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Abstract: Recent Japanese encephalitis virus (JEV) outbreaks in southeastern Australia have sparked 

interest into epidemiological factors surrounding the virus’ novel emergence in this region. Here, 

the geographic distribution of mosquito species known to be competent JEV vectors in the country 

was estimated by combining known mosquito occurrences and ecological drivers of distribution to 

reveal insights into communities at highest risk of infectious disease transmission. Species distribu-

tion models predicted that Culex annulirostris and Culex sitiens presence was mostly likely along 

Australia’s eastern and northern coastline, while Culex quinquefasciatus presence was estimated to 

be most likely near inland regions of southern Australia as well as coastal regions of Western Aus-

tralia. While Culex annulirostris is considered the dominant JEV vector in Australia, our ecological 

niche models emphasise the need for further entomological surveillance and JEV research within 

Australia.  
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1. Introduction 

On 10 February 2022, two outbreaks of Japanese encephalitis virus (JEV) were con-

firmed in piggeries in New South Wales (NSW) which reported high incidences of still-

births, abortions and piglets born with neurological disease [1]. Reports from the outbreak 

in Forbes, NSW state about a third of litters were impacted since at least the start of 2022 

[1]. By 25 February, nine piggeries reported JEV outbreaks, this time including production 

sites in the states of Queensland (QLD) and Victoria (VIC). Over the next month, more 

than fifty piggeries across NSW, VIC, QLD and South Australia (SA) reported infections, 

in addition to twenty-four confirmed human cases and three deaths [2]. Prior to these 

reports, JEV had only been sporadically detected in areas of northern Australia, specifi-

cally the Torres Strait Islands, since the virus’ first detection in 1995. The four cases rec-

orded on 2 March were the first reported human cases of JEV in southern Australia [3] 

and emphasise the virus’ expanding geographic range.  

JEV is a mosquito-borne flavivirus that circulates enzootically between vectors and 

amplifying hosts including Ardeid waterbirds and both domestic and feral pigs [4]. More 

than ten mosquito species have been identified as competent vectors, but Culex species 

are considered to be the most important epidemiologically due to zoophilic feeding pat-

terns [5]. While birds do not present with clinical disease, JEV infection in pigs can lead 

to abortion, weak and stillborn piglets, and infertility [6]. The virus can spill over to hu-

mans and other vertebrates via the bite of an infected female mosquito, but most are not 
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capable of producing high enough levels of viremia to infect a new vector. Dead-end hosts 

include humans, cattle, horses and some species of marsupials [6]. Around 50,000 human 

cases are reported globally each year with symptoms ranging from non-specific flu-like 

illness to severe encephalitis [5,7]. It is estimated only 1% of human cases are symptomatic. 

Of those who do experience clinical symptoms, the associated fatality rate is between 20 

and 30%, while 30 to 50% of survivors are left with long term, neurological disabilities 

[7,8]. No specific treatment is recommended; however, two vaccines are available for hu-

man use [5]. JEV is endemic in tropical regions, but viral spillover to humans in subtropi-

cal and temperate regions is associated with seasonality and above average rainfall, espe-

cially during La Nina weather events [5,9–12]. 

Associations between climatic variables, mosquito population dynamics and infec-

tious disease outbreak risk have been demonstrated repeatedly [13–16]. Monthly, or even 

daily, climate variations can alter vector ecology and subsequently arbovirus epidemiol-

ogy [12,17]. Aquatic survival rate, adult survival rate, susceptibility to viral infection, and 

the length of the extrinsic incubation period are significantly influenced by temperature 

for a plethora of mosquito species [14,18–29]. Additionally, rainfall and humidity have 

been noted to influence the longevity and abundance of vector breeding sites [9,13,30]. 

With regard to the Culex JEV vectors, higher temperatures have been associated with in-

creased viral replication and transmission among Cx. tritaeniorhynchus populations in Asia 

[31]. For Cx. annulirostris, larval development was found to range from 37 days at 15 °C 

and 8.75 days at 35 °C [32]. Greater than average rainfall events were determined to be 

associated with higher Culex species abundance, and flooding is associated with mosquito 

population growth [23,25]. 

A widely accepted approach for mapping species distributions is ecological niche 

modelling (ENM) [31,33], where niche is defined as the spectrum of optimal environmen-

tal conditions ideal for population persistence [34]. For example, researchers were able to 

determine that the maximum temperature of the warmest month, the mean temperature 

of the coldest quarter, elevation, precipitation of the driest month and precipitation of the 

driest quarter had the greatest impact on Cx. tritaeniorhynchus distribution compared to 

other bioclimate variables using ecological niche modelling techniques [35]. Ecologists 

have theorised that highest levels of arboviral disease transmission are most likely when 

environmental conditions fall within the niche of competent vectors [34]. However, many 

mosquito species are considered “ecological generalists” and can tolerate a broad range 

of environmental conditions. Additionally, JEV vectors are capable of breeding in a di-

verse array of habitats including groundwater microhabitats, tidal marshes, roadside 

ditches, rice fields and man-made containers [28]. 

Australia’s diverse biome is made up of tropical, subtropical and temperate zones, 

and its landcover, dominated by forests, rainforests, and grasslands [23], supports over 

300 different mosquito species with seventy-five currently recognised as important arbo-

viral vectors [23]. In Asia and Pacific Island nations, Culex (Cx.) tritaeniorhynchus is con-

sidered the primary JEV vector, and Cx. vishnui, Cx. gelidus, Cx. fuscocephala and Cx. pseu-

dovishnui have been established as secondary vectors [36,37]. A recently published review 

of important JEV vectors in Australia identified Cx. annulirostris as the primary JEV vector 

in the country after thorough consideration of viral competence, host-feeding patterns, 

species population dynamics and field detection studies [6]. Cx quinquefasciatus, Cx. gelidus 

and Cx. sitiens were highlighted as potential secondary vectors in Australia due to estab-

lished competence and regional abundance [6,7]. There is, however, limited information 

regarding the distributional range of Culex species in Australia. This study aims to better 

inform our understanding of the distributional range of JEV competent vectors across 

Australia by combining known vector occurrence records with ecological drivers of dis-

tribution to derive continental scale, spatially continuous estimates of species distribution. 

2. Materials and Methods 
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Models of species distribution were developed which linked species occurrence data 

with high resolution biotic and abiotic environmental data [34]. Mosquito presence data 

for Cx. annulirostris, Cx. quinquefasciatus and Cx. sitiens were taken from the online data-

bases VectorMap and the Atlas of Living Australia’s (ALA) [38–54]. These databases did 

not contain presence data for Cx. gelidus, as such, this species was excluded from further 

analyses. Records from ALA were downloaded using quality flags which automatically 

excluded records identified as unsuitable for use in species distribution modelling. This 

included records with spatial position quality issues and duplicate records. Presence rec-

ords from VectorMap were downloaded via the MosquitoMap attributes table. Responses 

were filtered to species = “annulirotris”, “quinquefasciatus” or “sitiens” and country = 

Australia. Coordinates for each species were combined from the two databases and com-

piled into separate .csv files formatted as species, longitude, and latitude for each species 

to be compatible with the species distribution modelling software requirements. Nine sec-

ond resolution (9s) climate variables with radiative and elevation lapse rate correction for 

continental Australia were obtained from the Commonwealth Scientific Industrial Re-

search Organisation (CSIRO) Data Access Portal [55]. Climate variables were based on Xu 

and Hutchinson’s ANUCLIM 6.1 thirty-year average between 1 January 1976 to 31 De-

cember 2005. All climate maps span between 8°0′0″ S to 43°44′33″ S latitude and 112°54′0″ 

E to 154°0′0″ E longitude. Temperature, precipitation and evaporation are given as annual 

means or totals and maximum and minimum monthly values (Table S1). Highly corre-

lated climate variables were removed via analysis in Python, where highly correlated was 

defined as greater than 90% correlation, reducing the included variables in each Maxent 

run from 25 to 15. 

Species distributions were estimated using the java-based, machine learning, maxi-

mum entropy modelling software, Maxent, version 3.4.4. Maxent runs using a presence-

background algorithm which uses simulated absence data when raw absence data is lim-

ited [34]. Maxent removed any duplicate presence records [56]. Model training used de-

viance, goodness of fit and generalised linear models to assess performance, involved the 

use of 10,000 randomly sampled background points and 75% of occurrence records. The 

remaining 25% of Culex species presence data was used solely for model testing. Species 

distribution models were created using the complementary log-log (cloglog) output, 

which provides a strong prediction of presence probability based on raw values, cumula-

tive thresholds, inhomogeneous Poisson process and independent species occurrence 

points [57]. Although mosquitoes naturally congregate in areas ideal for laying eggs and 

feeding [58], the cloglog transformation was chosen over the logistic transformation op-

tion in Maxent since each presence coordinate was provided as an independent record 

[57]. The choice of feature classes was catered to mosquito-specific biology as suggested 

by Merow et al. [59]. While there is evidence mosquitoes benefit from high temperatures, 

too high of temperatures have been noted to be associated with increased mortality [35]. 

Similarly, while abundant rainfall is essential for reproduction, high levels of rainfall may 

washout larvae leading to a decrease in mosquito abundance [60]. Therefore, Maxent was 

given the option of choosing between linear and quadratic feature classes since exact tem-

perature and precipitation values associated with the above scenarios are not well de-

fined. Maxent chose the linear feature type for each simulation. Additionally, Maxent was 

run with different regularisation multiplier values (0.1, 1, 10 and 100 where 1 is the default 

value). Models were compared based on area under the curve (AUC) values where a 

higher AUC value indicates better performance [33]. The highest AUC for both model 

testing and training were obtained from simulations where the regularisation multiplier 

was set at 0.1. Additional models were simulated using Maxent’s k-fold cross-validation 

technique for further ENM comparison and the creation of uncertainty maps for each spe-

cies. The number of replications was set to 10, and both cross-validation ENMs and un-

certainty maps are provided in the supplementary materials (Figure S2). 

The sampling efforts used in this study are likely influenced by bias, and therefore, 

Maxent results cannot be interpreted for insights on species abundance. However, A bias 
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file, obtained from Weiss et al. (2018), was added to each Maxent run with the aim of 

accounting for sampling and spatial bias [61]. The bias file represents the time it takes to 

travel to a population centre from any given location. The raster file was clipped to the 

extent of the Australian continent and then imported into ArcGIS to ensure its reference 

coordinate system, resolution and extent matched the climate files. The reference coordi-

nate system, resolution and extent were adjusted using the project, resample and clip tools 

in the ArcGIS Toolbox, respectively. Travel time values were inverted so areas closer to 

urban centres contributed more towards bias using the Map Algebra raster calculator tool 

in ArcMap. Because Maxent can only process .asc files with positive and non-zero values, 

the raster calculator was used once more to increase all file values by one, and the conver-

sion tool was used to convert the file from .tif to .asc. 

The probability of species presence for each of the three vectors of interest was esti-

mated between 0 and 1 for each pixel on the grid of species distribution maps. Raster files 

obtained via Maxent output were imported into ArcGIS version 10.7 to edit map symbol-

ogy. Australian state borders were added to model raster files by accessing ArcGIS online 

via ArcMap. Specific geographic locations are referred to by their colonial names and not 

by their traditional Indigenous names. 

Additional Maxent outputs of interest included jackknife analysis and sample aver-

ages files for each vector species. Only the outputs of Maxent runs using 25% of data for 

testing were evaluated; cross-validation jackknife and sample averages are not included 

in this review since an average file is produced for each model individually but not for 

the final output. Jackknife analysis assessed the importance of each climate variable in 

determining species distribution by measuring model performance using each climate 

variable in isolation and when each variable was omitted. Jackknife analysis plots using 

the receiving operating characteristic AUC for test data were chosen for further analysis. 

Jackknife analysis must be interpreted carefully for correlated environmental variables 

[39]. It is also important to note that environmental variable contribution rank is based on 

the most efficient algorithm for Maxent to run, therefore producing heuristic estimates. 

Sample averages files contained the average values for each environmental variable across 

all pixels based where species occurrence was recorded. 

3. Results 

3.1. Ecological Niche Models 

The ecological niche model (ENM) for Cx. annulirostris was simulated using 297 pres-

ence records for model training, 99 presence records for model testing and 10,297 random 

background points (Figure 1a). Regions with the highest probability of Cx. annulirostris 

presence were estimated to stretch from the Torres Strait Islands north of Cape York, 

Queensland (QLD) to southern New South Wales (NSW) along the coast, regions sur-

rounding Darwin in the Northern Territory (NT), and fragments of the northwestern coast 

of Western Australia (WA). Furthermore, a high probability of Cx. annulirostris presence 

was estimated inland where the borders of QLD, NSW and SA meet and regions of eastern 

Victoria (VIC) (Figure 1a). 
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Figure 1. Ecological niche models for (a) Cx. annulirostris, (b) Cx. quinquefasciatus and (c) Cx. sitiens 

estimated using the cloglog transformation in Maxent. Colours represent the continuous probability 

of mosquito presence where blue is very low and yellow is high. States are labelled by their abbre-

viated names in figure (c) were NT = Northern Territory, QLD = Queensland, NSW = New South 

Wales, ACT = Australian Capital Territory, VIC = Victoria, TAS = Tasmania, SA = South Australia 

and WA = Western Australia. 
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The ENM for Cx. quinquefasciatus was simulated using 190 presence records for train-

ing, 63 presence records for testing and 10,190 background points (Figure 1b). Geographic 

areas estimated to have the highest probability of Cx. quinquefasciatus presence include 

coastal regions spanning Australia’s eastern coast from Cooktown, QLD to Melbourne, 

VIC, coastal and inland regions surrounding the Yorke, Eyre and Fleurieu Peninsulas, as 

well as Kangaroo, Flinders and King Islands, in SA and Tasmania (TAS). Coastal areas in 

between Esperance and Perth, WA were also identified as high likelihood of Cx. quinque-

fasciatus occurrence as well as inland regions near the VIC-NSW border. 

Cx. sitiens ENMs were simulated using 72 and 23 presence records for training and 

testing, respectively in addition to 10,072 random background points (Figure 1c). Darwin, 

NT, the Torres Strait Islands and coastal regions in between Cooktown, QLD to south of 

Sydney, NSW were estimated to have a high probability of Cx. sitiens presence. No re-

gions within SA, WA, TAS, Australian Captial Territory (ACT) or VIC were estimated to 

have greater than a low probability of presence for Cx. sitiens (Figure 1c). Common re-

gions among all three vector species that were estimated to have a very low probability of 

presence include inland regions of TAS and Australia’s desert regions: Tanami, Great 

Sandy, Gibson, Great Victoria and Simpson Deserts (Figure 1). With regard to the uncer-

tainty maps produced via the cross-validation Maxent runs, uncertainty remained low 

with low values of standard deviation among all simulated models for all species (Figure 

S2). For Cx. quinquefasciatus, portions of the region known as the Murray-Darling Basin 

were highlighted with low levels of uncertainty (Figure S2b). Both Cx. annulirostris and 

Cx. quinquefasciatus uncertainty maps presented with low levels of uncertainty surround-

ing salt lakes in SA. The highest ENM uncertainty was found among Cx. sitiens outputs 

along the western coast of the Cape York Peninsula, QLD. 

3.2. Contribution of Environmental Variables 

Jackknife analysis revealed that aridity index and water deficit were important cli-

mate variables for predicting the distribution of all three mosquito species (Figure 2a–c). 

Environmental variables containing information on monthly temperature ranges were 

also found to be important in predicting species distribution ranges for Cx. annulirostris 

and Cx. quinquefasciatus (Figure 2a,b). Culex sitiens presence estimations relied heavily on 

information from the annual total actual evapotranspiration (modelled using terrain-

scaled MODIS) layer (Figure 2c). The jackknife test of variable importance also showed 

temperature variables, including annual temperature range and maximum monthly max-

imum temperature, were useful in determining the geographic distributions for Cx. quin-

quefasciatus (Figure 2b). 
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Figure 2. Jackknife analysis results for (a) Culex annulirostris, (b) Culex quinquefasciatus and (c) Culex 

sitiens where the blue line represents species distribution model gain when each climate layer is 

included on its own. Dark blue lines represent model performance when only the climate variable 

of interest was included, where the longer the dark blue bar, the higher the model gain which sug-

gests the variable contains information critical to mapping that species’ distribution. The red bar 

represents maximum model performance, while the light green bar represents model performance 

when that climate variable was excluded. Acronyms for each climate layer are defined as follows: 

adi (minimum monthly aridity index), adm (mean annual aridity index), adx (maximum monthly 

aridity index), eaa (annual total actual evapotranspiration, terrain-scaled using MODIS), epa (an-

nual potential evaporation), epi (minimum monthly potential evaporation), epx (maximum 

monthly potential evaporation), ptx (maximum monthly precipitation), tni (minimum tempera-

ture—monthly minimum), tra (annual temperature range), tri (minimum monthly mean diurnal 

temperature), trx (maximum monthly mean diurnal temperature), txx (maximum temperature—

monthly maximum), wda (annual atmospheric water deficit) and wdx (maximum monthly atmos-

pheric water deficit). 

Sample average values are included in Table S1. The average mean annual aridity 

indices for Cx. annulirostris, Cx. quinquefasciatus and Cx. sitiens were 0.77, 0.73 and 0.97, 

respectively (Table S1). The average minimum monthly and maximum monthly aridity 

indices based on all presence points were lower for Cx. annulirostris (0.20, 2.15, respec-

tively) than Cx. quinquefasciatus (0.24, 2.66) and Cx. sitiens (0.28, 2.47) (Table S1). It should 

be noted that average values for annual atmospheric water deficit were the lowest among 

Cx. quinquefasciatus occurrence points (Table S1). The average for annual total actual evap-

otranspiration using MODIS was highest for Cx. sitiens (Table S1). When comparing Cx. 

annulirostris and Cx. quinquefasciatus, total actual evapotranspiration, annual potential 

evaporation and the minimum monthly potential evaporation averages were higher for 

Cx. annulirostris (Table S1). Average values for minimum monthly mean diurnal temper-

ature were similar for Cx. annulirostris (9.31°C ) and Cx. quinquefasciatus (9.29°C ) but lower 

for Cx. sitiens (7.98) (Table S1). With regard to the average temperature range determined 
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based on mosquito species occurrence data, the annual temperature range was similar for 

Cx. quinquefasciatus (22.72 °C) and Cx. annulirostris (22.17 °C) followed by Cx. sitiens (18.86 

°C) (Table S1). 

4. Discussion 

Our ecological niche models (ENMs) revealed that all three Culex vectors considered 

in this report were estimated to have a high probability of presence (>0.6) in both densely 

populated urban areas and rural areas along Australia’s eastern coast (Figure S1). Figure 

1 provided a detailed view of the probability of presence using the full continuous infor-

mation from the ENM. For ease of interpretation, maps with manual probability classifi-

cations of very low (<0.09), low (0.09–0.29), medium (0.30–0.6) and high (>0.6) probability 

are provided in Figure S1. In the southern and western regions, Cx. quinquefasciatus pop-

ulations were estimated to have a high probability of presence, suggesting these popula-

tions can occupy a unique niche. The majority of confirmed human JEV cases connected 

to the 2022 outbreak were tied to the Riverina region—the area of land between the Mur-

rumbidgee River to the north and Murray River to the south [2]. The niche models esti-

mate this region to be medium to high probability for both Cx. annulirostris and Cx. quin-

quefasciatus presence and low probability for Cx. sitiens (Figure S1). 

Based on our models, both Cx. annulirostris and Cx. quinquefasciatus were estimated 

to have  some likelihood of presence in over one-third of the Australian continent sup-

porting the idea that various landcover types and water habitats support mosquito pop-

ulations in Australia. The typical aquatic habitat utilised by Cx. annulirostris is shallow, 

vegetated freshwater, although larvae have been detected in a wide range of freshwater 

habitats including irrigation drains, dams, semi-permanent and permanent groundwater 

pools and flooded grasslands [15,21,24]. Culex quinquefasciatus immatures are commonly 

found among water with high concentrations of organic content such as sewers, ground 

pools, ditches or cesspools [6,62] including those contaminated with pig feces. Culex spe-

cies’ ability to feed on a variety of vertebrate hosts, especially Cx. sitiens, Cx. annulirostris 

and Cx. quinquefasciatus, may also contribute to their widespread presence and the greater 

potential for encountering arboviruses with zoonotic risk [6,63]. Culex sitiens were esti-

mated to have a narrower geographic distribution along Australia’s eastern coast and a 

medium to high probability of presence in coastal regions surrounding Darwin, NT. Pop-

ulations of Cx. sitiens are typically associated with coastal habitats ranging from flooded 

saltmarshes, puddles or rock pools [62]. 

Jackknife analysis revealed aridity and water deficit, specifically the mean annual 

aridity index and annual atmospheric water deficit, ranked among the most important 

variables for the creation of all three species models. Variables containing information re-

garding evaporation and temperature were also identified as holding important infor-

mation critical for species distribution model development. Minimum average tempera-

ture values produced by Maxent were the lowest for Cx. quinquefasciatus which may sug-

gest increased likelihood of presence in temperate regions compared to Cx. sitiens and Cx. 

annulirostris. Alternatively, ENMs focused on Cx. quinquefasciatus in China estimated pop-

ulations were most likely to be discovered inland or along the southeastern coast closer to 

the tropics [11]. It appears the ratio between evaporation and precipitation was more in-

formative to the models than precipitation levels alone. While all three species’ distribu-

tions were strongly influenced by humidity (aridity index > 0.6), differences in evapora-

tion, precipitation and temperature, these variables are correlated via the hydrological cy-

cle, and therefore, conclusions regarding the role of moisture in predicting each species’ 

niche are limited. Previous research has established that Culex populations thrive in the 

presence of widespread, flooded habitats caused by above average rainfall, highlighting 

the connection between higher than average La Nina rainfall in Australia in 2022 and sub-

sequent rise in JEV cases [24]. 

Arbovirus disease modelling is complicated by complex transmission cycles but 

strengthened with a robust understanding of disease ecology. JEV outbreaks are difficult 
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to predict due to complex interactions between environmental conditions, vectors, hosts 

and anthropogenic activity related to political, economic and social determinants. While 

our ENMs reveal geographic locations where three JEV vectors are likely to be present, 

they do not give insight into JEV risk or mosquito population abundance. In Australia, 

Cx. annulirostris presence and abundance vary within and between years [25]. Larvae are 

found during the hotter and wetter months of the year, typically between January to 

March [64]. Adults are generally present throughout the year and are reported to survive 

overwinter, suggesting the potential for JEV transmission year-round, although Cx. annu-

lirostris population growth slows over the winter months and dry season [25]. A study 

looking at differences in Cx. annulirostris survival between populations in Townsville 

(QLD), Brisbane (QLD) and Murray Valley (VIC) concluded that each population was de-

pendent on different thermal requirements [15]. Furthermore, some Culex species are ca-

pable of dispersing long distances from their larval habitats. Both low and high wind 

speeds have been associated with mosquito dispersal up to hundreds of kilometres, espe-

cially winds associated with tropical cyclones [23]. One study noted that with wind, Cx. 

annulirostris mosquitoes dispersed an average of 150 km from their larval sites with the 

maximum distance dispersed being 594 km [6]. On the other hand, the flight range of Cx. 

quinquefasciatus is estimated to be less than 2 km [62]. Some arbovirus experts suspect 

wind as the culprit behind the introduction of JEV from Papua New Guinea to the Torres 

Strait Islands in 1995 [23]. The ENMs simulated for JEV vectors in Australia should be 

compared with reported human cases and populations of amplifying hosts to consider the 

full ecology of JEV transmission. 

It is critical to mention that species distributions created by Maxent are strictly esti-

mates since no absence data was provided during simulations. An additional limitation is 

that Maxent does not consider vector-specific population dynamics including survivor-

ship, fecundity nor predation rate, and these models may fail to capture local-level mos-

quito dynamics such as life history traits and mosquito immunity. While model sensitivity 

was high for all ENMs, model uncertainty could be further reduced by combining infor-

mation from mechanistic species distribution models and further entomological research 

focused on Culex species. While these models do not predict JEV risk, they can inform 

vector control and sampling strategies. Surveillance efforts should especially be strength-

ened among areas noted as uncertain since the western coast of the Cape York Peninsula 

is notorious for other arbovirus outbreaks including New Mapoon Virus and the West 

Nile Virus strain Kunjin as well as inland regions of the Murray-Darling Basin where the 

incidence of JEV cases was the highest (Figure S2). While attempts were made to account 

for spatial and sampling bias, result interpretation is further limited by a lack of true ab-

sence data and the inclusion of solely Australian occurrence records. Since the occurrence 

data used in this review is restricted to the Australian continent, interpretations are lim-

ited to the study area, and thus, exclude each species’ globally occupied niche potentially 

leading to an underestimation of their distributions (Figure S3). However, arbovirus and 

entomological literature have emphasized the strength of regional occurrence and climate 

data for estimating distributions, as different strains of mosquito species are noted to have 

different environmental tolerances within Australia and throughout the Pacific Islands 

[6,15,18,19,23]. More research on temperature-dependent traits and the role of microcli-

mates is needed for each JEV vector species to determine their unique ecological niche. 

Other suspected JEV vectors in Australia include Cx. gelidus, Cx. tritaeniorhynchus, Cx. bi-

taeniorhynchus, Cx. australicus, Cx. molestus, Aedes vigilax, Aedes notoscriptus and Mansonia 

species [6]. 

Future studies should investigate associations between genomic differences and JEV 

transmission ability among different mosquito species and JEV genotypes. Evidence sug-

gests Cx. annulirostris is a more competent vector for JEV G-II compared to JEV G-I [6]. 

There are five different JEV genotypes, and G-IV was recorded as the circulating genotype 

during the southern Australian outbreak. JEV competency was also found to vary among 

different lineages of Cx. annulirostris, with lineages ann-PNG1 and ann-PNG2 discovered 
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to be competent for JEV G-I but not for G-II [6]. Future research should also aim to under-

stand how rates of climate and land use changes, species adaptation and resilience will 

influence pathogen, vector and host geographic distribution and burden of disease. The 

Representative Concentration Pathway (RCP) scenario level 8.5, defined as 940 ppm of 

CO2 in the atmosphere by 2100, predicts a mean temperature increase of 2.8 to 5.1 °C, both 

excessively high and low levels of precipitation, and lower humidity levels, specifically in 

inland Australia, throughout the winter and spring. There is no doubt climate change will 

impact mosquito population abundance, diversity and peak and duration of JEV out-

breaks. 

5. Conclusions 

We have estimated the presence probability of three of the likely JEV vectors in Aus-

tralia. Although our study has several limitations, it also helps identify critical data gaps 

for understanding JEV transmission in Australia. Our results emphasise the importance 

of regional entomological surveillance, citizen science and a One Health perspective for 

unravelling ecological dynamics of zoonotic arboviruses. 
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per and global datasets. 

Author Contributions: Conceptualisation, M.F., A.A., R.I.H., A.H., M.G., P.H. and T.R.; methodol-

ogy, M.F., A.H. and R.I.H.; validation, A.H. and R.I.H.; formal analysis, M.F.; investigation, M.F.; 

data curation, M.F., A.H. and M.G.; writing—original draft preparation, M.F.; writing—review and 

editing, A.A., R.I.H., P.H., M.G., A.H. and T.R.; visualisation, M.F., A.H., R.I.H. and M.G.; supervi-

sion, R.I.H. and P.H. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Ethical review and approval were waived for this study 

since mosquito capture data were obtained from publicly available databases. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data presented in this study are available on request from the 

corresponding author.  

Acknowledgments: All authors recognise the Aboriginal and Torres Strait Islander peoples as the 

traditional owners of Australia and acknowledge their ancestors—past, present and emerging. We 

would also like to acknowledge Maxine Whittaker for her ongoing support. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Japanese Encephalitis-Australia (02): (Queensland, New South Wales, Victoria) Pig OIE. Available online: https://promed-

mail.org/promed-post/?id=20220304.8701778 (accessed on 20 May 2022). 

2. Japanese Encephalitis-Australia (18): Human, Pig, Update. Available online: https://promedmail.org/promed-

post/?id=20220415.8702625 (accessed on 20 May 2022). 

3. Japanese Encephalitis-Australia (03): (VI, QL) Spread. Available online: https://promedmail.org/promed-

post/?id=20220305.8701785 (accessed on 20 May 2022). 

4. Walsh, M.G.; Pattanaik, A.; Vyas, N.; Saxena, D.; Webb, C.; Sawleshwarkar, S.; Mukhopadhyay, C. High-risk landscapes of 

Japanese encephalitis virus outbreaks in India converge on wetlands, rain-fed agriculture, wild Ardeidae, and domestic pigs 

and chickens. Int. J. Epidemiol. 2022, 25, 1408–1418. https://doi.org/10.1093/ije/dyac050. 

5. Park, S.L.; Huang, Y.-J.S.; Vanlandinham, D.L. Re-examining the importance of pigs in the transmission of Japanese encephalitis 

virus. Pathogens 2022, 11, 575. https://doi.org/10.3390/pathogens11050575. 

6. van den Hurk, A.F.; Skinner, E.; Ritchie, S.A.; Mackenzie, J.S. The emergence of Japanese encephalitis virus in Australia in 2022: 

Existing knowledge of mosquito vectors. Viruses 2022, 14, 1208. https://doi.org/10.3390/v14061208. 



Trop. Med. Infect. Dis. 2022, 7, 393 12 of 14 
 

 

7. van den Eynde, C.; Sohier, C.; Matthijs, S.; De Regge, N. Japanese encephalitis virus interaction with mosquitoes: A review of 

vector competence, vector capacity and mosquito immunity. Pathogens 2022, 11, 317. https://doi.org/10.3390/pathogens11030317. 

8. Ladreyt, H.; Chevalier, V.; Durand, B. Modelling Japanese encephalitis virus transmission dynamics and human exposure in a 

Cambodian rural multi-host system. PLoS Negl. Trop. Dis. 2022, 16, e0010572. https://doi.org/10.1371/journal.pntd.0010572. 

9. Bi, P.; Zhang, Y.; Parton, K.A. Weather variables and Japanese encephalitis in the metropolitan area of Jinan city, China. J. Infect. 

2007, 11, 551–556. https://doi.org/10.1016/j.jinf.2007.07.004. 

10. Khan, M.D.; Vu, H.H.T.; Lai, Q.T.; Ahn, J.W. Aggravation of Human Diseases and Climate Change Nexus. Int. J. Environ. Res. 

Public Health 2019, 16, 2799. https://doi.org/10.3390/ijerph16152799. 

11. Samy, A.M.; Alkishe, A.A.; Thomas, S.M.; Wang, L.; Zhang, W. Mapping the potential distributions of etiological agent, vectors, 

and reservoirs of Japanese Encephalitis in Asia and Australia. Acta Trop. 2018, 188, 108–117. https://doi.org/10.1016/j.actatrop-

ica.2018.08.014. 

12. Yi, L.; Xu, X.; Ge, W.; Xue, H.; Li, J.; Li, D.; Wang, C.; Wu, H.; Liu, X.; Zheng, D.; et al. The impact of climate variability on 

infectious disease transmission in China: Current knowledge and further directions. Environ. Res. 2019, 173, 255–261. 

https://doi.org/10.1016/j.envres.2019.03.043. 

13. Jemal, Y.; Al-Thukair, A.A. Combining GIS application and climatic factors for mosquito control in Eastern Province, Saudi 

Arabia. Saudi J. Biol. Sci. 2018, 25, 1593–1602. https://doi.org/10.1016/j.sjbs.2016.04.001. 

14. Yang, H.M.; Macoris, M.L.G.; Galvani, K.C.; Andrighetti, T.M.; Wanderley, D.M.V. Assessing the effects of temperature on the 

population of Aedes aegypti, the vector of dengue. Epidemiol. Infect. 2009, 137, 1188–1202. 

15. Rae, D.J. Survival and development of the immature stages of Culex annulirostris (Diptera: Culicidae) at the Ross River Dam in 

tropical eastern Australia. J. Clin. Epidemiol. 1990, 27, 756–762. 

16. Wang, Y.; Zhong, D.; Cui, L.; Lee, M.-C.; Yang, Z.; Yan, G.; Zhou, G. Population dynamics and community structure of Anopheles 

mosquitoes along the China-Myanmar border. Parasites Vectors 2015, 8, 445. https://doi.org/10.1186/s13071-015-1057-1. 

17. Toi, C.S.; Webb, C.; Haniotis, J.; Clancy, J.; Doggett, S.L. Seasonal activity, vector relationships and genetic analysis of mosquito-

borne Stratford virus. PLoS ONE 2017, 12, e0173105. https://doi.org/10.1371/journal.pone.0173105. 

18. Russel, R.C. Age composition and overwintering of Culex annulirostris skuse (Diptera-Cuclicidae) near Deniliquin, in the Mur-

ray Valley of New South Wales. Aust. J. Entomol. 1987, 26, 93–96. 

19. Shocket, M.S.; Ryan, S.J.; Mordecai, E.A. Temperature explains broad patterns of Ross River virus transmission. eLife 2018, 7, 

e37762. https://doi.org/10.7554/eLife.37762. 

20. Kay, B.H.; Fanning, I.D.; Mottram, P. The vector competence of Culex annulirostris, Aedes sagax and Aedes alboannulatus for Mur-

ray Valley encephalitis virus at different temperatures. Med. Vet. Entomol. 1989, 3, 107–112. 

21. Mottram, P.; Kay, B.H.; Kettle, D.S. The effect of temperature on eggs and immature stages of Culex annulirostris skuse (Diptera: 

Culicidae). Aus. J. Ent. 1986, 25, 131–136. https://doi.org/10.1111/j.1440-6055.1986.tb01092.x. 

22. Gorris, M.E.; Bartlow, A.W.; Temple, S.D.; Romero-Alvarez, D.; Shutt, D.P.; Fair, J.M.; Kaufeld, K.A.; Del Valle, S.Y.; Manore, 

C.A. Updated distribution maps of predominant Culex mosquitoes across the Americas. Parasites Vectors 2021, 14, 547. 

https://doi.org/10.1186/s13071-021-05051-3. 

23. Madzokere, E.T.; Hallgren, W.; Sahin, O.; Webster, J.A.; Webb, C.E.; Mackey, B.; Herrero, L.J. Integrating statistical and mecha-

nistic approaches with biotic and environmental variables improves model predictions of the impact of climate and land-use 

changes on future mosquito-vector abundance, diversity and distributions in Australia. Parasites Vectors 2020, 13, 484. 

https://doi.org/10.1186/s13071-020-04360-3. 

24. Liu, J.; Hansen, A.; Cameron, S.; Williams, C.; Fricker, S.; Bi, P. Using ecological variables to predict Ross River virus disease 

incidence in South Australia. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 1045–1053. https://doi.org/10.1093/trstmh/traa201. 

25. Kay, B.H. Seasonal abundance of Culex annulirostris and other mosquitoes at Kowanyama, North Queensland, and Charleville, 

South West Queensland. Aust. J. Exp. Biol. Med. Sci. 1979, 57, 497–508. 

26. Agarwal, A.; Parida, M.; Dash, P.K. Impact of transmission cycles and vector competence on global expansion and emergence 

of arboviruses. Rev. Med. Virol. 2017, 27, e1941. 

27. Impoinvil, D.E.; Solomon, T.; Schluter, W.W.; Rayamajhi, A.; Bichha, R.P.; Shakya, G.; Caminade, C.; Baylis, M. The Spatial 

Heterogeneity between Japanese Encephalitis Incidence Distribution and Environmental Variables in Nepal. PLoS ONE 2011, 

6, e22192. https://doi.org/10.1371/journal.pone.0022192. 

28. Keiser, J.; Maltese, M.F.; Erlanger, T.E.; Bos, R.; Tanner, M.; Singer, B.H.; Utzinger, J. Effect of irrigated rice agriculture on Japa-

nese encephalitis, including challenges and opportunities for integrated vector management. Acta Trop. 2005, 95, 40–57. 

https://doi.org/10.1016/j.actatropica.2005.04.012. 

29. Hettiarachchige, C.; Von Cavallar, S.; Lynar, T.; Hickson, R.I.; Gambhir, M. Risk prediction system for dengue transmission 

based on high resolution weather data. PLoS ONE 2018, 13, e0208203. https://doi.org/10.1371/journal.pone.0208203. 

30. Liu, Y.; Tao, H.; Yu, Y.; Yue, L.; Xia, W.; Zheng, W.; Ma, H.; Liu, X.; Chen, H. Molecular differentiation and species composition 

of genus Culicoides biting midges (Diptera: Ceratopogonidae) in different habitats in southern China. Vet. Parasitol. 2018, 254, 

49–57. https://doi.org/10.1016/j.vetpar.2018.02.035. 

31. Miller, R.H.; Masuoka, P.; Klein, T.A.; Kim, H.-C.; Somer, T.; Grieco, J. Ecological Niche Modeling to Estimate the Distribution 

of Japanese Encephalitis Virus in Asia. PLoS Negl. Trop. Dis. 2012, 6, e1678. https://doi.org/10.1371/journal.pntd.0001678. 

32. McDonald, G.; McLaren, I.W.; Shelden, G.P.; Smith, I.R. The effect of temperature on the population growth potential of Culex 

annulirostris Skuse (Diptera: Culicidae). Austral Ecol. 1980, 5, 379–384. https://doi.org/10.1111/j.1442-9993.1980.tb01260.x. 



Trop. Med. Infect. Dis. 2022, 7, 393 13 of 14 
 

 

33. Liu, B.; Gao, X.; Zheng, K.; Ma, J.; Jiao, Z.; Xiao, J.; Wang, H. The potential distribution and dynamics of important vectors Culex 

pipiens pallens and Culex pipiens quinquefasciatus in China under climate change scenarios: An ecological niche modelling ap-

proach. Pest Manag. Sci. 2020, 76, 3096–3107, https://doi.org/10.1002/ps.5861. 

34. Escobar, L.E. Ecological niche modeling: An introduction for veterinarians and epidemiologists. Front. Vet. Sci. 2020, 7, 519059. 

https://doi.org/10.3389/fvets.2020.519059. 

35. Liu, B.; Gao, X.; Ma, J.; Jiao, Z.; Xiao, J.; Wang, H. Influence of host and environmental factors on the distribution of the Japanese 

encephalitis vector Culex tritaeniorhynchus in China. Int. J. Environ. Res. Public Health 2018, 15, 1848. 

https://doi.org/10.3390/ijerph15091848. 

36. Walsh, M.G.; Pattanaik, A.; Vyas, N.; Saxena, D.; Webb, C.; Sawleshwarkar, S.; Mukhopadhyay, C. A biogeographical descrip-

tion of the wild waterbird species associated with high-risk landscapes of Japanese encephalitis virus in India. Transbound. 

Emerg. Dis. 2022, 69, e3015–e3023. https://doi.org/10.1111/tbed.14656. 

37. van den Hurk, A.F.; Pyke, A.T.; Mackenzie, J.S.; Hall-Mendelin, S.; Ritchie, S.A. Japanese encephalitis virus in Australia: From 

known known to known unknown. Trop. Med. Infect. Dis. 2019, 4, 38. https://doi.org/10.3390/tropicalmed4010038. 

38. Atlas of Living Australia. Occurrence. Available online: https://biocache.ala.org.au/occur-

rences/search?q=lsid%3Aurn%3Alsid%3Abiodiversity.org.au%3Aafd.taxon%3Aa5a412f0-f4b1-4030-a331-4295a7489f18&quali-

tyProfile=ALA (accessed on 29 June 2022). 

39. Atlas of Living Australia. Occurrence Available online: https://biocache.ala.org.au/occur-

rences/search?q=lsid%3Aurn%3Alsid%3Abiodiversity.org.au%3Aafd.taxon%3A3aa1354b-04fe-45c5-92d8-9316a8ee8598&qual-

ityProfile=ALA (accessed on 30 June 2022). 

40. Atlas of Living Australia. Occurrence Available online: https://biocache.ala.org.au/occur-

rences/search?q=lsid%3Aurn%3Alsid%3Abiodiversity.org.au%3Aafd.taxon%3Added5595-7a7f-4750-86a8-

e443daec9ddd&qualityProfile=ALA (accessed on 15 July 2022). 

41. The VectorMap Data Portal. The school of Integrative Biology at the University of Queensland, Australia Army Malaria Insti-

tute, Walter Reed Biosystematics Unit. Available online: http://www.vectormap.si.edu (accessed on 15 August 2022). 

42. Australian National Insect Collection. Available online: https://www.csiro.au/en/about/facilities-collections/collections/anic 

(accessed on 15 August 2022). 

43. Department of Planning, Industry and Environment representing the State of New South Wales. Available online: 

https://www.planning.nsw.gov.au/ (accessed on 15 August 2022). 

44. OZCAM (Online Zoological Collections of Australian Museums). Available online: https://ozcam.org.au/ (accessed on 15 Au-

gust 2022). 

45. Australian Museum Entomology Collection. Available online: https://australian.museum/learn/collections/natural-science/en-

tomology/ (accessed on 15 August 2022). 

46. Australian Museum. Available online: http://australianmuseum.net.au/ (accessed on 15 August 2022). 

47. Commonwealth Scientific and Industrial Research Organisation. Available online: https://www.csiro.au/en/ (accessed on 15 

August 2022). 

48. BowerBird. Available online: bowerbird.org.au (accessed on 15 August 2022). 

49. BioNet Species Sightings occurrence data held by the NSW Office of Environment and Heritage (OEH). The BioNet repository 

holds data from a number of sources and custodians. Available online: https://www.environment.nsw.gov.au/topics/animals-

and-plants/biodiversity/nsw-bionet (accessed on 15 July 2022). 

50. iNaturalist contributors. iNaturalist.org: iNaturalist Research-grade Observations. Occur. Dataset 2022. 

https://doi.org/10.15468/ab3s5x. 

51. iNaturalist contributors. iNaturalist.org: iNaturalist Research-Grade Observations. Available online: http://www.gbif.org/da-

taset/50c9509d-22c7-4a22-a47d-8c48425ef4a7 (accessed on 16 March 2017). 

52. Museums Victoria. Available online: http://museumvictoria.com.au/ (accessed on 15 August 2022). 

53. Museums Victoria Entomology and Arachnology Collection. Available online: https://collections.museumsvictoria.com.au/col-

lections/14172 (accessed on 15 August 2022). 

54. Australian National Insect Collection, CSIRO. Available online: https://www.csiro.au/en/research/animals/insects (accessed on 

15 August 2022). 

55. Harwood, T.; Donohue, R.; Harman, I.; McVicar, T.; Ota, N.; Perry, J.; Williams, K. 9s Climatology for Continental Australia 

1976-2005: Summary Variables with Elevation and Radiative Adjustment. 2019. Available online: https://data.csiro.au/collec-

tion/csiro:32093?q=Hawood&_st=kword&_str=125&_si=8 (accessed on 12 July 2022). 

56. Phillips, S.J. A Brief Tutorial on Maxent. Available online: https://biodiversityinformat-

ics.amnh.org/open_source/maxent/Maxent_tutorial2017.pdf (accessed on 7 July 2022). 

57. Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: an open-source release of Maxent. 

Ecography 2017, 40, 887–893. https://doi.org/10.1111/ecog.03049. 

58. CDC. What Mosquito Control Programs Do. Available online: https://www.cdc.gov/mosquitoes/mosquito-control/commu-

nity/what-mosquito-control-programs-do.html? (accessed on 16 June 2022). 

59. Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modelling species’ distributions: What it does, and why 

inputs and settings matter. Ecography 2013, 36, 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x. 



Trop. Med. Infect. Dis. 2022, 7, 393 14 of 14 
 

 

60. Kurane, I.; Shibasaki, K.-I.; Kotaki, A.; Hijioka, Y.; Takasaki, T. The effect of precipitation on the transmission of Japanese en-

cephalitis virus in nature: A complex effect on antibody-positive rate to JE virus in sentinel pigs. Int. J. Environ. Res. Public Health 

2013, 10, 1831–1844. https://doi.org/10.3390/ijerph10051831. 

61. Weiss, D.J. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 2018, 553, 333. 

https://doi.org/10.1038/nature25181. 

62. Webb, C.; Russell, R.; Doggett, S. A guide to mosquitoes of Australia. Available online: https://ebooks.publish.csiro.au/con-

tent/9780643104464/9780643104464 (accessed on 23 June 2022). 

63. Stephenson, E.B.; Murphy, A.K.; Jansen, C.C.; Peel, A.J.; McCAllum, H. Interpreting mosquito feeding patterns in Australia 

through an ecological lens: an analysis of blood meal studies. Parasites Vectors 2019, 12, 156. https://doi.org/10.1101/492934. 

64. Mottram, P.; Kettle, D.S. Development and survival of immature Culex annulirostris mosquitoes in southeast Queensland. Med. 

Vet. Entomol. 1997, 11, 181–186. https://doi.org/10.1111/j.1365-2915.1997.tb00311.x.  

65. esri. Data Classification Methods. Available online: https://pro.arcgis.com/en/pro-app/latest/help/mapping/layer-proper-

ties/data-classification-methods.htm (accessed on 10 September 2022). 


