art use cases of DNNs in underwater image/video applications

are ranging from image enhancement [367] to object detection and classification [368,369],

and further to the vision-based undersea navigation and tracking [370].

However, DNNs usually consist of large architectures requiring large computational

resources and power consumption, which are not readily available at the underwater edge.

To overcome this challenge, here we propose two strategies. The first is optimizing and

compressing the DNN models deployed at the edge. We show that this can result in

significant power saving and reduced processing time when compared to remote processing

on land. The second strategy we suggest is to use practical approaches to reduce power

consumption or harvest environmental energy to power the edge device.

To summarize, in this chapter we use cloud-based distributed DNN training and edge

DNN inferencing for a real-world underwater image processing task. This area has not

been widely explored [371], and deserves further research. To fill this gap,
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Figure 6.1: Modified architecture of the U-NET convolutional neural network for under-
water image segmentation. The weights of the encoder part are transfer-learnt
from a pretrained MobileNetV2 on the ImageNet. The decoder part employs
Pix2Pix for upsampling.

� We propose, to the best of our knowledge, the first DNN-based edge processor for

real-time fish segmentation in underwater videos. This is implemented on an embed-

ded Graphics Processing Unit (GPU) and is benchmarked against traditional HTTP

inference on a GPU-powered computer on land.

� The fish segmentation model is trained on distributed cloud infrastructure to make it

more suitable for big marine data training, while also slightly improving its learning

accuracy. The distributed training is benchmarked against an on-premises stan-

dalone computer, in terms of speed and accuracy.

� To improve the delay and energy requirement of our system in the targeted under-

water environment, we compress our DNN model to two quantized weight resolu-

tions. We benchmark these against the full model and show the compressed networks

can result in significant improvements. In addition, we propose an efficient energy

management plan, consisting of renewable energy resources and motion detection

technologies.

We discuss how the proposed underwater edge computing platform can remove the big

data processing barrier in the internet of underwater things.

The rest of this chapter is organized as follows. In Section 6.2, a modified U-Net model

will be designed for fish segmentation in real-life underwater images. This model will

be accurately trained on a cloud-based DCS in Section 6.3. Later in Section 6.4, energy

reduction techniques will be introduced, and the trained model with compressed weights

will be deployed on a GPU-enabled edge device for fast and efficient inferencing. We will
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also investigate how edge computing makes underwater big data processing possible. The

chapter is concluded in Section 6.5.

6.2 Fish Segmentation

Image segmentation is a major topic in computer vision, which assigns a label to each pixel

of the image. Pixels with the same label belong to the same semantic object (i.e., class).

Image segmentation is applied in a number of domains including object localization, video

surveillance, scene understanding, augmented reality, and many other image processing

applications. To have an accurate image segmentation model, a wide verity of DNNs

have been reported in the literature, and they are comprehensively surveyed by Minaee et

al. [372].

However, the underwater environment is not image-friendly. The suspended particles

in seawater absorb, backscatter, and forward scatter light rays towards the camera, which

creates hazy images with low contrast and faded colors [367]. These image degradation

processes make underwater image segmentation a challenging task.

6.2.1 Modified U-Net Architecture

To address the fish segmentation problem in underwater images, we employed a modified

version of the U-Net model [373]. Here, U-Net is a Convolutional Neural Network (CNN)-

based deep learning algorithm which has been applied in a number of applications ranging

from medical imaging [374], to fish segmentation [375]. Similar to the original U-Net

[374], modified U-Net in this chapter consists of two consecutive encoder and decoder

paths. While the contracting encoder path captures contextual features, the symmetric

and expanding decoder path enables segment localization. However, our modified U-Net

makes use of a better upsampling block [373].

Both the encoder and decoder parts of the modified U-Net architecture are illustrated in

Fig. 6.1. The encoder part follows the typical CNN architecture with five consecutive con-

volution layers, each followed by a ReLU activation function and a max-pooling operator.

The 7×7×320 output of the encoder part feeds to the following decoder part, which con-

sists of four consecutive upsampling and concatenating blocks. Unlike the original U-Net,

a Pix2Pix block [376] is used for upsampling in the modified U-Net. Pix2Pix was initially

used in the generative adversarial networks for their capability of generating high-quality

images across a variety of image translation tasks [376]. Since then, it is widely used as an

upsampling block in a wide range of other applications. At the last stage of the modified

U-Net model, a simple 2D convolution layer was used to map the extracted 64 features to

the desirable two segmentation classes (i.e., fish or not fish).
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To reduce the number of trainable parameters in our modified U-Net to improve its

training speed, we used the transfer learning technique and froze the transferred weights.

To elaborate, the weights and biases of a pretrained MobileNetV2 model on the ImageNet

dataset were reused in the encoder part [377].

6.2.2 DeepFish Dataset

Supervised DNNs are data hungry models. They require hundreds of labeled data in each

class, to succeed in their training phase. A successful training will result in accurate pre-

dictions at the subsequent inferencing phase. To train our modified U-Net, the open-access

DeepFish dataset was used. DeepFish is a realistic dataset of fish images in their natural

habitat [378]. The images have been accurately labeled for classification, localization, and

segmentation algorithms evaluation.

DeepFish’s segmentation dataset contains 620 images with accurately labeled fish seg-

ments. These images are collected from 20 habitats in the tropical Australian marine

environment with and without fish presence. To avoid overfitting, 10% of all images are

separated for validation. The images with one or more fish have been augmented by 180o

rotation, X and Y flipping, blue and green color degradation, and random noise addition.

To have a balanced dataset, the images with no fish are not augmented. Furthermore,

the DeepFish images are originally shaped in a 1920× 1080 pixel rectangle. To feed these

images into our modified U-Net model, they are resized into a square shape of 224× 224

pixels. This resizing is done by 49 zero-padded pixels both on top and bottom of each

image.

6.3 Distributed Training

Not so long ago, labeled datasets for supervised machine learning were scarce. However,

the number of these expert-labeled and open-access datasets have recently been increased

by the order of multiple hundreds. For example, none of the tens of labeled underwater

datasets introduced in the GitHub repository Awesome Underwater Datasets, existed a

few years ago.

With labeled image proliferation in open-access datasets, processing them becomes more

challenging and compute-demanding. More specifically, the pixel labeling algorithms (like

segmentation DNNs) with petabytes of remotely gathered data, such as underwater fish

videos, will require significant computation and memory resources, which are not available

on a single computer. Here, Distributed Computer Systems (DCS) with several processing

nodes that share the training, and consequently the memory and computing workload, can

be considered [379].
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Table 6.1: Hardware Specifications of the Utilized Local Computer, Distributed Comput-
ers, and the Edge Device

Since the volume of the DeepFish dataset used in our work was only 15 GB, and our

ImageNet pretrained MobileNetV2 model size was 150 GB, the data volume was not a

major concern in our chosen task. However, our DNN can still prove the DCS train-

ing concept and benefit from distributed learning by increasing its accuracy. DNNs are

directed-acyclic-graphs that have unknown weights on the graph vertices. These vertices

will disentangle in a distributed computing, and the weights of every vertex will be in-

dependently trained on a dedicated computer node [380]. This weight separation will

reduce overfitting to the training dataset, and will consequently increase the overall DNN

accuracy.

6.3.1 Cloud-based Distributed Computer Systems

A DCS is a private network of separated computers, each holding a set of software compo-

nents that collaboratively work as a single system. Despite their so many benefits, DCSs

need complex experimental and architectural design procedures for [24]:

� Distributed algorithms: Every DCS relies on a parallelization algorithm for fast and

accurate operation. Selecting this algorithm is usually challenging and needs expert

knowledge of the data and model.

� Horizontal expansion: There is always a trade-off between the running time of a

project and the number of DCS nodes.
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(a)

(b)

Figure 6.2: The SCCE loss metric convergence for both (a) the augmented train and (b)
the augmented validation datasets, versus the training time. The model is
initially transfer learned on ImageNet and is shown while fine tuning with the
DeepFish dataset.

� Setup and maintenance costs: DCS establishment requires an initial investment of

both time and money. This initial cost will continue to grow by the later demands

for maintenance, backup, improvements, etc.

To address these difficulties, commercial cloud services like AmazonWeb Services (AWS),

Microsoft Azure, and Google Cloud Platform seem to offer a promising solution. For in-

stance, AWS SageMaker is a cloud-based machine learning platform for running a cus-

tomer’s DNN training, as well as inferencing jobs on a dedicated DCS. The number of

distributed AWS training computers can horizontally expand from one node to tens of

nodes on-demand. This is subject to the AWS service quotas. The end-users will only pay

for the number of running hours of their application.

To perform this study and to evaluate the performance of cloud-based DCS for our

proposed application, 20 identical training computers (i.e., instances) were rented from
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the AWS SageMaker. Hardware specifications of each instance are compared in Table 6.1

with a GPU-powered on-premises computer. The 61 GB capacity of the cloud-based Solid

State Drives (SSD) were enough for the requirements of this research.

It is worth noting that AWS SageMaker offers P3 instances with high-end GPUs in the

cloud. These instances are capable of distributed training of DNN models across hun-

dreds of GPUs. However, these instances are significantly more expensive than ordinary

CPU-based computers. For example, a P3.2xLarge SageMaker instance with similar spec-

ifications to the employed M5.2xLarge in this study, but with one Tesla GPU, will cost

$3.825 per hour. This is nearly 7 times the cost of our current setup. Therefore, to have

an affordable DCS training system, we chose to use CPU-based computers.

6.3.2 Distributed Training Results

The modified U-Net model in Fig. 6.1 accepts a 224×224 RGB image at input, and returns

two 224 × 224 integer values for the two possible pixel classes. In other words, the DNN

assigns two integer values to every single pixel of the image. These integer values indicate

whether each pixel belongs to the body of a fish or not. During inference, an argmax(·)
operator must be employed to produce a single 224× 224 channel with 1 and 0 values for

the fish and not-fish classes. However, this is not the case in the training phase, where the

exact integer outputs are passed to the Adaptive Moment (Adam) optimizer of the DCS

processor.

The Adam optimizer in DCS uses the Sparse Categorical Cross Entropy (SCCE) as its

major loss metric for accurate underwater fish segmentation. In addition to SCCE, the

Sparse Categorical Focal (SCF) loss values with γ = 2 is also measured. SCF is particularly

useful in our study, where the foreground fish pixels in each image is densely located against

the huge number of background pixels [381]. To elaborate, the labeled segmentation masks

are mostly zero-valued for the no-fish class, with occasional occurrences of dense one-values

for the fish class.

The convergence of the SCCE loss metric for both the distributed computers and the

local computer are compared in Fig. 6.2. Here, the DCS spends a lot of time on HTTP

data transaction between its nodes. This makes the overall DCS convergence slower than

a GPU-powered local computer.

However, the trained model on DCS achieves a lower loss compared to a single GPU

training. The SCCE loss metric, SCF loss, and the Sparse Categorical Crossentropy

Accuracy (SCCA) are benchmarked in Table 6.2 for both the distributed- and the locally-

trained DNNs. The values in this table are separately calculated for the real training

and validation datasets before augmentation. This is in contrast to the plots in Fig. 6.2,
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Table 6.2: SCCE and SCF Loss Metrics, as well as SCCA Accuracy Metric of the Modified
U-NET Model, Which has been Trained on a Local Computer and a Distributed
Computer System

which are for augmented train and validation datasets to artificially increase the amount

of training data, without actually collecting new data.

As explained earlier, it was expected that due to the DNN weight separation and inde-

pendent training on dedicated computer nodes [380], the model is better trained on the

DCS, achieving a lower loss. This is confirmed in the results shown in Table 6.2. While the

accuracy is the same, the loss metric shows better performance for the distributed train-

ing scheme. It is worth mentioning that the total renting price for 20 AWS SageMaker

training instances was AUD 19.1. To summarize,

� Table 6.2 shows that the DCS training loss (0.053) is 18% better than a standalone

computer (0.065).

� Due to the HTTP transactions in DCS, a GPU-powered local computer is faster

than 20 distributed computers without GPU. This was illustrated in Fig. 6.2.

6.4 Underwater Edge Computing

Edge computing is an information technology paradigm that brings computation closer

to the data collection hardware. In the case of IoUT, edge computing is very beneficial,

without which the processing should be performed on local computers or centralized clouds

on land. Transferring the data to these remote land processors would require wideband

data transactions, which is not readily available or sometime feasible in IoUT. In contrast,

by processing raw data on edge, only the low-volume results should be communicated.
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Figure 6.3: Conceptual comparison between wired underwater communication and wire-
less communication made possible by performing data processing at the data
collection edge and only communicating the processing results.

Communicating only the results consumes narrower bandwidth (data-rate) and requires

shorter transaction latency, making it suitable for IoUT [24].

Additionally, engaging the edge devices in data processing, can shift the load from a

single centralized processing point to numerous distributed nodes. In this case, the system

would not have a single point of failure. Besides, advanced applications such as prompt

decision making will be feasible [382]. These advantages of the edge computing are better

illustrated in Fig. 6.3, where the traditional multi-Mbps wired network is replaced by a

multi-bps UASN using the edge processing technology. However, edge computing in IoUT

must tackle the challenge of limited underwater energy resources, as its main drawback.

6.4.1 Energy Management at the Edge

Sustainable power cannot be readily delivered to the underwater edge devices. Therefore,

wired energy transferring might be considered, which is a robust but limiting solution. Us-

ing wired energy will limit IoUT sensor deployment to the shoreline vicinity, and will make

the system vulnerable to cable damages by gnawing animals and corrosive environments.

Due to these drawbacks, the use of wired energy in remote IoUT applications becomes

infeasible. To address this challenge, here we propose two parallel techniques to effectively
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Figure 6.4: Underwater energy management plan with solar and tidal wave energy har-
vesting, along with the motion detection technology and DNN compression.

manage the energy at the edge, as shown in Fig. 6.4 and described below.

Reducing power consumption at the edge

Energy management from the edge’s perspective means lower computation demand and/or

more power-efficient consumption. To reduce the demand, ultrasonic motion detectors can

be used to only demand imaging and processing when there is movement in the environ-

ment, putting the system into low-power sleep mode at all other times. This, of course,

adds to the entire system power, the amount consumed by the submersible echosounder

transducers, which depends on the quality of their coverage. A typical 115 kHz ping

transceiver with 50 m directional range, 0.5% resolution, and 300 m depth rating that

operates for 100 milliseconds per every second will take no more than 50 mW.

However, both sonar-based and vision-based motion detection technologies are sensitive

to cavitation (bubbles), vegetation (leaves, sticks, etc.), water depth, and current speed.

Consequently, using them in high-dynamic conditions require artificial passageways with

careful control of the environmental parameters [383].

The fabrication and maintenance of passageways for underwater motion detection will
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Table 6.3: Average Power Consumption of the Original Segmentation DNN with FP32
Parameters, Compared with FP16 and Int8 Compressed DNNs

add extra cost and time to the project, which is not desirable. Therefore, where possible,

other power reduction techniques should be considered. A technique that we investigated

in this chapter is utilizing a compressed DNN, which consumes less power, due to lighter

computations performed at the edge. In this way, the trained weights of the initial DNN

in Table 6.2 that have single-precision (32-bit) floating-point resolution (FP32), can be

compressed. However, this compression may lead to a slight decrease in the DNN accuracy.

To experiment with compressed quantized DNNs in our performed segmentation task,

we employed TensorFlow Lite (TFLite) to conduct the following model quantizations:

� Half-precision (16-bit) floating-point (FP16): This post-training compression re-

duces the floating-point size to the IEEE standard float16.

� 8-bit integer (Int8): This dynamic range compression quantizes the weights from

floating-point to integers with 8 bits precision.

To analyze the DNN weight quantization effect on its energy demand, the Nvidia Jetson

nano embedded GPU was selected as our edge device. The average power consumption of

our segmentation DNN models with FP16 and Int8 compressed network parameters are

compared in Table 6.3, with the original FP32 model. The System in this table refers to

the edge device internal components, except GPU (i.e., CPU, RAM, SSD, high-speed IO,

etc.).
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6.4 Underwater Edge Computing

Table 6.4: SCCE, SCF, and SCCA Metrics of the Original Segmentation DNN with FP32
Parameters, Compared with FP16 and Int8 Compressed DNNs

In the rest mode with no GPU tasks, the TFLite backend of both the FP16 and Int8

demand slightly more energy (around 3%) than TensorFlow backend of FP32. This is

because, TFLite does not optimize model size, compared to the FP32 case trained using

TensorFlow. Therefore, the edge device requires larger storage both on its system and

on its GPU. Besides, the mobile-friendly TFLite libraries do not support all TensorFlow

operators. Consequently, some CUDA mounting commands might run inefficiently at the

edge.

On the other hand, in the busy mode with heavy GPU inferencing tasks, the proposed

FP16 and Int8 DNNs demand significantly lower power. The results in Table 6.3 show

61% total power reduction compared to uncompressed FP32 model. This improvement

can eliminate the need for motion detection technologies, by enabling the edge device

to continuously process underwater video frames. Alternatively, if possible, it can be

combined with the motion detection methods for further decreased power consumption.

Despite the fact that weight compression reduces power demand at the edge, it can also

decrease the DNN accuracy. This concern has been investigated in Table 6.4, where the

loss and accuracy metrics of the compressed FP16 and Int8 models are compared with the

original FP32 DNN. Based on this table, the reduction in model performance (specially

for the SCF metric) is insignificant.

Despite the reduction techniques proposed above, the power consumption of the edge

processor can be still significant and in the order of a few watts, requiring a sustainable
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Figure 6.5: Example outputs of the modified U-NET segmentation model trained on 20
cloud-based distributed computers of the AWS SageMaker, and then deployed
with Int8 paramter resolution on a Jetson Nano device.
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Figure 6.5: (Continued.) Example outputs of the modified U-NET segmentation model
trained on 20 cloud-based distributed computers of the AWS SageMaker, and
then deployed with Int8 paramter resolution on a Jetson Nano device.

method of power delivery to the edge device. Here, we propose combining the above-

mentioned reduction techniques with several energy harvesting approaches described be-

low, as shown in Fig. 6.4, to make IoUT edge processing feasible.

Energy harvesting

In undersea energy harvesting, solar panels and the marine grade Absorbent Glass Mat

(AGM) or Li-ion batteries are well-developed for small-scale applications. For example,

today’s rechargeable Li-ion and AGM batteries can provide superior power to support

the electrical demands of start-stop edge devices, while being affordable, impervious to

seawater, resilient to underwater vibrations, and maintenance-free [384].

Tidal stream energy harvesting systems are another source of power in undersea envi-

ronments. While multi-megawatt tidal stream turbines can feed power grids with clean

energy, small-scale submersible generators [385] and tidal kites [386] can provide efficient

power for UASNs in our proposed application. In addition, tidal power is almost perfectly

predictable over long timescales, which is an appealing feature for power management

systems. The output energy during neap tides is significantly less than that during spring

tides, hence, in a realistic system with steady output power, rechargeable batteries are

inevitable for covering the lower energy production periods [385].

When the above mentioned power harvesting methods are combined with the proposed

power reduction at the edge, inferencing can happen efficiently at the edge.
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6.4.2 Edge Inferencing Results

To further analyze the benefits of edge processing compared with transferring the under-

water video frames to land for processing, we performed some further inference analyses.

To perform these analyses, we needed to choose a GPU-enabled edge device to infer video

frames on our proposed modified U-NET DNN architecture. Although, a variety of edge

(embedded) GPUs exist in the market, the Nvidia Jetson Nano from the Jetson processor

family, which is the world’s leading platform for machine learning at the edge [371] was

selected. Nano’s specifications are shown in Table 6.1. The Jetson Nano module is an

efficient minicomputer that runs on Linux for Tegra (L4T). L4T is a free distribution of

the Ubuntu Linux by Nvidia for its Tegra processor series.

To utilize Jetson Nano for our application, we installed Python, TensorFlow, and many

other software packages on L4T to enable fast and accurate DNN inferencing. Additionally,

we developed a Flask-based REST-API in L4T to answer remote HTTP queries. Flask is a

light-weight microframework that suits the low-power requirements of an edge computing

ecosystem.

As described earlier in Sections 6.3 and 6.4.1, our proposed modified U-NET was initially

trained on 20 cloud-based distributed computers. Next, the trained model was compressed

to Int8 resolution for power reduction. To test the functionality of our developed frame-

work, we deployed it on a Jetson Nano to perform fish segmentation on a number of

video frames from the DeepFish dataset. Fig. 6.5 shows a number of sample segmentation

outputs. The demonstrated samples in Fig. 6.5 include some desirable true-positive and

true-negative predictions, along with two undesirable false-positive detection. We did not

encounter any false-negative report on the images in the DeepFish dataset.

6.4.3 Edge Inferencing Speed

The inferencing speed on the Jetson Nano edge device was compared to an on-premises

land server in Fig. 6.6. The first frame inferencing in both the land-side server and the

FP32 edge device requires much longer time than the TFLite-based FP16 and Int8. This

low initialization speed is due to the model storage method in TensorFlow, which requires

more time to map a saved DNN model into a directed-acyclic-graphs in GPU.

In the case of on-premises GPU-powered server in Fig. 6.6, multi-MB video frames must

be submitted via a wired LAN connection first to then be processed on the GPU. The

transmission significantly increases the inference time as shown in the figure. In contrast,

the edge device processes video frames in-place, producing few bytes of results that usually

do not require instant wireless transmission. These results may include (x, y) coordinate

of the detected fish, its size, and the frame timestamp that are submitted to the land
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Figure 6.6: Image or video frame segmentation speed of an edge device with multiple
compression levels is compared to a local computer that has been inquired by
HTTP protocol.

station once in a while.

The GPU-powered landside server with better computing resources (see the first rwo of

Table 6.1) is 4 times slower than the edge embedded Nano GPU. Meanwhile, the model

compression to FP16 and Int8 reduces inference latency at the edge by 18%, compared to

the FP32 model. This lower latency means that the edge processor can segment 3-4 times

more frames (images). It is worth noting that, reducing latency also reduce the overall

energy consumption of the system. Of course, if faster processing rates are required, more

powerful but also expensive devices like Jetson Xavier can be employed.

Overall, the presented results show that the proposed methodologies for underwater edge

inferencing can significantly reduce the latency and power requirements of any underwater

DNN processing tasks, compared to transferring the large data to land for processing. This

can significantly advance IoUT ecosystems in various applications ranging from marine

ecological studies to disaster prevention.

6.5 Conclusion

In this chapter, we first proposed a modified U-NET architecture for fish segmentation in

underwater videos. We then demonstrated the use of DCS for training our fish segmen-

tation task and discussed the benefits DCS provides for training DNNs using big marine

data. In the second part of our work, we utilized our DCS-trained DNN to show the

benefits of edge processing in underwater environments. It was shown that edge process-

ing can result in more than 4 times speedup, compared to the conventional method of

remote land processing. Furthermore, we proposed an energy management plan at the
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edge, which utilized well-known techniques such as motion-detection, energy harvesting,

and compressed DNNs to make underwater edge computing feasible. We showed that, by

compressing a DNN model for fish segmentation, 61% of power saving can be achieved

compared to a FP32 DNN.

The techniques proposed in this chapter can be applied in other domains, most no-

tably, in other underwater applications, where sending large data to land for processing

is not feasible. These simple but practical techniques can significantly advance current

and future underwater processing applications, leading to more informed decisions in re-

mote underwater environments, for applications such as marine research, navigation, and

tracking.
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Conclusion and Future Studies

7.1 Conclusion

A comprehensive survey of the IoUT and BMD, along with an analysis of multiple machine

learning applications for marine data processing, were conducted in this thesis. We com-

menced by surveying the state-of-the-art in underwater communications. The families of

advanced underwater acoustic, electromagnetic, and optical technologies were introduced

and innovative solutions were proposed for increasing the overall link reliability. Further-

more, SDN and edge computing techniques were reviewed as a promising technique of

improving underwater communications.

By connecting more objects to the IoUT, BMD generation is inevitable. This brings data

storage, transportation, preparation, and analysis challenges. To address these challenges,

machine/deep learning and its applications to marine data processing was reviewed, along

with the critical appraisal of recent published works. ML solutions cover the areas of

sensor, image, and video data leveraging, marine geographic data processing, localization

and tracking, and distributed data processing.

Among the numerous BMD processing challenges with ML solutions, timeseries fore-

casting, next-frame prediction, and marine image processing on edge were selected as our

contribution areas. For the timeseries forecasting, accurate prediction of SST was selected

for its environmental importance. The SST significantly affects the global mean air tem-

perature, its anomalies can directly affect the fish habitat, and it is a crucial factor for the

health of the corals and reefs. We proposed a highly accurate DNN structure that leverages

the correlation between SST datasets and air temperature at nearby isolatitude weather

stations. We devised an ensemble of two stacked LSTM-MLP networks and trained them

with the correlated SST and air temperature datasets. We demonstrated that our model

significantly outperforms the state-of-the-art SST prediction algorithms.

For the next-frame prediction, two important problems of nitrogen and sediment fore-

casting in the wide GBR were addressed. Nutrients and sediments are considered to be the
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primary land-based pollutants that significantly reduce ocean water quality. High rainfall,

flash floods, numerous short river basins, and the close proximity of the reef to the Wet

Tropics of Queensland mean nutrients and sediments are flushed to the reef lagoon quickly.

In this regard, two predictive models have been designed to forecast and manage the

high risk areas in the coral reef ecosystems. Implementing those predictive models in the

vast areas of the GBR was challenging, and they were addressed by incorporating FEA

concepts into the DNN technology. To elaborate, inspired by the well-known FEA, we

proposed

� The FE-DNN model for next-frame prediction of nitrogen in the GBR, and

� The FE-Transformer for next-frame prediction of sediment in the GBR.

It is worth noting that the convolutional neural networks in FE-DNN and the Trans-

former network in FE-Transformer are serving the same next-frame forecasting concept in

two different applications. So, both models are accurate predictors, and they can be used

interchangeably in future studies.

One challenge in training both these DNN-based models was the scarcity of observa-

tional data in the GBR. To address this problem, we employed the PINN technique to

merge the large amounts of simulated data with the sparse measurement data. The per-

formed analyses revealed that our next-frame models achieve very high accuracy with a

low prediction MSE, while yielding high-resolution prediction frames with very high R2

values.

Marine image processing was the last BMD processing challenge that we researched in

this thesis. Data communications in underwater wireless sensor networks are dominantly

conducted by acoustic waves, which are suffering from a narrow frequency bandwidth.

More specifically, current undersea monitoring projects with big data outputs are spending

their resources on wired networks, technically because wireless underwater networks are

either impossible or expensive. To address this problem, a modern platform was proposed

for real-time underwater video processing on edge. This platform consisted of a deep

neural network, which was accurately trained on a distributed cloud system. The trained

model was then compressed and deployed on an edge device for real-time fish detection in

videos.

The proposed edge computing platform reduces the required data transmission volume,

which makes it possible to be transmitted in the limited underwater communication net-

works. To elaborate, an underwater acoustic network can easily transmit a few bytes of

data, summarising the results acquired on the edge, instead of sending all the image data

to surface for processing. Besides, the utilized weight compression technique dramatically

reduces the DNN power consumption, making it suitable for underwater applications.
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7.2 Future Studies

As stated in the previous section, recent advances in IoT and IoUT technologies has led to

the proliferation of Internet-connected objects both in over- and underwater applications.

This technological evolution in the area of marine sensors, cameras, hydrophones, etc.

raises new issues for undersea data acquisition, data communication, and BMD processing.

Having studied the state-of-the-art research, the followings are some of the most im-

portant remaining research questions and future study directions. These few items can

provide an insight into the prospective applications, trends, and challenges.

� The underwater sensors and multi-sensor buoys are usually very costly compared to

their terrestrial counterparts. Additionally, sensor deployment in the vast oceanic

areas and their regular maintenance is not practical. The lack of data arising from

this issue, was resolved in our proposed FE-DNN and FE-Transformer models by

benefiting from eReefs simulation data merged with the scarce measured data. A

future research direction is to utilize satellite data to train new forecasting DNN

models for highly-accurate predictions. These remote sensing data with ocean color

algorithms can be used to measure water quality variables like total nitrogen, total

suspended sediments, chlorophyll-a, Secchi depth, benthic photosynthetically active

radiation, etc. It is worth noting that the existing models for remote water quality

sensing are based on the traditional neural networks [387]. This makes them suffer

from unstable estimations in rivers, as well as in close proximities to the shorelines.

Other potential research questions to be investigated are to retrain our proposed

FE-DNN models with satellite data only, or with a combination of satellite, eReefs,

and scarce in-situ environmental measurement data.

� The processing of BMD requires powerful hardware and software tools that can auto-

matically extract knowledge from large databases. This thesis proposed some novel

models toward developing software tools for accurate 1D and 2D temperature, nitro-

gen, and sediment prediction. However, many important environmental parameters

in the sense of water quality are left untouched. For example,

– The proposed FE-DNN and FE-Transformer models can be employed for other

chemical, physical, and biological water parameter forecasting. This includes

but is not limited to dissolved oxygen, pH, conductivity, biomass, etc. [325].

– Every environmental parameter can be considered as an endogenous statistical

variable that depend on many other exogenous factors. As shown in Fig. 7.1 for

the sea surface temperature, the proposed ensemble model of stacked DNNs can

165



Chapter 7 Conclusion and Future Studies

Figure 7.1: Employing as many exogenous factors as desired to predict targeted endoge-
nous variable with the proposed ensemble model of stacked DNNs.

be used to add as many sensory data as required for highly-accurate forecasting

of any targeted environmental variable.

� Most of the maritime water quality factors like dissolved oxygen, turbidity, biomass,

etc. depend on water depth. For example, the dissolved oxygen levels in sea surface

varies due to oxygen exchange with the atmosphere. At depth, the dissolved oxygen

levels are more stable. In this regard, our 1D and 2D prediction models are designed

for water quality studies in sea surface. Further research can be done to extend these

studies into 3D models at ocean depth. Having these forecasting models in future can

help improve ecosystem recovery by informed decision making. Furthermore, they

can be adopted by existing hindcasting simulators like eReefs, to provide accurate

forecasting predictions.
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scene reconstruction using commercial depth sensor,” in Proceedings International

Conference on Underwater System Technology: Theory and Applications. Penang,

Malaysia: IEEE, Dec. 2016, pp. 67–70.

[123] C.-C. Wang, S.-W. Shyue, and S.-H. Cheng, “Underwater structure inspection with

laser light stripes,” in Proceedings International Symposium on Underwater Tech-

nology. Tokyo, Japan: IEEE, May 2000, pp. 201–205.

[124] S. Ishibashi, “The stereo vision system for an underwater vehicle,” in Proceedings

OCEANS. Bremen, Germany: IEEE, May 2009.

[125] S. Negahdaripour, H. Sekkati, and H. Pirsiavash, “Opti-acoustic stereo imaging: on

system calibration and 3-D target reconstruction,” IEEE Transactions on Image

Processing, vol. 18, no. 6, pp. 1203–1214, Jun. 2009.

[126] A. Marouchos, M. Sherlock, A. Filisetti, and A. Williams, “Underwater imaging

on self-contained tethered systems,” in Proceedings OCEANS. Anchorage, USA:

IEEE, Sep. 2017.

[127] F. Westling, C. Sun, and D. Wang, “A modular learning approach for fish counting

and measurement using stereo baited remote underwater video,” in Proceedings In-

ternational Conference on Digital Image Computing: Techniques and Applications.

Wollongong, Australia: IEEE, Nov. 2014.

[128] C. Mulsow and H. Maas, “A universal approach for geometric modelling in underwa-

ter stereo image processing,” in Proceedings ICPR Workshop on Computer Vision

for Analysis of Underwater Imagery. Stockholm, Sweden: IEEE, Aug. 2014, pp.

49–56.

[129] E. Trucco and K. Plakas, “Video tracking: a concise survey,” IEEE Journal of

Oceanic Engineering, vol. 31, no. 2, pp. 520–529, Apr. 2006.

[130] M. Johnson-Roberson, S. Kumar, O. Pizarro, and S. Willams, “Stereoscopic imaging

for coral segmentation and classification,” in Proceedings OCEANS. Boston, USA:

IEEE, Sep. 2006.

[131] W. Xingang, “A research review of distributed computing system,” in Recent De-

velopments in Intelligent Computing, Communication and Devices. Springer, Aug.

2018, pp. 357–368.

178



References

[132] Apache Software Foundation, “Apache project directory,” projects.apache.org, Feb.

2019.

[133] B. Power and J. Weinman, “Revenue growth is the primary benefit of the cloud,”

IEEE Cloud Computing, vol. 5, no. 4, pp. 89–94, Jul. 2018.

[134] Qubole Inc., “Big data trends and challenges,” go.qubole.com, Oct. 2018.

[135] S. Zhelev and A. Rozeva, “Big data processing in the cloud - challenges and plat-

forms,” in Proceedings 43rd International Conference on Applications of Mathemat-

ics in Engineering and Economics. Sozopol, Bulgaria: AIP, Dec. 2017.

[136] J. N. Gomes-Pereira et al., “Current and future trends in marine image annotation

software,” Progress in Oceanography, vol. 149, pp. 106–120, Dec. 2016.

[137] V. Barale, “A supporting marine information system for maritime spatial planning:

the European atlas of the seas,” Ocean & Coastal Management, Dec. 2018.

[138] P. Liu, B. Wang, Z. Deng, and M. Fu, “INS/DVL/PS tightly coupled underwa-

ter navigation method with limited DVL measurements,” IEEE Sensors Journal,

vol. 18, no. 7, pp. 2994–3002, Apr. 2018.

[139] T. Zhang, L. Chen, and Y. Yan, “Underwater positioning algorithm based on

SINS/LBL integrated system,” IEEE Access, vol. 6, pp. 7157–7163, Jan. 2018.

[140] B. Wang, J. Zhu, Z. Deng, and M. Fu, “A characteristic parameter matching algo-

rithm for gravity-aided navigation of underwater vehicles,” IEEE Transactions on

Industrial Electronics, vol. 66, no. 2, pp. 1203–1212, Feb. 2019.

[141] Y. Chen, D. Zheng, P. A. Miller, and J. A. Farrell, “Underwater inertial navigation

with long baseline transceivers: a near-real-time approach,” IEEE Transactions on

Control Systems Technology, vol. 24, no. 1, pp. 240–251, Jan. 2016.

[142] Z. Song and K. Mohseni, “Long-term inertial navigation aided by dynamics of flow

field features,” IEEE Journal of Oceanic Engineering, vol. 43, no. 4, pp. 940–954,

Oct. 2018.

[143] P. Batista, “GES long baseline navigation with unknown sound velocity and discrete-

time range measurements,” IEEE Transactions on Control Systems Technology,

vol. 23, no. 1, pp. 219–230, Jan. 2015.

179



References

[144] Y. Han, C. Shi, D. Sun, and J. Zhang, “Research on integrated navigation algorithm

based on ranging information of single beacon,” Applied Acoustics, vol. 131, pp. 203–

209, Feb. 2018.

[145] C. Renner, “Packet-based ranging with a low-power, low-cost acoustic modem for

micro AUVs,” in Proceedings 11th ITG International Conference on Systems, Com-

munications and Coding. Hamburg, Germany: VDE, Feb. 2017.

[146] T. A. Sarmiento and R. R. Murphy, “Insights on obstacle avoidance for small un-

manned aerial systems from a study of flying animal behavior,” Robotics and Au-

tonomous Systems, vol. 99, pp. 17–29, Jan. 2018.

[147] F. Menna, P. Agrafiotis, and A. Georgopoulos, “State of the art and applications in

archaeological underwater 3D recording and mapping,” Journal of Cultural Heritage,

Oct. 2018.
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