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A linear temporal stability analysis is conducted for inviscid sheared convective

boundary layer flow, in which the sheared instability with stable stratification co-

exists with and caps over the thermal instability with unstable stratification. The

classic Taylor-Goldstein equation is applied with different stratification factors Js

and Jb in the Brunt-Väisälä frequency, respectively. Two shear-thermal hybrid in-

stabilities, the hybrid shear stratified (HSS) and hybrid Rayleigh–Bénard (HRB)

modes, are obtained by solving the eigenvalue problems. It is found that the tem-

poral growth rates of the HSS and HRB modes vary differently with increased Jb in

two distinct wavenumber (α̃) regions defined by the intersection point between the

stability boundaries of the HSS and HRB modes. Based on Jb,cr where the temporal

growth rate of the HSS and HRB are equal, a map of the unique critical boundary,

which separates the effective regions of the HSS and HRB modes, is constructed and

found to be dependent on Js, Jb and α̃. The examinations of the subordinate eigen-

functions indicate that the shear instability is well developed in the HSS mode, in

which the large vortex structures may prevail and suppress the formation of convec-

tive rolls; the shear instability in the HRB mode is either ‘partly developed’ when

Jb < Jb,cr or ‘undeveloped’ when Jb > Jb,cr, thus only plays a secondary role to mod-

ify the dominant convective rolls; and as Jb increases the eigenfunctions of the HSS

mode exhibit different transitional behaviors in the two regions, signifying the ‘shear

enhancement’ and ‘shear sheltering’ of the entrainment of buoyancy flux.

a)Electronic mail: wenxian.lin@jcu.edu.au.
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I. INTRODUCTION

In nature and engineering applications, sheared and thermally convective flows driven by

the bulk pressure and temperature/density gradient usually coexist and interact with each

other, leading to more complicated shear-thermal interactive instabilities and the associated

phenomena than either the shear instability or the thermal instability alone. For instance,

the Rayleigh–Bénard–Poiseuille (RBP) is a mixed-convective flow, where the shear and

thermal instabilities concur in a single unstably stratified layer. Different from the pure

Rayleigh–Bénard mode, in the RBP flow the transverse and longitudinal rolls may appear

even at very low Rayleigh and Reynolds numbers as a result of the shear from the boundary

layer flow, which also introduces the convective and absolute instabilities as well as their

transitions to turbulence in the flow system1–3. If more than one unstably stratified layer are

involved, the RBP flow becomes the stratified Rayleigh–Bénard–Poiseuille (SRBP) flow4–6,

in which the dynamics of the interface in-between different unstably stratified layers further

complicates the flow system, e.g., a mushroom shape interface was observed in recent work6.

Previous studies on the shear-thermal interactive instability have focused on the scenarios

where a single or multiple unstable stratified layer(s) prevail. In nature, however, a stably

stratified layer could also coexist with an unstably stratified one, e.g., in the atmospheric

and oceanic boundary layers. In addition, the shear instabilities are not limited to the

boundary layer flow either. For instance, the shear instability could initiate internally in

an unbounded sheared flow, e.g., the Kelvin-Helmholtz (KH) instability, which involves the

prominent vortex structures with large length scales, e.g., the billows and overturning waves

observed in cloud and upper oceans. If the KH or other shear instabilities with large scale

vortex structures coincide with the thermal instability, different hydrodynamics are highly

anticipated.

Thus, the present study focuses on a different shear-thermal interactive flow, in which

the sheared instability with stable stratification coexists with and caps over the thermal

instability with unstable stratification. Such a shear-thermal interactive flow is called the

sheared convective boundary layer (SCBL) flow by the community of the atmosphere sci-

ence7. SCBL flows usually prevail in geophysical and atmospheric boundary layers where the

entrainment and the resultant mixing processes between the stable and unstable stratified

layers are significant, such as the clear atmospheric boundary layer during the fair weather
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condition8–10, the turbulent mixing in the upper ocean layer11,12, and the water quality in

reservoirs13, among others. The understanding of the dynamics within SCBL flows is cru-

cial for accurate modeling of complex phenomena, such as pollution dispersion8,14,15 and

clouds formation16 in the atmospheric boundary layer. SCBL flows can also exist when the

thermally unstable stratification is induced by urban regions17–19 as an example. In addi-

tion, SCBL flows may also exist in the engineering scenarios where the shear and thermal

instabilities interact in the environments where multi-stratified layers could exist, e.g., the

fire-induced smoke transportation20–22, liquid metal batteries23, petroleum industry24 and so

on.

Figure 1 shows the schematic of a typical SCBL flow usually existing in the atmospheric

boundary layer, which consists of three sub-layers: the bottom unsheared stratified layer in

which the thermal instability is produced by the linear unstable stratification; the middle

sheared stratified layer where the shear instability is triggered from the hyperbolic profiles

of the base velocity and stable stratification (it is also called the inversion layer25,26); and

the free upper layer where the flow is unsheared and at an uniform temperature. In this

study, the base flow state for the SCBL flow is selected as,

U∗(z∗) =
∆u∗,0

2
tanh(z∗), −L < z∗ ≤ L,

θ∗(z∗) =











∆θ∗,0
2

tanh(z∗), −L < z∗ ≤ L,

∆θ∗,0
2

{

−(θb − θs)

Lb
z∗ +

[

θs −
L(θs − θb)

Lb

]}

, (−Lb − L) ≤ z∗ ≤ −L,



























(1)

where U∗ is the horizontal base flow velocity in the x∗ direction, θ∗ is temperature, z∗ is the

vertical coordinate (z∗ = 0 is at the middle height of the sheared stratified layer), L and

Lb are the length scales of the stable and unstable stratifications, θb and θs represent the

temperatures at the bottom heated surface and the interface, respectively, ∆u∗,0 and ∆θ∗,0

represent the velocity and temperature differences across the central sheared and stratified

layer, respectively. It should be mentioned that based on the function of tanh, the central

shear stratified layer is already in the range where most of its velocity and temperature

vary within z ∈ [−L/2, L/2]. Yet, to allow tanh function sufficiently approximating its

asymptotic values, we extend the overall sheared stratified layer to z ∈ [−L, L], which is twice

of its effective length scale within z ∈ [−L/2, L/2]. The dimensionalization of perturbation

equation and base flow will be presented in the next section. For the SCBL flows considered

here, it is appropriate to assume the Oberbeck-Boussinesq approximation for buoyancy, so
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the buoyancy is b = γθ, where γ is the thermal expansion coefficient, and the profile of θ

is also applicable for b. The typical hyperbolic profiles of U∗ and θ∗ in the central sheared

stratified layer allow the formation of prominent vortex structures and are commonly used

in the previous studies on the pure shear stratified flow27–34. The linear profile of θ∗ at

the bottom unsheared stratified layer inherits those usually applied in the linear analysis of

the pure thermal convection35 and the convective boundary layer (CBL)36,37. Such a linear

unstable stratification is also similar to the temperature and buoyancy flux profiles applied

in the previous bulk model development for the SCBL flow as will be reviewed subsequently.

z*=-L

Interface

z*=0

Entrainment
zone

z*
Unsheared
stratified
layer

Sheared
stratified
layer

qs

qb

q*U*

Lb

L

Free
upper
layer

x*

FIG. 1. Schematic of the SCBL flow represented by Eq. (1), where x∗ and z∗ represent the

streamwise and vertical coordinate, respectively. The dash line represents the central line z∗ = 0

of the U∗ and θ∗ profiles. The bold line represents the interface between the stable and unstable

stratifications at z∗ = −L.

An interface layer is formed around z∗ = −L, with its lower end at the height in the

bottom unsheared stratified layer where the temperature is the same as that in the free

upper layer, which should be between θb and θs, where the uprising thermally convective

flux penetrates through and further mixes into the interior of the sheared stratified layer.

Reversely, the potential existences of the shear instability and stable stratification constantly

modify the development of the bottom thermal instability and the entrainment of the up-
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rising buoyancy flux. This interface layer and the sheared stratified layer is usually called

the entrainment zone38. In the past decades, with field and laboratory experiments and

numerical simulations, substantial studies from the atmospheric science community have

been conducted for the scaling parameterization of the entrainment zone (particularly the

entrainment rate) within the SCBL flow, as the entrainment zone properties are unable to

be resolved by meso- and larger-scale atmospheric models. The bulk models, in which the

dynamics inside the entrainment zone is parameterized in terms of velocity and buoyancy

with different orders, were first proposed by Lilly39, who considered the buoyancy and ve-

locity jumps across the interface as the zero order model. However, it was argued that the

zero order bulk model was insufficient for the SCBL flow38,40,41, while some studies42,43 sug-

gested that, with proper modifications, the zero order model can still capture some essential

features of the entrainment in the SCBL flow. The first order and higher order bulk models,

with more complicated profiles of velocity and temperature jumps within the interface layer,

have been subsequently developed25,42–47. In addition, the ‘shear sheltering’ where the shear

impedes the entrainment process occasionally exists in the SCBL flow48–50, which also com-

plicates the applications of the bulk models in the atmospheric SCBL flow. A recent study51

indicates that the role of the wind shear is rather dynamic, which in general depends on the

relative role between the wind shear and the thermal convection in the SCBL flow.

Although the local dynamics of the entrainment zone of the SCBL flow has drawn sub-

stantial attentions, there is a significant knowledge gap regarding the global interactions

between the shear and thermal instabilities in the SCBL flow. That is perhaps why, to our

best knowledge, there is no report regarding the hydrodynamics of the SCBL flow, which

motivates the present study to provide a global and dynamical perspective with hydrody-

namic analysis. The hydrodynamics on other shear-thermal interactive instabilities have

been proven to offer insightful understanding of the basic fluid dynamics and the heat/mass

transfer. Previously, the hydrodynamics on the RBP flow3,52–55 construct the map of po-

tential instability modes and therefore guide the subsequent experimental and numerical

investigations on the associated coherent structures2,3,56. Distinctive coherent structures

associated with different instability modes may lead to different scaling correlations to be

developed via experiments and numerical simulations. If the scaling parameterizations are

built in a range of governing parameters involving more than one instability mode, the con-

tradictions may appear. This is perhaps why the contradictory roles of shear, e.g., ‘shear
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enhancement’ and ‘shear sheltering’, were reported in the parameterization of the entrain-

ment ratio in previous studies on SCBL flow, as reviewed, e.g., in references9,42. Hence, we

believe that the hydrodynamic analysis on the SCBL flow, even with the current invisicd

linearized model, can provide certain insights to what are still unclear about the SCBL flow

and guide the subsequent investigations in the future.

The other motivation for the present study is that the role of shear in the SCBL flow

could be more decisive than in the RBP and SRBP flows. Indeed, in the RBP flow the

effects of shear only play the secondary role as they only ‘align the convective rolls along the

direction of the main flow’57, as the formations of the dominant convective rolls still depend

on the thermal instability. In the SCBL flow, nevertheless, large scale vortex structures could

potentially be developed by the shear from unbounded flow, therefore the shear instability

has capacities to dominate over the thermal instability and even suppress the formation of

convective rolls. As the large vortex structures could be developed by both the shear and

thermal instabilities, the shear instability could be competitive in the SCBL flow rather

than be submissive in the RBP flow. The competitive role of shear in the SCBL flow could

further lead to the more complicated dynamics of the interface between the stable and

unstable stratifications compared to those in the SRBP flow.

Like other shear-thermal interactive flows, the SCBL flow also involves a great number

of governing parameters contributing to the overall stability. As a preliminary study on

this topic, a simple but sufficient model is needed. To achieve this purpose, the present

paper applies the classic Taylor-Goldstein (TG) equation35, which is capable of capturing

the inviscid sheared stratified instability, to the SCBL flow described by Eq. (1) with the

special treatment by introducing different stratification factors Js and Jb in the Brunt-

Väisälä frequency for the shear and thermal instabilities, respectively. Similar strategies to

introduce stable and unstable stratification factors were successfully employed in the previous

hydrodynamics on the pure convective boundary layer (CBL) without shear instability36,37.

As will be shown subsequently, the TG equation remains effective to describe both the

sheared and attached thermal instabilities together in the SCBL flow. The other advantage

of such a strategy is that the number of governing parameters are reduced to two, that is,

Js and Jb, which inherently quantify the interactions and competitions between the sheared

and thermal instabilities. By solving the eigenvalue problems formed by the modified TG

equation, the global dynamic map of two hybrid modes is revealed and distinctively different
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interactive mechanisms between the shear and thermal instabilities are further elaborated

with the examinations of the subordinate eigenfunctions.

This paper is organized as follows. Section II describes the derivation of the linearized per-

turbation equations and the special modifications for the stable and unstable stratifications.

Section III provides the details of the eigenvalue/eigenfunction solver and the computa-

tional domain as well as the boundary conditions. Section IV presents the results of the

eigenvalues/eigenfunctions of the SCBL flow, followed by the discussion and conclusions in

Section V.

II. LINEARIZED PERTURBATION EQUATIONS

The governing equations for an inviscid, incompressible, and sheared stratified flow are:

∇∗ · u∗ = 0, (2)

θ̄∗
∂u∗

∂t∗
+ θ̄∗(u∗ · ∇∗u∗) = −∇∗p∗ − g(θ∗ − θ̄∗)~k, (3)

∂θ∗
∂t∗

+ u∗ · ∇∗θ∗ = 0, (4)

where the subscript ‘*’ denotes the dimensional quantities, u∗ is the velocity vector with

the components (u∗, v∗, w∗) in the Cartesian coordinates (x∗, y∗, z∗), p∗ is pressure, θ∗ is

temperature, θ̄∗ is the reference temperature, t∗ is time, and g is the acceleration due to

gravity, respectively.

The above equations can be made dimensionless as follows,

∇ · u = 0, (5)

θ̄
∂u

∂t
+ θ̄(u · ∇u) = −∇p− (θ − θ̄)

Fr2
~k, (6)

∂θ

∂t
+ u · ∇θ = 0, (7)

where the dimensional quantities are made dimensionless using their respective characteristic

scales, i.e.,

x =
x∗

Lc
, t =

t∗
(Lc/Vc)

, u =
u∗

Vc
, p =

p∗
∆ρ∗V 2

c

, θ =
θ∗
∆θ∗

, θ̄ =
θ̄∗
∆θ∗

, (8)

in which x is the dimensionless coordinate vector (x~i+y~j+z~k) where~i, ~j and ~k represent the

unit vectors in the x, y and z directions, u is the dimensionless velocity vector (u~i+v~j+w~k),

7
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Lc, Vc, ∆ρ∗ and ∆θ∗ are the characteristic length, velocity, density and temperature scales,

respectively. In the present study, Lc, Vc and ∆θ∗ are selected as L/2, ∆u∗,0/2 and ∆θ∗,0/2

(whose definition refer to Eq.(1)), respectively. Such selections are based on the velocity and

temperature variations across the half of central sheared stratified layer, which was usually

applied in previous studies on shear stratified layer.

Fr in Eq. (6) is the Froude number which is defined by,

Fr =
Vc√
gL

.

With dimensionless properties in Eq.(8), the dimensionless form of the base flow Eq.(1) is:

U(z) = tanh(z), −2 < z ≤ 2,

θ(z) =











tanh(z), −2 < z ≤ 2,

−(θb − θs)

Lb

z + [θs −
L(θs − θb)

Lb

] (−2Lb

L
− 2) ≤ z ≤ −2,



























(9)

It is assumed that the flow quantities consist of the basic flow and infinitesimal pertur-

bations:

u(x, t) = U(z) + u′(x,t), (10)

θ(x, t) = θb(z) + θ′(x,t), (11)

p(x, t) = P (z) + p′(x, t) = p0 −
1

Fr2

∫ z

0

θb(z)dz + p′(x, t), (12)

where U(z) is the dimensionless basic flow velocity, θb(z) is the dimensionless basic tempera-

ture profile, and p0 is the dimensionless reference pressure corresponding to the dimensionless

reference temperature θ̄. The superscript symbol ‘′’ represents the perturbation part of the

corresponding physical property.

For the sheared stratified flows considered in this paper, the base flow is assumed to be

in the x-direction and to vary with the vertical coordinate z only, i.e.,

U(z) = U(z)~i. (13)

With this, the following perturbation equations can be deduced (the details are presented

in Appendix A),
∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z
= 0, (14)

θ̄
∂u′

∂t
+ θ̄U(z)

∂u′

∂x
+ θ̄w′

∂U(z)

∂z
= −∂p′

∂x
, (15)
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θ̄
∂v′

∂t
+ θ̄U(z)

∂v′

∂x
= −∂p′

∂y
, (16)

θ̄
∂w′

∂t
+ θ̄U(z)

∂w′

∂x
= −∂p′

∂z
− θ′

Fr2
, (17)

∂θ′

∂t
+ U(z)

∂θ′

∂x
+ w′

∂θb(z)

∂z
= 0. (18)

The following normal mode is used in the subsequent linear temporal stability analysis,

φ′(x, t) = φ̂(z)ei(αx+βy)−iαct = φ̂(z)ei(αx+βy)+σt, (19)

where i is the imaginary unit of a complex number, α and β are the wavenumbers in the x

and y directions respectively, and the perturbation quantity φ′ represents velocity, density,

temperature, buoyancy flux, or other physical quantities. The hat symbol (‘ˆ’) denotes the

peak amplitude of the corresponding perturbation. c is the wave (phase) speed, which gives

ω = αc as the angular frequency for the perturbation, and σ = −iαc as the temporal growth

rate of the perturbation.

Substituting the above normal modes into Eqs. (14)-(18) leads to the following,

iαû+ iβv̂ +Dŵ = 0, (20)

θ̄(iαU + σ)û+ θ̄Uzŵ = −iαp̂, (21)

θ̄(iαU + σ)v̂ = −iβp̂, (22)

θ̄(iαU + σ)ŵ = −Dp̂− θ̂

F r2
, (23)

(iαU + σ)θ̂ + θb,zŵ = 0, (24)

where D = ∂/∂z is the differential operator for the perturbation properties, θb,z = ∂θb(z)/∂z,

and the subscript ‘z’ denotes the first order differentiation with respect to z.

As shown in Appendix B, by applying the Squire transformations35,58, the three-

dimensional perturbation equations Eqs. (20)-(24) can be reduced to the following equivalent

two-dimensional perturbation equations, which are written in matrix form,

σ̃





∇2
s

I









ŵ

θ̃



 =





−iα̃(U∇2
s − Uzz)

α̃2

θ̄F r2

−θ̃b,z −iα̃U









ŵ

θ̃



 , (25)

where

α̃ = (α2 + β2)1/2, ũ =
αû+ βv̂

α̃
, θ̃b,z = θb,z

α̃2

α2
,
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p̃ =
α̃

α
p̂, θ̃ =

α̃

α
θ̂, σ̃ = σ

α̃

α
, ∇2

s = D2 − α̃2,

in which the tilde symbol ‘̃ ’ denotes the Squire transformation properties. For stratified

flows, θ̃b,z represents the profiles of stratification. If the Squire buoyancy b̃ = θ̃/θ̄ is used

instead of the Squire temperature θ̃, the above perturbation equations will become,

σ̃





∇2
s

I









ŵ

b̃



 =





−iα̃(U∇2
s − Uzz)

α̃2

Fr2

Ñ2 −iα̃U









ŵ

b̃



 , (26)

where Ñ2 = −θ̃b,z/θ̄ is the local Squire buoyancy Brunt-Väisälä frequency. For unstratified

flows, simply letting θ̃b,z = 0 in Eq. (25) or Ñ2 = 0 in Eq. (26) will give the corresponding

perturbation equations.

As suggested by Hazel59, a stratification factor Js = N2(z)/(∂θ/∂z) when z > −2, can

be used to represent the intensity of the central stable stratification of the SCBL flow.

Particularly, if both the velocity and background stratification of the base flow satisfy

(∂u/∂z)|z=0 = sech2(z)|z=0 = 1 and (∂θ/∂z)|z=0 = sech2(z)|z=0 = 1, where z = 0 is at

the middle height of the sheared stratified layer, the local Richardson number Rig(z):

Rig(z) =
N2(z)

[(∂u/∂z)|z=0]2
= Js

(∂θ/∂z)|z=0

[(∂u/∂z)|z=0]2
= Js. (27)

Thus, as the base flow state u and θ in Eq. (1) satisfy (∂u/∂z)|z=0 = 1 and (∂θ/∂z)|z=0 = 1,

Js plays as an effective substitute for Rig that is usually employed in the studies of the

sheared stratified flow.

In penetrative convection problems where a thermal convection region is capped by a

stably stratified layer without sheared instability, Whitehead and Chen36 and Sun37 intro-

duced a stability factor S to quantify the stable stratification similar to the Rayleigh number

(Ra). Inspired by this method, in the present invicid SCBL flow, we similarly propose the

unstable stratification factor Jb to quantify the unstable stratification associated with the

thermal instability, so that N2(z) is also divided into stable and unstable region as:

N2(z) =











Js
∂θ

∂z
, −2 < z ≤ 2,

Jb
∂θ

∂z
, (−2Lb

L
− 2) ≤ z ≤ −2,

(28)

where ∂θ/∂z is determined by θ(z) in Eq.(1). Together with Js and Jb, both the stable

and unstable stratification are incorporated in N2(z) and therefore in the linear analysis.

Specially once u = 0 or the sheared instability is suppressed by overly stable stratification,

the SCBL flow will become the pure CBL flow.

10
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III. METHODOLOGY

The temporal mode of the eigenvalue problems is solved with the matrix methods. The

linearized perturbation equation (26) is uniformly discretized by using the second-order

central difference scheme. The QZ algorithm developed by Moler and Stewart60, which is

integrated in the LAPACK routine CGGEV, is used as the complex eigenvalue solver. The

robustness of the QZ algorithm in the hydrodynamic stability analysis has been demon-

strated in some studies61–65. With the QZ algorithm, solving the eigenvalue equation (26)

also obtains ŵ. As both σ and ŵ are solved, the rest unknown eigenfunctions û and p̂ are

solved with the equations (20)-(22) using the solver ZSYSV integrated in the LAPACK.

Then ω̂y = Dû− iαŵ is able to be solved.

The boundary conditions u = w = 0 are applied at both the top and the bottom bound-

aries, and b = bb is applied at the bottom boundary, where bb is adjusted based on the

values of selected Jb for each run. The dimensionless vertical coordinate z varies between

−5 and 5, giving the corresponding dimensional computational domain a size ten times of

the characteristic length of the central sheared instability. The resolution with node numbers

of 600 ∼ 2000 as well as the dimensionless computational domain sizes between 10 and 50

are tested, with less than 1% variations observed. Thus 10 is selected as the dimensionless

computational size along with the node number of 600, which is sufficiently large to capture

the asymptotic hydrodynamic behaviors obtained in other settings with the much larger

domain sizes and many more node numbers. The influences of Lb is also tested as shown in

Appendix C. To ensure the occurrences of all hybrid modes and the constant growth rate

of the hybrid shear stratified mode (defined in Section IV), Lb is fixed at 3 (60% of one half

domain as L+ Lb = 5) in the subsequent results.

IV. RESULTS

Before presenting the results of eigenvalues/eigenfunctions, it is helpful to illustrate the

hybrid instabilities in the SCBL flow frequently referred to subsequently in the present

study, as schematically depicted in Fig. 2 with the flow configuration presented in Fig. 1.

In the sheared stratified layer, once the velocity shear overcomes the stable stratification,

the perturbed vorticity gradually grows and develops into coherent structures (e.g., Kelvin-

11
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Helmholtz (KH) eddies), i.e., the sheared stratified instability as denoted by ‘SS’. In the

unsheared stratified layer, once the thermal convection exceeds a certain critical level (Ra for

viscous flows and Jb for the current invicid flow), the thermal convective flux will constantly

arise, develop and even penetrate through the interface, i.e., the thermal or the Rayleigh-

Bénard instability as denoted by ‘RB’. In reality the critical condition for the thermal

instability is usually easy to be satisfied, therefore once the sheared instability occurs, it

will always coexist with the thermal instability in the SCBL flow, inherently giving the

SCBL flow the hybrid features between the SS mode and the RB mode. If the sheared

instability can completely develop into coherent vortex KH eddies under the insufficient

influences of the thermal instability, the corresponding hybrid mode may be dominated by

the features of the SS mode and therefore is appropriately named as the ‘hybrid sheared

stratified’ (HSS) mode. On the contrary, if the sheared instability is only partly developed

or even completely destroyed by the stronger penetrative thermal flux, yet the thermal

instability is still modified by the undeveloped sheared instability or directly by the stably

stratification, such a hybrid mode is appropriately named as the ‘hybrid thermal’ or ‘hybrid

Rayleigh-Bénard’ (HRB)’ mode as the thermal or the Rayleigh-Bénard instability dominates.

A. Eigenvalues

By solving the eigenvalue problems defined by Eq. (26), it is found that the HSS and HRB

modes can be clearly identified by the temporal growth rate σ̃. The HSS mode involves

negligible Im[σ̃] compared to Re[σ̃], where Re and Im represent the real and imaginary

parts of a complex number, respectively, indicating that the instability mode is stationary

with regard to the base flow. Such a stationary feature agrees well with the pure SS mode

without the thermal instability at the bottom, which suggests that the name ‘HSS’ mode is

appropriate. The HRB mode involves significant Im[σ̃], indicating that the corresponding

instability propagates away from the base flow, which also suggests that the name ‘HRB’

mode is appropriate.

Based on the distinctions of Im[σ̃] between the HRB and HSS modes mentioned above,

Figure 3 delineates the stability boundaries of the HSS mode in terms of Js versus α̃ and

the HRB mode in terms of Jb versus α̃, respectively. It is found that the stability boundary

of the HSS mode is independent of Jb and only depends on Js, therefore the approximately

12
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Interface
Sheared  stratified  layer

Unsheared  stratified  layer

SS

RB

s

b

u

FIG. 2. Schematic of the instabilities in the SCBL flow (Eq. (1)). ‘SS’ and ‘RB’ represent the

sheared stratified and the thermal (Rayleigh-Benard) instabilities, respectively.

arc shaped boundary of the pure sheared stratified flow in terms of Js versus α̃, as reported

previously35,59,66,67, is reproduced. Yet, the subordinate eigenfunctions of the HSS mode is

different, as they involve the features from the RB mode. On the other hand, the stability

boundary of the HRB mode reproduces the hyperbolic shape as solved by the classic viscous

model35, indicating that the inviscid TG equation with the unstable stratification is sufficient

to capture the essential features of the thermal convective instability. Unlike the HSS mode,

the stability boundary of the HRB mode depends on Js, as the unstable regions of the HRB

mode gradually shrink as Js increases. Nevertheless, such dependency appears only obvious

once Js is more than the critical value Js,cr = 0.25, below which the HSS mode exists.

Likewise, the eigenfunctions of the HRB mode also involve the features of the SS mode,

thus, are different from that of the pure RB mode.

As the stability boundary of the HSS mode is independent of Jb, the entire unstable

region of the HSS mode therefore appears as a ‘column’ in the three-dimensional (Js, Jb, α̃)

space. The base area of the ‘column’ is the unstable region of the HSS mode plotted in Fig. 3

13
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FIG. 3. The stability boundaries of the HSS mode (dashed curve line) as a function of Js and the

Squire wavenumber α̃ and the HRB mode (solid curve lines) as a function of Js, Jb and the Squire

wavenumber α̃. The unstable regions for the HSS and HRB modes bounded by their respective

stability boundaries are marked with vertical and horizontal grids, and the mesh region is the

coinciding unstable regions of the HSS and HRB modes, respectively. The stability boundaries of

the HRB modes at Js = 0, 0.5, 1.0, 3 and 6, are presented with ( ), ( ), ( ), ( ) and ( )

curve lines, respectively.

and its height infinitely extends along the Js axis. Such a ‘column’ inevitably intersects with

the unstable region of the HRB mode, which appears like a ‘cone’ in the three-dimensional

(Js, Jb, α̃) space, because the unstable region of the HRB mode gradually decreases with

increased Js as shown in Fig. 3. The intersection line between the ‘column’ and the ‘cone’

in the three-dimensional (Js, Jb, α̃) space is projected in the (Js, α̃) plane shown in Fig. 3,

in the form of the track of several intersection points between the stability boundaries of the

HSS and HRB modes. Based on the intersection point, e.g., the one at α̃ ≈ 0.2, the entire

map is separated into two regions: Region I and II, as highlighted by the vertical dashed-dot

line in Fig. 3. In Region II, the HRB mode can easily survives as long as Jb > 0.07, a trivial

value that can be easily satisfied in reality similar to Racr ≈ 1700.35 Thus in Region II, as

long as the HSS mode exists, the two hybrid modes always compete with each other. In
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FIG. 4. The real and imaginary parts of σ̃ plotted against Jb at α̃ = 0.46 ((a) and (c)) and α̃ = 0.1

((b) and (d)) with Js = 0. The solutions of the HSS and the HRB modes are denoted by the

dashed and solid lines, respectively. Jb,cr where the branches of Re[σ̃]HSS and Re[σ̃]HRB intersect is

denoted for α̃ = 0.46 and 0.1 in (a) and (b), respectively. For comparison, the real and imaginary

part of σ̃ against Jb at Js = 0.5 (pure RB mode) are also plot in ( ).

Region I, as the HRB mode must occur at Jb ≻∼ 0.2, there is a significant gap where the HSS

mode can exist yet the HRB mode is absent. In addition, distinctively different behaviors

of the HSS and the HRB modes are observed in Region I and II as will be shown later.

Away from the stability boundaries, the complex temporal growth rates (σ̃) for both the

HSS and HRB modes exhibit strong dependency on both Js and Jb. Figure 4 presents the

real and imaginary parts of σ̃ for the HSS ( ) and HRB ( ) modes with Js = 0 and

α̃ = 0.1 in Region I and 0.46 in Region II, respectively. For comparison, σ̃ ∼ Jb plots ( )

for the pure RB mode are also included, with Js = 0.5 > Js,cr = 0.25 which completely
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eliminates the shear instability. For other α̃ values in Regions I and II of the hybrid modes,

the results are highly similar to α̃ = 0.1 and 0.46 respectively and thus are not presented

here. It is also found that for non-zero Js values, Re[σ̃] versus Jb and Im[σ̃] versus Jb exhibit

very similar fashions to those for Js = 0 as shown in Fig. 4, and are therefore not presented

here either. For convenience, the subscripts ‘HSS’ and ‘HRB’ are applied to Re[σ̃] and

Im[σ̃] as well, e.g., Re[σ̃]HSS and Re[σ̃]HRB represent Re[σ̃] for the HSS mode and the HRB

mode, respectively. In addition, the critical Jb value at which Re[σ̃]HSS is equal to Re[σ̃]HRB,

is defined as a specific critical condition Jb,cr, with the subscript ‘cr’ indicates the critical

condition where the HSS mode and the HRB mode are equally weighted in the SCBL flow.

At α̃ = 0.46, as shown in Fig. 4(a) and (c), Re[σ̃]HSS is almost constant (at about 0.18)

when Jb increases, though slight variations are still observed; correspondingly, Im[σ̃]HSS

gradually but very slightly increases when Jb increases, yet its overall magnitudes are still

insignificant compared to that of Re[σ̃]HSS, indicating that the HSS mode remains the sta-

tionary feature. Similar to what have been observed for α̃ = 0.46, at every α̃ value in Region

II, all HSS modes share the similar stable stationary feature exhibited in Fig. 4(a) and (c),

therefore it seems that the HSS mode is overall insensitive to Jb in Region II. Neverthe-

less, this is only partly true as will be shown later in the subsequent examination of the

subordinate eigenfunctions. In contrast, as shown in Fig. 4(a) and (c), the profiles of the

HRB and pure RB mode almost overlap, suggesting that the HRB mode involve similar

strong propagative feature as the pure RB mode. Yet, the HRB and pure RB mode are not

completely the same in their subordinate eigenfunctions as will be shown later.

At α̃ = 0.1 in Region I, as shown in Fig. 4(b) and (d), however, Re[σ̃] and Im[σ̃] for

both the HRB and HSS mode vary significantly with the increase of Jb, especially with their

inflection points both occur at Jb,cr. Particularly, Fig. 4(d) shows that Im[σ̃]HSS increases

significantly until at Jb,cr when Jb increases, implying that the HSS mode gradually possesses

the propagtive features instead of the stationary ones; on the contrary, Im[σ̃]HRB remarkably

declines with increased Jb until Jb,cr and then slowly increases again.

Due to such almost opposite trends between Im[σ̃]HSS and Im[σ̃]HRB with increased Jb

the branches of Im[σ̃]HSS and Im[σ̃]HRB gradually come close to each other when Jb increases

until Jb,cr, indicating that the two hybrid modes may share some common structures, which

will also be further verified in the subsequent examination of the eigenfunctions.

As shown above in Fig. 4, for a specific Js value, each α̃ could yield one Jb,cr by identifying
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FIG. 5. The boundary of Jb,cr, which distinguishes the HSS mode and the HRB mode, plotted

against α̃ for Js = 0, 0.05, 0.1, 0.15 and 0.2, respectively. The boundary of Jb,cr for Js = 0

is highlighted with the dashed line, while those for other Js values are plot with the solid lines.

For each Js boundary, ‘HRB’ denotes the dominant region of the HRB mode which is above

the boundary, while ‘HSS’ represents the dominant region of the HSS mode which is below the

boundary. The arrow indicates the expansion of the dominant region of the HRB mode as Js

increases.

the intersection point, so that after collecting a series of Jb,cr at different α̃, an unique critical

boundary representing the competitions between the HRB and HSS modes in the SCBL flow

could be constructed. Figure 5 plots such boundaries for Js = 0, 0.05, 0.1, 0.15 and 0.2,

where the region above the boundary signifies the domination of the HRB mode over the

HSS mode, while the region below indicates the opposite. The figure shows that as Js

increases the dominant regions of the HRB mode expand, while, correspondingly, that of

the HSS mode shrinks. As the maximum value of Re[σ̃]HSS always occurs at the unstratified

condition when Js = 0, it is apparent that when Js = 0 the region dominated by the

HRB mode is the minimum while that dominated by the HSS mode is the maximum for

all Js values. It is found that when Js > 0.25, the region dominated by the HSS mode
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essentially disappears, implying that it is completely suppressed by the overly stable central

stratification, so that the dominant region of the HRB mode occupies the entire domain of

α̃. For this extreme case, the boundary of Jb,cr can be considered as the α̃ axis itself (i.e.,

Jb,cr ≈ 0 for all α̃ values).

From Fig. 5, it is noted that the shapes of the critical boundaries of Jb,cr versus α̃ are also

different in Regions I and II. This is because the branches Re[σ̃]HSS and Re[σ̃]HRB behave

differently, as shown in Fig. 4. In Region I with α̃ <∼ 0.2, the values of Jb,cr are significantly

larger than that in Region II for a specific Js value when Js ≥ 0.1, and the reductions of Jb,cr

in Region I are also substantial. This is because the occurrence of Jb,cr as the intersection

point where the branches of Re[σ̃]HSS and Re[σ̃]HRB intersect, is remarkably postponed by

the rising branch of Re[σ̃]HSS as Jb increase, as shown in Fig. 4(a). Furthermore, as α̃

increases, the value of Jb,cr decreases monotonically in Region II, as the branch of Re[σ̃]HSS

gradually becomes constant, so that Jb,cr depends only on the growth of Re[σ̃]HRB, like that

observed in Fig. 4(a). Nevertheless, in Region I, the relations between Jb,cr and α̃ are not

monotonically for all Js values. Overall, the critical boundary of Jb,cr and its dependence

on Js strongly suggest that the competition between the HSS mode and the HRB mode

dynamically depends on Js, Jb and α̃ all together.

B. Eigenfunctions

It is necessary to examine the eigenfunctions of the pure SS mode with the shear stratified

instability only and the pure RB mode with the thermal instability only, before exhibiting the

eigenfunctions of the HRB and HSS modes which inevitably include the hybrid features of the

shear and thermal instabilities all the time. Figures 6 and 7 present the eigenfunctions for the

pure SS mode with Jb = 0 and Js = 0.1 and for the pure RB mode with Js = 0.5, with a series

of increased Jb that gradually approach then exceed Jb,cr at α̃ = 0.1 and 0.46, respectively.

As Jb = 0 eliminates the bottom unstable stratification and Js = 0.5 > Js,cr = 0.25 indicates

that the overly stable stratification suppresses the shear instability, the selected parameters

in both figures ensure that the shear and thermal instabilities isolate from each other. For

the subsequent comparisons for the HRB mode in Figs. 8 and 9, a series of the same Jb

values are also selected for the pure RB mode in Figs. 6 and 7, respectively.

In Figs. 6 and 7, the pure SS and RBmodes distinguish each other in the following aspects.
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-4 -2 0 2 4
0.0

0.2

0.4

0.6

-4 -2 0 2 4

0.0

0.2

0.4

0.6

-4 -2 0 2 4

0.0

0.1

0.2

0.3

0.4

0.5

-4 -2 0 2 4
0.0
0.2
0.4
0.6
0.8
1.0

-4 -2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

-4 -2 0 2 4

0.0

0.2

0.4

0.6

(a)

z

(b)

z

(c)

z

(d)

z

(e)

z

(f)

z
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19



Accepted to Phys. Fluids 10.1063/5.0123044

For the pure SS mode, the magnitudes of all perturbed properties, except p̂, are prominently

significant in the central region (z ∈ [−2, 2]) where the shear of the base flow velocity

(Eq.(1)) varies effectively. Though the pure RB mode may also incite limited perturbations

of velocity (Fig. 6(a), (e) and Fig. 7(a), (e)) and vorticity (Fig. 6(b) and Fig. 7(b)) in the

central stable stratified layer, it is insufficient to develop the shear instability mode. The

other prominent distinction is the profile of p̂ (Fig. 6(c) and Fig. 7(c)). Only for the pure SS

mode (dashed line), the gradient ∂p̂/∂z is significant in the central region, while for the pure

RB mode, there is generally little variations of ∂p̂/∂z in the central region. As the shear

instability is inherently provoked by the pressure perturbations, the significant variations of

other perturbed properties in the central region, are likewise associated with the pure SS

mode only.

On the other hand, the pure RB mode exclusively produces remarkable peak structures of

b̂, ŵ and b̂ŵ near the interface (around z = −2 as Lb = 3 designated in this study) between

the stable and unstable stratification layers, as shown in Fig. 6(d)-(f) and Fig. 7(d)-(f). In

addition to α̃ = 0.1 and 0.46 shown here, such ‘interface peak’ structures are also observed in

other α̃ values, thus featuring the eigenfunctions of the pure RB mode. Furthermore, when

α̃ increases, the magnitudes of the ‘interface peak’ structures of b̂, ŵ and b̂ŵ significantly

increase from α̃ = 0.1 to 0.46 when Fig. 6(d)-(f) and Fig. 7(d)-(f) are compared. The

similar enhancements of the ‘interface peak’ structures with increased α̃ are also found in

the range of α̃ ≤ 1 interested in this paper besides α̃ = 0.1 to 0.46 shown here. The growing

magnitudes of the ‘interface peak’ structures associated with the pure RB mode could be

attributed to the stability boundary of the pure RB mode shown in Fig. 3. On the stability

boundary, the critical Jb decreases with increasing α̃, indicating that the pure RB mode

could be easily developed when α̃ increases. Therefore, the magnitudes of ŵ and b̂ŵ for the

pure RB mode also increase with increased α̃.

Overall, Figs. 6 and 7 offer two important implications for the hybrid modes in the SCBL

flow. Firstly, the dominant eigenfunctions of the pure RB and SS modes always occur at

the established positions, i.e., the symmetric eigenfunctions of the pure SS mode always

occur and dominate in the central regions, while the significant ‘interface peak’ structures

of b̂, ŵ and b̂ŵ always accompany the pure RB mode near the interface. Secondly, the

established positions of the eigenfunctions for the pure RB and SS modes are also closely

associated with the propagative (Im[σ̃] is significant) and stationary (Im[σ̃] is insignificant)
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feature of previous eigenvalue problems. Physically, as the uprising buoyancy in the pure RB

mode inherently ‘propagates’ upward, its Im[σ̃] is therefore always significant. On the other

hand, the full-grown shear stratified instability, e.g., the Kelvin-Helmholtz mode, develops

relatively ‘stationary’ to the base sheared flow, given negligible Im[σ̃]SS all the time.

The two implications elaborated above could help the understandings of how the shear

and thermal instabilities contribute to the hybrid features of the SCBL flow. Firstly, as the

positions of eigenfunctions for the shear and thermal instabilities are established, whether

the shear and thermal instabilities are fully developed or suppressed in the SCBL flow could

therefore be evaluated, by comparing the eigenfunctions of the hybrid modes to those of the

pure RB and SS modes. Secondly, the eigenfunctions near the interface are always associated

with the uprising buoyancy and therefore are also related to the propagative features (Im[σ̃]

is not negligible). With such strong associations, the variations of eigenfunctions near the

interface could provides certain insights to explain the results of Im[σ̃]HRB and Im[σ̃]HSS in

Fig. 4.

Figures 8 and 9 show a set of eigenfunctions corresponding to the HRB and HSS mode at

α̃ = 0.1 and α̃ = 0.46, respectively, with a series of Jb near Jb,cr and Js = 0.1. Similar results

are also found at other α̃ values in Regions I and II. For reference, Jb,cr (defined in Fig. 4) at

α̃ = 0.1 and 0.46 are about 9 and 4, respectively, so that the eigenfunctions plotted by ( ),

( ) and ( ) in Figs. 8 and 9 denote the results when Jb < Jb,cr while the eigenfunctions

plotted by ( ) and ( ) in each figure denote the results when Jb ≥ Jb,cr. Because it is

found that the HRB and HSS modes always share the eigenfunctions of û, ω̂y and p̂ but

only distinguish themselves by the eigenfunctions of b̂, ŵ and b̂ŵ, the eigenfunctions of both

hybrid modes are plotted together in Figs. 8 and 9, respectively, with the subfigures (a)-(f)

refer to those of the HSS mode and the subfigures (d)-(i) refer to those of the HRB mode,

respectively.

From these two figures, it can be found that both the HRB and HSS modes involve the

eigenfunctions near the interface and in the central region, indicating that the thermal and

shear stratified instabilities indeed coexist with each other. Hence, the hybrid features of

the instabilities in the SCBL flow, as suggested at the beginning of Section IV, are therefore

validated. In addition to the common hybrid features, the major results regarding the

eigenfunctions of the HRB and HSS mode are summarized as follows.

(a) In the HSS mode, the shear stratified instability is completely developed when
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FIG. 8. The profiles of the absolute values of (a) b̂, (b) ŵ, (c) b̂ŵ, (d) û, (e) ω̂y, (f) p̂ for the HSS

mode, and (g) b̂, (h) ŵ, (i) b̂ŵ for the HRB mode in the z direction for a series of Jb at α̃ = 0.1

and Js = 0.1 with Jb,cr ≈ 9.0. ( ), ( ), ( ), ( ) and ( ) denote the profiles at Jb = 1.0,

3.0, 5.0, 9.0 and 15.0, respectively.

Jb < Jb,cr (denoted by ( ), ( ) and ( ) in Fig. 8(a)-(f) and Fig. 9(a)-(f)), as in the

central region all eigenfunctions exhibit almost symmetric peak structures. The symmetric

eigenfunctions observed are highly similar to those of the pure SS mode as shown in Fig. 7.

As the symmetric features of the pure shear stratified instability are well inherited, the

shear stratified instability can be considered as ‘fully developed’ in the HSS mode. Such

‘fully’ developed shear instabilities at Jb < Jb,cr for the HSS mode provide some insights

into the potential appearances of the coherent structures. Similarly, the almost symmetrical

eigenfunction structures in the HSS mode may indicate large scale eddy structures, e.g., the

Kelvin-Helmholtz eddies, like the pure shear stratified instability. Yet, at the interface both

b̂ and b̂ŵ, which are indications of thermal instability, also coexist with their counterparts
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FIG. 9. The profiles of the absolute values of (a) b̂, (b) ŵ, (c) b̂ŵ, (d) û, (e) ω̂y, (f) p̂ for the HSS

mode, and (g) b̂, (h) ŵ, (i) b̂ŵ for the HRB mode in the z direction for a series of Jb at α̃ = 0.46

and Js = 0.1 with Jb,cr ≈ 4.0. ( ), ( ), ( ), ( ) and ( ) denote the profiles at Jb = 1.0,

2.0, 3.0, 4.0 and 5.0, respectively.

in the central region. Thus, it is expected that the typical structures of thermal instability,

e.g., thermal plumes, may also appear in the HSS mode. Nevertheless, the thermal insta-

bility may not develop the large scale RB rolls in the HSS mode. Comparing ŵ in the HSS

mode (Figs. 8(b) and 9(b)) and those of the pure RB mode (Figs. 6(b) and 7(b)), the peak

structures of ŵ for the HSS mode are almost symmetrical and occur above the interface

where z = −2, unlike those of the pure RB mode whose eigenfunctions mainly occur near

and below the interface (at about z ∈ [−4,−2]). That is to say, the thermal instability

within the HSS mode fails to produce sufficient vertical momentum under the suppression

from the developed KH eddy structures. As the large scale RB rolls must involve noticeable

perturbations of the vertical momentum near the interface, as shown in Figs. 6(e) and 7(e),
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the RB rolls are not developed in the HSS mode. Accordingly, it is suggested that the large

scale eddy structures are developed but under the constant penetration and entrainment

from the uprising thermal flux or plumes, while the thermal instability is so weak that the

thermal flux or plumes are unable to destroy the KH eddies and form the large scale RB

rolls.

(b1) In the HRB mode, the shear instability is always ‘partly developed’ when Jb < Jb,cr.

As denoted by ( ), ( ) and ( ) in Fig. 8(g)-(i) and Fig. 9(g)-(i), the central peak

structures of b̂ and b̂ŵ are not found at all in the HRB mode. The eigenfunctions of ŵ are

negligible in terms of their magnitudes in the central region in Region II (Fig. 9(h)) either.

In Region I (Fig. 8(h)), the eigenfunctions of ŵ appear rather weak compared to those near

the interface, and overall look very similar to those belong to the pure RB mode shown in

Fig. 6(e). Therefore, the absence of the central peak structures of b̂, ŵ and b̂ŵ suggests that

the shear stratified instability in the HRB mode is only ‘partly developed’ on û, ω̂y and p̂ at

best. Such ‘partly developed’ shear stratified instabilities at Jb < Jb,cr for the HRB mode also

imply potential appearances of the corresponding coherent structures. The absence of ŵ in

the central regions indicates the lack of the perturbed vertical momentum in the same region

for the HRB mode. As large eddy structures must also involve strong vertical momentum,

unlike the HSS mode, the shear stratified instability may not develop large scale coherent

eddy structures in the HRB mode. Such ‘partly developed’ shear stratified instability allows

the uprising thermal flux to easily penetrate through the central region and most likely

creates the coherent RB rolls. The potential large scale thermally convective structures in

the HRB mode are also supported by its propagative features, where Im[σ̃]HRB is always

significant. Though in the present linear analysis, the coherent structures associated with

‘partly developed’ shear instability are unknown via linear analysis, it is suggested that

the remaining eigenfunctions of û, ω̂y and p̂ in the central region may involve less vigorous

vorticity structures, e.g., the periodic overturning wave or the patch of local turbulence

usually observed in atmospheric and oceanic flow. These less vigorous vorticity structures

may still modify the influences of the convective rolls on the interface dynamics.

(b2) In the HRB mode, the shear instability is ‘undeveloped’ when Jb ≥ Jb,cr (denoted

by ( ) and ( ) in Fig. 8(g)-(i) and Fig. 9(g)-(i)), as all eigenfunctions are of insignificant

magnitudes in the central region, especially for b̂, ŵ and b̂ŵ. In contrast, these eigenfunc-

tions at Jb ≥ Jb,cr are analogous to those of the pure RB mode shown in Fig. 6(g)-(i) and
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Fig. 7(g)-(i), indicating that the HRB mode may gradually approach the pure RB mode

once Jb ≥ Jb,cr. Nonetheless, the ‘interface peak’ structures of û, ω̂y and p̂ are still not

developed in Region I (Fig. 8), suggesting that the thermal instability is still suppressed by

the ‘undeveloped’ shear instability, even when the unstable stratification becomes conducive

to the thermal instability in terms of Jb > Jb,cr. The other indirect evidence to support

this argument is the reduced magnitudes of b̂, ŵ and b̂ŵ in Region I for the HRB mode

when Jb > Jb,cr ( and ) in Fig. 8(g)-(i)), compared to those of the pure RB mode

(( ) and ( ) in Fig. 6(g)-(i)). For instance, the magnitudes of the interface peak struc-

ture of b̂ in Fig. 8(g) are less than 0.9, slightly smaller than those of b̂ with magnitudes

of 1 in Fig. 6(g). The observation that the ‘undeveloped’ shear instability could still sup-

press the thermal instability is very similar to the conclusions from the recent works on the

SRBP flow by Fontana et al.4,6. In their work, even though the non-deformation assump-

tions are made, the shear is found to contribute significantly to the instability of the flow

system. In the present study, the ‘undeveloped’ shear instability may only induce relatively

negligible deformations on the interface compared to the ‘fully developed’ and ‘partly de-

veloped’ shear instabilities, e.g., KH eddies and periodic waves, thus may be very close to

the non-deformation assumptions. If the shear instability could still have certain influences

on the overall shear-thermal interactive flow system even under the strict non-deformation

assumptions in SRBP flow, likewise, it should also be expected that the ‘undeveloped’ shear

instability in the present study should also modify the thermal instability.

(c) As Jb increases, the uprising buoyancy enhances, so that the shear stratified instabil-

ities in both the HRB and HSS modes decay. The decay of the instabilities is demonstrated

with the eigenfunctions of û, ω̂y and p̂ in the central region, whose magnitudes decrease with

increasing Jb as shown in Fig. 8(d)-(f) and Fig. 9(d)-(f). Nevertheless, the shear instabili-

ties decay in different ways in Regions I and II, which are also closely associated with the

variations of Im[σ̃]HSS with increased Jb as shown in Fig. 4. The different decay fashions in

Regions I and II may also be associated with the ‘shear enhancement’ and ‘shear sheltering’

reported in previous studies on the SCBL flow.

(c1) In Region I (Fig. 8(a)-(f)), the shear stratified instability decays thoroughly as Jb

increases towards Jb,cr. When Jb increases to 5.0, the eigenfunctions of p̂ vary little near the

interface ( in Fig. 8(f)), indicating that the shear instability loses its influence near the

interface. As a result, b̂ near the interface immediately boosts ( in Fig. 8(a)) and also
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leads to the boost of b̂ŵ near the interface ( in Fig. 8(c)). As it is difficult to identify

the ‘interface peak’ at Jb = 3.0 ( ) in Fig. 8(a) and (c), it should be mentioned that the

‘interface peak’ at Jb = 3.0 ( ) overlaps with those at Jb = 1.0 ( ) in the two figures. Once

Jb exceeds Jb,cr, as denoted by ( ) and ( ), the gradients of the pressure perturbation

∂p̂/∂z are further compromised (Fig. 8(f)), so that the magnitudes of the central peak

structures for the rest eigenfunctions are also significantly weakened (Fig. 8(a)-(e)). Due to

such an overall decay, the ‘interface peaks’ of b̂ and b̂ŵ reversely become comparable to or

even dominate over their counterparts in the central region.

The point (c1) well explains the results of Im[σ̃]HSS shown in Fig. 4(d). As suggested

by the second implication from Figs. 6 and 7, the ‘interface peak’ structures always cor-

respond to the thermal instability and the associated Im[σ̃] in the present temporal linear

analysis. Therefore, the reversely dominant ‘interface peaks’ of b̂ and b̂ŵ, caused by the

overall declined central peak structures as the consequences of the decayed shear instabil-

ities, strongly indicate that Im[σ̃]HSS should become significant near Jb,cr. The significant

Im[σ̃]HSS is indeed found in Fig. 4(d).

It should also be noted that the boosted ‘interface peak’ of b̂ŵ at Jb = 5.0 ( in Fig-

ure 8(c)) has its magnitude of about 0.3 almost three times of that in the pure RB mode

(Fig. 6(f)), whose magnitudes are all below 0.1. This fact suggests that at certain spe-

cific conditions, the presence of shear could potentially prompt the development of thermal

instability. This observation reminds us of one case frequently reported on previous field

observations and numerical simulations on the SCBL (as reviewed in9), where the imposed

wind shear is found to enhance the overall entrainment.

In addition, the point (c1) implicates that the decay of the shear instability also leads to

the similar appearances of the eigenfunctions between the HSS and HRB modes, especially

for those near the interface as denoted by ( ) and ( ) in Fig. 8(a)-(f). Such similar

appearances of the eigenfunctions also agree with the merging tendency between Im[σ̃]HSS

and Im[σ̃]HRB as also shown in Fig. 4(d). Moreover, the magnitudes of b̂ŵ when Jb >

Jb,cr ( , ) for the HSS mode (Fig. 8(c)), the HRB mode (Fig. 8(f)) and the pure RB

mode (Fig. 6(f)) are all around 0.06, indicating that the shear instability no longer has a

primary influence on the entrainment, though its secondary role may still modify the thermal

instability as suggested by point (b) above.

(c2) In Region II (Fig. 9(a)-(f)), the shear stratified instability seems more robust, in that
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the symmetrical eigenfunctions of b̂, ŵ, b̂ŵ sustain when Jb approaches and exceeds Jb,cr, even

though û, ω̂y and especially p̂ decay significantly in the central region during the transition.

Meanwhile, the ‘interface peak’ structures of b̂ and b̂ŵ are always subdued to their robust

counterparts in the central regions. This is closely associated with the sustained stationary

feature of the HSS mode as shown in Fig. 4(c). Because of the robust eigenfunctions of b̂ŵ in

the central region, the ‘interface peak’ structures are still overwhelmed. As suggested by the

second implications from Figs. 6 and 7, the overwhelmed b̂ŵ near the interface would still

provide insignificant Im[σ̃], which agrees well with negligible Im[σ̃]HSS shown in Fig. 4(c).

While comparing the magnitudes of the ‘interface peaks’ of b̂ and b̂ŵ for the HSS mode

(Fig. 9(a) and (c)) and the pure RB mode (Fig. 7(d) and (f)) in Region II, it is found that the

‘interface peaks’ are in fact suppressed by the shear instability, as the maximum magnitudes

of the ‘interface peaks’ b̂ŵ are below 0.2 for the HSS mode (except for Jb = 1.0) and all above

0.2 for the pure RB mode. Thus, the influence of the shear instability in Region II is quite

opposite to what is found in Region I as mentioned in point (c1) above. This fact implicates

‘shear sheltering’ suggested by the previous studies on the SCBL flow48–50. The ‘shear

sheltering’ could be attributed to the robust of shear instability, in which the coherent large

vortex structures are very likely to be developed and suppress the formation of convective

rolls as also discussed in point (a). Under such a circumstance, the entrainment of buoyancy

flux could only be achieved via the uprising thermal plumes or flux, which, apparently,

supplies much less buoyancy flux compared to the significant vertical momentum from the

convective rolls in the pure RB mode.

V. DISCUSSION AND CONCLUSION

As proposed at the beginning of Section IV, in the SCBL flow the shear stratified and

thermal instabilities always coexist, therefore leading to the essentially hybrid features be-

tween the two fundamental instabilities. Such hybrid features have been validated by the

presences of the HRB and HSS modes and elaborated by their corresponding eigenfunctions

which occurs both near the interface layer and inside the central shear stratified layer. The

interactions between the HRB and HSS modes create highly dynamical characteristics of

the SCBL flow, which is well represented by the critical boundary defined by the critical

unstable stratification factor Jb,cr as shown Fig. 4. It is found that the critical boundary
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depends not only on the unstable and stable stratifications in terms of Jb and Js, but also

on the wavenumbers of the imposed perturbations distinguished with two distinct regions.

The complex dynamics of the SCBL flow are further illustrated by the subordinate eigen-

functions of the HRB and HSS modes in Regions I and II, respectively. The ‘well-developed’

shear instabilities, in which the vortex structures created by the shear are physically ex-

pected, distinguish the HSS mode from the HRB mode. When Jb increases, different transi-

tional behaviors of the HSS mode in Regions I and II further complicate the dynamics. For

the HSS mode in Region I, the shear instabilities gradually decay as Jb increases, reversely

make the ‘interface peak’ of b̂ŵ become comparable and even dominant, which corresponds

to the propagative feature (Im[σ̃] is significant). Particularly, when Jb is slightly smaller than

Jb,cr, the ‘interface peak’ of b̂ŵ is significantly boostes compared to that of the pure RB mode

with the same wavenumber, indicating the ‘shear enhancement’ also frequently reported in

previous observations on the SCBL flow. For the HSS mode in Region II, nevertheless, the

shear instability is robust to the enhanced unstable stratification, therefore leading to the

corresponding stationary feature (Im[σ̃] is negligible) and the decline of the ‘interface peak’

of b̂ŵ compared to that of the pure RB mode with the same wavenumber. Such a decline

implicates the ‘shear sheltering’ reported in previous studies on the SCBL flow. For the

HRB mode, the shear instability is ‘partly developed’ when Jb < Jb,cr and ‘undeveloped’

when Jb > Jb,cr. Though the expected convective rolls dominate in the HRB mode and

sustain the propagative feature as shown in Fig. 4, while comparing the eigenfunctions in

the HRB mode with those in the pure RB mode it is still found that the ‘partly developed’

and the ‘undeveloped’ shear instabilities still suppress the further development of thermal

instability, which agrees with previous observations that the convective boundary layer is

indeed modified by the wind shear as reported in previous studies on the SCBL flow.

As the majority of the previous studies on the SCBL flow have focused on the scenarios

with strong thermal convection, e.g., cloud-free or the daytime atmospherical boundary lay-

ers, the HRB mode is often observed and reported, with the prevalence of the well developed

thermal instability and the associated convective roll structures. The shear instability in

the HRB mode seems only play a secondary role as it only modifies the convective rolls near

the interface or in the entrainment zone. Nevertheless, the unique feature of the SCBL flow

is the additional HSS mode, in which the shear instability is decisive as it is able to produce

significant vortex structures comparable to those of the convective rolls. As described and
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discussed by the points (a) and (c) of the eigenfunction section, the different transitional

behaviors of the HSS mode in Regions I and II are closely related with the ‘shear enhance-

ment’ and ‘shear sheltering’ reported from previous studies on the SCBL flow. Thus, it is

suggested that the ‘shear enhancement’ and ‘shear sheltering’ are not contradictory with

each other, in fact they just involve the different behaviors of the HSS mode.

Moreover, as reviewed in Section I, the concept of the HSS mode of the SCBL flow

is not limited to the strong thermal convection, which is predominant in the majority of

studies on the SCBL flow topic. When the thermal convection is moderate or even weak,

the HSS mode is highly expected and may even prevail. For instance, during evening time,

moderate or weak thermal convection could be produced by other on-ground heat sources,

such as the urban and industrial regions, and if the wind shear is sufficient, the HSS mode

and its potential vortex structure interactions between the shear and thermal instabilities

are highly possible to occur. Under cloudy (weak thermal convective condition) and windy

(strong wind shear) weathers, the HSS mode may also prevail in the SCBL flow. Thus, the

hydrodynamics of the HSS mode obtained in the present study may also play a key role to

understand the relevant heat and mass transfer in these SCBL flows with moderate or weak

thermal convection.

In addition to geophysical circumstances, the SCBL flow including the HSS and HRB

modes may also potentially occur when the shear instability is induced by unbounded flow,

e.g., the mixed layer and the related Kelvin-Helmholtz instability, the jet flow and its as-

sociated wake, etc.. If the significant vortex structures produced by these unbounded flows

interact with the thermally convective flux or structures, the similar interactive dynamics,

where the shear instability has more active influences on or even suppresses the thermal

instability, may also potentially appear as what were shown in this study.
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APPENDIX

Appendix A

Both the basic flow and the total flow (basic flow + infinitesimal perturbations) are

governed by the equations (5)-(7), i.e.,

∇ ·U = 0, (A1)

θ̄
∂U

∂t
+ θ̄U · ∇U = −∇P (z)− [θb(z)− θ̄]

Fr2
~k, (A2)

∂θb(z)

∂t
+U · ∇θb(z) = 0, (A3)

and

∇ · (U+ u′) = 0, (A4)

θ̄
∂(U + u′)

∂t
+ θ̄(U+ u′) · ∇(U+ u′) = −∇[P (z) + p′]− [θb(z) + θ′ − θ̄]

Fr2
~k, (A5)

∂[θb(z) + θ′]

∂t
+ (U + u′) · ∇[θb(z) + θ′] = 0. (A6)

Therefore, by subtracting the equations for the basic flow, i.e., Eqs. (A1)-(A3), from the

corresponding equations for the total flow, i.e., Eqs. (A4)-(A6), and assuming the product

of an infinitesimal quantity and its gradient is negligible35, i.e., u′ ·∇u′ ≈ 0 and u′ ·∇θ′ ≈ 0,

the following perturbation equations are deduced,

∇ · u′ = 0, (A7)

θ̄
∂u′

∂t
+ θ̄(U · ∇u′ + u′ · ∇U) = −∇p′ − θ′

Fr2
~k, (A8)

∂θ′

∂t
+U · ∇θ′ + u′ · ∇θb(z) = 0. (A9)

For the sheared stratified flows considered in this paper, the base flow is assumed to be

in the x-direction and to vary with the vertical coordinate z only, i.e.,

U(z) = U(z)~i. (A10)

With this, the dot product terms in Eq. (A8) and Eq. (A9) become,

U · ∇u′ = U(z)
∂u′

∂x
~i+ U(z)

∂v′

∂x
~j + U(z)

∂w′

∂x
~k,
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u′ · ∇U = w′
∂U(z)

∂z
~i, U · ∇θ′ = U(z)

∂θ′

∂x
, u′ · ∇θb(z) = w′

∂θb(z)

∂z
.

These lead to the following perturbation equations,

∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z
= 0, (A11)

θ̄
∂u′

∂t
+ θ̄U(z)

∂u′

∂x
+ θ̄w′

∂U(z)

∂z
= −∂p′

∂x
, (A12)

θ̄
∂v′

∂t
+ θ̄U(z)

∂v′

∂x
= −∂p′

∂y
, (A13)

θ̄
∂w′

∂t
+ θ̄U(z)

∂w′

∂x
= −∂p′

∂z
− θ′

Fr2
, (A14)

∂θ′

∂t
+ U(z)

∂θ′

∂x
+ w′

∂θb(z)

∂z
= 0. (A15)

Appendix B

If the following relations are defined,

α̃ = (α2 + β2)1/2, p̃ =
α̃

α
p̂, ũ =

αû+ βv̂

α̃
, θ̃ =

α̃

α
θ̂, (B1)

where the tilde symbol (‘̃ ’) denotes the Squire transformation properties, then the operation

of [α× Eq. (21) + β× Eq. (22)]/α will lead to,

α̃(iU +
σ

α
)ũ+ Uzŵ = −iα̃

p̃

θ̄
(B2)

The differentiation with respect to z of the above equation results in,

iα̃Uzũ+ iα̃UDũ+
α̃σ

α
Dũ+ (Uzz + UzD)ŵ = −i

α̃

θ̄
Dp̃, (B3)

where the subscript ‘zz’ denotes the second order differentiation with respect to z.

Putting the above relation ũ = (αû + βv̂)/α̃ into the continuity equation (20) gives the

following equation,

iα̃ũ = −Dŵ, (B4)

and a further differentiation with respect to z of this equation leads to,

Dũ = −D2ŵ

iα̃
. (B5)
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With Eq. (B4) and Eq. (B5), Eq. (B3) changes to,

i
σ

α
D2ŵ − UD2ŵ + Uzzŵ = −i

α̃

θ̄
Dp̃. (B6)

The product of (α̃/α) and Eq. (23) is then,

α̃(iU +
σ

α
)ŵ = −1

θ̄
Dp̃, (B7)

and the product of iα̃ and the above equation is,

−α̃2(U − i
σ

α
)ŵ = −i

α̃

θ̄
Dp̃. (B8)

Substracting Eq. (B6) from Eq. (B8) and then multiplying by (−i) give

σ̃ŵ = −iα̃(U∇2
s − Uzzŵ (B9)

where σ̃ = σα̃/α is the Squire temporal growth rate of the perturbations properties and the

Squire Laplacian operator ∇2
s is defined as ∇2

s = D2 − α̃2.

The product of α̃/α2 and Eq. (24) is

σ

α
θ̃ = − α̃

α2
θb,zŵ − iUθ̃. (B10)

Multiplying Eq. (B9) and Eq. (B10) by α̃ and then writing them in matrix form gives,

σ̃





∇2
s

I









ŵ

θ̃



 =





−iα̃(U∇2
s − Uzz)

α̃2

θ̄F r2

−θ̃b,z −iα̃U









ŵ

θ̃



 , (B11)

where σ̃ = σα̃/α is the Squire temporal growth rate of the perturbations properties and

θ̃b,z = θb,zα̃
2/α2 is the Squire temperature gradient.

Appendix C

To test the influence of Lb, the over length of the bottom domain L + Lb, as shown in

FIG. 1, is fixed at 5, which is five times of the characteristic length scale Lc = 1 as suggested

in Section II. Based on the fixed L+ Lb = 5, Lb is gradually increased towards the central

line of the sheared stratified layer (z = 0), so that the proportion Lb/(L+Lb) also increases.

If Lb increases beyond a certain extent, the θ = tanh(z) profile will be cutoff due to the

insufficient length scale L. To ensure the integrity of the θ = tanh(z) profile in the central

sheared stratified layer, Lb must be setup below such upper limit.
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FIG. 10. The real and imaginary parts of σ̃ plotted against Lb at α̃ = 0.46 ((a) and (c)) and at

α̃ = 0.1 ((b) and (d)) with Js = 0.1 and Jb = 1.0. The solution of the HSS and HRB modes are

denoted by the solid and dashed lines, respectively.

Figure 10 shows the real and imaginary parts of σ̃ plotted against Lb at α̃ = 0.46

(FIG. 10(a) and (b)) and α̃ = 0.1 (FIG. 10(c) and (d)), respectively, with fixed Js = 0.1 and

Jb = 1.0. α̃ = 0.1 and 0.46 are two typical wavenumbers in Regions I and II defined in FIG. 3

in Section IV. It is found that the results of Re[σ̃] and Im[σ̃] at other α̃, Js < Js,cr = 0.25

and Jb > Jb,cr values in Regions I and II are similar to those at α̃ = 0.1 and 0.46, thus they

are not presented here.

For the HSS mode (the solid lines) at both α̃ = 0.1 and 0.46, Re[σ̃] and Im[σ̃] exhibit

their dependencies on Lb at about Lb > 3. Such dependencies confirm the upper limit of

Lb; above which the bottom unstable stratification begins to compromise the central stable
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stratifications. Thus, to ensure the occurrence of the shear instability from the base flow

profile, Lb must be setup below such upper limit at Lb = 3. On the other hand, for the HRB

mode at α̃ = 0.1 (the dashed line in FIG. 10(c) and (d)), both its Re[σ̃] and Im[σ̃] only

appear from about Lb > 2.6, suggesting that there is a lower limit of Lb, above which the

HRB mode could exist. Together with the lower and upper limits of Lb, it is suggested that

Lb fixed at 3, where both the HSS and HRB modes would develop without the influences

from Lb, is appropriate.

Physically, Lb = 3 is also appropriate. First, in a real SCBL flow, the inherent unstable

thermal convection would quickly occupy the domain below the central sheared stratified

layer, therefore Lb = 3 also approximates the real circumstance. Although in a real SCBL

flow the thermal convection could quickly overcome the central sheared stratified layer, such

dynamics occurs only after the shear and thermal instabilities are developing. Therefore the

setup of Lb = 3 also keeps the integrity of the base flow to ensure the occurrence of both

the shear and thermal instabilities.
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