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General abstract 

Under environmental change, the persistence of a species centres on its ability to disperse 

from, or adapt to, the changing conditions. Many species lack the ability to disperse in a 

timeframe parallel to climate change and/or will be restricted by decreasing environmental 

space, so adaptation is necessary. Even more concerning than gradual climate change is that 

species will also have to contend with extreme heat events. Extreme heat events (heatwaves) 

are predicted to increase in frequency, intensity, and duration with climate change, and may 

pose an equal or greater risk to species than gradual climate change. My thesis examines 

mechanisms behind adaptation to climate change to shed light on how species may react to 

both gradual and sudden temperature rises. I used two closely-related forest species of 

Drosophila from the Australian Wet Tropics to examine how a generalist (Drosophila 

serrata) and a specialist (Drosophila birchii) species differ in their potential for adaptation. 

 First, I examined how genetic variance for life history and morphology traits differ 

between a benign and stressful thermal environment using a parent-offspring quantitative 

genetic design (Chapter 2). Genetic variation is a necessary prerequisite for selection and is 

known to change between environments. As such, determining how stressful thermal 

environments change genetic variance will be fundamental to predicting evolutionary 

potential. As fitness is often difficult to directly measure, I also assessed phenotypic and 

genetic covariances between fitness and two morphological traits to determine whether a 

morphological trait can be used as a proxy for fitness in the same environment, and how this 

relationship changes under stressful temperatures. My results showed that heritability of traits 

decreased from the benign to stressful environment; but that coefficients of genetic variance, 

and phenotypic and genetic covariances, show no consistent pattern of change across thermal 

regimes or between species. This is consistent with previous research and confirms that 

researchers will have to determine heritability values for fitness and morphological traits 

specific to their species and environment to accurately predict evolutionary potential to 

stressful temperatures. 

 Chapter 3 describes an adjustable temperature array that I designed, built, and 

validated for use in ecological and evolutionary studies on thermal physiology. The 

equipment allows for user-defined thermal environments across a temperature gradient with 

high accuracy and precision. It can implement both static and dynamic thermal regimes. In 

addition, it is modular and can be scaled to fit the user’s needs to create individual thermal 
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landscapes for use with a variety of species and to answer a diverse amount of questions. This 

equipment forms an important component of my methodology for later experiments. 

 In Chapter 4, I looked at whether temperature preference, which is important in 

deciding both the rate and direction of adaptation, is co-adapted to key fitness traits and 

found evidence both for and against coadaptation. I measured productivity, development 

speed, and wing size along a thermal gradient to create thermal performance curves. I then 

used a similar methodology but allowed individuals to choose thermal environments to define 

temperature preference along this same gradient. By doing so, this incorporated oviposition 

preference site into the metric, making it one of the first studies to examine whether 

oviposition preference site is co-adapted to thermal fitness. I found that productivity is almost 

perfectly co-adapted to temperature preference, while evidence for coadaptation in 

development speed and wing size is lacking. Determining if temperature preference is co-

adapted to certain fitness traits can allow researchers to use temperature preference as a proxy 

when fitness measures are unobtainable.  

 Next, I examined whether a heatwave can act as a selection event for thermal 

tolerance and whether this increases survival during a subsequent heatwave (Chapter 5). I 

also investigated how a heatwave impacts long-term fitness. I did so by creating artificially-

affected heatwave populations of D. birchii by selecting for a highly-heritable thermal 

tolerance trait (static heat knockdown). I then tested survival during a subsequent ‘heatwave’ 

one year later and created thermal performance curves for productivity, development speed, 

and wing size. I found that surviving an initial heatwave does not future-proof a population 

against a subsequent heatwave. Further, I found that a heatwave decreases population-level 

fitness, and that fitness losses are worse with more intense heatwaves.  

 This thesis demonstrates that the heritability of key fitness traits may decrease with 

climate change; but that this is not consistent across species or populations. As such, 

researchers need to be thorough in using accurate heritability and genetic variance values 

when determining how species may respond to changing temperatures. This work also 

highlights the importance of behaviour in shaping a species’ thermal niche and reveals that 

temperature preference may be used as a proxy when attempting to identify thermal 

optimums for species. Lastly, this study provides novel evidence that populations affected by 

a heatwave may not be better suited to surviving subsequent heatwaves and that heatwaves 

instead can cause maladaptation.  

 Overall, this research emphasizes that fitness, behaviour, and thermal tolerances are 

all important factors in surviving increasing temperatures but that each of these components 
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may contribute and/or be affected by gradual and sudden temperature rise in different ways. 

In summary, this research highlights the importance of taking a comprehensive approach 

when trying to predict whether a species can adapt to changing conditions.  
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Chapter 1: General introduction 

1.1 Climate change   

Human-induced climate change may be the largest disturbance to ecological communities in 

this century (Thomas et al., 2004; Parmesan, 2006; Deutsch et al., 2008; Anjos & Toledo, 

2018; Román-Palacios & Wiens, 2020). Changes associated with climate change are 

currently predicted to occur rapidly and at a scale too great for many species to overcome 

(Hoffmann & Sgrò, 2011). It is thought that this will result in population declines and 

probable extinctions in many vulnerable species (Parmesan, 2006; Warren et al., 2018; 

Román-Palacios & Wiens, 2020). The potential for a species to overcome climate change will 

depend on multiple factors—the amount of phenotypic plasticity in a population, the 

dispersal capability of a population, and the adaptive potential of a population can all 

contribute to species survival (Carlson et al., 2014; Merilä & Hendry, 2014; Catullo et al., 

2019; Kelly, 2019). For many species, dispersal limitations and decreases in climatically-

suitable habitat mean that adapting to changing environments will often be necessary for a 

species to persist (Hoffmann and Sgrò 2011; Carlson et al., 2014; Meester et al., 2018). 

However, the importance of adaptation for species survival under climate change has, until 

recently, been relatively neglected (Hoffmann and Sgrò 2011; Bush et al., 2016).  

 Previous research has shown that rapid adaptation can occur across a wide range of 

taxa (Hendry et al., 2008; Whitney & Gabler, 2008). For example, rapid adaptation has been 

documented in phenology in flowering plants (Franks et al., 2007; Franks et al., 2016), in 

range expansion in invasive plants (Whitney & Gabler, 2008; Colautti & Barrett, 2013; Zenni 

et al., 2014), in life history and thermal tolerance traits in insects (Geerts et al., 2015; Tejeda 

et al., 2016), and in physiological traits in alpine chipmunks (Bi et al., 2019). Furthermore, a 

review examining over 68 different systems found that rates of phenotypic change occurred 

more rapidly when induced by anthropogenic change than within natural systems (e.g., 

Hendry et al., 2008). Importantly, this indicates that many species have the ability to adapt in 

a time-frame consistent with global warming. However, the factors that contribute to the 

potential for rapid adaptation are still not fully understood (Hoffmann and Sgrò 2011; 

Osmond & de Mazancourt, 2012). Rapid adaptation may be complicated by genetic 

covariances; where selection on one trait may constrain or promote indirect selection on 

another trait. For example, genetic covariances between stress-resistance traits in Australian 

Drosophila species were found to potentially promote adaptation to climate extremes because 
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indirect selection aligned with the patterns in genetic variances (Hangartner et al., 2019). 

However, this could constrain evolution if multivariate genetic variation was found to oppose 

the direction of selection (Blows & Hoffmann, 2005). 

 Rapid adaptation to climate change can be assessed in multiple ways, but examining 

the effects of changing environmental temperatures is the most relevant way to predict the 

outcome of climate change because a large component of climate change is associated with 

global warming (Huey et al., 2012; IPCC 2019).  Environmental temperature is one of the 

most important abiotic factors determining why a species lives where it does (Overgaard et 

al., 2014). This is especially true for ectotherms, which include almost all animals other than 

mammals and birds (hence encompassing > 98% of the world’s animal species). In 

ectotherms, environmental temperature directly controls body temperature because they have 

limited ability to physiologically thermoregulate and have a low-thermal inertia (Stevenson, 

1985; Cossins & Bowler, 1987; Angilletta, 2009; Hoffmann, 2010; Overgaard et al., 2014). 

Consequently, environmental temperature influences most physiological and behavioural 

properties in ectotherms through its influence on body temperature (Huey & Stevenson, 

1979; Huey, 1982; Angilletta et al., 2002).  

 In the absence of biotic interactions, temperature-dependent physiological and 

behavioural traits, such as thermal performance, thermal tolerance, and thermoregulatory 

behaviour, shape the thermal space a species inhabits (Svanback & Bolnick, 2007; Gvoždík, 

2018). These traits interact to determine a species’ thermal niche. The thermal niche is often 

defined as the thermal space where population growth is greater than zero (Gvoždík, 2018). 

As environments increasingly change as a result of human impacts, the current thermal space 

available for a species will also change. The properties of a species’ current thermal niche 

(i.e., thermal performance, tolerances, and behaviour) will dictate whether they can adapt to 

the changing thermal space.  

 Even more concerning for species than gradual warming is that climate change is 

predicted to increase the frequency, intensity, and duration of extreme heat events (Easterling 

et al., 2000; Meehl & Tebaldi, 2004). Models predict that 20-year heat events will now occur 

every two years over the next century (Collins et al., 2013). Extreme heat events, termed 

‘heatwaves’, are generally defined as periods lasting longer than three days where observed 

temperatures exceed the maximum average temperatures by 5°C or more (Vinagre et al., 

2018; WMO 2018). Heatwaves challenge an individual’s thermal tolerances through their 

immediate response to acute heat, disregarding whether they have the ability to evolve rapid 

adaptations to climate change more generally (Reusch et al., 2005). Responses to extreme 
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heat events are as important (if not more important; see Soroye et al., 2020) as longer-term 

adaptations to species survival under climate change (Grant et al., 2017; Harris et al., 2018).  

 Impacts of heatwaves include changes to life history traits such as growth rate (e.g., 

(Paaijmans et al., 2013; Van Dievel et al., 2017) and germination (e.g., Guerrero-Meseguer et 

al., 2017); changes to thermal fitness (e.g., Clusella-Trullas et al., 2011; Paaijmans et al., 

2013; Van Dievel et al., 2017); decreased population health (e.g., Mouthon & Daufresne, 

2006; Kingsolver et al., 2013; Teskey et al., 2015), sudden mass mortalities (e.g., Allison, 

2004; Miriti et al., 2007; Garrabou et al., 2009) and decreased genetic diversity (Reusch et 

al., 2005; Coleman et al., 2020; Gurgel et al., 2020) that can cause inbreeding (Coleman et 

al., 2020; Gurgel et al., 2020). Disruptions to community structure are also evident (e.g., 

(Jöhnk et al., 2008; Sorte et al., 2010) through food web changes (e.g., Carreira et al., 2017; 

and reviewed in Parmesan et al., 2000). Heatwaves may even act as the primary driver of 

evolution on thermal tolerances (Hoffmann, 2010; Denny & Dowd, 2012; Kingsolver et al., 

2013; Buckley & Huey, 2016).  

 Clearly, heatwaves can have broad implications on ecological communities and, as 

such, sudden and severe temperature rise needs to be considered at least equally to gradual 

temperature rise when investigating adaptation under climate change.  Here, I aim to examine 

both of these forces by looking at how they affect the main determinants of a species thermal 

niche: thermal performance, thermoregulatory behaviour, and thermal tolerance. 

 

1.2. Thermal performance 

Thermal performance refers to how fitness-related traits change across a range of relevant 

environmental temperatures (MacLean et al., 2019). Thermal performance can be measured 

on traits directly related to fitness (e.g., fecundity, survival, reproductive output) or traits that 

are proximate measures of fitness (e.g., locomotor speed, morphological trait size, growth 

rate; MacLean et al., 2019). The ability of a species to rapidly adapt to climate change will be 

determined by the amount of additive genetic variation in a fitness-related trait that a 

population has, since additive genetic variation is necessary for species to adapt to new 

environments (Fisher, 1930). However, the amount of genetic variation in a trait can change 

in different environmental conditions (Falconer & Mackay, 1996; Hoffmann & Schiffer, 

1998; Sgrò & Hoffmann, 1998a; Sgrò & Hoffmann, 1998b; Hoffmann & Merilä, 1999).  

 Climate change is not only predicted to gradually change current conditions but also 

increase environmental variability (Thornton et al., 2014), both of which will directly alter 
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the amount of genetic variation and directly affect the rate of evolution of a trait. Hence this 

is important to consider when determining the evolutionary potential of a trait in the context 

of a changing climate. This is because a heritability estimate that tells us the potential of a 

genetically-based trait to be passed on from parent to offspring can only accurately be applied 

in the context of the environment in which the estimate was measured (Falconer & Mackay, 

1996; Bubliy & Loeschcke, 2000). 

 Much research has been conducted into how heritability and genetic variance changes 

under varying environments, with considerable focus on novel and stressful conditions. 

However, little consensus has been reached on overall or consistent patterns. Some studies 

show heritability can decrease in stressful environments (e.g., Blum, 1988; Kristensen et al., 

2015) due to environmental variance increasing while other variance components remain the 

same (for example, see Hoffmann & Schiffer, 1998). Other studies show heritability 

increasing in stressful conditions due to an increase in additive genetic variation caused by 

exposure to novel environments (e.g., Sgrò & Hoffmann, 1998a; Swindell & Bouzat, 2006).  

 The inconsistency in patterns has created challenges for predicting evolutionary 

potential to climate change. This is particularly relevant for ectotherms living close to their 

upper thermal limits because they are expected to experience increasing temperature stress as 

the climate warms (van Heerwaarden et al., 2015). It is therefore important that genetic 

variance and heritability values are specific to the species and environment of interest. 

However, determining this for a specific trait within a population or study species is often 

difficult due to time and logistical constraints. A major focus of this thesis was to 

investigate how genetic variance and heritability of fitness traits change from a benign 

to a stressful thermal environment to investigate whether a consistent pattern exists 

(Chapter 2).  

 Another method that may prove to be reliable and quicker in estimating genetic 

variances across environments is to identify a proxy measure—i.e., using a known genetic 

and phenotypic correlation with a direct fitness trait. Many experiments and studies would 

benefit if a proxy measure was identified that is both more convenient to measure and has a 

high genetic and phenotypic correlation to the direct fitness trait in question when assessed 

under similar environmental conditions. I aimed to investigate whether phenotypic and 

genetic correlations exist between an important fitness trait and a more-easily obtained 

morphological trait, and whether there is a consistent pattern to these correlations 

across thermal environments (Chapter 2).   
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 Aside from quantitative genetic experiments that measure the amount of genetic 

variance in fitness across environments, the most common way to measure thermal 

performance is to quantify it as a thermal performance curve. Thermal performance curves 

(TPC) measure changes in fitness across environmental temperatures (Angilletta, 2009). The 

information described by TPCs is fundamental to theoretically and conceptually 

understanding thermal adaptation (Huey & Kingsolver, 1989; Gilchrist, 1995; Angilletta, 

2009) and is relevant to climate change researchers looking to relate predictive models to 

current fitness (Angilletta, 2009; Huey et al., 2012; Kellermann et al., 2019). Here, I used 

both quantitative genetic designs (Chapter 2) and TPCs (Chapters 4 and 5) to examine 

how thermal performance of key fitness traits change as a result of sudden and gradual 

temperature rise. An additional objective was to create equipment that can easily be 

used across the ecology and evolutionary biology field to test TPCs and investigate 

diverse questions related to the thermal niche (Chapter 3).  

 

Key fitness traits 

Direct measures of fitness, known as ‘ultimate’ or ‘Darwinian’ fitness traits, quantify an 

individual’s relative lifetime reproductive success. In many ectotherms, ‘fecundity’ is a 

commonly used measurement of ultimate fitness because it quantifies the number of eggs a 

female lays over a certain time period. The number of offspring that hatch and survive to 

adulthood is an additional ultimate fitness measure and is referred to as ‘productivity’. 

‘Development rate’, which measures the time the egg was laid to the time it develops into an 

adult, is also an ultimate fitness trait because relatively quicker development times produce a 

quicker generation turn-around-time (where more generations in the same time period results 

in more progeny and therefore potentially higher relative fitness). Quicker development rates 

also aid offspring by helping them outcompete other individuals by having resources 

available to them before others hatch (Chippindale et al., 1997).  

 Indirect measures of fitness are usually quantified by measuring other life history or 

morphology traits. For example, body size is considered an important fitness trait because it 

is related to fecundity, with larger bodied individuals shown to exhibit a higher fecundity 

(e.g., Chiang & Hodson, 1950; Santos et al., 1992). Many studies assume that wing size in 

winged insects correlates to body size and therefore can be used as a proxy (Bullock, 1999; 

Loeschcke et al., 1999; Outomuro & Johansson, 2011; Yeap et al., 2013; Dellicour et al., 

2017). In this thesis, I assessed thermal performance by examining genetic variances 
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and correlations of fecundity and wing size (Chapter 2), and measured TPCs for 

productivity, development rate, and wing size (Chapter 4 and 5) of two Drosophila 

species. 

  

1.3 Thermoregulatory behaviour 

Thermoregulatory behaviour is particularly important for ectotherms because they have a 

very limited capacity to physiologically thermoregulate (Stevenson, 1985) and otherwise, 

would be extremely vulnerable to environmental conditions. To overcome this, ectotherms 

use behaviour as a means to regulate body temperature (Cowles & Bogert, 1944). For 

ectotherms, behavioural thermoregulation is controlled by temperature preference (Angilletta, 

2009). Behaviour can be used to thermoregulate by helping animals avoid dangerous 

temperatures (Norris, 1967; Grant & Dunham, 1988; Dillon et al., 2009), or by promoting 

exposure to physiologically ideal temperatures (Huey et al., 2003). In both of these instances, 

behavioural thermoregulation (and hence temperature preference) can be adaptive (Dillon et 

al., 2009). 

 Consequently, temperature preferences are thought to closely match the optimal 

physiological temperature in many species (Huey & Bennett, 1987; Huey & Kingsolver, 

1989). This is known as the ‘thermal coadaptation hypothesis’. The thermal coadaptation 

hypothesis can be used to discern information on the relationship between thermoregulatory 

behaviour and thermal performance, which can aid researchers in determining how behaviour 

may influence adaptation to climate change. For example, behaviour may limit adaptation to 

climate change because animals may avoid changing temperatures by moving to less variable 

microhabitats. Conversely, if behaviour promotes exposure to the changing conditions (e.g., 

if temperature preferences are higher than the current average environmental temperature), 

than thermoregulatory behaviour may aid rapid adaptation in a warming-climate scenario. 

 Research on the thermal coadaptation hypothesis has mainly focused on large 

ectotherms and has used indirect measures of fitness (for reviews see Angilletta et al., 2002; 

Halliday & Blouin-Demers, 2015). Previously, only three studies have investigated how 

optimal temperatures for ultimate fitness traits relate to temperature preferences (Anderson et 

al., 2011; Halliday & Blouin-Demers, 2015; Halliday & Blouin-Demers, 2017). However, a 

major gap in this research is that none of these studies incorporated oviposition temperature 

preference into behavioural measurements. This is key because natural selection will favour 

females that avoid ovipositing in lethal thermal environments and prefer ovipositing in 
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optimal thermal environments (Jaenike, 1978; Thompson, 1988; Mery & Kawecki, 2004; 

Gripenberg et al., 2010; Soto et al., 2011). Incorporating oviposition preference site into 

temperature preference measurements allows for a more complete measurement of 

thermoregulatory behaviour because oviposition temperature preference is thought to 

correspond to adult temperature preference (Dillon et al., 2009).  

 In addition, direct comparisons on the thermal coadaptation hypothesis between 

generalists and specialists are lacking. Because generalists and specialists have evolved 

different thermal performance strategies—where generalists perform within a broader range 

of thermal environments than specialists, but specialists exhibit a relatively-higher 

performance capability than generalists within that narrower range—it can be deduced from 

the thermal coadaptation hypothesis that their thermal preferences should reflect this. Here, I 

measured TPCs for ultimate fitness traits in a generalist and specialist species of Drosophila 

and compared them to temperature preference that incorporated oviposition preference site. 

This will supplement the currently lacking literature for the thermal coadaptation hypothesis 

in terms of ultimate fitness traits and in investigating the evolutionary differences of the 

thermal coadaptation hypothesis in a generalist versus specialist species. In doing so, I aimed 

to investigate whether temperature preference is co-adapted to thermal performance of 

productivity, development rate, and wing size in both a thermal generalist and a 

thermal specialist species (Chapter 4).  

 

1.4 Thermal tolerances 

Thermal tolerances refer to the capacity of an animal to survive short-term exposure to 

extreme temperatures (MacLean et al., 2019), and are an important limiting factor to an 

ectotherm’s distribution (Cossins & Bowler, 1987; Angilletta, 2009; Sunday et al., 2011). 

Information on thermal tolerance limits can provide key information on how temperature 

may restrict an ectotherm’s current and predicted distribution under climate change (van 

Heerwaarden & Sgrò, 2013; Seebacher et al., 2015). This is especially important when 

considering that climate change will increase extreme temperature events. Extreme 

temperature events may promote adaptation of thermal tolerances (Denny & Dowd, 2012; 

Buckley & Huey, 2016) to help species adapt alongside climate change. 

 Small ectotherms (such as Drosophila) are often used as model species to investigate 

the adaptive potential of thermal tolerance (Angilletta et al., 2002; Hoffmann et al., 2003b; 

MacLean et al., 2019). In terms of climate change, it is important to estimate thermal 
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tolerance parameters that are relevant to rising temperatures and heat tolerance. In 

Drosophila, some studies have found limited evolutionary potential for traits associated with 

heat tolerance (e.g., Mitchell & Hoffmann, 2010; Sunday et al., 2011; Kellermann et al., 

2012; Araujo et al., 2013; Hoffmann et al., 2013; Castañeda et al., 2019), while others have 

found high adaptive potential for upper thermal limits (e.g., Bubliy & Loeschcke, 2005; Folk 

et al., 2007; Blackburn et al., 2014; Geerts et al., 2015; van Heerwaarden et al., 2015). 

Research has also shown that upper thermal limits in Drosophila have limited plasticity 

(Overgaard et al., 2011), indicating that many species may be vulnerable to increasing 

temperatures if they are not able to adapt.  

 Previous research on thermal tolerance adaptation is vast. The majority of previous 

studies select for thermal tolerances generation–after–generation to determine whether 

tolerances can adapt. However, a gap in the literature remains when looking at thermal 

tolerance selection in the framework of sudden extreme temperature events. Specifically, 

there has been no previous empirical research investigating how selection caused by a 

heatwave affects the heat tolerance of a population generations later with no further 

selection. This is necessary knowledge because heatwaves often occur during heatwave 

‘seasons’ (i.e., annually), meaning that there is often a large generation time-lag between one 

heatwave selection event and the next, especially for organisms with rapid generation times. 

A major focus of this thesis was to investigate whether one heatwave, that selects for a 

high thermal tolerance in a single generation, affects the long-term thermal tolerance of 

that population (i.e., after multiple generations with no further selection in between; 

Chapter 5). I aimed to determine whether selection on thermal tolerances of a single-

generation can aid subsequent generations in surviving a second heatwave. It’s theorized that 

heatwaves will cause directional selection for heat tolerant phenotypes, and this, in turn, may 

increase resilience towards future heat events. In this aspect, heatwaves may aid species by 

causing rapid adaptation to increasing temperatures and increasing temperature variability—

recently termed a potential ‘silver lining’ of a heatwave (Coleman & Wernberg, 2020).  

 I also investigated how one heatwave affects the long-term thermal performance 

of the population after multiple generations with no further selection (Chapter 5). It has 

been increasingly shown that temperature extremes can have a large impact on a population’s 

phenotype composition, possibly larger than gradual temperatures rise (Kingsolver et al., 

2009; Kjærsgaard et al., 2010; Rego et al., 2010). Therefore, how sudden temperature rise 

affects long-term thermal tolerances, as well as thermal performance, will aid in 

understanding the effects of climate change on a species thermal niche. 
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1.5 Study system 

I used two sister-species of Drosophila as the study-system in this thesis. Drosophila are 

frequently used as model species to understand genetic and phenotypic variances of fitness 

traits (Hoffmann, 2009) and adaptive potential of thermal performance and thermal 

tolerances (MacLean et al., 2019). This is because Drosophila are a widely diverse genus 

with over 2000 species that live in a wide variety of natural environments, are dependent 

upon multifaceted ecosystems, and live in complex communities with competitors, 

parasitoids, and predators. Hence, they are pertinent species for ecology and evolution studies 

and are highly amendable to experimental manipulation and intergeneration measurements 

because of their short generation time and relatively easy ability to maintain in the laboratory. 

It is also relevant that the majority of animal species are invertebrates and the majority of 

vertebrate species are ectotherms, making Drosophila an appropriate study species for use in 

climate change studies. 

 The two sister-species used in this thesis were Drosophila birchii and Drosophila 

serrata. Drosophila birchii and D. serrata are closely related species that belong to the 

montium subgroup and are found along the east coast of Australia. Drosophila birchii is 

considered a rainforest specialist and is found within the Australian Wet Tropic region at mid 

and high elevation (Kelemen & Moritz, 1999; Fig. 1.1). Drosophila serrata is considered a 

generalist species that resides within lowland sclerophyll woodland up into mid and high 

elevation rainforest that creates a more continuous distribution than D. birchii (Schiffer et al., 

2004; Fig. 1.1). The pair form a well-studied species complex that are frequently used to 

investigate climatic adaptations and mating behaviours due to their partial distributional 

overlap, differences in physiology and habitat choice, and the fact that they are 

reproductively isolated (e.g., Ayala, 1966; Jenkins & Hoffmann, 1999; Kelemen & Moritz, 

1999; Schiffer et al., 2004; Higgie & Blows, 2008). In this thesis, I studied two or more 

populations of each species. Evolved differences among populations within a species can 

potentially tell us whether local adaptation has occurred or if a pattern is conserved among 

different populations (Catullo et al., 2019). 
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Figure 1.1: Distribution of Drosophila birchii and Drosophila serrata in Australia. 
Drosophila birchii is a specialist species of fruit fly confined to mountain-top rainforests within the Wet 

Tropics Region of Australia (blue), and D. serrata is a generalist species that can be found from 

Queensland down to the southern part of New South Wales, Australia (red). Figure adapted from the 

Australian Drosophila Ecology and Evolution Resource (ADEER; Hoffmann et al., 2015b) and 

datasets and distributions obtained from Hallas et al. (2002), Hoffmann & Shirriffs (2002), Griffiths et 

al. (2005), Schiffer & Mcevey (2006), Hoffmann et al. (2015a). 

 

 

1.6 Aim of thesis 

Understanding the ability of a species to rapidly adapt to environmental temperature is 

essential for predicting the potential impacts of climate change on ecological communities 

(Guisan & Thuiller, 2005). Here, I aimed to investigate the impacts of gradual global 

warming and extreme temperature events on key components of a species thermal niche by 

assessing the adaptive potential of thermal performance and thermal tolerance, and 

examining how thermal behaviour correlates to thermal performance. Specifically, I: 

• Studied the effects of thermal stress on genetic variance of key fitness and 

morphological traits in a generalist and a specialist (Chapter 2). 

• Studied the effects of thermal stress on phenotypic and genetic correlations of key 

fitness and morphological traits in a generalist and a specialist (Chapter 2). 
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• Designed adjustable and customisable temperature arrays for controlled experiments 

to investigate thermal performance, thermal behaviour, and thermal tolerance 

(Chapter 3). 

• Studied whether thermal behaviour and thermal performance are coadapted for key 

fitness traits and examined if this relationship is maintained in both a generalist and a 

specialist (Chapter 4). 

• Studied how one sudden extreme heat event (i.e., heatwave) affects the ability of a 

specialist to withstand a second heatwave by examining effects on the long-term 

thermal tolerance and long-term thermal performance of key fitness traits (Chapter 5). 

 

1.7 Structure of thesis 

The main data chapters in my thesis are presented as four stand-alone, but interrelated, 

manuscripts (Chapters 2–5; Fig. 1.2) that have been published (Chapter 3), have been 

submitted for publication (Chapter 2) or will be submitted for publication (Chapters 4 and 5). 

I have taken care to avoid repetition whenever possible, but this format has caused some 

areas of unavoidable repetition in the introduction and method sections. I have changed plural 

pronouns throughout to a singular pronoun for the purpose of this thesis, but it is important to 

note that all manuscripts include multiple co-authors. The contributions of co-authors can be 

found at the beginning of this thesis and at the beginning of each chapter. Supplementary 

information and material are located at the end of the thesis in appendices to facilitate reading 

of the main text.  
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Figure 1.2: Flowchart of thesis. 
This flowchart outlines the chapters of this thesis and shows how each chapter fits within the main 

goal of investigating how important components of a species thermal niche is affected by gradual and 

sudden temperature change.  
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2.1 Abstract 

Understanding the adaptive potential of a species is important when trying to predict whether 

the species can contend with climate change. Adaptive capacity depends on the amount of 

genetic variation within a population for a particular trait; but genetic variation changes in 

different environments making it hard to predict whether a trait can adapt. Understanding 

how genetic variation changes across environments is therefore critical to predicting adaptive 

potential. A trait that is strongly correlated with fitness across environments may provide a 

proxy measure to aid in understanding adaptation potential. Here, I investigated how genetic 

variances and phenotypic and genetic covariances between a fitness trait and two 

morphological traits changed between thermal environments in two closely-related 

Drosophila. I used a parent-offspring quantitative genetic design to test the effect of a benign 

(23°C) and stressful (28°C) thermal environment on genetic variances of fecundity and wing 

size and shape, as well as their phenotypic and genetic covariances. Overall, I found genetic 

variances were higher within the stressful environment for fecundity but lower within the 

stressful environment for wing size. I did not find evidence for significant phenotypic 

correlations. Phenotypic and genetic correlations did not reveal a consistent pattern between 

thermal environments or between species, populations, or generations. This corroborates 

previous research that was unable to find a trend in how environments affect genetic 

variance. This is important because conclusions drawn in one environment about the adaptive 

potential of a trait, and the relationship of that trait with fitness, cannot be extrapolated to 

other environments or to closely-related species, populations, or across generations. This 

confirms that researchers need to use caution when generalising findings across environments 

in terms of genetic variation and adaptation potential.  
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2.2 Introduction 

Climate change is causing increased temperatures that will impose stress on species (Thomas 

et al., 2004). Many species lack the ability to disperse to more optimal environments (Bellard 

et al., 2012; Ceballos et al., 2017), and will have to adapt to the stressful temperatures to 

survive in the long-term (Thomas et al., 2004; Hoffmann & Sgrò, 2011). Adaptation potential 

will depend on the amount of genetic variation in traits relevant to the selection imposed by 

environmental change (Fisher, 1930; Falconer & Mackay, 1996), and adaptation will need to 

be rapid given the speed of human-induced climate change. Understanding the adaptive 

potential of species, especially those currently living close to their upper thermal limits, is 

therefore crucial in today’s changing climate (Urban et al., 2016; Funk et al., 2019; Shaw, 

2019).  

  Importantly, genetic variation is context-dependent—meaning the amount of genetic 

variation in a trait in a given population can change under different environments (Falconer 

& Mackay, 1996; Hoffmann & Schiffer, 1998; Sgrò & Hoffmann, 1998a; Sgrò & Hoffmann, 

1998b; Hoffmann & Merilä, 1999). Short-term environmental changes can play an important 

role in adaptive evolution (Wood & Brodie, 2016) and can induce a similar or larger change 

in genetic variance than changes to the genetic architecture that accumulate over hundreds of 

generations between populations (for review, see Wood & Brodie, 2015). Increases in 

environmental variability, such as those predicted with climate change, will therefore directly 

affect the rate of evolution of a trait—as environments get warmer, not only may the type of 

selective pressure change, but also the potential for the trait to respond to selection. This is 

important because as researchers aim to determine whether species can adapt to climate 

change, the changing climate itself may increase or decrease adaptation potential.  

 Much research has focused on examining whether there is a consistent pattern to 

changes in expression of genetic variance (for reviews, see Sgró & Hoffmann, 2004; 

Rowinski & Rogell, 2017; and Fischer et al., 2020). However, there is no consensus on 

whether stressful conditions increase or decrease the expression of genetic variance. The 

majority of studies focus on quantifying genetic variance by calculating heritability (h2), 

which describes the proportion of genetic variance due to additive effects. This can be used to 

predict the magnitude of the response to selection via the breeder’s equation. These studies 

show both increases (e.g., Sgrò & Hoffmann, 1998a; Sgrò & Hoffmann, 1998b; Swindell & 

Bouzat, 2006) and decreases (e.g., Hoffmann & Schiffer, 1998; Bubliy et al., 2001; 

Kristensen et al., 2015) in heritability under stressful conditions. Increased heritability may 
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result from novel genetic variance that is expressed when exposed to new conditions (i.e., 

‘cryptic genetic variance’; see review by Hoffmann & Schiffer, 1998; but also see Swindell 

& Bouzat, 2006). Decreased heritability may result from low cross-environment genetic 

covariances (Fischer et al., 2020), or environmental variance increasing while other variance 

components remain the same (for example see Hoffmann & Schiffer, 1998). Recently, studies 

have recommended quantifying genetic variance using parameters standardized by the trait 

mean—such as coefficient of additive variance (CVA) and its square, evolvability (IA)—

because estimates of heritability can be influenced by sources of non-genetic environmental 

variation that may preclude comparison across environments and traits (Houle, 1992; 

Rowiński & Rogell, 2017; Fischer et al., 2020). Parameters standardized by the trait mean 

may also more intuitively indicate whether trait shifts will be substantial because the 

magnitude of change is more easily understood.  

 Assessing the effect of a changing environment on genetic variance is further 

complicated when attempting to measure genetic variance across different environments for 

fitness. Direct fitness (reproductive success) is often difficult to measure in the wild because 

of uncontrolled and unmeasured factors (Orr, 2009), and in the laboratory due to time and 

logistical constraints (Rosenberg, 1982; Nguyen & Moehring, 2015). Instead, a 

morphological trait that strongly correlates with fitness, and is more easily measured, may 

provide a good proxy when fitness measures are difficult to obtain. If phenotypic correlations 

between a morphological trait and fitness are strong, researchers can use the easier-to-

measure trait to predict genetic variation of fitness across different environments (Arnold, 

1983).  

 More importantly, a strong phenotypic correlation may indicate that two traits are 

genetically linked through physical linkage, pleiotropy, or linkage disequilibrium (Cheverud, 

1988; Conner & Via, 1992; Roff, 1995; Blows & Hoffmann, 2005). This is important 

because a positive genetic correlation between traits could aid adaptation to novel 

environments if selection favours that trait combination by augmenting the effect of selection 

on the correlated fitness trait (Blows & Hoffmann, 2005; Agrawal & Stinchcombe, 2009; 

Walsh & Blows, 2009; Holman & Jacomb, 2017). Therefore, determining genetic 

correlations of traits with fitness is an important part of the puzzle when predicting 

evolutionary potential.  

 However, much like genetic variation in individual traits, phenotypic and genetic 

covariances between traits (or between a trait and fitness) can vary depending upon the 

environment in which they are measured (Sgrò & Hoffmann, 2004)—meaning measurements 
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obtained in one environment cannot necessarily be generalised to other environments.  For 

example, adult female body mass and her egg size were positively correlated on one host-

plant species and negatively correlated on a different host-plant species in a beetle (Czesak & 

Fox, 2003). Genetic correlations can change within novel environments due to genotype-

environment interactions—where genes that affect a trait in one environment may not be 

influential in a different environment (Sgrò & Hoffmann, 2004). In some instances, the loci 

that contribute to covariances through pleiotropy or physical linkage have specifically been 

found to be influenced by environmental effects (e.g., Gutteling et al., 2007; Hausmann et al., 

2005). However, more empirical data are needed to understand whether there are patterns to 

how genetic variances and covariances of morphological and fitness traits vary across 

thermal environments (Rowiński & Rogell, 2017; Fischer et al., 2020).  

 Drosophila are often used to investigate genetic variances and covariances across 

environments due to their short generation time and ability to produce large numbers of 

offspring that allow for quantitative genetic experimental designs. Fecundity is a commonly 

assessed fitness trait in Drosophila. However, measuring fecundity can often prove time- and 

labour-intensive and logistically challenging. Ecological theory assumes that body size is 

correlated with fecundity, with larger individuals exhibiting a higher fecundity (Chiang & 

Hodson, 1950; Santos et al., 1992; Robertson, 1956), and wing length has been shown to 

phenotypically correlate with fecundity (Tantawy & Vetukhiv, 1960; Woods et al., 2002). 

However, two key studies examining the relationship of wing length and fecundity in 

Drosophila when exposed to stressful environments found mixed evidence. Sgrò & 

Hoffmann (1998b) did not detect a significant positive phenotypic or genetic correlation in a 

cold-stress, heat-stress, or benign environment. They also did not find a significant genetic 

cross-environment correlation (parents raised in one environment and offspring raised in a 

different environment) between cold-stress, heat-stress, or benign environments (Sgrò & 

Hoffmann, 1998b)—meaning that they did not find a correlation between wing length and 

fecundity among and between any experimental environment. Conversely, Woods et al. 

(2002) found significant positive phenotypic correlations (for two of three generations) and 

significant positive genetic correlations between wing length and fecundity in a stressful 

environment, but not in a benign environment. 

 With advances in technology over the past decade (i.e., advances in microscopic 

imaging and digitizing), more intricate morphological traits such as wing size and wing shape 

have been increasingly used in place of wing length. However, very few studies have 

examined genetic variation and heritability in wing size and shape (Gilchrist & Partridge, 
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1999; Hoffmann & Shirriffs, 2002; Moraes et al., 2004); and, to my knowledge, only one has 

examined the phenotypic and genetic correlations of wing size with fecundity (Woods et al., 

2002). Wing size and wing shape in Drosophila have a polygenic basis independent of one 

another (Carreira 2011), so phenotypic and genetic correlations of each of these traits with 

fecundity may differ. Wing size exhibits a history of directional selection in Drosophila, 

whereas wing shape has been shown to undergo optimizing selection (Gilchrist & Partridge, 

2001). Although most of the fundamental research uses wing length as a trait that is highly 

correlated to thorax size (and therefore body size; Chiang & Hodson, 1950; Tantawy & 

Vetukhiv, 1960; Santos et al., 1992; Woods et al., 2002), wing size may be a better indicator 

of overall body size because it is a product of more complex interactions between the 

different wing compartments (i.e., anterior and posterior compartments; Guerra et al., 1997; 

Gilchrist & Partridge, 1999). Hence, wing size may account for a greater proportion of 

variation than wing length alone. Wing shape is important for flight performance in 

Drosophila and has been shown to exhibit high heritability (Hoffmann & Shirriffs, 2002; 

Moraes et al., 2004).  

 Temperature as a stressor is contextually important in today’s climate, but it has only 

been used in one Drosophila study to assess whether genetic correlations exist between 

fecundity and wing length, and whether heritability changes between different thermal 

regimes (i.e., D. melanogaster; Sgrò & Hoffmann, 1998b with the same data used in Woods 

et al., 2002). Here, I focused on whether genetic variances in fecundity change across 

thermal environments, and whether a morphological trait that may be a good proxy of fitness 

in one environment was also a good proxy in a stressful thermal environment. I examined 

the consistency of heritability, coefficient of additive genetic variance, and evolvability 

between thermal environments (one benign and one stressful), generations, and within and 

between two sibling species of Drosophila. A strength of this study is that I assessed both 

life history and morphology traits in two closely-related species to see whether this pattern 

was conserved. I also assessed the phenotypic and genetic covariances of these traits. The 

correlation of body morphology with fitness informs us about the strength and direction of 

selection. This is important because patterns of selection in one environment may not reflect 

similar responses in another environment. 
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2.3 Methods 

Experimental populations 

Two sibling species of fruit fly found along the east coast of Australia were used in this 

study: Drosophila serrata, a generalist species found in forested areas; and D. birchii, a 

specialist species confined to tropical rainforest ecosystems (Schiffer & Mcevey, 2006; 

Higgie & Blows, 2008). Mass bred populations from two different geographical areas for 

each species were used. Each mass bred population was originally created by breeding the 

offspring of ten isofemale lines collected from field sites within Queensland, Australia. 

Drosophila birchii flies were collected from Paluma National Park (19° 0'16.27"S, 

146°12'35.59"E) and Mt. Lewis National Park (16°35'30.36"S, 145°16'27.78"E). Drosophila 

serrata flies were collected from Paluma National Park (19° 0'16.27"S, 146°12'35.59"E) and 

Raglan Creek (23°42'49.74"S, 150°49'0.10"E). All flies were collected between February and 

May 2016. Isofemale lines were maintained in controlled laboratory conditions for 18 

generations before mass bred populations were created. All isofemale lines and stocks were 

maintained at large population sizes (isofemale lines: N > 500, stocks: N > 1000) to retain 

natural genetic variation. Flies were reared on standard Drosophila food that contained sugar, 

yeast, and agar as described in Higgie and Blows (2008). All flies were reared under 

constantly controlled laboratory conditions of 23°C ± 1°C, 50% relative humidity (RH), and 

12 hr light:dark cycles.  

 

Quantitative genetic experimental design 

A parent-offspring breeding design was used to assess heritability and phenotypic and genetic 

covariances of fecundity and wing morphology at a benign (23°C) and a stressful (28°C) 

temperature (Fig. 2.1). The benign temperature (23°C) represents an approximate average 

temperature each species experiences across their range both temporally and spatially, as well 

as the optimal rearing temperature in the laboratory. A temperature of 28°C was chosen as a 

stressful thermal environment as it was found to be within the upper margin of the thermal 

niche for D. birchii and to place stress upon D. serrata (from pilot studies showing reduced 

survival). However, it is important to note that the level of stress placed upon each species 

may differ due to their different physiologies—meaning comparisons can only be made 

within species. Full development was expected in both species based on previous research.  
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Figure 2.1: Parent-offspring quantitative genetic experimental design. 
The parent-offspring quantitative genetic experimental design used to measure female fecundity, wing 

size, and wing shape on both dams and daughters. This design was used for two populations of both 

D. birchii and D. serrata. Experimental female flies were raised in either a non-stressful rearing 

temperature (23°C) or a stressful temperature (28°C). Mass bred populations were raised alongside 

each generation and supplied males for mating purposes. 

 

 

Two generations before the start of the experiment, density-controlled mass bred populations 

were created for each species and population by sexing 25 females and 25 males from the 

laboratory stock and placing them in one 300 mL bottle with 100 mL of food. This was 

repeated three times for each species and population. Flies were removed from each replicate 

bottle after 72 hrs and bottles were carded for pupation. Offspring were collected at random 

and sexed to subsequently create family lines and stock mass bred populations for each 

species and treatment.  

 One generation before the start of the experiment (i.e., P generation; Fig. 2.1), virgin 

offspring were sexed from the density-controlled mass bred populations using CO2 

anesthetization. Flies were placed in 100 mL holding vials with 5 mL of food for 72 hrs to 
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allow for sexual maturation and full recovery from anesthetization, with 5 individuals per 

holding vial. After this, one male and one female were randomly collected and placed in a 

100 mL glass vial with 10 mL of food, stoppered with a porous stopper, and directly placed 

in an incubator set to the relevant temperature for each thermal environment treatment. 

Humidity inside the vials was expected to remain at approximately 90% RH (from 

preliminary experiments), and a 12 hr light:dark cycle was maintained. This was done for 50 

family replicates for each species, population, and treatment. Mating pairs were allowed to 

mate for 48 hours before being removed from the vial. This ensured all experimental flies 

were reared in a controlled and low-density environment. In addition, three low-density stock 

bottles containing 10 females and 10 males were created and maintained for both the parent 

and offspring generations to provide a supply of males for mating to assess fecundity (i.e., 

male mass breds; Fig. 2.1). These were maintained in each thermal environment and males 

were randomly collected from each bottle and mated with a female from the same 

experimental rearing temperature.  

 

Fecundity measurements 

Virgin female offspring of each family replicate vial were sexed under light anesthetization 

and placed in holding vials for 72 hrs. One female (i.e., dam) from each F1 family was 

randomly selected and placed in an empty vial with one virgin male collected from the male 

stock bottles. Each vial contained a small spoon with 2 mL of food to provide a medium for 

oviposition. The food was dyed green to aid in counting eggs, and a drop of a live yeast-water 

solution (1 g baker’s yeast:10 mL water) was spread over it to promote ovipositing. Vials 

were immediately placed within their temperature treatment and flies were allowed to mate 

for 24 hrs. After 24 hrs, the spoon was removed and immediately frozen at -19°C for eggs to 

be counted at a later time, and replaced with a new spoon. This was repeated every 24 hrs for 

three days and a cumulative fecundity count was obtained. Cumulative fecundity 

measurements from the first three days of maturity are significantly correlated with lifetime 

reproductive success of female Drosophila (Pekkala et al., 2011; Nguyen & Moehring, 

2015). After 72 hrs, the mating pair was transferred to a rearing vial with 10 mL of food and 

allowed to mate for the next 48 hr period before being removed. Females were then 

immediately frozen for wing size and shape measurements. Daughters of these pairs were 
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collected from each vial and one virgin female offspring from each mating pair was assessed 

for fecundity and wing traits using the same methods described above. 

 Fecundity was scored using a microscope and click counter by counting the number 

of eggs on each spoon. Approximately one quarter of spoons were counted twice, at random, 

to assess repeatability; a positive correlation close to 1 indicated that counting was highly 

repeatable between measurements (r = 0.994; P < 0.001; N = 81).  

 

Wing morphometrics 

All dams and daughters were frozen at nine days old to assess wing size and shape. Left 

wings were removed using fine forceps and mounted on microscope slides with double-sided 

tape. Wings were photographed using a Leica Image microscope (LASV3.8). Images were 

randomized and collated as a TPS file using tpsUtil (Rohlf, 2010b). Landmarks were placed 

on ten consistent morphometric wing features of each image (Appendix A Figure 1) using the 

program tpsDig2 (Rohlf, 2016). Outliers and landmarking errors were identified using 

tpsRelW (Rohlf, 2010a) and corrected or removed before wing measurements were 

computed.  

 Landmarked coordinates underwent a Generalised Procrustes Analysis (GPA) 

superimposition (Rohlf & Slice, 1990), where wing size and alignment are adjusted for by 

superimposing images upon one another over an average configuration. The GPA 

superimposition has been found to produce estimates with the least amount of error in a study 

on geomorphometrics (Rohlf, 2003). The square root of the summed squared distance 

between centroid configuration and landmarks is known as the centroid size and provides a 

measure of overall size (Rohlf & Slice, 1990; Rohlf, 2000). Although size effects should be 

removed via the GPA, a correlation between shape and size might still occur (known as 

allometry), and hence this was also assessed. In addition to centroid size, the GPA computes 

a set of Procrustes residuals for each landmark. A principle component analysis (PCA) was 

conducted upon these to identify variation components, which can be used to describe a 

single axis of variation in wing shape among individuals (Adams et al., 2004; Zelditch et al., 

2004; Gómez et al., 2009). In this instance, the PCA is equivalent to a relative warp analysis 

because the variation between landmarks was not weighted by bending energy (Zelditch et 

al., 2004), so PCA scores are equivalent to relative warp (RW) scores. As per common 

practice, RW scores that explained greater than 5% of variation were used as shape variables 
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(Zelditch et al., 2004; Gómez et al., 2009) to analyse differences in wing shape using the 

geomorph package in R (Adams et al., 2020). 

 

Analysis 

Data was checked for outliers, homogeneity, normality, and independence as outlined in the 

protocol described in Zuur et al. (2010) and analyses were performed using the statistical 

program R (R Core Team, 2019). Mean trait values and phenotypic variances (calculated as 

squared standard errors of the mean trait values) were calculated for fecundity, wing size, and 

wing shape for both the dam and daughter generations. To test whether thermal environment 

had an effect on mean trait values and on phenotypic variances, a two-way ANOVA (for 

thermal environment and generation and its interaction) or generalised least square model 

was conducted for each trait and metric depending on data structure. Population and its 

interaction with thermal environment was also included when significant. For the 

multivariate measure of shape (RW score matrix), a permutational MANOVA (also known as 

a Procrustes ANOVA; Goodall, 1991) was used to test for differences in wing shape between 

thermal treatment, populations, and generations. All analyses were conducted separately for 

each species. 

 Narrow sense heritability (ℎ#) for each trait was calculated from a regression of 

offspring trait values on maternal trait values (Falconer & Mackay, 1996). As I conducted 

only a single-parent regression, the phenotypic resemblance is equal to half of the genetic 

variation and thus the slope parameter estimate % represents: 

% = 1/2(
*+
*,
) 

% = 1/2ℎ# 

and so heritability is equal to twice the slope of the regression line (Falconer & Mackay, 

1996). In parent-offspring regression, estimates can be greatly skewed if variances found in 

the parental generation and offspring generation differ (Falconer & Mackay, 1996). To 

overcome this, I standardized all traits to a mean of zero and standard deviation of one prior 

to computation of heritability and genetic covariances (Sgrò & Hoffmann, 1998c). The 

significance of deviations of heritability estimates from zero were assessed using an F-test 

and all P-values were adjusted for using the False Discovery Rate method (Benjamini & 

Hochberg, 1995). Standard errors of heritability were obtained directly from the regression 

model. 
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 To obtain an overall estimate of heritability for wing shape, I followed the equations 

set forth in Monterio et al. (2002) for estimating heritability from a parent-offspring 

regression on a multivariate trait (i.e., wing shape with RW scores > 5% variation included). 

This was done by first obtaining the coefficient of determination (R2) from a multivariate 

linear regression of offspring RW scores onto dam RW scores. The square root of the 

coefficient of determination (R) was then used in the following formula: 

% = -
./
.,

 

where % is the multivariate regression coefficient, SO is the standard deviation of the 

offspring trait, and SP is the standard deviation of the parental trait. The multivariate 

regression coefficient multiplied by two is then equal to the heritability of the trait (as I still 

need to account for only having half of the genetic variation due to the single-parent-

offspring comparison). The standard error of heritability for the multivariate wing-shape trait 

was calculated using the number of families (N) and offspring (n; Falconer & Mackay, 1996; 

Monteiro et al., 2002):  

0. 2 ℎ# =
2
34

 

Significance of deviation from zero for multivariate shape heritability was assessed using a 

Wilks’ lambda test (Zelditch et al., 2004; Gómez et al., 2009). 

 In addition, coefficients of genetic variation (CVA) and evolvabilities (IA) were 

calculated following Houle (1992) as:  

5*+ = 	
*+
7

 

8+ = 	
*+
7#

 

 

Because I did not directly calculate VA in my analysis, I obtained estimates based on the 

method of Garcia-Gonzalez et al. (2012). VA estimates were calculated by multiplying the 

total phenotypic variance (VP) of each trait mean by the narrow-sense heritability (ℎ#), since 

*+ = ℎ#	×	*, (Falconer & Mackay, 1996).  This is an alternative way to calculate CVA when 

researchers do not have the sire variance component (Vsire) or another direct measure of VA 

(Garcia-Gonzalez et al., 2012). Standardized data cannot be used to calculate CVA and 8+ 

because a scaling correction to a zero mean produces a meaningless comparison and 

undefined value when dividing by the trait mean a second time (Garcia-Gonzalez et al., 
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2012). The above methods were therefore only performed on non-standardized data and CVA 

and 8+ values were not calculated for RW scores of wing shape as these are standardized.  

 The phenotypic correlation among each pair of traits was calculated as the Pearson 

correlation coefficient. Genetic covariances (covXY) were obtained by regressing one trait in 

the parental generation onto the other trait in the offspring generation, in both directions, 

adjusting for relationship, and taking the mean of the adjusted Pearson correlation 

coefficients as suggested by Falconer and Mackay (Falconer & Mackay, 1996). Genetic 

correlations were then calculated using the genetic covariances and the following equation: 

:; 	= 	
<=>?@

<=>??<=>@@
 

where covXY is the genetic ‘cross-covariance’ and covXX and covYY are the parent-offspring 

covariances for the individual traits. Standard errors for genetic correlations were calculated 

using an approximate formula as proposed by Reeve (1955), Robertson (1959) and explained 

in Falconer and Mackay (1996): 

ABC = 	
1 −	:;#

2

A EF
G 	A EH

G

ℎ?#ℎ@#
 

  

All correlations were estimated using linear regression models that initially included the main 

effects of temperature and population and an interaction between them, with interaction and 

population terms removed if they were found to be non-significant. In the majority of cases, 

population was not significant and this allowed for one correlation value per species.  

	

2.4 Results 

Mean trait values differed significantly between thermal environments for each species and 

generation (P = < 0.001). Rearing in a stressful thermal environment resulted in lower 

fecundity (Appendix A Table 1 and Appendix A Figure 2), smaller wing size (Appendix A 

Table 2 and Appendix A Figure 3), and a rounder, less elongated wing shape when adjusted 

for size (Appendix A Table 3 and Appendix A Figure 4) across all species, populations, and 

generations. 	
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How does genetic variation change in a stressful thermal environment? 

Fecundity 

Phenotypic variation in fecundity did not differ significantly between thermal environments, 

but was slightly higher within the stressful environment than the benign environment (Table 

2.1). CVA estimates could not be calculated for D. birchii within the stressful temperature 

because offspring did not emerge in this treatment (the environment may have been too 

stressful). CVA and evolvability (IA) estimates for fecundity were higher than for 

morphological traits in all instances, and slightly higher in the stressful environment than in 

the benign environment in D. serrata (Table 2.1 and Fig. 2.2). Fecundity was found to have a 

low heritability overall (Table 2.1 and Fig. 2.2). 

 

Morphological wing traits 

Phenotypic variation in wing size was significantly higher within the benign environment 

than in the stressful environment for dams of both species (D. serrata: P = 0.02, D. birchii: P 

= 0.005; Appendix A Table 2). Heritability, evolvability, and CVA estimates were higher 

within the benign environment than the stressful environment in D. serrata, and heritability 

values were overall much higher for wing size compared to fecundity (Table 2.1 and Fig. 

2.2). 

 Phenotypic variation in wing shape variables significantly differed between thermal 

environments for all RW scores in D. serrata (P < 0.005 for all RW scores), but did not differ 

between thermal environments in D. birchii. The direction and magnitude of changes in 

phenotypic variances did not show a consistent pattern across thermal environments 

(Appendix A Table 3). Wing shape heritability increased within the stressful environment in 

D. serrata (Table 2.1 and Fig. 2.2), but the individual RW scores exhibited the opposite 

pattern (Appendix A Table 3). Heritability in all instances was much higher than for the 

fitness trait (fecundity). In addition, wing size and wing shape evolvabilities and CVA 

estimates were all very low compared to the fitness trait (Fig. 2.2).
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Table 2.1. Expression of genetic variance parameters for fecundity, wing size, and wing shape; including heritability (h2), the coefficient of additive 

variance (CVA), and evolvability (IA). Phenotypic (VP), additive (VA) and residual (Vres) variances are also shown for the pooled dam and daughter values. 

Population was not a significant contributor to variance, so one metric was calculated per species from parent-offspring regressions. Bold values indicate a 

slope significantly different than zero and asterisks indicate significance level after correction for False Discovery Rate († P < 0.1; * P < 0.05; *** P < 0.001; 

**** P < 0.0001). Parameters could not be calculated for D. birchii within the stressful environment because daughters did not develop. CVA and IA values 

shown are x 102. Values for individual relative warp scores for wing shape can be found in Appendix A Table 3. 

     Benign (23ºC)    Stressful (28 ºC)  
Trait Species N  h2 ± SE VP VA Vres CVA IA  N  h2 ± SE VP VA Vres CVA IA 

Fecundity D. birchii 86 0.148 ± 0.116 1384.6 204.92 1179.68 15.88 2.524  - - - - - - - 
  D. serrata 69 0.052 ± 0.124 1105.1 57.47 1047.64 5.26 0.276  65 0.040 ± 0.139 1879.5 75.18 1804.32 10.17 1.032 
Wing size D. birchii 81 0.476 ± 0.131† 0.0005 0.0002 0.0003 0.224 0.0005  - - - - - - - 
  D. serrata 64 1.000 ± 0.142*** 0.0005 0.0005 0.0000 0.324 0.0011  62 0.226 ± 0.124 0.0005 0.0001 0.0004 0.156 0.0002 
Wing shape D. birchii 81 0.516 ± 0.22**** - - - - -  - - - - - - - 
 D. serrata 64 0.517 ± 0.25*** - - - - -  62 0.599 ± 0.26* - - - - - 
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Figure 2.2: Heritability (h2) and coefficient of additive variance (CVA) values for a life history 

trait and morphological traits across a benign (23°C) and stressful (28°C) thermal environment. 

Two standardized estimates of additive genetic variance are shown for a life history and two 

morphological traits in two closely-related species of Drosophila. (A, B) Heritability is standardized by 

the total genetic variance and (C, D) coefficient of additive genetic variance is standardized by the 

trait mean. Evolvability (not shown) will exhibit the same pattern as CVA. Standard errors (2x) are 

shown as error-bars, and asterisks indicate significance of the estimate after correction († P < 0.1; * P 

< 0.05; *** P < 0.001; **** P < 0.0001). Standard errors for CVA were calculated using the standard 

error estimates from heritability (see Appendix A Tables 1, 2 for details).  

 

 

How does phenotypic correlation of traits change in a stressful environment? 

There were no significant phenotypic correlations found between fecundity and wing size 

after correction for multiple comparisons by the False Discovery Rate method (Benjamini & 

Hochberg, 1995; Table 2.2 and Fig. 2.3). However, using a combined probabilities approach 

(i.e., a weighted Z-test), I did find a significant phenotypic correlation between wing size and 
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fecundity under benign conditions in D. birchii. Population was found to be a significant 

contributor to variation for the dams of D. birchii, so phenotypic correlations were also 

calculated and presented for each population separately (Table 2.2). 

 

 
Table 2.2: Phenotypic correlations between fecundity and wing size.  rP is the phenotypic 

correlation and the P-values were obtained from an F-test of the linear regression of one trait on the 

other and both unadjusted (raw) and adjusted (corrected for using the False Discovery Rate method 

(Benjamini & Hochberg, 1995) are shown. Sample sizes (N) indicate the number of individuals used in 

each correlation. In addition, the combined probabilities from the dam and daughter generation are 

shown and were calculated using the weighted Z-test of combined probabilities.  

  Benign (23ºC)  Stressful (28 ºC) 

Species Generation 
      Population N rP P-value 

(raw)  P-value  N rP P-value 
(raw) P-value 

D. birchii Dams 86 0.30 0.168 0.437  78 0.22 0.346 0.647 
       Mt. Lewis 45 -0.14 0.655 0.763  - - - - 
       Paluma 41 0.76  0.014* 0.104  - - - - 
 Daughters 87 0.58    0.007** 0.073  - - - - 
 Combined probabilities       -          0.008** -  - - - - 
D. serrata Dams 78 -0.14 0.526 0.760  77 -0.18 0.422 0.707 
  Daughters 67 0.12 0.628 0.763   65 0.52  0.035* 0.202 
 Combined probabilities       -          0.603 -  - - 0.345 - 
 

 

Fecundity and wing shape traits exhibited mixed and inconsistent results (Fig. 2.3 and 

Appendix A Table 4). There was only one significant phenotypic correlation found between 

fecundity and a wing shape variable within the daughter generation of the Mt. Lewis 

population of D. serrata under a stressful thermal environment. Allometry was found within 

the benign environment for the daughter generation of D. serrata, indicating wing size and 

wing shape in this instance are still slightly correlated even after removing effects of size 

during the GPA analysis (Appendix A Table 4).  

 

How do genetic covariances and correlations change with environmental stress?  

There were no significant genetic covariances found between any of the traits (Appendix A 

Table 5). Additionally, there was no consistent trend detected for genetic covariances 

between species and thermal environments, and there was a general lack of pattern across 

populations, species, and thermal environments.  
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 Further, there was no consistent pattern in genetic correlations (i.e., genetic 

covariances standardized by individual trait covariances) between species and thermal 

environments. Genetic correlations and their standard errors are shown in Figure 2.3 (and 

Appendix A Table 6). Genetic correlations in D. birchii were generally low (-0.32 < rG < 

0.46), while D. serrata traits exhibited high positive and negative genetic correlations, but 

this was not consistent across environments (Fig. 2.3).  

 I did find highly negative and highly positive genetic correlations between fecundity 

and wing morphometries in D. serrata (including values of ±1.00). However, these often had 

very wide standard errors and were not always significant. In the benign environment for D. 

birchii, I found a significant positive correlation between wing size and a wing shape variable 

(RWb-2; rG = 0.46 ± 0.14 SE, P < 0.01). In the benign environment for D. serrata, I found a 

significant negative genetic correlation between fecundity and wing size (rG = -1.00 ± 0.08 

SE, P < 0.001) and a significant positive (RWs-1; rG = 0.75 ± 0.16 SE; P < 0.0001) and 

negative correlation between fecundity and a wing shape variable (RWs-4: rG = -0.92 ± 0.10 

SE, P = 0.0001). In the stressful environment for D. serrata, I found a significant positive 

correlation between fecundity and wing size (rG = 0.84 ± 0.29 SE; P < 0.05) and fecundity 

and a wing shape variable (RWs-4; rG = 1.00 ± 0.13 SE; P < 0.0001; Fig. 2.3). 

 



 31 

 
Figure 2.3. Genetic and phenotypic correlations for fecundity and wing morphology in two 

sibling-species of Drosophila. 

Genetic correlations (rG) and phenotypic correlations (rP) between the trait on the x-axis (fecundity and 

wing size) and the trait on the y-axis (wing size and wing shape RW scores) across a benign and 

stressful thermal environment. Standard errors (2x) for the correlations are indicated by the grey error 

bars. Asterisks (in red) denote the correlation is significantly different from 0, obtained from the z-

statistic calculated from standard errors (Altman & Bland, 2011) and P-values have been adjusted by 

the False Discovery Rate (* P < 0.05; *** P < 0.001; **** P < 0.0001). Phenotypic correlations shown 

are from the dam generation. 
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2.5 Discussion 

The amount of genetic variation in a trait is important for predicting responses of populations 

and species to climate change as it determines the extent to which a trait can evolve via 

selection. However, genetic variance and heritability change between environments (Falconer 

& Mackay, 1996; Hoffmann & Schiffer, 1998; Sgrò & Hoffmann, 1998a; Sgrò & Hoffmann, 

1998b; Hoffmann & Merilä, 1999) potentially due to increased environmental variance and 

reduced additive genetic variance, genotype-by-environment interactions that affect cross-

environment genetic correlations, and cryptic genetic variation (Fischer et al., 2020). It is 

essential to recognise and incorporate this into climate change adaptation research (Shaw, 

2019), but consistent and predictable patterns have not been detected. It is unclear whether 

such patterns exist or whether genetic variance and heritability must always be considered in 

the context of specific traits, populations and environments. Here, I showed that temperature 

stress can alter the heritability, coefficient of additive genetic variation, and evolvability, of 

both fecundity and morphological traits in two closely-related species of Drosophila (one 

being a generalist and one being a specialist). However, I found no consistent pattern in the 

direction of change in additive genetic variance and phenotypic and genetic covariances 

across thermal environments. 

 First, I confirmed that the warmer (‘stressful’) thermal environment did indeed induce 

stress in both species, as demonstrated by lower fecundity, smaller size, and a significantly 

different wing shape (Appendix A Tables 1–3 and Appendix A Figures 2–4). In addition, the 

specialist species (D. birchii) failed to develop offspring within the stressful thermal 

environment. Although there were no experimental differences between the dam and 

daughter generation that might have caused this, it is possible that maternal effects induced 

by development within a stressful environment prevented the production of viable offspring. 

This could alternatively be a paternal effect as it has been shown that D. birchii sperm is very 

sensitive to thermal stress during development (Saxon et al., 2018b), and because I attempted 

to control for maternal effects by developing the initial parental generation (i.e., P in Fig. 2.1) 

in the same thermal environment as dams and daughters. Although not a direct aim of this 

paper, measuring the viability of offspring within a stressful environment is relevant to many 

evolutionary studies (both in the laboratory and in the field). This is because many studies 

estimate fitness by measuring the number of offspring directly, but the viability of those 

offspring is what will maintain the long-term fitness of a population.  
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 Second, I found lower heritability in the stressful compared to the benign thermal 

environment for fecundity and wing size, although not in wing shape in D. serrata (Table 2.1 

and Fig. 2.2B). This corroborates a large number of previous studies that show heritability 

declined under stressful conditions (e.g., Hoffmann & Schiffer, 1998; Kristensen et al., 2015; 

and reviewed in Hoffmann & Parsons, 1991; Hoffmann & Merilä, 1999; Charmantier & 

Garant, 2005; Rowiński & Rogell, 2017). This has important implications for species living 

close to their upper thermal limits (like many species in the tropics; Deutsch et al., 2008; 

Kingsolver et al., 2013) because even a small change in environmental conditions may induce 

a large amount of stress, and these results suggest adaptive potential is reduced under 

stressful temperatures.  

 However, heritability has been shown to have inherent issues when comparing 

between environments, as non-additive genetic and environmental variation contribute to it 

(Houle, 1992). To address this problem, I also investigated CVA and IA. These are often more 

appropriate estimates to use when comparing genetic variation and evolvability across traits 

and environments, as they are not affected by non-additive sources of environmental variance 

(Houle, 1992; Bubliy & Loeschcke, 2002; Garcia-Gonzalez et al., 2012; but see Hoffmann et 

al., 2016 for stipulations). Specifically, while heritability tells us the absolute difference in a 

trait mean from one generation under selection to the next, !" represents a percentage change 

in a trait that is expected under a given strength of selection (Hansen et al., 2003; Hansen et 

al., 2011; Garcia-Gonzalez et al., 2012). CVA and IA were higher under the stressful 

environment for fecundity, while the opposite was true for wing size (Fig. 2.2D). Therefore, 

while the heritability values suggest that the response to selection on fecundity and wing size 

will decrease under stressful temperatures, CVA and !" suggest that fecundity has greater 

relative evolutionary potential under the stressful environment than the benign environment 

and the opposite is true for wing size (Fig. 2.2). Although it seems heritability and CVA 

values may be contradictory, it could be that while the absolute change in fitness (i.e., 

heritability) will be less in the stressful environment for fecundity, there will be a greater 

relative increase in fitness in the stressful environment because mean fitness is lower—but 

this could result in a smaller absolute change in trait mean thus corroborating the heritability 

results. However, CVA and IA values are important metrics to consider because they will 

always change in the same direction as VA. Alternatively, heritability does not necessarily 

change in the same direction as VA because factors that increase VA often increase total 

variance, which in turn will decrease heritability.  
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 An increase in additive genetic variance under stressful temperatures for the measured 

fitness trait (i.e., fecundity) is advantageous for these Drosophila species, both of which live 

near critical thermal limits (Kellermann et al., 2009; Overgaard et al., 2011). Interestingly, 

these results are consistent with a recent meta-analysis (Rowiński & Rogell, 2017), which 

showed that the coefficient of genetic variance (CVA) was higher under stressful conditions 

for life history traits but not for morphological traits. In terms of wing size, it should be noted 

that the measured CVA differed from values previously measured in D. birchii (Kellermann et 

al., 2006); where CVA was relatively two-fold higher than what I found here. However, in the 

previous experiment (Kellermann et al., 2006), wing size was measured from flies reared in a 

benign environment at 25°C (compared to the benign environment measured in this study at 

23°C); potentially indicating that even a slight difference in thermal environments can affect 

estimates of genetic variance. The reported VA and VP values indicate differences in CVA 

between this study and Kellermann et al. (2006) are due to an increased VA in their study and 

not a difference in trait mean that could also induce larger CVA values (if the trait mean was 

lower). Collectively, this, along with the other results discussed here, reveal that 

environmental interactions (that are included in estimating heritability but not CVA and !"), 

potentially play a very large role in shaping the amount of additive genetic variance that 

selection can act upon. 

 Overall, the heritability values are similar to those reported for fecundity, wing size, 

and wing shape for Drosophila in the literature (e.g., Gilchrist & Partridge, 1999; Hoffmann 

& Shirriffs, 2002; Moraes et al., 2004; Kellermann et al., 2006). Additionally, I examined the 

differences in genetic variation between fecundity and morphological traits, since patterns in 

heritability and additive variance (CVA and IA) were contradictory. I found that heritabilities 

were higher for the wing morphology traits than for fecundity (Fig. 2.2A, B). This coincides 

with the majority of literature that show morphological traits often have higher heritabilities 

than life history traits (Mousseau & Roff, 1987; but for opposing example see Sgrò & 

Hoffmann, 1998a). In direct contrast to this, CVA and IA were both magnitudes larger for 

fecundity than what was found for wing morphology (Fig. 2.2C, D). This finding supports 

theory proposed by Houle (1992); that life history traits may have a higher evolvability than 

morphological traits. This may indicate that fecundity can show a greater response to 

selection in this case. Under the benign environment, CVA and IA for fecundity were more 

than 94% higher than for wing size in both species, and in the stressful environment, 

fecundity exhibited a CVA and IA that was approximately 80% higher than for wing size for D. 

serrata (Fig. 2.2). 
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 The low heritability values detected for fecundity are consistent with classic theory 

that suggests ultimate fitness traits will exhibit low heritabilities due to directional selection 

that fixes beneficial alleles and erodes additive and residual variance (Mousseau & Roff, 

1987; Falconer & Mackay, 1996; Merilä & Sheldon, 1999). However, in direct contrast to 

this, I found that additive variance was actually significantly higher in fecundity where h2 was 

low. When examining residual variance (#$%& = #( − #"), it becomes evident that increased 

residual variance is responsible for a reduced heritability in fecundity, rather than eroded 

additive genetic variance (Kruuk et al., 2000; Merilä & Sheldon, 2000; McCleery et al., 2004; 

Moraes et al., 2004; Table 2.1). In a study examining how residual and additive variance 

contributes to heritability values across fitness and morphological traits, Merilä & Sheldon 

(1999) found fitness traits generally exhibit a higher residual variance compared to 

morphological traits due to an accumulation of non-additive genetic and early environmental 

effects. These results support their findings and emphasize the importance of considering trait 

type when examining how selection shapes additive genetic variance.    

 An additional aim of my study was to determine whether an easy-to-measure 

morphological trait can be used as a proxy for fecundity across environments. To examine 

this, I looked at phenotypic and genetic correlations between fecundity and wing 

morphology. Although it has been shown that wing length correlates with fecundity in benign 

environments (Chiang & Hodson, 1950; Tantawy & Vetukhiv, 1960; Santos et al., 1992; 

Woods et al., 2002), recent studies have found both evidence for (Woods et al., 2002) or a 

lack of evidence for (Sgrò & Hoffmann, 1998b) positive relationships between wing length, 

wing width, and fecundity in stressful environments. Here, unadjusted significance tests are 

suggestive of significant phenotypic correlations between fecundity and wing size in the 

benign environment for one population of D. birchii dams and for D. birchii daughters; and 

in the stressful thermal environment for D. serrata daughters. However, these became 

insignificant after I corrected for False Detection Rate (see Table 2.2), False Detection Rate 

is a conservative method for multiple comparison in terms of type II errors. As such, I also 

combined the probabilities to increase power of the significance test. The combined 

probabilities method indicates that wing size and fecundity are significantly phenotypically 

correlated in the benign environment for D. birchii, meaning we can use wing size as a proxy 

for fecundity for this population in benign (but not stressful) conditions.  

 Phenotypic correlations between fecundity and wing shape differed in both sign and 

magnitude across environments (Appendix A Table 4). There was no trend to where 

significant phenotypic correlations occurred and relationships between fecundity and wing 
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morphology could not be generalised across thermal environments, species, or even between 

generations.  

 Genetic correlations were all fairly low in D. birchii, but highly-positive and highly-

negative correlations were found in both environments for D. serrata (Fig. 2.3 and Appendix 

A Table 6). Most interestingly in D. serrata, fecundity and wing size were significantly 

negatively-correlated in the benign environment and significantly positively-correlated in the 

stressful environment. A significant genetic correlation between a pair of traits suggests that 

the traits are genetically associated through linkage or pleiotropy (influenced by a common 

locus or loci; Wilson et al., 2010). However, a change in the magnitude or sign of genetic 

correlations across environments suggests that this genetic association is environment-

specific (Falconer & Mackay, 1996; see Gutteling et al., 2007 for example). So, while a 

positive correlation between fecundity and wing size in the stressful environment may 

indicate that the same gene underlies both traits or the genes influencing both traits are in 

linkage disequilibrium (Wood & Brodie, 2016); a negative correlation in the benign 

environment may indicate antagonistic pleiotropy between them if this data was looked at 

independently. However, the drastic change between thermal environments suggests there are 

environment-specific gene effects that affect these correlations.  

 In addition, the sign and magnitude of genetic correlation values between fecundity 

and wing shape variables differed between thermal environments in an inconsistent way. 

Also, when examining phenotypic correlations and genetic correlations together, I did not 

find phenotypic correlations that were similar to significant genetic correlations (Fig. 2.3). 

This suggests that the environment is masking phenotypic correlations. The large standard 

errors associated with many of the genetic correlations also suggest that I may lack sufficient 

power to detect genetic correlations in some cases. Very large sample sizes are needed in 

quantitative genetic experiments to estimate heritabilities and genetic correlations with a high 

degree of precision (Roff, 1995; Falconer & Mackay, 1996). This is hard to achieve due to 

logistical challenges, and may potentially explain why there is so much variation across 

species, populations, and traits in effects of environment on heritability and genetic 

correlations in the literature (reviewed in Garcia-Gonzales et al., 2012; Hansen et al. 2011).  

 

Future directions  

Here, I found that genetic variance and phenotypic and genetic correlations change across 

thermal environments. However, the direction of these changes was not always consistent 
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across traits, closely-related species, populations within a species, or even generations. This 

suggests that researchers need to examine adaptive potential specific to their environment, 

species, and populations if they hope to obtain accurate parameters to predict evolutionary 

potential. The type of data collected here should represent a starting point for researchers 

aiming to do so.  

 Additionally, researchers need to be aware that high genetic variation does not 

necessarily indicate an increased evolutionary response. Although it is assumed that selection 

has a strong effect when genetic variation is high and a weak effect when genetic variation is 

low (when all other factors remain the same), there has been limited evidence showing how 

they interact and the studies that have looked at their relationship report a fairly weak 

association (Wood & Brodie, 2016; Ramakers et al., 2018). Future research needs to consider 

how evolutionary potential is affected by the environment. I show here that genetic variance 

is highly dependent on temperature and it is accepted that selection is directly mediated by 

the environment. Yet, specifically in terms of stressful temperatures, a meta-analysis on how 

selection and genetic variance are coupled found temperature is likely to affect the amount of 

genetic variation in a population more than the strength of selection (Wood & Brodie, 2016). 

Wood and Brodie (2016) found that temperature affected the amount of genetic variation and 

the strength of selection in both morphological and fitness traits asymmetrically; meaning the 

measured impact of temperature stress on genetic variation does not necessarily predict the 

magnitude of the evolutionary change. Researchers should examine how both genetic 

variance and selective force (both strength and directionality of selection) is influenced by 

specific environments to determine the adaptive potential of species to climate change. If a 

highly positive correlation exists between the two, environmental change would increase 

both, directly causing increased adaptation; and predictions on how species will adapt to 

changing environments would be more straightforward (Wood & Brodie, 2016; Ramakers et 

al., 2018; Fischer et al., 2020).    

 However, genetic correlations also need to be considered in this context. A negative 

genetic correlation between two traits will constrain evolution on one trait even with an 

increase in genetic variation and a positive selection differential (and vice versa; Conner, 

2012; Wood & Brodie, 2016). An additional consideration is that the underlying genetic 

architecture of the trait (polygenic or large-effect loci) should be considered. For example, 

polygenic traits have been shown to produce greater long-term population viability than in 

traits affected by large-effect alleles when heritability and the selective force is constant (e.g., 

Kardos & Luikart, 2021). Generally, life-history traits are thought to be polygenic in 
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comparison to large-effect phenotypic traits related to morphology, indicating another reason 

why trait type needs to be considered when investigating adaptive potential.  

 In conclusion, although I present clear evidence that stressful temperatures affect 

genetic variation, I did not detect a consistent pattern to that change. These results suggest 

that adaptive potential cannot be generalised across environments, closely-related species or 

populations and needs to be considered on a case-by-case basis, specific to the trait in 

question, and by using a multivariate approach. 
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2.6 Highlights 

• I assessed how a stressful thermal environment affects genetic variance in two species 

of Drosophila. 

• I found that genetic variances, heritability, and phenotypic and genetic correlations 

change across thermal environments, but in no consistent way. 

• Researchers need to use genetic variance values specific to the trait in questions and 

specific to their species and population to accurately predict adaptation potential.  
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3.1 Abstract 

1. To accurately characterise a species’ thermal niche and aid in predicting effects of 

climate change we must not only include information on thermal tolerances and 

physiological responses to changing temperatures, but also incorporate ecological effects 

and evolutionary processes that may shape a species’ niche. However, quickly and 

practically collecting data on key factors such as adaptation potential, behaviour, effects 

of species interactions, plasticity, and thermal tolerances is logistically challenging.   

2. I have therefore created an adjustable temperature array (ATA) to assist with 

experimental ecology and evolution research. ATA’s are a row of independent 

temperature points controlled and set by the user and made from commercially-available 

parts. This allows the user to create unique thermal landscapes relevant to their study 

organism(s) and question(s). Further, the option of using an enclosed cage allows the 

user to answer questions at the individual, population, or community level in the context 

of changing thermal environments. ATA’s are able to be user-set to constant or dynamic 

temperature regimes and are designed for use on small animals (e.g., fruit flies, beetles, 

mosquitoes) or plants (e.g., germinating seeds). 

3. I have tested and confirmed the accuracy of the ATA to several thermal landscapes that 

would be useful for experimental ecology and evolution, including: 1) coarse resolution 

of a broad thermal niche ranging from 12° to 42°C in 2°C intervals (R2 = 0.998); 2) fine 

resolution of a narrow thermal niche ranging from 15° to 32°C in 1°C intervals (R2= 

0.997); 3) a pyramid-shaped niche consisting of a gradient from 14° to 30°C in 2°C 

intervals (R2 = 0.997); and 4) a very narrow thermal niche with replicate thermal 

resources ranging from 26.5° to 34°C in 1.5°C intervals (R2 = 0.989).  

4. The equipment described here is an important tool for thermal niche studies and will aid 

in gathering information on effects of ecological and evolutionary processes to create a 

comprehensive picture of species responses to climate change. 
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3.2 Introduction 

Temperature is widely accepted as a critical abiotic factor affecting species abundances and 

distributions (Cossins & Bowler, 1987; Angilletta, 2009; Overgaard et al., 2014). With global 

temperatures predicted to rise in the next century (IPCC, 2019), accurately understanding the 

limiting factors for a species’ current distribution, as well as predicting how species will 

respond to changing temperatures is crucial. Hence, we must comprehensively understand a 

species’ thermal niche. First, a species’ thermal niche should include its full physiological 

tolerances and thermal limits. Second, predictions should account for ecological effects and 

evolutionary processes that are seldom incorporated into predictions (Williams et al., 2008; 

Hoffmann & Sgrò, 2011; Urban et al., 2012; Bush et al., 2016). This includes incorporating 

effects of biotic interactions, behavioural responses and preferences, and as well as the 

potential for acclimation, adaptation, and plasticity. Currently, solutions on how to accurately 

capture the full thermal niche and quickly and practically collect data on eco-evolutionary 

processes have proven difficult (Pearman et al., 2008; Thuiller et al., 2013). Field 

observations may not capture the full niche space and experimentally testing these factors 

requires a large number of replicates over climate space, and extended time periods to test for 

adaptation.  

 I have therefore created an adjustable temperature array (ATA) to experimentally 

capture a species’ thermal niche. ATAs are a row of individual temperature points set by the 

user. Temperatures can range from 12°–42°C as tested here (but theoretically can range from 

−55°–85°C). The ATAs herein were designed to be used on small ectotherms in a controlled 

laboratory setting, but can be used on a wide variety of ectotherms or small endotherms with 

appropriate re-sizing of the temperature points, or for growing small plants, fungi or algae, or 

germinating seeds. Our ATAs can be used with two different experimental setups: closed 

vials (e.g., for testing physiological performance and limits, and acclimation and plasticity 

responses) or open cage (e.g., for examining thermal behaviour and preferences, and biotic 

interactions); and can be programmed with a constant or dynamic temperature regime (i.e., 

ramping or fluctuating temperatures). The versatility of the experimental setups allows users 

to create a comprehensive picture of a single species’ thermal niche with the advantage of 

completely individualized, replicated, and randomized environments to reduce confounding 

effects of pseudoreplication and other problems inherent to using temperature cabinets.  
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3.3 Materials and Methods 

Each ATA consists of a temperature strip, control box, and cage, all of which can be 

disconnected for set up and maintenance. All equipment and parts were purchased from 

consumer hardware, electronic, and online retailers (Appendix B Supplementary Material 1). 

 

Temperature Strip 

The temperature strip is comprised of two parts: 1) the temperature points where each is 

controlled to a user-specified temperature and, 2) a water-cooling system to remove excess 

heat from the system.  

 

Temperature points 

The ATAs designed herein contain 18 temperature points, although users can create ATAs to 

contain a quantity more relevant to their study question. The temperature points create 

individual temperature ‘spots’ that are user-specified. For example, a user investigating how 

a species performs along a thermal gradient would set each temperature point to a unique 

temperature along that gradient, a user examining threshold temperatures might set all 

temperature points to the same temperature to concurrently run replicates, and a user 

investigating eco-evolutionary dynamics might use real-world temperature readings to set 

each temperature point to a fluctuating temperature regime (i.e., with temperatures dipping at 

night and spiking during the day).    

 The components used to create 18 temperature points are listed in Table 3.1 and 

shown in Fig. 3.1. Aluminium heatsink bars were mounted end to end onto a stable baseboard 

and each temperature point was made by attaching a heat pump and an aluminium vial holder 

(Figs. 3.1a, b). A single temperature sensor was then super-glued to each vial holder (Fig. 

3.1c). For details of construction, see Appendix B Supplementary Material 2. 
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Table 3.1: Components for temperature points. 

Component Quantity Specifications Use 

Baseboard 1 Size determined by number of 
temperature points 

Mounts electronics 
and hardware 

Aluminium 
water-cooled 
heat-exchange 
bar 

3 1 per 6 temperature points with size 
determined by size of set-points 

Provides a heatsink 
for heat pumps 

7 W 
thermoelectric 
heat pumps 
(Peltier coolers) 

18 1 per temperature point with a working 
temperature range of −55°–88°C 
(dimensions: 20 mm) 

Heats and cools at 
temperature point 

Aluminium 
machined vial 
holders 

18 1 per temperature point designed to 
hold a standard 100 mm x 25 mm 
glass specimen vial; 
machined from solid aluminium bars 

Conducts heat to/from 
heat pump and 
provides insulation to 
vials 

Temperature 
sensors 

18 1 per temperature point with −10°–
85°C with ± 0.01°C resolution and ± 
0.5°C uncalibrated accuracy (Dallas 
DS1820. Maxi3m Integrated. San 
Jose, CA) 

Provides over/under 
temperature feedback 
to microcontroller 

16-pin female 
plug-socket 
cables 

3 1 cable provides connection for 6 
temperature points 

Provides connection to 
control box 
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Figure 3.1: The design and placement of the temperature strip components can be seen in (a). A 

detailed schematic on the construction and wiring of one third of a temperature strip is shown in (b), 

and a detailed image of a single temperature point is shown in (c). 

 

	

Water-cooling system 

The water-cooling system uses a cold-water reservoir that pumps water through the 

aluminium heatsink bars to redistribute and strip excess heat away from the temperature 

strips and is necessary for the heat pumps’ performance. The water-cooling system can be 

attached to a constantly flowing cold water tap (i.e., mains water) or a simple water pump if 

the user can keep reservoir water cold. For more information on the setup of the water-

cooling system, see Appendix B Supplementary Material 2.  

 

Control Box 

The control box system is comprised of: 1) a closed container to hold electronics, 2) a power 

supply, 3) the internal electronics for each temperature point, and 4) a LED lighting indicator 

system. 
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Closed Container or Box 

All components of the control box should be housed together in a semi-closed container to 

protect electronics and wiring. For example, each control box herein was set up inside an 

empty computer tower case as this already contained a power source for easy power supply. 

 

Power Supply 

Each ATA operates off mains (i.e., grid) power and draws a maximum power load of 72 W.  

 

Control Box Internal Electronics 

The control box internal electronics are shown in Table 3.2 and Fig. 3.2, with more 

information on circuit schematics in Appendix B Supplementary Material 3.  

 

 
Table 3.2: Components for control box. 

Component Quantity Specifications Use 

Embedded 
microcontroller 

1 WiFi embedded development board Controls ATA 

Switching solid-
state relays 

9 1 per 2 temperature points Turns heat pump on 
or off 

16-pin male 
plug-socket 
cables 

3 1 cable provides connection for 6 
temperature points 

Provides connection 
to control box 
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Figure 3.2: The control box internal electronics are shown above, along with how they connect to 

each other and relevant temperature strip components (shown in grey). The control box is connected 

to the temperature strip via 16-pin male plugs that plug into a corresponding 16-pin female plug on the 

temperature strip. For more details on control box components, setup, and wiring, see Appendix B 

Supplementary Material 3.  
 

 

LED lighting indicator system 

The exterior of the control box has eighteen tricoloured LED lights that correspond to each 

temperature point to provide a quick indication of temperature accuracy (Fig. 3.3 and 

Appendix B Supplementary Material 4). 
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Figure 3.3: The operational process of an ATA.  

 

 

Operational process  

The operational process an ATA goes through after being turned on is shown in Fig. 3.3. 

Microcontrollers are programmed before being turned on with user-specified temperature 

regimes for each temperature point. In addition, the time period at which the microcontroller 

and temperature sensors read and record temperatures can be specified (e.g., every 30 

seconds, 1 minute, etc.). The operational code needed to operate ATAs can be accessed from 

GitHub and uploaded using the open-source electronics platform Arduino (www.arduino.cc; 

Wheat, 2011); see data accessibility section). 

 



 49 

Study organism experimental setup 

Experiments can be conducted in two ways depending on the user’s objective: closed vial or 

open cage. The closed vial design restricts organisms to specific temperature points by 

housing them in closed glass specimen vials (Fig. 3.4a). The open cage setup has individuals 

housed within a cage with open vials at temperature points for individuals to choose amongst 

(Fig. 3.4b). ATAs were built to fit standard 100 mm x 25 mm glass vials. Cages were built by 

using 34 L clear storage containers and drilling 25 mm holes into the containers to coincide 

with the location of temperature-point vial holders (Fig. 3.4b). Two additional large holes 

were cut into the side of the container and pantyhose were hot-glued to the sides to provide 

hand openings. These allow users to access the cage while providing a tight seal around the 

arm.  

 

 

 
Figure 3.4: Images of (a) ATAs in a controlled temperature and humidity room with stoppered glass 

specimen vials in a closed vial setup, and (b) ATAs arranged with an open cage setup to run choice 

experiments. The LED lights on the front of each control box are green, indicating all temperature 

points are within 0.5°C of target temperature. 
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Validation tests 

I arranged 24 ATAs in a controlled temperature and humidity room (23°C and 60% RH) and 

tested the accuracy of the ATAs to four constant thermal landscapes that may be useful in 

experimental ecology and evolution. Four ATAs were haphazardly chosen and tested per 

landscape. Details of each test are included in Table 3.3. 

 

 
Table 3.3: Test details for four validation tests performed to confirm accuracy of ATAs. 

Test: Niche 
landscape 

Temperature 
gradient (°C) 

Coarseness 
(°C) 

Logging 
frequency Duration Example scenario: 

A: Broad 
thermal niche 

12°–42°C Coarse: 2°C 
intervals 

Every 
minute 

7 days To capture outer bounds 
of a fundamental 
thermal niche 

B: Narrow 
thermal niche 

15°–32°C Fine: 1°C 
intervals 

Every 
minute 

7 days To finely characterise a 
thermal niche from a 
mountain-top to the 
lowlands 

C: Pyramid-
shaped 
thermal niche 

14°–30°–
14°C 

Coarse: 2°C 
intervals 

Every 
minute 

7 days To investigate a transect 
from one mountain-top, 
through a valley, and up 
to a neighbouring 
mountain-top 

D. Very 
narrow 
thermal niche 

26.5°–34°C 
with each 
temperature 
replicated 
three times 

Medium 
(with 
replication): 
1.5°C 
intervals 

Every 2 
minutes 

60 days To examine a niche 
where different food 
resources may be 
available at each 
temperature 

 

 

In addition, I tested how temperatures vary within a vial for three temperatures (i.e., 15°C, 

25°C, and 36°C) under each experimental setup and with or without food resources. More 

information on these tests can be found in Appendix B Supplementary Material 5.   

 

3.4 Results 

Correlation, linear regression, and root-mean-square-error analyses were performed in R (R 

Core Team, 2019) for each test landscape to evaluate the reliability and accuracy of ATAs. In 

addition, accuracy measures are shown by the mean deviation, standard deviation, and the 

single furthest deviation of any temperature point in the test landscape (Table 3.4 and 

Appendix B Supplementary Material 5).  
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Table 3.4: Results of accuracy and reliability analysis for validation tests. * indicates a significance 

level of P < 0.0001. 

Test Mean 
deviation 
(°C ± sd) 

Single 
furthest 
deviation 

Correlation 
test (r) 

RMSE 
(°C) 

Regression 
Fitted 
regression 
line 

CI of 
slope 

R2 

A 0.082 ± 
0.302 

2.8°C for 1 
min at 12°C 

0.996* 0.322 y = 0.973x + 
0.808 

[0.973, 
0.973] 

0.998 

B 0.139 ± 
0.276 

2.0°C for 1 
min at 15°C 

0.998* 0.278 y = 0.983x + 
0.519 

[0.983, 
0.983] 

0.997 

C 0.137 ± 
0.255 

1.7°C for 1 
min at 14°C 

0.994* 0.263 y = 0.983x + 
0.624 

[0.982, 
0.983] 

0.997 

D 0.039 ± 
0.265 

2.8°C for 8 
min at 31°C 

0.986* 0.267 y = 0.984x + 
0.543 

[0.983, 
0.984] 

0.989 

 

 

All ATAs (except one replicate from the pyramid-shaped thermal landscape, which failed due 

to a malfunction of the water-cooling system) proved to reliably maintain the target 

temperatures throughout the testing period. All tests showed a highly significant positive 

correlation to target temperature with a near 1:1 fit between the actual temperatures and the 

target temperatures. Results are shown in Table 3.4 and Fig. 3.5. Additional figures can be 

found in Appendix B Supplementary Material 5.   
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Figure 3.5: Results of the validation tests for several niche landscapes over short- and long-term 

durations. For each test, regression plots show a near 1:1 fit comparing the actual temperatures (grey 

violin plots) to the target temperatures. The dashed grey lines represent the regression line and the 

black lines are a line with slope of 1 for comparison of actual temperatures to target temperatures. 

 

 

Tests examining how temperatures differ within the vial environment showed that 

temperatures at the bottom of the vial reliably maintained set temperatures (R2=0.99, 

RMSE=0.79), but a thermal gradient away from the heating/cooling point was present within 

the vial depending on set temperature versus the room temperature. More information on the 

results of these tests can be found in Appendix B Supplementary Material 5.  

 



 53 

3.5 Discussion 

The validation tests demonstrated the ATAs described here can consistently maintain a 

variety of user-set thermal landscapes over an extended period of time. The temperature 

points functioned most accurately between 18°–34°C, with higher set-points resulting in 

actual temperatures lower than the set temperature and lower set-points resulting in 

temperatures higher than the set temperature (Fig. 3.5). This is not a limitation of the heating 

and cooling capacity of the equipment itself, which can theoretically go from −55°–85°C, but 

is an artefact of the user-specified ‘throttling speed’ of the heat pumps and therefore can be 

rectified in the operational code.  

 One ATA malfunctioned for a period of 7 hours during the test; however, the problem 

was with the water-cooling system. This problem could be fixed by setting up an alarm 

notification system for each ATA, which could be done using the WiFi compatible 

microcontroller to monitor the actual temperatures of each point remotely.  

 In addition, tests examining how temperatures differed within a vial indicated that a 

temperature gradient can occur as air that is heated or cooled from the bottom of the vial 

mixes with ambient air. This can be reduced by using insulation or by reducing the amount of 

vial space that is exposed to the ambient air (i.e., making aluminium chambers larger). 

Although I recognize this as a limitation, these tests showed temperatures on the bottom of 

the vial maintained set temperatures. This may not be an issue if users are studying 

ectotherms and using vials as thermal resource points, as most ectotherms will lay their eggs 

directly into the resource. Larvae and adults will also be exposed to bottom temperatures 

when ovipositing or feeding. If vials are used in open cage experiments, individuals will have 

to choose between different temperatures, meaning there will always have to be an 

intermediate temperature that individuals will use to traverse. 

 I believe many aspects of this equipment make it unique (see Appendix B 

Supplementary Material 6 for a comparison table). This includes, but is not limited to, its 

ability to be set to either a constant or dynamic temperature regime, as well as being grouped 

together to create various thermal landscapes. For the trials here, I created the ATAs to have 

18 temperature points formatted in a single row, but users can create a different thermal 

landscape appropriate to their needs. For example, users could group individual ATAs 

together to create a resource-grid, where temperature points are both adjacent and parallel to 

each other (Fig. 3.6).  
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Figure 3.6: Two examples of how ATAs can be grouped together to create “resource-grid” 

landscapes, captured with a thermal imaging camera to demonstrate the variance in temperatures 

along the ATAs. 

 

 

Another important aspect of this equipment is the option of using cages rather than restricting 

individuals to specific temperature points. The cages allow animals to access all temperature 

points and interact with other individuals in the cage while choosing resources, providing 

users with information on thermal behaviour. Although it is widely-recognized that behaviour 

needs to be incorporated into models predicting effects of climate change (e.g., Sunday et al., 

2014), thermal preference and thermoregulatory behaviour in small ectotherms is difficult to 

measure, in large part due to the lack of practical equipment that provides both sufficient 

temperature resolution and scale (Rajpurohit & Schmidt, 2016).  

 ATAs coupled with cages also allow users to gain information on species interactions 

and evolutionary responses. Users can explore multiple types of species interactions (e.g., 

predation, competition, etc.) between two or more species in a thermal environment, as well 

as conduct multi-generation experiments to see how these interactions affect adaptive 

potential to thermal environments. Failing to incorporate these processes into model 

predications is a major limitation to many global change studies (Guisan & Thuiller, 2005; 

Dormann, 2007; Kearney & Porter, 2009; Hoffmann & Sgrò, 2011). Experiments using 

ATAs will compliment field data and modelling to better resolve and predict the limits and 

evolutionary potential of organisms vulnerable to climate change.  
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3.6 Highlights 

• I designed an adjustable temperature array that can be used to answer broad 

ecological and evolutionary questions on small flora and fauna.  

• I validated the equipment using four relevant thermal landscapes that may be broadly 

applicable to researchers.  

• This equipment provides a completely customisable resource for researchers in 

thermal biology and ecology. 
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4.1 Abstract 

Ectotherms use behaviour to reduce exposure to lethal environmental temperatures and to 

achieve an optimal body temperature for performance. This is theorized to cause a coupling 

of thermoregulatory behaviour and thermal performance in what is known as the ‘thermal 

coadaptation hypothesis’. Likewise, oviposition temperature preference should correlate to 

performance because females should prefer environments that support optimal development 

of their offspring. Here, I examined two competing hypotheses for the thermal coadaptation 

hypothesis in a thermal generalist (Drosophila serrata) and a thermal specialist (Drosophila 

birchii) species of Drosophila by examining oviposition temperature preference and thermal 

performance in productivity, development speed, and wing size. Thermal generalist and 

thermal specialist species exhibit different thermal performance strategies, so coadaptation 

between temperature preference and performance may also differ. Productivity in both the 

generalist and the specialist species were tightly coadapted to oviposition temperature 

preference. I found no evidence of coadaptation in development speed and body size. This 

study is the first to provide support for the thermal coadaptation hypothesis between 

oviposition preference site and fitness.  This is important for examining whether 

thermoregulatory behaviour can aid or hinder adaptation to thermal environments. However, 

additional research is needed in more species to fully understand whether thermal 

coadaptation exists between oviposition temperature preference and fitness. 
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4.2 Introduction 

Temperature is an important abiotic factor affecting species distribution (Cossins & Bowler, 

1987). This is particularly true for small ectotherms because of their limited ability to 

physiologically thermoregulate (Stevenson, 1985; Parmesan et al., 2000; Dillon et al., 2009; 

Sillero et al., 2014; Isaak et al., 2017). The thermal environment where they live is therefore 

largely determined by physiological and behavioural traits, and is referred to as the thermal 

niche (Magnuson et al., 1979). Understanding the thermal niche of species, and the 

complexity of factors contributing to it, is increasingly important in regards to climate change 

research. Only by understanding the details of the thermal niche can we accurately assess the 

current and potential impact of climate change on species and communities. 

 The contributions of physiological and behavioural traits to the thermal niche are 

estimated by different methods: physiological traits are commonly measured as performance 

along a thermal gradient, whereas thermoregulatory behaviour is controlled by and measured 

as temperature preference along a thermal gradient (Angilletta et al., 2002). In the wild, 

many species use behaviour to maintain their body temperature at temperatures where 

optimal performance occurs and to reduce localized effects of spatial and temporal variation 

(Angilletta et al., 2002). Theoretically, it then makes sense that temperature preferences 

should coevolve with optimal performance (Cowles & Bogert, 1944; Beitinger & Fitzpatrick, 

1979; Coutant, 1987; Gilchrist, 1995; Angilletta et al., 2002; Martin & Huey, 2008; Dillon et 

al., 2009). An evolutionary shift in optimal performance temperature should apply selective 

pressure for individuals who prefer a similar temperature because this directly results in 

increased performance and hence higher fitness. For example, individuals avoiding extreme 

conditions and moving towards conditions optimal for performance (e.g., by moving to the 

sun or shade; Isaak et al., 2017) will drive selection of temperature preference towards 

temperatures where peak fitness occurs (Huey & Kingsolver, 1989; Angilletta et al., 2002; 

Angilletta, 2009; Halliday & Blouin-Demers, 2015). This coupling of optimal performance 

temperature and temperature preference is often referred to as the ‘thermal coadaptation 

hypothesis’.  

 The thermal coadaptation hypothesis is tested by quantifying thermal performance as 

a curve across relevant temperatures for each trait of interest, and then comparing the optimal 

performance temperature (Topt) to the average temperature preference of adults (Tpref). 

Thermal performance curves (TPCs) measure performance along a thermal gradient, which 

generally shows performance increasing slowly towards an optimal temperature before 
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decreasing rapidly towards a maximum thermal limit where fitness reaches zero (Fig. 4.1A). 

Thermal performance curves can be used to examine the thermal range a species can tolerate 

and the range the species performs best within. These curves are often used to compare 

thermal generalist versus thermal specialist species. Thermal generalists should exhibit a 

wider TPC than thermal specialists because they use a broader range of thermal environments 

(Gilchrist, 1995). Further, it is hypothesized that a trade-off exists between generalists and 

specialists, whereby a generalist has a lower peak fitness value (Pmax) at Topt than a specialist 

(Gabriel & Lynch, 1992; Gilchrist, 1995; Palaima, 2007; Condon et al., 2015; Fig. 4.1A). In 

this sense, generalists are often referred to as a ‘jack of all trades (i.e., temperatures), but 

master of none’ (Huey & Hertz, 1983). On the other hand, specialists would exhibit a greater 

fitness than generalists at their Topt but a trade-off would occur at the niche edges (Fig. 4.1A; 

for examples, see Gilchrist, 1995; Blouin-Demers et al., 2003; Angilletta, 2009; Phillips et 

al., 2014).  

 

 
Table 4.1: List of abbreviations used and descriptions of measurement. Alternative abbreviations 

found throughout the literature are also listed.  

Abbreviation Term Description of measurement 
Alternative 
abbreviations used 

B80 TPC breadth at 80% Pmax Temperature range where 
performance is above 80% 
Pmax 

Tb, Tbr, Pbr, P80 

Pmax Maximum performance Maximum performance value Umax, Rmax 

Topt Thermal optimum Temperature where Pmax 
occurs 

To 

Tpref Temperature preference Average temperature 
preference 

Tp 

Tset Temperature preference 
range 

80th-100th quantiles of 
temperature preference range; 
(upper 20% of preferred 
temperatures) 

Tset(80) 

TPC Thermal performance 
curve 

Curve describing 
performance/fitness over a 
thermal gradient 

 

 

 

 The thermal coadaptation hypothesis is straightforward in theory, but it becomes more 

complex when considering the different thermal performance strategies exhibited by 

generalist and specialist species. For example, a thermal generalist is sometimes referred to as 

a thermoconformer because their body temperature conforms to the environmental 
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temperature and is physiologically able to perform within a wider range of temperatures than 

thermal specialists, which are often referred to as more specific thermoregulators because 

they more-readily use behaviour to remain in a narrower temperature range (Heinrich, 1981). 

Specific evidence on whether temperature preference is more tightly coevolved with thermal 

performance in generalists or specialists is currently lacking (but see Blouin-Demers et al., 

2003 and Buckley et al., 2015 for important insights into how thermal physiology relates to 

thermal behaviour in thermoconformers and thermoregulators). Here, I examine two 

contradicting hypotheses for the thermal coadaptation hypothesis in a thermal generalist and 

a thermal specialist species. 
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Figure 4.1: Temperature preference should coadapt with optimal fitness within a thermal 

generalist and a thermal specialist species.  

(A) TPCs for a thermal generalist (red) versus a thermal specialist (blue) species. Generalists should 

exhibit a wider thermal niche than a specialist, while specialists often have a higher peak fitness value 

(Pmax) at their optimal temperature (Topt) caused by a trade-off at the niche edges. (B–C) There are 

two contradicting hypotheses predicting whether temperature preference (Tpref) should coadapt more 

perfectly to thermal performance in a generalist or in a specialist species. The first hypothesis (B) 

predicts that coadaptation should occur over a wider range in generalists because there is less of a 

fitness trade-off associated with a temperature preference further away from Topt in a generalist 

species (considered a ‘jack of all trades’) than in a specialist species. This is reflected by a wider peak 

performance range (B80 ) in a generalist than in a specialist. If this hypothesis is correct, then Tpref and 

Topt would be more perfectly coadapted in specialists than in generalists. The second hypothesis (C) 

predicts that Tpref should occur at a wider, and more suboptimal, gap from Topt in specialists because 

specialists have a narrower ‘upper thermal margin’—meaning there is a higher-risk associated with 

preferring a temperature closer to the lethal upper thermal limits in specialists than within generalists. 

If this hypothesis is correct, then Tpref and Topt would be more perfectly coadapted in generalists than 

in specialists. 

 

 

The first hypothesis is well-recognized, and assumes that there is less selective pressure for 

coadaptation between peak fitness and temperature preference in generalists (Blouin-Demers 
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et al., 2003). This is because there is relatively less advantage to being exactly at Topt in 

generalists than in specialists because of the broad peak of a generalist TPC versus the 

narrow peak of a specialist TPC (also known as peak performance breadth; B80; Fig. 4.1B). 

Individuals may exhibit preference for a broader range of thermal environments at the centre 

of the thermal niche where being away from Topt results in only a slightly lower fitness and 

hence coadaptation between Topt and Tpref may be looser (i.e., ‘jack of all trades’ hypothesis; 

Fig. 4.1B). In contrast, specialists should exhibit temperature preference that mimics their 

TPC; i.e., a narrower breadth (Fig. 4.1B) because there are serious fitness consequences to 

any small variation away from Topt.  

 The second hypothesis is from a theoretical model considered by Martin and Huey 

(2008)—whose models predict that preferred body temperatures should occur at slightly 

lower temperatures than peak fitness temperature (Fig. 4.1). They explain the rationale for 

their hypothesis by first noting that ectotherm TPCs are often asymmetric and exhibit a rapid 

decline in fitness after Topt; and second, that ectotherms cannot thermoregulate perfectly (as a 

result of not being able to physiologically thermoregulate) and so they most likely experience 

a range of body temperatures. As such, a so-called ‘safety-net’ may occur for ectotherms, 

where Tpref occurs at suboptimal temperatures because fitness above Topt decreases much 

more rapidly and may be fatal at a temperature slightly higher than Topt but not below. The 

range between Topt and the upper thermal limit where fatality occurs is referred to here as the 

‘upper-thermal margin’ (Fig. 4.1C).  

 When looking at this hypothesis in relation to thermal specialists and thermal 

generalists, Martin and Huey (2008) theorize that the gap between preferred body 

temperature and optimal body temperature should be larger in specialists than in generalists 

(Fig. 4.1C). This is because specialists exhibit a narrower TPC, so even a slight increase in 

temperature will be more detrimental to fitness than the same shift in a generalist (Martin & 

Huey, 2008). Hence, a Tpref that occurs further below Topt in the specialist (which has a 

narrower ‘upper-thermal margin’) decreases this risk while this is much less of a risk in a 

generalist (due to their wider ‘upper-thermal margin’; Fig. 4.1C). In this sense, it is better for 

a specialist to be ‘sub-optimally risk-averse’ than to hazard a Tpref that is tightly coadapted to 

Topt (i.e., ‘sub-optimally risk-averse’ hypothesis; see Fig. 4.1C). This prediction is in direct 

contrast to the ‘jack of all trades’ hypothesis (Fig. 4.1B).  

 Empirically, the majority of research on the ‘thermal coadaptation hypothesis’ has 

focused on correlating adult performance traits in large ectotherms to adult thermal 

preference, and these studies have found mixed results (reviews in Angilletta et al., 2002; 
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Halliday & Blouin-Demers, 2015). In lizards, some studies have found a significant 

relationship between Topt and Tpref for sprint speed (Bennett, 1980; Huey & Bennett, 1987; 

Bauwens et al., 1995; Gaby et al., 2011; Buckley et al. 2015), while others have not (Huey & 

Kingsolver, 1989; McElroy, 2014). In juvenile frogs, there has been evidence for 

coadaptation between temperature preference range (commonly called Tset) and the optimal 

temperature for locomotor performance (Sanabria et al., 2013). In turtles, Topt for swimming 

and righting locomotor performance fell within the Tset for preferred basking temperature 

(Ben-Ezra et al., 2008). In snakes, Topt for tongue-flicking, striking, and swimming 

performance were similar to Tset in one species but higher than Tset in another species (Blouin-

Demers et al., 2003). In both fish and snakes, the plasticity of Tpref has been shown to 

correlate to Topt. In fish, a higher temperature maximizes growth when food intake is high and 

fish that ingested more food were found to prefer a higher temperature than those that did not 

(Mac, 1985). However, the opposite was subsequently found in a different species of fish 

(Morgan & Metcalfe, 2001). In snakes, the preferred temperature differed based on food 

consumption with those that had recently consumed a large meal preferring a higher 

temperature than fasted snakes, the former of which correlated to Topt for digestion (Dorcas et 

al., 1997). 

 These above studies use indirect measures of fitness and do not empirically test 

whether ultimate fitness (i.e., directly related to reproductive output) corresponds to 

temperature preference. The studies that test ultimate fitness in relation to temperature 

preference are limited to two studies using Tribolium (i.e., flour beetles), which are built 

upon each other and use the same temperature preference data (Halliday & Blouin-Demers, 

2015; Halliday & Blouin-Demers, 2017), and one study using Caenorhabditis elegans 

(Anderson et al., 2011). These studies have provided a basis of literature testing the thermal 

coadaptation hypothesis in terms of ultimate fitness but have found mixed support for it. This 

could be because the studies used eight or less thermal environments to test physiological 

tolerances of fitness traits, leading to coarse estimates of Topt that may not be as accurate as 

estimations from TPCs defined over finer temperature gradients. Another consideration is 

that temperature preference was measured by categorizing the temperature preference of 

adult Tribolium and adult C. elegans after they have moved along a thermal gradient and 

‘chosen’ their thermal environment. This is important when considering adults are the only 

life-stage in many ectotherms that are able to behaviourally regulate and move to preferred 

temperatures (eggs are sessile and larvae may have limited mobility). However, these studies 
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did not consider how adult temperature preference influenced the development of offspring 

through breeding site or oviposition site preference.  

 Females may prefer certain thermal environments over others to deposit eggs to 

increase fitness, but oviposition site preference is a vastly understudied trait in thermal 

biology (Dillon et al., 2009). If animals are given a choice of breeding resources along a 

thermal gradient then this would allow for both female adult temperature preference and 

oviposition site preference to be measured. For example, females may prefer to oviposit at 

higher temperatures where development has been shown to be more rapid, which would 

benefit offspring by allowing them to use available resources before later-emerged 

individuals (Dillon et al., 2009). This would also inherently incorporate adult temperature 

preference (Dillon et al., 2009) and allow for measurement of offspring ultimate fitness traits 

as a way of comprehensively describing temperature preference.  

  Here, I measured temperature preference and TPCs of a closely-related generalist 

Drosophila and specialist Drosophila fly. I present a study that is novel for three reasons. 

First, I incorporated oviposition preference into temperature preference and compared it to 

the TPCs. Second, I investigated whether a generalist’s temperature preference range is wider 

than a specialist’s for ultimate fitness traits (productivity and development speed), which are 

thought to be more appropriate predictors of the thermal coadaptation hypothesis than 

proximate fitness traits (Halliday & Blouin-Demers, 2015; Halliday & Blouin-Demers, 

2017). To my knowledge, this is the first study to present the two competing hypotheses 

(‘jack of all trades’ verse ‘sub-optimally risk-averse’) for the thermal coadaptation hypothesis 

in a generalist and a specialist species, and to test them in an empirical example. I also 

measured one proximate trait (i.e., a trait indirectly affecting reproductive success; wing size) 

and compared it to temperature preference. Third, I examined the previous two aims by 

measuring TPCs of productivity, development speed, and wing size over a fine temperature 

scale using 17 thermal environments. 

 

4.3 Methods 

Study system 

I used two sister-species of Drosophila from the montium subgroup found along the east 

coast of Australia. Drosophila serrata is generalist species found from lowland sclerophyll 

woodland and up to mountain-top rainforests (Schiffer et al., 2004). Drosophila birchii is 
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considered a rainforest specialist and, in the Australian Wet Tropics region (Schiffer et al., 

2004), is only found in mid and high elevation rainforest. The two form a generalist/specialist 

pair that are a well-studied system for adaptation due to differences in their physiology, 

distribution, and habitat preferences (Kelemen & Moritz, 1999). 

 I collected wild flies from two populations of each species, both of which were 

allopatric to the other species. I collected D. serrata flies from two areas around 

Rockhampton, QLD (Raglan: 23°42'49.74"S, 150°49'0.10"E; Granite Creek: 24°36'47.25"S, 

151°40'10.45"E); and I collected D. birchii flies from Paluma National Park (19° 0'16.27"S, 

146°12'35.59"E) and Mt Lewis National Park (16°35'30.36"S, 145°16'27.78"E). I used two 

populations per species to provide population-level replication within species. I collected 

flies using banana baits (as described in Higgie and Blows, 2008), identified them to the 

species level, and created isofemale lines for each species by placing one gravid female in a 

breeding vial and then allowing only her offspring to breed. Isofemale lines maintain the 

underlying genetics of the wild-caught female within her progeny (Hoffmann & Parsons, 

1988a; David et al., 2005). Isofemale lines were maintained in a controlled environment 

room at 23°C in 12 hr light:dark cycles for approximately 18 generations before being bred to 

create stock mass bred populations. Mass bred populations were created by breeding the 

offspring of ten isofemale lines from each wild population. Mass bred populations were 

maintained at large numbers (N > 1000) for approximately one year before the start of this 

experiment. 

 

Thermal Performance Curves and Temperature Preference measurements 

Thermal performance (i.e., TPC) and temperature preference treatments were measured for 

each population across four blocks in a complete randomized block design (N = 4 per 

population per each treatment). This allowed for eight replicates per species where both 

treatments (TPC and temperature preference) for each of the populations were measured in 

each block. Thermal performance curves and temperature preferences were measured along a 

thermal gradient from 20°C-36°C in 1°C steps. Linear thermal gradients were set up using 

temperature arrays (Fig. 4.2) as described in Cocciardi et al. (2019). Temperature arrays were 

set-up across two controlled temperature rooms and were randomly assigned replicates at the 

start of each block, but both treatments for a single population were placed within the same 

experimental room to reduce variation. 10 mL of Drosophila feeding and breeding material 

were placed at every temperature point (1°C) on the temperature array, and 10 µg of a diluted 



 66 

water:baker yeast solution (10:1 parts) was deposited on top to promote ovipositing. This 

created a thermal resource gradient where adult temperature preferences, oviposition 

temperature preferences, and fitness could be measured. All food vials were randomized 

across temperature arrays. The directionality of the thermal gradient was also randomized 

across temperature arrays. Each block ran for 17 days to allow for full development of all 

potential offspring. Temperature was recorded at each temperature point every minute for the 

duration of the experiment and monitored throughout the experiment. The mean temperature 

deviation at temperature points across the entirety of the experiment was 0.16°C ± 0.05°C 

(that is, thermal environments were 0.16°C warmer on average than their setpoint). 

 Density-controlled bottles were created one generation before the start of the 

experiment to limit larval competition and control for individual body size of the offspring 

that were subsequently used in the experiment. Three density-controlled mass bred bottles per 

population and species were created by breeding 30 males and 30 females collected at 

random from each stock mass bred population. Flies were placed in a 300 mL bottle, 

containing 100 mL of Drosophila feeding and breeding material, and left for 48 hrs to breed 

before being removed. Virgin flies were subsequently collected from the offspring of the 

mass bred bottles less than 12 hrs after they eclosed, sexed under light CO2 anaesthetic, and 

randomly placed in holding vials that contained five individuals of the same sex from their 

population. Flies were then left to recover from the anaesthesia for 3-4 days before the 

experiment started.  

 Thermal performance was measured by placing one female and two males into each 

vial at the temperature points and stoppering the vial with a porous plug to confine 

individuals to each temperature point (Fig. 4.2A). Two males were placed in each vial to 

increase the chances of mating. Female D. serrata have been shown to enact post-copulatory 

sexual selection to their first mate (Frentiu & Chenoweth, 2008; Collet & Blows, 2014) and 

D. birchii have limited sperm storage from a lack of spermathecae (Saxon et al., 2018a). 

Therefore, there is very limited possibility of increased progeny due to multiple mating and 

hence this was not taken into account. In contrast to thermal performance, in temperature 

preference treatments, flies were not confined to each temperature point (Fig. 4.2B). Instead, 

an enclosure was placed around the temperature array and individuals were able to move 

freely to choose thermal resources. The enclosures were built using a 34 L plastic container 

and mesh (methods described in Cocciardi et al. 2019) and two 5 L glass containers filled 

with water and covered with a sponge were placed along either end of gradient to reduce 
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dehydration. At the start of the experiment, 17 females and 17 males were placed in the cage 

at the centre of the gradient and allowed to disperse to thermal resources for 48 hrs before 

being removed. 34 individuals were placed in the cage to represent the same number of 

mating pairs as in the thermal performance treatment. 

 

 
Figure 4.2: Experimental design to measure thermal performance and temperature preference 

in two species of closely-related Drosophila.  

(A) Flies were confined to thermal resource vials to measure thermal performance curves (TPC) in 

productivity, development speed, and wing size across a linear thermal gradient of 20°C-36°C in 1°C 

steps. (B) Flies were placed in a cage with un-stoppered thermal resource vials and were able to 

choose their preferred thermal environment and thermal-ovipositing resource, allowing for a measure 

of thermal preference inclusive of oviposition preference.  

 

 

 Parental survival was checked every 12 hrs for 48 hrs at which time all parents were 

removed. Pupation cards were placed within vials at 72 hrs. Vials were then checked every 

24 hrs for new emergences and all new emergences were collected, sexed, and counted per 24 

hr period for a total of 15 days after parents were removed. A random subset of female flies 

from each emergence period was frozen and used for wing size measurements. In addition, 

ten female parents per treatment were randomly selected after mating and their left wings 

were mounted, photographed, and digitized to obtain average parent wing size (using 

methods described to obtain wing size measurements below). This, in addition to rearing 
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parents in density-controlled mass breds, was done to confirm no further variation was 

introduced from parent body size (R2 = 0.005, F2,192 = 1.54, P = 0.218). 

Fitness measures 

Productivity, development speed, and wing size were assessed at each temperature point to 

create TPCs for ultimate fitness traits. Productivity was used to calculated temperature 

preference within preference treatments because it incorporates both adult temperature 

preference and female oviposition preference. Productivity was counted as the total number 

of offspring that emerged per vial. Average development speed was measured as the inverse 

of the average 24 hr period that adults emerged from each vial. Body size was obtained from 

three random female offspring per temperature point and was measured as wing size.  

 Wing size was measured by digitizing and measuring the left wing of three females 

per temperature and treatment. To do so, a random subset of females from each emergence 

day at each temperature point was frozen. At the end of the experiment, three females per 

temperature point were randomly selected from all emergences and the left wings were 

mounted on a microscope slide using fine forceps and double-sided tape. Photos of wings 

were taken using a Leica Image microscope (LASV3.8) and images were randomized and 

collated as a TPS file using tpsUtil (Rohlf, 2010b). Ten landmarks were placed on consistent 

morphometric wing features using the program tpsDig2 (Rohlf, 2016) (as defined in Chapter 

2). Outliers and landmarking errors were identified and removed using tpsRelW (Rohlf, 

2010a) before wing measurements were computed.  

 Landmarked coordinates underwent a Generalised Procrustes Analysis (GPA) 

superimposition (Rohlf & Slice, 1990), where wings are aligned on top of each other by 

superimposing images upon one another over an average configuration. The centroid size for 

each wing is then calculated from the square root of the summed squared distance between 

centroid configuration and landmarks. This provides a measure of overall size (Rohlf & Slice, 

1990).  

 

Statistical analyses 

All data was analysed in R (R Core Team, 2019) and data exploration was carried out prior to 

analyses using the protocols set out in Zuur and Ieno (2016). TPCs were created by fitting 

pre-defined functions (Appendix C Table 1) for each species and population using non-linear 

least squares (nls). The rTPC (Padfield & O’Sullivan, 2020) and nls.multstart package 
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(Padfield & Matheson, 2020) in R were used to fit curves. Model fits were weighted by the 

inverse of the variance for productivity due to heteroscedasticity of variance across 

temperatures. Standard un-weighted models were used for development speed and wing size 

because of homoscedasticity and because there were uneven sample sizes across temperature 

points. The best fit curve was chosen as the function that produced the best AICc score 

(Appendix C Tables 2–4; Appendix C Figures 1–3). I used AICc because it corrects the 

Akaike Information Criterion (AIC) for small sample sizes and is recommended as the 

standard value to use for model selection instead of BIC (which may select a too-simplistic 

model for real-world data; Burnham & Anderson, 2004; Brewer et al., 2016). If AICc scores 

were less than 2 from the best fit value, both models were weighted and parameters were 

estimated by model averaging (Burnham & Anderson, 2004; Appendix C Figures 1-3). 95% 

confidence intervals were calculated for each curve by using first-order Taylor expansion and 

Monte Carlo simulation (K = 100,000) using the function ‘predictNLS’ in the R-package 

propagate (Spiess, 2018).   

 TPC parameters were estimated directly from the function. TPC parameters included 

the thermal optimum (Topt), the trait value representing peak performance (Pmax), and the 

breadth of the curve where performance is above 80% peak performance (B80, an indicator of 

specialization). B80 was compared between D. serrata and D. birchii using a one-sided t-test 

to investigate whether the generalist (D. serrata) used in this study has a significantly wider 

thermal niche than the specialist (D. birchii), and Pmax was also compared using a one-sided t-

test to investigate whether the specialist exhibits a higher Pmax than the generalist.  

 Oviposition temperature preference (Tpref) was calculated as the Topt from the best fit 

curve for productivity within the temperature preference treatments (Appendix C Table 5 and 

Appendix C Figure 4). Topt was regressed upon Tpref for each trait to obtain an index of 

coadaptation between optimal and preferred temperatures (Huey & Bennett, 1987), and the 

parameters were compared using a Pearson correlation to investigate whether a relationship 

exists. In addition, the 80th percentile (i.e., upper 20%) of preferred temperatures, known as a 

‘set point’ range for thermal preference (Tset; Hertz et al., 1993), was also calculated and I 

examined whether Topt fell within each Tset range. 95% confidence intervals for Tpref and Tset 

ranges were calculated and compared to the 95% confidence intervals of Topt.  

 To test whether oviposition temperature preference coadapted less directly with 

thermal performance in the generalist species (the ‘jack of all trades’ hypothesis) or in the 

specialist species (the ‘sub-optimally risk-averse’ hypothesis); Tpref was subtracted from Topt 

for each population and trait, and values were compared between species using a one-sided t-
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test in both directions. In addition, B80 for temperature preference was directly estimated from 

the best fit curve for the temperature preference treatment and compared between species 

using a one-sided t-test to investigate whether the generalist exhibited a wider peak 

temperature preference range than the specialist (‘jack of all trades’ hypothesis).  

	

4.4 Results 

Thermal Performance Curves 

TPCs were modelled using four replicates per population (N = 8 per species). Development 

speed and wing-size sample sizes varied across the temperature gradient depending on 

whether offspring developed at each temperature or not. In addition, temperature preference 

for the D. birchii Mt Lewis population was obtained from only three replicates due to 

equipment malfunctioning.  

 The thermal optimum for productivity was located 2.9°C higher in D. serrata than in 

D. birchii, but this was not a significant difference (t1.0 = -1.57, P = 0.361). Consistent with 

theory predicting a trade-off between niche breadth and peak fitness in generalists (Fig. 4.1), 

the generalist D. serrata was found to have a wider B80 than in the specialist D. birchii (t1.8 = 

-4.51, P = 0.028). In contrast, the generalist D. serrata did not have a lower productivity Pmax 

than in the specialist D. birchii (t1.2 = -2.66, P = 0.903; Table 4.2 and Fig. 4.3A).  

 

 
Table 4.2: Thermal performance curve parameters for D. serrata and D. birchii for each ultimate 

fitness trait measured. Means and standard errors are noted for Topt, Pmax, and B80 (N = 2).  

Trait Species Topt (°C) Pmax B80 (°C) 

Productivity D. birchii 23.63 ± 0.03 62.21 ± 3.03 3.94 ± 0.71 

D. serrata 26.54 ± 2.62  81.01 ± 9.50 7.85 ± 1.00 

Development speed D. birchii 27.75 ± 1.41 0.119 ± 0.009 8.14 ± 2.33 

D. serrata 26.96 ± 0.45 0.111 ± 0.001 10.30 ± 0.34 

Wing size D. birchii 20.77 ± 1.09 936.27 ± 8.69 11.5 ± 2.12 

D. serrata 20.00 ± 0.00 977.46 ± 4.57 12.0 ± 1.41 

 

 

The thermal optimum for development speed was similar between species (Topt: t2 = 0.75, P = 

0.531; Table 4.2). Maximum development speed was also very similar between D. serrata 

and D. birchii (Pmax: t2 = 1.26, P = 0.167), with the exception of one population (Mt Lewis) 
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of D. birchii exhibiting a quicker maximum development rate (Pmax: 0.126 days-1) and at a 

higher optimal temperature (Topt: 28.74°C) than the other populations (Table 4.2 and Fig. 

4.3B). Peak performance breadth of TPCs for development speed were not significantly 

different between species (B80: t2 = -1.29, P = 0.162; Table 4.2).  

 The thermal optimums were similar for both species for wing size (Topt: t1 = 1, P = 

0.500; Table 4.2 and Fig. 4.3C). Drosophila birchii exhibited a smaller maximum wing size 

than D. serrata (Pmax: t1.5 = -5.93, P = 0.025). This is most likely due to D. birchii parents 

also being smaller (Parental generation: D. birchii = 941.2 ± 22.3 SD; D. serrata = 962.9 ± 

38.8 SD) and reflecting how D. birchii are generally a smaller species than D. serrata (Ayala, 

1965). Peak performance breadths were not significantly different between species for wing 

size (B80: t1.74 = -0.28, P = 0.405; Table 4.2 and Fig. 4.3C). 
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Figure 4.3: Thermal performance curves for three fitness traits and temperature preference 

curves for a thermal generalist (red) and a thermal specialist (blue) Drosophila species.  

Thermal performance curves for each population for (A) productivity, (B) development speed, and (C) 

wing size for a thermal generalist and a thermal specialist species. The generalist Drosophila serrata 

populations are shown in dark red (Granite) and light red (Raglan) and the specialist D. birchii 

populations are shown in dark blue (Paluma) and light blue (Mt Lewis). Topt for each curve is indicated 

by a circle and 95% confidence intervals for curves are shown with grey shading. (D) Temperature 

preference was measured as total offspring that emerged after adults chose where to oviposit. Tpref for 

each curve is indicated by a triangle and B80 for temperature preference is indicated by the horizontal 

line.  
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Oviposition Temperature Preference 

Drosophila birchii exhibited a cooler, but not significantly different, oviposition temperature 

preference than D. serrata (D. birchii: 24.71°C ± 0.90 SD, D. serrata: 26.91°C ± 2.09 SD; 

t-test on Tpref: t1.36 = -1.36, P = 0.178; Fig. 4.3D). Drosophila birchii exhibited an optimal 

temperature preference breadth (B80 for temperature preference) that differed by only 1.54°C 

from D. serrata and this was not significantly different from D. serrata (D. birchii: 3.35°C ± 

1.51 SD, D. serrata: 5.19°C ± 3.18 SD; t-test on B80: t1.4 = -0.62, P = 0.309; Fig. 4.3D).   

 

Comparing Oviposition Temperature Preferences to Thermal Performance Curves 

The thermal optimum for productivity is strongly correlated to oviposition temperature 

preference (r = 0.959, P = 0.040) and I found evidence for significant coadaptation between 

the two (R2 = 0.92, F1,2 = 23.27, P = 0.040). The thermal optimum for productivity (Topt) fell 

within 1°C of Tpref for D. serrata, and within 1.7°C of Tpref for D. birchii, and within all Tpref 

confidence intervals except for the Paluma population of D. birchii (Fig. 4.4). However, the 

thermal optimum for Paluma still fell within the confidence interval range for Tset (Fig 4.4D). 

Tpref was also located within each B80 range for all populations of both species. This indicates 

that temperature preference fell within the temperature ranges where fitness was optimal (i.e., 

80% of peak performance) for both species. 
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Figure 4.4: Comparison of productivity TPCs and temperature preference of a thermal 

generalist (red) and a thermal specialist (blue) Drosophila species. 

Productivity TPCs for populations of the generalist D. serrata are shown in red (A, B) and the 

specialist D. birchii are shown in blue (C, D). TPC parameters shown include Topt and B80. 

Temperature preference parameters shown include where Tpref falls along the TPC and the 80% 

temperature preference range (Tset). 95% confidence intervals for Topt and Tpref are shown as black 

error lines.  

 

 

Overall, the thermal optimum for development speed does not correlate to oviposition 

temperature preference (r = -0.384, P = 0.615), and I did not find evidence for significant 

coadaptation between the two (R2 = 0.15, F1,2 = 0.35, P = 0.615). This result was driven by 

the D. birchii Mt Lewis population (Fig. 4.5C). Nevertheless, Topt and Tpref for development 

speed were found to have overlapping 95% confidence intervals for all populations (Fig. 4.5), 

indicating the two parameters are not significantly different from one another. Topt fell within 

1.5°C of Tpref for D. serrata and the Paluma D. birchii population. The thermal optimum for 

Mt Lewis was found to occur 4.6°C above Tpref with overlapping confidence intervals (Fig. 
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4.5C). In addition, all temperature preference parameters (Tpref and Tset) were located within 

each B80 range, with the exception of Tset for the Mt Lewis D. birchii population, indicating 

that temperature preference falls within the thermal environments which maximize 

development speed for these species.  

 

 
Figure 4.5: Comparison of development speed TPCs and temperature preference of a thermal 

generalist (red) and a thermal specialist (blue) Drosophila species. 

Development speed TPCs for populations of D. serrata are shown in red (A, B) and D. birchii are 

shown in blue (C, D). TPC parameters shown include Topt and B80. Temperature preference 

parameters shown include where Tpref falls along the TPC and the 80% temperature preference range 

(Tset). 95% confidence intervals for Topt and Tpref are shown as black error lines. 

 

 

The thermal optimum for wing size does not correlate to oviposition temperature preference 

(r = -0.167, P = 0.833), and I did not find significant coadaptation between the two (R2 = 

0.03, F1,2 = 0.06, P = 0.833). There was no overlap between the thermal optimum for wing 

size and temperature preference parameters for D. serrata (Fig. 4.6A, B). For wing size in D. 
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birchii, the thermal optimum fell just within the temperature preference confidence interval 

but outside of the Tset range for Mt Lewis, although the 95% confidence interval for Topt 

overlapped with Tset and the 95% confidence interval for Tpref (Fig. 4.6C). For the Paluma 

population, the 95% confidence interval for Topt only slightly overlapped with the lower 

confidence interval for Tset (by 0.4°C).  

 

 
Figure 4.6: Comparison of wing size TPCs and temperature preference of a thermal generalist 

(red) and a thermal specialist (blue) Drosophila species. 

Wing size TPCs for populations of D. serrata are shown in red (A, B) and D. birchii are shown in blue 

(C, D). TPC parameters shown include Topt and B80. Temperature preference parameters shown 

include where Tpref falls along the TPC and the 80% temperature preference range (Tset). 95% 

confidence intervals for Topt and Tpref are shown as black error lines. 
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‘Jack of all Trades’ or ‘Sub-optimally Risk-Averse’? 

The ‘jack of all trades’ hypothesis predicts that thermal generalists will have a greater gap 

between Topt and Tpref than in specialists. In testing this hypothesis, I did not find significant 

differences between species in any trait (one-sided t-test of Generalist Topt - Tpref > Specialist 

Topt - Tpref; Productivity: t1.6 = 0.98, P = 0.775; Development speed: t1.8 = -1.49, P = 0.144; 

Wing size: t1.02 = -1.99, P = 0.146). The ‘sub-optimally risk-averse’ hypothesis predicts that 

specialists will have a greater gap and be located at lower temperatures than in generalists. I 

also did not find significant differences between species when testing this hypothesis in any 

trait (one-sided t-test of Specialist Topt - Tpref > Generalist Topt - Tpref; Productivity: t1.6 = 0.98, 

P = 0.224; Development speed: t1.8 = -1.49, P = 0.856; Wing size: t1.02 = -1.99, P = 0.854).  

 In relation to the prediction of the ‘sub-optimally risk-averse’ hypothesis that 

oviposition temperature preference should be located at temperatures lower than the thermal 

optimum, I found Tpref was located at temperatures above the Topt for productivity (D. birchii: 

1.09°C ± 0.88 SD; D. serrata: 0.37°C ± 0.53 SD) and wing size (D. birchii: 3.94°C ± 0.19 

SD; D. serrata: 6.91°C ± 2.09 SD) in both species, but below the Topt for development speed 

in both species (D. birchii: -3.04°C ± 2.31 SD; D. serrata: -0.05°C ± 1.63 SD). However, 

these differences were non-significant when comparing the gap between oviposition 

temperature preference and thermal optimums between species (t9.9 = -0.86, P = 0.409). 

 

4.5 Discussion 

I investigated two competing hypotheses on whether temperature preference is more tightly 

coadapted to thermal performance in a thermal generalist or in a thermal specialist species of 

Drosophila by measuring oviposition temperature preference and comparing it to TPCs for 

productivity, development speed, and wing size. The first hypothesis predicts thermal 

generalists may exhibit a temperature preference that deviates more from peak performance 

temperature than in thermal specialists (Blouin-Demers et al., 2003). This is because 

generalists are thought to have a lower, but more stable, fitness at and around their thermal 

optimum and a wider niche breadth (‘jack of all trades’, but ‘master of none’; Huey & Hertz, 

1983; Fig. 4.1B). Consequently, generalists have more thermal environments to move in—

and out of —to maintain close-to optimal fitness in the wild, and temperature preference 

would coadapt over a wider range of thermal environments than within specialists. The 

second hypothesis, which I term the ‘sub-optimally risk averse’ hypothesis, predicts that 
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thermal specialists should exhibit a temperature preference further below the thermal 

performance optima than in generalists because specialists should be more ‘risk-averse’ 

against overshooting their thermal optimum (Fig. 4.1C). I examined these hypotheses by first 

experimentally measuring whether a generalist Drosophila species exhibits a wider peak-

oviposition temperature preference range (B80 for temperature preference) than a closely-

related specialist Drosophila species (the ‘jack of all trades’ hypothesis); and second, by 

comparing the gap between oviposition temperature preference and thermal optimums in the 

generalist and specialist species (‘jack of all trades’ versus ‘sub-optimally risk-averse’ 

hypotheses).  

 I found no evidence to suggest that temperature preference range mimics the ‘jack of 

all trades’ hypothesis; where peak temperature preference may occur over a wider range of 

temperatures for a thermal generalist than for a thermal specialist. This is evidenced by the 

non-significant difference in temperature preference B80 between D. serrata (the generalist) 

and D. birchii (the specialist). Since generalists use a wider set of thermal environments with 

little associated cost to fitness, there is hypothesised to be less pressure to ‘prefer’ a specific 

temperature than within specialists. However, my study indicates that our generalist species 

exhibits a similar peak temperature preference range to our specialist species, suggesting that 

it is beneficial to confine temperature preference to a restricted range of thermal 

environments independent of being a thermal generalist or specialist. Our results corroborate 

those found by Blouin-Demers et al. (2003) who observed no difference in Tset range for a 

thermal generalist and a more precise thermoregulator.  

 Secondly, there was no significant difference in the deviation between temperature 

preference and thermal optimum between species for any trait—meaning I did not find 

evidence for either of the two hypotheses regarding how ‘tightly’ temperature preference may 

have coadapted to thermal performance in species with two different thermal strategies. I 

therefore am still unsure what is the main driver behind temperature preference range 

evolving with optimal performance range; whether: 1) the wider peak of optimal 

temperatures would cause an associated wider temperature preference range in generalists, or 

2) the high cost associated with a temperature preference that is closer to Topt, and 

subsequently closer to the upper thermal limit, causes a wider temperature preference range 

in specialists. I propose that the drivers underlying the two hypotheses are stabilizing and 

confine temperature preference to a similar range in both species, but more empirical 

research is needed to tease this apart. 
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  When examining the TPCs individually, I confirmed that D. serrata is a thermal 

generalist in comparison to its sister species D. birchii. Yet, I did not find evidence of a trade-

off between peak fitness and niche width for two fitness traits for D. birchii. Instead, I found 

that D. serrata exhibited both higher peak fitness and a wider B80 for productivity and wing 

size, while D. birchii exhibited a slightly higher maximum development rate than D. serrata 

(Fig. 4.3). I found evidence for a trade-off between development speed and body size when 

comparing across and within species, and this corroborates previous research showing that 

quicker development times result in smaller adult body sizes from consuming less resources 

during development (Chippindale et al., 1997).  

 When examining oviposition temperature preference individually, I found D. birchii 

preferred a mean temperature located, although insignificantly, 2.2°C cooler than D. serrata. 

This mirrors what was found for the thermal optimum for productivity and the insignificant 

result is most likely due to a lack a power associated with the analysis. Although previous 

research has found mixed results when comparing temperature preference to distributions 

(Schnebel & Grossfield, 1986; Krstevska & Hoffmann, 1994; Yamamoto, 1994; Matute et 

al., 2009), I expected this to be case based on the environments they live within in the wild. 

This is based on the assumption that these species are both well-adapted to their respective 

environments and preferences have coevolved with this adaptiveness. I believe this is a sound 

presumption for these species because previous research on D. serrata and D. birchii have 

found evidence of localized adaptation of tolerance and life history traits (Hallas et al., 2002; 

Hoffmann et al., 2003a; Sgrò & Blows, 2003; Griffiths et al., 2005; van Heerwaarden et al., 

2009; Bridle et al., 2009) from latitudinal and altitudinal adaptation studies. 

 To my knowledge, my study provides the first example comparing thermal fitness 

optimums to oviposition preference site. From an evolutionary perspective, oviposition 

preference site should be equally as important as adult temperature preference in determining 

how well-adapted a species is to their natural environment. This is because natural selection 

favours females that can discriminate between lethal and favourable thermal environments 

because this directly affects survival of her progeny (Jaenike, 1978; Thompson, 1988; Mery 

& Kawecki, 2004; Gripenberg et al., 2010; Soto et al., 2011). Female Drosophila have been 

shown to detect and choose oviposition site by ‘probing’ the substrate before laying (Yang et 

al., 2008), and have been shown to oviposit based on the current temperature of the substrate 

(Schnebel & Grossfield, 1986; Fogleman, 1979). When examining sister-species, as I am 

here, a divergence in oviposition preference site could potentially reflect either a basis for, or 

a consequence of, the speciation process, in addition to selection imposed by their different 
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habitats. Of course, a limit to our study was that I was not able to control for detrimental 

developmental effects of temperature on eggs once they were laid. However, I believe the 

method used here is most representative of what occurs in the wild (females choose 

oviposition site, individuals develop within that fixed thermal environment, and the 

combination of these effects is what leads to overall reproductive success). In addition, it is 

currently unknown how congruent adult female temperature preference is with oviposition 

temperature preference (Dillon et al., 2009), with some evidence suggesting oviposition 

temperature preference could be a reflection of adult temperature preference (or vice versa; 

Schnebel & Grossfield, 1986). Additional research is needed on both to determine their 

influence on one other.  

 A second main goal of my study was to test the ‘thermal coadaptation hypothesis’ 

between important fitness traits and oviposition temperature preference. Most importantly, I 

found temperature preference and productivity to be an example of ‘’tight’ coadaptation 

(slope of regression = 1.19), most likely because it is a direct measure of reproductive 

success. This provides evidence that temperature preference has coadapted directly alongside 

ultimate fitness traits. Although the thermal coadaptation hypothesis was built upon the 

assumption that temperature preference should adapt tightly to thermal performance of 

fitness, evidence for coadaptation between ultimate fitness traits and temperature preference 

is scarce (Halliday & Blouin-Demers, 2015; Halliday & Blouin-Demers, 2017). This is 

because direct fitness is notoriously hard to measure. This result has important implications 

for understanding the effect of behaviour on the adaptive potential of fitness under climate 

change. I show that temperature preference is most tightly linked to thermal environments 

where ultimate fitness traits are optimal. This is important because many species exhibit 

localized adaptation, indicating that species that are able to thermoregulate will use behaviour 

to move to thermal environments most similar to their habitual, unchanged environment and 

this may hinder adaptation to novel conditions in important fitness traits.   

 In contrast, I found no evidence for coadaptation between the thermal optimum for 

development speed and wing size, indicating that selective pressure to maintain optimal 

development speed and a large wing size may be less than what occurred for productivity. 

Although development speed is considered an ultimate fitness trait, these species are not 

known to be ‘rapid developers’ in comparison to similar sized Drosophila (e.g., Jenkins and 

Hoffmann 1999). Hence, selection on development speed may weak because it may not be an 

important contributor to fitness in these species. In addition, temperature preference was 

measured from only three replicates for Mt Lewis (due to an equipment malfunction and 
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subsequent results being unreliable), which introduced uncertainty surrounding the 

temperature preference estimates for Mt Lewis. As such, temperature preference had to be 

estimated from unweighted curves as weighting the data-points along the thermal gradient 

did not correspond to the fit of the data (Appendix C Figure 4).   

 

Future directions 

The ‘thermal coadaptation hypothesis’ states that the thermal optimum for fitness should 

correlate to the temperature preference of a species to maximize fitness at temperatures 

experienced in their natural thermal environment (Huey & Bennett, 1987; Huey & 

Kingsolver, 1989; Angilletta, 2009). Understanding the mechanisms behind coadaptation 

between temperature preference and thermal optimums would allow us to better predict how 

species will respond to changing temperatures associated with global warming. This is 

important because a large component of current climate change research is understanding 

how species will react—will a species change distributions, adapt, or concede to the changing 

conditions? Researchers investigate this problem by mapping the thermal niche of a species 

and comparing it to climate change predictions. Currently, only 36% of publications use 

TPCs to describe the thermal niche, whereas 10% use solely thermal preference and the 

majority (47%) use distributional data to characterise a species thermal niche (Gvoždík, 

2018).  

 Here, I show that oviposition temperature preference is coevolved with the thermal 

optimum for an important fitness trait (productivity) in these populations, confirming that 

both oviposition temperature preference and thermal physiological performance contribute to 

a species thermal niche. This means that both behaviour and thermal physiological traits need 

to be included into model predictions if researchers want to accurately describe how an 

ectotherm will respond to changing temperatures. However, few are currently doing so. Not 

only does this have implications for developing species distribution models in a changing 

climate, but it is thought that thermal preferences may actually buffer adaptation to rising 

temperatures. This may occur because species can use behaviour to move to their preferred 

thermal environments, slowing down the rate of adaptation to the raw environmental 

conditions (known as the ‘Bogert effect’; Bogert 1949; Buckley et al., 2015)  

 If we know more about a species temperature preferences, and how it relates to 

fitness, we can better predict how behaviour can change the direction of adaptation. One way 

of understanding this would be to investigate whether temperature preference is heritable and 



 82 

under what conditions. Temperature preference has been shown to be heritable in some 

species of Drosophila (see Dillon et al., 2009 for review). However, most recently, Castañeda 

et al. (2019) found thermal preference had a low heritability in D. subobscura (h2 = 0.07). 

Yet, other studies found evidence for local adaptation of temperature preference to latitudinal 

variation for this species (Huey & Pascual, 2009; Castañeda et al., 2015), indicating 

temperature preference may partially respond to local conditions. In order to decipher 

whether temperature preference is coadapted with thermal optimums as a result of behaviour 

or genetic covariation and linkages, heritability and genetic covariances for both traits would 

need to be estimated for our species. If temperature preference is genetically correlated to 

fitness, a shift in one would cause a shift in the other, potentially benefiting species in 

changing climates (Huey & Bennett, 1987; Huey & Kingsolver, 1989). 

 A major application of the data identified here would be if temperature preference 

was found to be coadapted to fitness traits within and across genera. Widespread taxonomic 

correlation could be used to identify optimal thermal habitat of vulnerable or endangered 

species. This is important because performance and/or tolerance tests are not usually 

permitted on listed threatened species due to the stress, and potential mortality, they induce. 

Here, I found that the level of coadaptation was maintained across three fitness traits in two 

sister-species, giving support to the thermal coadaptation hypothesis. In one of the first 

empirical studies on the ‘thermal coadaptation hypothesis’, Huey and Bennet (1987) 

proposed three different situations that may result from coadaptation of temperature 

preference and performance: 1) ‘perfect coadaptation’, where the shift in thermal optimum 

and preference is a near 1:1 match between the ancestral species and the adapted species; 2) 

‘partial co-adaptation’, where thermal optimum and temperature preference adapt in the same 

direction but one evolves less rapidly than the other, and; 3) ‘antagonistic co-adaptation’, 

where the thermal optimum for performance and temperature preference adapt in opposite 

directions of each other. By incorporating phylogeny and a greater number of species from 

the montium subgroup of Drosophila, I could decipher whether ‘perfect’, ‘partial’ or 

‘antagonistic’ coadaptation has occurred. Importantly, these results indicate that the thermal 

optimum of traits more closely related to reproductive output (productivity) will coevolve 

with preferences at a more similar rate than those not (development speed and wing size). For 

researchers looking to identify optimal thermal habitat of vulnerable species, they can first 

see if temperature preference and tolerance data is available for ultimate fitness traits in a 
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related-common species and use this correlation to predict the relationship between their 

species’ temperature preferences and optimal habitat.  
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4.6 Highlights 

• I investigated the thermal coadaptation hypothesis in a generalist and a specialist 

species of Drosophila to see how thermoregulatory behaviour is related to the 

optimum thermal-performance temperature of key fitness traits.  

• I found oviposition temperature preference is tightly coadapted to the optimum thermal 

temperature for productivity; an ultimate fitness trait. 

• I found that peak temperature preference range did not differ between a thermal 

generalist and a thermal specialist. 

• The temperature an organism prefers may offer a good proxy to the optimal 

temperature for ultimate fitness traits. 
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5.1 Abstract 

Extreme heat events are increasing in frequency, intensity, and duration as a result of climate 

change. These ‘heatwaves’ may have greater impacts on ecological communities than gradual 

warming. Heatwaves that cause mortality are thought to act as hard selection events for 

individuals with increased heat tolerance and theory suggests this should result in subsequent 

generations better adapted to withstanding future heatwaves. I show this is not the case. I first 

measured a heritable thermal tolerance trait (knockdown time) in isofemale lines of two wild 

Drosophila populations, and selected for high tolerances to mimic a population immediately 

after a moderate and after a severe heatwave. Between ‘heatwave seasons’ (i.e., one year) 

there was no further selection. Then I subjected heatwave-selected populations to a second 

artificial heatwave and measured fitness traits (productivity, development speed, and wing 

size) along a thermal resource gradient to create thermal performance curves. I found 

populations affected by an initial heatwave (both moderate and severe) demonstrated no 

increased thermal tolerance (knockdown time) to a subsequent heatwave and also exhibited 

reduced fitness. I found that both a moderate and severe heatwave significantly decreased 

overall productivity and wing size, but did not affect development speed. Specifically, when 

looking at thermal performance curves, I found the peak fitness value for productivity 

significantly decreased within both heatwave survivor populations, while all other parameters 

for productivity, development speed, and wing size did not significantly change. These 

results suggest that heatwaves may cause maladaptation and that we cannot presume 

heatwave survivors will be better adapted to future heatwaves; an alarming conclusion given 

climate change predictions. 
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5.2 Introduction 

Heatwaves are extreme temperature events characterised by prolonged periods of excessive 

heat (Perkins & Alexander, 2013; Perkins-Kirkpatrick & Lewis, 2020). In many species, 

these can cause sudden mass-mortality where thousands of individuals succumb to the 

extreme conditions in a very short timeframe (Welbergen et al., 2008; Garrabou et al., 2009; 

McKechnie & Wolf, 2010). For example, 33% of the Australian population of Spectacled 

Flying Foxes died in less than two days following a heatwave in Queensland in November 

2018 (Fig. 5.1A). Over the past century, heatwaves have increased in frequency, intensity, 

and duration (Perkins-Kirkpatrick & Lewis, 2020; Fig. 5.1B), and are expected to worsen—

current 20-year events are predicted to occur every two years (Collins et al., 2013). 

Consequently, heatwaves may pose an even greater risk to ecological communities (e.g., 

Allison, 2004; Hance et al., 2006; Mouthon & Daufresne, 2006; Jöhnk et al., 2008; Garrabou 

et al., 2009; McKechnie & Wolf, 2010; Sorte et al., 2010; Smale & Wernberg, 2013; 

Wernberg et al., 2013; Ma et al., 2015; Carreira et al., 2016; Carreira et al., 2017; Straub et 

al., 2019; Zhu et al., 2021) than the gradual rise of temperatures expected with global 

warming (Hance et al., 2006; Vasseur et al., 2014).  

Yet, until recently, the majority of global change research has focused on predicting 

long-term effects of gradual climate change while overlooking the more sudden impacts of 

extreme heat events (Chapman et al., 2014; Vasseur et al., 2014; Carreira et al., 2016). While 

gradual climate change can seriously affect the abiotic and biotic environment, individuals 

may have the chance to adapt, disperse, or generate beneficial phenotypic plasticity 

(Hoffmann & Sgrò, 2011). On the other hand, heatwaves will test the immediate response of 

an individual’s tolerance and/or its ability to rapidly acclimate or behaviourally regulate 

(Reusch et al., 2005; Carreira et al., 2016; Stillman, 2019). It is generally assumed that 

heatwave survivors will produce populations that are heat adapted in some sense, and hence 

will be relatively better adapted to future heatwaves (Clusella-Trullas et al., 2011; Overgaard 

et al., 2014; Stillman, 2019). This is theoretically intuitive given that the survivors did not 

succumb to the extreme conditions and the traits that facilitated the response are likely to be 

heritable; thus adaptation can occur (Endler, 1986; Falconer & Mackay, 1996; Gilchrist & 

Huey, 1999). Recently, the long-term outcome of an increased thermal tolerance as a result of 

a heatwave has been termed the ‘silver-lining’ effect of heatwaves (Coleman & Wernberg, 

2020); because presumably individuals with relatively higher heat-tolerance will fare better 

under global change scenarios.  
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Empirical research has found that within-generation acclimation affects an 

individual’s response to an extreme heat event within an individual’s lifetime; and can either 

reduce performance and survival in a heatwave (Siegle et al., 2018; Aspinwall et al., 2019) or 

produce a short-term ‘silver-lining’ by inducing plasticity and increased thermal tolerance 

(Bauweraerts et al., 2013; Drake et al., 2018). These studies are important for understanding 

the short-term (within an individual’s lifetime) implications of heatwaves, but do not assess 

how heatwaves affect subsequent generations, and whether there are long-term evolutionary 

‘silver-linings’. Many long-term studies have examined thermal tolerance evolution from 

acute heat events by performing selection on thermal tolerance traits generation-after-

generation to assess genetic and fitness trade-offs (e.g., McColl et al., 1996; Gilchrist & 

Huey, 1999; and reviewed in Hoffmann et al., 2003b), which is fundamental to understanding 

adaptation in thermal tolerance traits. However, these results are not directly transferable to 

heatwaves because heatwaves often occur during ‘heatwave seasons’ (Perkins-Kirkpatrick & 

Lewis, 2020)—meaning species with short generation times undergo multiple generations of 

benign conditions following the first heatwave before being affected by the next heatwave 

event.   

 What is currently lacking is an understanding of the long-term effects heatwaves may 

have (Bailey & Pol, 2016), and how being exposed to one extreme heat event can adversely 

affect adaptation to subsequent heatwaves when these occur many generations later, and 

long-term fitness (but see Sentis et al., 2016, Sales et al., 2018, Leicht and Seppälä, 2019, 

Miler et al., 2020, and Waltzer et al., 2020 for important insights into short-term, 

transgenerational effects of heatwaves on fitness of both parents and their offspring; and see 

Coleman et al., 2020 and Gurgel et al., 2020 for recent insights into long-term fitness effects 

of heatwaves within the marine environment). Understanding this is imperative considering 

climate models are predicting current heatwave trends to worsen (Collins et al., 2013; 

Perkins-Kirkpatrick & Lewis, 2020). To my knowledge, what has not been conducted is an 

experiment investigating the impact of a heatwave on fitness and the performance of a 

population in a subsequent heatwave after many generations of benign conditions (i.e., no 

selection on heat tolerance; but see Zhu et al. 2021 for a recent experiment testing the effects 

of a simulated heatwave on thermal tolerance after three generations of benign conditions). 

 In this study, I tested whether a population affected by a heatwave exhibits an 

increased heat tolerance many generations after the extreme heat event. If heat tolerance is 

heritable, when unable to behaviourally regulate, individuals that survive a heatwave will 

pass on a higher heat-tolerance to their offspring than those that did not survive (Endler, 
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1986; Falconer & Mackay, 1996; Gilchrist & Huey, 1999). Based on this, we artificially 

recreated this situation by making heatwave treatment populations of Drosophila birchii after 

a moderate heatwave and after a severe heatwave, which were founded from individuals with 

known and varying degrees of heat-tolerance that we show to be highly heritable. 

Approximately one year after the original ‘heatwave’ (i.e., heatwave 1), I evaluated the 

populations’ performance in a second, comparable heatwave (i.e., heatwave 2) to test the 

prediction that heatwave selection, caused by heat-induced mortality, will increase 

population-level tolerance during a subsequent heatwave (Fig. 5.1C). 

 In addition, I examined the broader impact of heatwaves by looking at the effect of a 

wide range of temperatures on important fitness traits in heatwave impacted populations. I 

created thermal performance curves (TPCs) for productivity (total offspring) and reaction 

norms for development speed (how quickly an individual develops from egg to adult) and 

adult body size. TPCs quantify an individual’s performance and reaction norms assess 

developmental traits along a temperature gradient; both are considered fundamental to 

theoretically and conceptually understanding thermal adaptation (Huey & Kingsolver, 1989; 

Gilchrist, 1995; Angilletta, 2009). They are characterised by the following biologically-

relevant parameters. Thermal optimum (Topt): the temperature where peak performance (Pmax) 

occurs. Thermal breadth (B80): the range of temperatures where performance is above 80% 

peak performance (hence a measure of specialisation). Critical thermal limits (CTmin and 

CTmax): the points where fitness reaches zero (hence indicating thermal limits (Huey & 

Stevenson, 1979; Fig. 5.1D).  

The creation of TPCs allowed me to answer two questions: first, does the upper 

thermal limit (i.e., CTmax) increase after a heatwave and with the severity of a heatwave; and 

second, what is the overall, long-term effect heatwaves have on population-level fitness. 

Following theory, I predicted that heatwave survivor populations will exhibit an upward shift 

in CTmax due to an increase in their mean heat tolerance and overall upward shift of TPC 

(Huey & Stevenson, 1979; Buckley & Huey, 2016; Fig. 5.1D). I also predicted that, after 

initial recovery and in the long-term, there should not be an overall change in peak fitness 

(Pmax), but that Topt and B80 should increase along the temperature gradient due to an overall 

shift in TPC (Fig. 5.1D). 
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Figure 5.1: Heatwave mortality, increasing severity, and predicted effects on heat tolerance. 

A. Spectacled flying foxes (Pteropus conspicillatus) in Australia before and after an extreme heatwave that 

killed one-third (23,000 individuals) of the Australian population in only two days in 2018 (Hildebrandt, 2019). 

Photographs were taken and provided by J. Welbergen.  B. Global trends in heatwave frequency (defined as the 

sum of all heatwave days) and heatwave intensity (defined as the average intensity across all heatwave days) for 

the past seventy years (Perkins-Kirkpatrick & Lewis, 2020). Figures modified from Perkins-Kirkpatrick & Lewis, 

(2020). C. Predicted response of populations affected by no heatwave (control), a moderate heatwave, and a 

severe heatwave to a subsequent heatwave approximately one year later. The control indicates no mortality in 

the initial event, a moderate heatwave indicates mortality of all but the upper 50% of heat tolerant individuals in 

the initial event, and a severe heatwave indicates mortality of all but the top 10% of heat tolerant individuals in 

the first event. Performance is measured as the amount of time individuals are able to survive in a subsequent 

heatwave. D. Predicted response to a heatwave showing a population unaffected by heatwaves (black curve) 

and the adapted response of a thermal performance curve after a moderate heatwave (orange curve) and after a 

severe heatwave (red curve). Figure adapted from Huey & Kingsolver (1993). 
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Heatwave treatment populations were established from two wild populations of Drosophila 

birchii (Fig. 5.2A). Flies were collected from two mountaintops located in northeast 

Queensland, Australia (Fig. 5.2B) to provide geographic replication. From these, I assessed 

the performance of twelve isofemale lines (i.e., a genetic line created by breeding the 

offspring of one female together) from each wild population during an acute heat-stress event 

to mimic a heatwave (i.e., heatwave 1). I used a static heat knockdown assay to assess the 

length of time an individual is able to tolerate extreme heat before becoming immobile, 

which is known as knockdown time (KDT). Static heat knockdown assays have consistently 

predicted adaptive potential of upper thermal limits in Drosophila (van Heerwaarden & Sgrò, 

2013; Blackburn et al., 2014; van Heerwaarden et al., 2015). They are relevant when directly 

assessing thermal tolerances because they test how individuals respond to acute conditions 

without confounding effects on physiology that occur during ramping assays (i.e., starvation 

and desiccation effects; Sgrò et al., 2010; Santos et al. 2011; Terblanche et al., 2011). The 

heatwave treatment populations were: 1) control populations bred from offspring of the 

isofemale lines with the five highest and five lowest mean KDT where no heat-induced 

mortality occurred (Fig. 5.2C); 2) populations bred from offspring of the isofemale lines with 

the five highest mean KDT, comprised of individuals who could survive 23% longer than the 

control (top 50% of heat-tolerant individuals; Fig. 5.2D), and 3) populations bred from the 

isofemale line with the single highest-mean KDT where individuals could withstand extreme 

heat for 35% longer than the control (top 10% heat-tolerant individuals; Fig 5.2E). These 

represented a control treatment, a moderate heatwave treatment, and a severe heatwave 

treatment, respectively. 
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Figure 5.2: Varying levels of heritable heat-tolerance in a native Australian species of 

Drosophila. 

A. Drosophila birchii. Photograph credit to A. Weeks. B. Map of Queensland, Australia showing 

collection sites for experimental flies from Mt Lewis and Paluma National Parks; and (C–E) static heat 

knockdown times of isofemale lines for each wild population (N = 20 per line). C. The isofemale lines 

with the five highest and five lowest knockdown times were bred together to create a ‘control’ 

population not affected by a heatwave; D. the isofemale lines with the five highest knockdown times 

were bred together to create a ‘moderate’ heatwave treatment, and, E. the offspring from the 

isofemale line with the single highest knockdown time were bred together to create a ‘severe’ 

heatwave treatment.  

 

 

I confirmed that heat KDT can respond to selection by calculating the heritability for each 

wild population from a variance component analysis. This allowed us to analyse the variance 

within and between isofemale lines to estimate the relative proportion of genetic variance of 

KDT within each study population—a method that has been shown to calculate similar 

heritabilities to those estimated during a full sib analysis (Hoffmann & Parsons, 1988b). I 

confirmed a high heritability for each population (Mt Lewis; H2 = 0.60, 95% CI [0.53, 0.73] 

and Paluma; H2 = 0.49, 95% CI [0.14, 0.73]: Appendix D Table 1). This supports previous 
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research that found significant evolutionary potential for increased heat tolerance from static 

heat knockdown assays (van Heerwaarden & Sgrò, 2013), and that showed adaptation of the 

upper thermal limit is more likely to occur when selective pressure arises from an acute-stress 

thermal event rather than gradual warming (Blackburn et al., 2014). 

 

5.3 Results 

Thermal tolerance assessed as heat knockdown time 

To test performance during a subsequent heatwave (‘heatwave 2’), I maintained experimental 

populations in the laboratory at large sizes (N > 1000) for approximately one year (25 

generations) and no further selection was placed upon them. I chose to separate heatwaves by 

one year to represent the time between heatwaves that occur in successive summers (i.e., 

heatwave seasons (Perkins-Kirkpatrick & Lewis, 2020). Geographical regions differ in the 

typical number of heatwaves experienced, from less than one heatwave per year to many 

more (Perkins & Alexander, 2013), and I decided to test the legacy of a heatwave over the 

longest typical time-lag (i.e., annual). Although I recognize that laboratory adaptation could 

have occurred over this period, previous studies have found little difference in both stress-

tolerance and life-history traits of Drosophila between laboratory-maintained and recently-

collected flies (Maclean et al., 2018). Specifically, CTmax has been found to have a high 

correlation, and no statistical difference, between field-caught and laboratory-kept 

populations in D. birchii (Maclean et al., 2018).  

 After one year, each heatwave population was subjected to a second heat knockdown 

assay (‘heatwave 2’). I found heat knockdown times in ‘heatwave 2’ did not significantly 

differ between treatments. Model estimates indicate populations affected by a moderate 

heatwave had an average decrease in KDT of 0.141 mins (± 1.014 SD; 95% CI: -0.647, 0.448) 

but this was not significantly different from the control population (19.91 ± 1.03 SD; CI: 

18.73, 21.12; P = 0.621). Populations affected by a severe heatwave had an average increase 

in KDT of 0.404 mins (± 1.015 SD; 95% CI: -0.15, 1.05) but this was also not significantly 

different from the control population (P = 0.163; Fig. 5.3 and Appendix D Table 2). 
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Figure 5.3: Heatwave impacted populations are not better adapted for the next heatwave. 

Performance of heatwave populations in a second heatwave. Performance was measured as the 

length of time individuals could withstand extreme heat (KDT). Population replicates are denoted by a 

diamond for Mt Lewis and a triangle for Paluma.  N = 200 per treatment. 

	
 

Thermal tolerance and fitness measured from thermal performance curves 

To assess how heatwaves affect the long-term fitness of populations, I measured productivity 

(total offspring that emerged from each vial), development speed (inverse of development 

time), and wing size (centroid size) one year after an initial heatwave (i.e., heatwave 1), and 

across a thermal resource gradient ranging from 20°C-36°C in 1°C intervals. Temperatures 

incorporated the higher end of the temperature range experienced throughout the 

geographical distribution of D. birchii and up to extremely stressful temperatures that may be 

experienced with worst-case climate change scenarios (Overgaard et al., 2014). I compared 

the overall effects of treatment by modelling trait value as a function of treatment type, 

temperature, population, and replicate. TPC parameters were estimated and compared across 

treatments (N = 8 per treatment) using non-linear least square (nls) models (Appendix D 

Tables 3–5; Appendix D Figures 1–3) fit to pre-defined functions (Appendix D Table 6). 

 Heatwave severity had a significant effect on overall productivity (X2
2 = 39.3, P < 

0.001), with the moderate heatwave having no significant effect (0.856 ± 0.103 SD rate-ratio 

on log scale; CI: 0.676, 1.09; P = 0.189) and the severe heatwave inducing a strong effect 

(0.419 ± 0.062 SD rate-ratio on log scale; CI: 0.313, 0.56; P < 0.001; Appendix D Table 7). 

TPC parameters estimated from the best-fit nls model (Fig. 5.4A) indicated a moderate 

heatwave significantly decreased productivity Pmax by an average of 15.9 total offspring (± 
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3.57 SD; F2,3 = 62.51, P = 0.022) and a severe heatwave significantly decreased Pmax by 31.1 

offspring (± 3.19 SD; F2, 3 = 62.51, P = 0.003; Fig 5.4G). Productivity Topt, CTmax, and B80 

were not significantly affected by either the moderate or severe heatwaves (Fig 5.4D, G and 

see Appendix D Table 8 for test of main effects and post-hoc comparisons).  

 Rapid development speed is considered an important fitness trait in Drosophila 

because the environment where they develop is considered transient (i.e., rotting fruit) and 

the slower they develop, the more competition they will experience from other larvae 

(Nunney, 1996; Chippindale et al., 1997). Here, I found development speed was not 

influenced by either a moderate or severe heatwave (X2
2 = 0.873, P = 0.65; Appendix D 

Table 9). The development speed reaction norms (Fig. 5.4B) indicated Pmax (i.e., the quickest 

development rate), Topt (i.e., the temperature where the quickest development time occurred), 

and B80 (i.e., the range of temperatures where the quickest 20% of development occurred) did 

not change from the control to the heatwave treatments (Fig. 5.4E, H and see Appendix D 

Table 8 for test of main effects and post-hoc comparisons).  

 A trade-off has been shown to exist between development time and body size, where 

a quicker development time often means lower overall resource intake and therefore smaller 

adult individuals (Chippindale et al., 1997). Here, I can clearly see a pattern between 

development time and wing size (a proxy for body size) that indicates a trade-off may exist 

(Fig. 5.4B, C; for opposing evidence see Sgrò & Hoffmann, 1998b). Overall, wing size was 

significantly affected by heatwave treatment (X2
2 = 49.899, P < 0.0001; Table Appendix D 

10). However, similar to development speed, Pmax (i.e., largest wing size), Topt (i.e., the 

temperature where wing size was the largest), and B80 (i.e., the range of temperatures where 

the largest 20% of wings occurred) were not significantly affected by heatwave treatment 

(Fig. 5.4F, I and see Appendix D Table 8 for test of main effects and post-hoc comparisons). 
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Figure 5.4: Heatwave results in long-term maladaptation. 

TPCs and reaction norms for fitness traits measured one year after populations were affected by 

heatwaves. A–C. Estimated curves for productivity, development speed, and wing size for each 

heatwave treatment and wild population with 95% confidence intervals for each curve shown in grey. 

D–F. TPC parameters for heatwave treatments and wild populations across the thermal gradient. G–I. 

Peak performance (Pmax) for each fitness trait. Pmax represents the highest number of offspring that 

emerged (productivity), the quickest development time, and the largest wing size.  
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5.4 Discussion 

Our results suggest that a heatwave does not necessarily act as a hard selection event on 

thermal tolerance. This is notable, as it is currently theorized that extreme events that cause 

mortality-based selection will enhance future tolerance (Grant et al., 2017); termed a ‘silver-

lining’ effect where populations are better suited to withstanding future rapid climate change 

(Coleman & Wernberg, 2020). Here, I tested the ‘silver-lining’ hypothesis by selecting for 

heat-tolerant phenotypes and examining thermal tolerance generations after selection 

occurred; but I found no adaptation to heat stress. In fact, I found that populations impacted 

by heatwaves were adversely affected by the heatwave in a classic example of maladaptation 

(Brady et al., 2019), as evidence by reduced fitness (in productivity and wing size). 

 Additionally, the maximum performance of productivity (the trait most directly 

related to ultimate fitness) decreased relative to severity of the heatwave (Fig. 5.4G). This 

indicates that the long-term damage incurred on population-level fitness may be directly 

proportional to the intensity of a heatwave. How acute thermal-intensity proportionally 

affects physiological processes has been modelled in previous papers (e.g., Santos et al., 

2012), but there has been no empirical investigation into the relative effects of thermal 

intensity on long-term fitness to date (but see Carreira et al., 2016 for investigation into the 

effects of heatwave-duration on within-generational fitness). This has important implications 

for future climate change research, suggesting that research should now focus on the intensity 

of the heatwaves in addition to including gradual warming when investigating possible 

consequences of climate change. 

 Although our study did not find evidence for adaptation of thermal tolerances 

following a heatwave, a recent field study confirmed that a ‘silver-lining’ is possible when 

they found that an extreme winter event caused adaptation for cold tolerance in lizards 

(Campbell-Staton et al., 2017). Additionally, a study found an increase in heat-tolerant alleles 

following a marine heat event in seagrasses, but in only a portion of impacted geographical-

areas (Coleman et al., 2020). Overall, long-term studies on the impacts of extreme heat 

events have been scarce compared to short-term, descriptive studies that investigate 

individual responses (for review, see Bailey & Pol, 2016); and more evidence is needed to 

understand the underlying mechanics that may, or may not, produce a ‘silver-lining’ after an 

extreme heat event.  

 Here, I suggest that maladaptation occurred and adaptation was constrained due to an 

overall decrease in genetic diversity within each population caused by the population 
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bottleneck at the point of the heatwave, and a subsequent increase in inbreeding depression. 

However, we did not measure genetic diversity before and after the heatwaves to directly 

assess this. Loss of genetic diversity and an increase in inbreeding has been shown following 

a marine heatwave in seagrasses (e.g., Coleman et al., 2020; Gurgel et al., 2020) and high 

genetic diversity has been found to be beneficial for recovery after a marine heatwave in 

seagrasses (e.g., Reusch et al., 2005; Wernberg et al., 2018). Another explanation for the 

results found here is that the individuals in the heatwave-impacted populations retained the 

alleles responsible for the highly-heritable heat stress trait but did not express increased heat 

tolerance due to adverse fitness effects (e.g., Hance et al., 2006; Mouthon & Daufresne, 

2006; Jöhnk et al., 2008; Garrabou et al., 2009; McKechnie & Wolf, 2010; Sorte et al., 2010; 

Carreira et al., 2016; Carreira et al., 2017; Straub et al., 2019). Although logistically-

challenging to do in the wild, empirical studies should be conducted that focus on the 

underlying genetics of populations before and after an extreme event to decipher if 

maladaptation and limited adaptive potential in thermal tolerance is linked.  

 In addition to the genetic-architecture of a population, the possibility for recovery and 

survival in the wild after an extreme event will also depend on population size (Bell, 2012) 

and recent stresses (Gonzalez & Bell, 2012). I maintained the populations at large sizes and 

under benign conditions after the initial heatwave, so these were not detrimental factors. 

However, this will most certainly not be the case for many wild populations. For example, I 

examined heatwaves that occurred one-year apart, but current trends indicate the number of 

heatwaves per season is increasing (Perkins-Kirkpatrick & Lewis, 2020)—meaning 

populations may be effected by multiple heatwaves in one year which may compound 

adverse fitness effects. If further research finds that decreased genetic diversity following a 

heatwave is affecting population fitness and constraining evolution of stress-tolerant traits, 

then maintaining connectivity and creating artificial gene flow between populations 

following a heatwave may offer a path forward for managing adverse effects. Here, I offer 

novel empirical research into the outcomes of selection from an extreme heat event. 

However, large gaps remain in understanding the long-term evolutionary consequences of 

such events in nature. 
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5.5 Methods 

Study species 

Drosophila birchii is a specialist species of tropical Drosophila endemic to north-eastern 

Australia and Papua New Guinea (Schiffer & Mcevey, 2006). In Australia, the species is 

restricted to rainforest mountain-tops within the Wet Tropics region. Individuals were 

collected from two distinct populations in the Australian Wet Tropics from March 2016 to 

June 2016 to provide replication within species and between populations. Flies were collected 

from a population located within Paluma National Park (19° 0'16.27"S, 146°12'35.59"E) and 

a population located approximately 400 km north within Mt Lewis National Park 

(16°35'30.36"S, 145°16'27.78"E; Fig. 5.2B). Flies were collected directly from banana baits 

(method described in Higgie & Blows, 2008) and isofemale lines were started by first 

identifying individuals to the species level and subsequently placing a single, wild-caught, 

gravid D. birchii female in a vial to lay. If females had not already mated in the wild, they 

were placed with a wild-caught male from the same population to mate. Flies were then 

transported back to the laboratory and maintained in isofemale lines at 23°C in a controlled 

environment room under 12 hr light: dark cycles. Flies were reared on standard Drosophila 

food that contained sugar, yeast, and agar as described in Higgie & Blows (2008).  

 

Creation of heatwave treatment populations 

I created three heatwave treatment populations from each of the wild populations of D. 

birchii. To do so, I first assessed the performance of twelve isofemale lines from each wild 

population using a static heat knockdown assay to assess heat knockdown time (KDT). I 

chose to perform static heat knockdown assays as a proxy to a heatwave as they create 

extremely stressful thermal conditions for individuals which are also experienced during a 

heatwave. 

 Isofemale lines were maintained in the laboratory under controlled conditions for 18 

generations before the assay, and were maintained in large population numbers to limit 

genetic drift and inbreeding and to maintain the underlying genetic architecture of each wild-

caught female. The generation before the heat knockdown assay, twenty virgin females and 

twenty virgin males from each isofemale line were sexed and five female: male pairs were 

placed in four individual 300 mL bottles. Each bottle contained 100 mL Drosophila food 

sprinkled with live yeast to promote ovipositing. Flies were allowed to mate for 48 hrs at 
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23°C in 12 hr light: dark cycles. By limiting the mating time, I was able to control for density 

and limit negative effects caused by larval competition. Bottles were then left in controlled 

conditions and flies were allowed to develop. Mating bottles were cleared of flies at the first 

sign of eclosing and left for 12 hrs, after which all adult flies were collected and sexed under 

low anaesthetic (via CO2). Females from each replicate bottle were collected and placed in 

vials at five females per vial with 10 mL food. Females were allowed to recover for four days 

before the start of the assay to reduce dehydration effects caused by anaesthetisation and 

allow for sexual maturation. 

 To perform the static heat knockdown assay, individual flies were placed in empty 

vials in a temperature chamber (equipment described in Greenspan et al., 2016) at 39°C and 

watched until flies were immobilized and movement ceased. The time when movement in the 

wings stopped was recorded as KDT. Ten flies were placed in the incubator during each run 

and all flies were scored by the same watcher to limit bias. Flies were scored blind by 

randomly placing them within a vial marked one to ten within the incubator. Five females per 

bottle were measured for each isofemale line (with four founding bottles), resulting in twenty 

females assayed per isofemale line for each wild population. Isofemale line replicates and 

populations were randomized within and across runs to limit confounding effects of run and 

account for any variance in the performance of the temperature chamber across runs. In 

addition, vial position within the incubator was recorded and included in statistical models to 

account for any potential difference in temperature within the chamber. Temperature was 

measured at two spots within the incubator for quality control.  

 Mean KDT was calculated for each isofemale line and lines were bred to create 

populations with differing thermal tolerances. The heatwave treatment populations included 

one control population bred from isofemale lines with the five highest and five lowest mean 

thermal tolerances, one population bred from offspring of the isofemale lines with the five 

highest mean thermal tolerances, and one population bred from offspring of the isofemale 

line that exhibited the highest mean thermal tolerance. Each artificial population was founded 

from the same number of individuals (180 individuals with 50:50 female to male ratio) by 

initially mating one female and one male from each relevant line (and vice versa, with 

numerous replicates) and randomly collecting offspring from these crosses and placing into 

three replicate 300 mL bottles with 100 mL Drosophila food. All subsequent generations 

were maintained from these mass bred populations.  
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Heritability analysis 

I performed a variance component analysis to calculate the narrow-sense heritability of KDT 

for each wild population. The variance attributed to each factor for each study population was 

estimated using restricted maximum likelihood (REML) and P-values were obtained by 

comparing linear mixed effect models with and without the factor of interest using ANOVA. 

Models included run as a random factor with isofemale line and within-line replicate as 

nested random factors. All factors were treated as random intercept terms because an 

intercept only model is necessary to determine the variance around factors (Zuur et al., 2009; 

Harrison et al., 2018). 95% confidence intervals on variance were also calculated to check 

whether there was significant variance explained by each factor. Within-line variance was 

estimated as the variance of replicates and residuals. Between-line variance was estimated 

from the variance of lines. Heritability was calculated by dividing the additive genetic 

variance (VA) by the total variance (VTotal); with VA calculated as the variance between lines 

(Vbetween) divided by two times the inbreeding coefficient and isofemale heritability estimated 

as the variance between lines (Vbetween) divided by the sum of the variance between (Vbetween) 

and variance within lines (Vwithin). The package lme4 (Bates et al., 2020) was used in the 

statistical program R (R Core Team, 2019) to carry out model estimation and comparison. 

 

Second heat knockdown assay 

Treatment populations were maintained at large sizes (N > 1000) in a controlled laboratory 

for the span of time from creation to the start of this experiment and to our knowledge no 

selection was placed upon them. Approximately one year after I created the heatwave 

treatment populations, I subjected them to a second extreme heat event (‘heatwave 2’) per the 

heat knockdown assay method described above. 100 females per population and treatment (N 

= 200 per treatment) were assayed from twenty founding bottles over two blocks (performed 

from two succeeding generations). All populations and replicates were randomized across 

runs and blocks. 

 

Thermal performance curve measurements 

I used adjustable temperature arrays (as described in Cocciardi et al., 2019) to create the 

thermal resource gradient where each temperature point was assigned a unique temperature 

and a 100 mL vial with 10 mL Drosophila food was placed in each. Each population was 
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randomly assigned a temperature array and fitness measures were collected from four 

replicates in a randomized complete block design, where each population was represented in 

each block. Temperature arrays were set up in two controlled environment rooms at 25°C and 

65% RH and relative humidity within vials was 85%-90%. Linear thermal-gradients were set 

up along the temperature points measuring 20°-36°C, in 1°C intervals and the direction of 

the gradient was randomized across temperature arrays. 10 µg of a diluted water: baker yeast 

solution (10: 1 parts) was deposited on top of Drosophila food to promote ovipositing and all 

food vials were randomized across temperature arrays.  

 One generation before the start of the experiment, density-controlled mass bred 

bottles were created from each treatment by breeding 30 females and 30 males each, in three 

300 mL bottles with 100 mL standard Drosophila food. This was done to control for larval 

density within the bottle and limit competition effects, as well as control for body size of 

offspring which were used as parents in the subsequent experiment. Additionally, to confirm 

parent body size was consistent across the experiment, three female parents were randomly 

collected from each replicate after mating and the left wing was measured per methods 

described in Hoffmann & Shirriffs (2002). Parent wing size was compared across treatments 

to confirm no significant variation was introduced from parent body size (R2 = 0.005, F2,192 = 

1.54, P = 0.217). 

 Parents were sexed as virgin flies from the density-controlled bottles and placed in 

low-density (5 individuals per vial) holding vials that contained 10 mL standard Drosophila 

food. Flies were held for 3-4 days before the start of the experiment to ensure sexual 

maturity; after which, one female and two males (to ensure mating occurred) were placed 

within each stoppered vial at each temperature point and left for 48 hours before being 

removed. All vials were carded with pupation card at 72 hrs and offspring were allowed to 

develop. Starting at day five, vials were checked every 24 hr for pupae and emerging adults. 

If adults had emerged within the previous 24 hr period, they were collected and placed in 

holding vials before being sexed and counted. Each block ran for 17 days, which allowed for 

the maximum development time at the coolest and hottest temperature used in this thermal 

gradient (per observations by J. Cocciardi) to allow for full development of all possible 

offspring.  
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Relative fitness measures 

Total productivity was calculated by summing the total offspring that emerged from each 

vial. Average offspring development speed was calculated by taking the inverse of the 

average 24 hr period that adults emerged from each vial. In addition, a randomly selected 

group of females were frozen from each emergence day from every vial (if available). At the 

end of the experiment, three females per temperature per replicate were randomly selected 

from these (using a random number generator) and the left wing was wing-mounted and 

landmarks were digitized to obtain offspring body size for each vial as per method described 

in Chapter 2 of this thesis and in Hoffmann & Shirriffs (2002). This method takes the 

landmarked coordinates for each wing and computes the square root of the summed squared 

distance between a centroid configuration and all landmarks. This results in one value called 

the centroid size that provides a measure of overall size and is expressed in arbitrary units 

(Rohlf & Slice, 1990; Rohlf, 2000).  

 

Statistical analysis 

Data exploration for all analyses were carried out following the protocol described in Zuur et 

al. (2010) and all subsequent analyses were performed using the statistical program R (R 

Core Team, 2019). Outliers were identified by 1.5 interquartile range and removed before all 

analyses. 

 

Second extreme heat event 

I compared the knockdown times of heatwave treatment populations from the second heat 

knockdown assay (‘heatwave 2’) by modelling KDT of heatwave treatment as a function of 

heatwave treatment type using a Gamma GLMM with a log link function. The log link 

function ensures positive fitted values, and the Gamma distribution is used for continuous 

data with greater spread in the data and is the distribution that fits this dataset. A potential 

interaction between heatwave treatment and wild population was removed due to non-

significance, as was the fixed covariate of wild population. Block was removed from the 

model due to collinearity with the covariate run. In this case, it is recommended to keep the 

factor that accounts for the majority of the variation (Zuur et al., 2009; Harrison et al., 2018), 

so run remained in the model to account for time differences between runs and bocks. To 

incorporate the potential dependency of individuals collected from the same mass bred, mass 
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bred was treated as a random intercept term, as were vial position and run. Random slopes 

were investigated for all random intercept terms but removed due to the resulting model 

converging and being over-fitted. Model assumptions were verified by plotting standardized 

versus fitted residuals and versus all covariates. 

 

Thermal performance curve and reactions norms 

To compare productivity between populations, a zero-inflated negative binomial GLMM with 

a log link function was modelled using the package glmmTMB (Brooks et al., 2017) in R. 

Total offspring was modelled as a function of heatwave treatment type, wild population, and 

temperature. Temperature was scaled and centred and modelled as a quadratic due to the 

typical pattern of total offspring decreasing on either side of Topt in a TPC. An interaction 

between treatment and population was found to be significant and was included. A potential 

interaction between treatment and both the linear and quadratic temperature variable was 

insignificant and dropped from the model. To incorporate the potential dependency among 

individuals from the same mass bred, replicate was included as a random intercept and slope 

term nested within treatment type. All model assumptions were verified using the DHARMa 

package (Hartig & Lohse, 2020) in R by plotting bootstrapped residuals against predicted 

values and all covariates (Appendix D Figure 4). All tests of uniformity, zero-inflation, 

dispersion, and independence were verified.  

 Both development speed and wing size were compared across treatment types using a 

linear mixed model fit in the package nlme (Pinheiro et al., 2020) in R. Development speed 

and centroid size were modelled as a function of treatment type and temperature, with 

replicate as a random intercept term nested within treatment to account for potential 

dependency of individuals from the same mass bred and generation. Temperature was scaled 

and centred and modelled as a quadratic and interaction terms between both temperature 

variables and treatment were included in the model for wing size but found to be insignificant 

and dropped from the final model for development speed. The number of total offspring that 

emerged from each vial was initially included as a random-intercept term, but dropped from 

the final model for both traits as it was found to be insignificant. It was initially included 

because total offspring is expected to vary unequally by temperature and the amount of 

offspring that develop within a vial may create competition that can affect development time 

and body size. Final models for both traits were obtained by comparing the full, null model 

with a nested model using maximum likelihood. The final model was fit using REML. All 
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model assumptions were verified by plotting normalized residuals against predicted values 

and all covariates (Appendix D Figures 5, 6). Tests of uniformity, zero-inflation, dispersion, 

and outliers were also verified. 

 Parameters for each TPC and reaction norm were obtained by fitting pre-defined 

functions to each treatment and population’s dataset using non-linear least square models. All 

functions were fit using the nlstools (Baty et al., 2015) and rTPC (Padfield & O’Sullivan, 

2020) package in R. Because the Gaussian distribution is typical of TPCs (Angilletta, 2006), 

several of the functions tested consisted of modified-Gaussian fits (Appendix D Table 6). 

Productivity curves were modelled by weighing each observation by its variance due to the 

overall heteroskedastic nature of the data (Appendix D Figure 1). Parameters were directly 

estimated from the functions and CTmax was estimated as the highest temperature at which 

performance was 5% the maximum performance (Pmax) because model functions often result 

in the curve never reaching zero or predicting zero at temperatures that have little biological 

meaning (Kellermann et al., 2019). 95% confidence intervals were calculated for each curve 

by using first-order Taylor expansion and Monte Carlo simulation (K = 100,000) using the 

function ‘predictNLS’ in the R-package propagate (Spiess, 2018).   

 In addition to the functions that productivity was fit to, development speed and wing 

size were also fit to a quadratic, cubic and quartic function (Appendix D Table 6). 

Development speed and wing size models were not weighted as there was homoscedasticity 

across observations and because some variables were missing replicates which would result 

in skewed weighing (Appendix D Figures 2, 3). All model fits were assessed visually and the 

best fit model was chosen as the model with the lowest AICc score. If models had a 

difference in AICc score of less than 2, then model parameters were weighted and the 

averaged parameter was used. Parameters were compared by using a one-way ANOVA with 

treatment as the grouping variable.  

  



 106 

5.6 Highlights 

• I investigated how one heatwave affects the long-term thermal tolerance and fitness of 

impacted populations after several generations of benign conditions.  

• I found that one hard selection event did not induce adaptation in thermal-stress 

tolerance, but did cause maladaptation; most likely due to decreased genetic diversity 

in impacted populations. 

• We cannot presume heatwave survivors will be better adapted to future heatwaves; an 

alarming conclusion given climate change predictions. 

  



 107 

Chapter 6: General Discussion 

Global warming due to climate change is impacting biodiversity, and impacts are predicted to 

be profound over the coming decades. Impacts include range shifts, changes to behaviour and 

breeding biology, altered communities, population declines, and extinctions (Thomas et al., 

2004; Thuiller et al., 2004; Franks et al., 2007; Berg et al., 2010; Bellard et al., 2012; Franks 

et al., 2016; Pecl et al., 2017). Many species will have to adapt to the changing conditions to 

survive under increasing global temperatures (Hoffmann & Sgrò, 2011; Huey et al., 2012). 

Key characteristics of a species’ thermal niche will determine their potential for adaptation 

(Huey et al., 2012) and may impose physiological limits that determine their vulnerability to 

climate change (Hoffmann, 2010).   

 In ectotherms, the thermal niche is controlled by characteristics such as thermal 

tolerance, thermal performance, and thermoregulatory behaviour (Fig. 6.1). The thermal 

niche is most often described using thermal tolerances and thermal performance, but rarely 

thermoregulatory behaviour. A meta-analysis on the term ‘thermal niche’ (Gvoždík, 2018) 

found that 47% of studies describe the thermal niche using indirect measurements of thermal 

tolerance from distributional data, 36% use thermal performance measurements, 10% directly 

measure thermal tolerances, and 7% use thermoregulatory behaviour. Although any one of 

these components can describe a portion of a species’ thermal niche, a more comprehensive 

approach would be to incorporate all three facets into the thermal niche descriptor. Generally, 

this thesis investigates the interaction of thermal tolerances, thermal performance, and 

thermal behaviour of two closely-related Drosophila species (Fig. 6.1). 

 More specifically, this thesis considers how each facet of a specialist and generalist 

species’ thermal niches were affected by environmental change. Williams et al. (2008) laid 

out an integrative framework for researchers investigating the capacity of a species to survive 

under climate change. This framework states that a species vulnerability to environmental 

changes and their evolutionary trajectory will depend on the sensitivity and genetic make-up 

of thermal performances, thermal tolerances, and thermoregulatory behaviour. This is 

including, but not limited to: 1) how increasing temperatures affect important fitness traits, 2) 

whether important fitness traits can adapt to novel conditions, 3) how thermoregulatory 

behaviour affects adaptation potential of important fitness traits, and 4) whether heat-

tolerance traits are able to adapt and how this affects long-term fitness. Collectively, each 
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chapter of this thesis provides information on one of these aspects to assess adaptation under 

climate change in a well-studied Drosophila pair (Drosophila birchii and D. serrata).   

 

 
Figure 6.1: Key components of an ectotherm’s thermal niche.  

A species’ thermal niche is defined as the thermal space where population growth occurs. In the 

absence of biotic interactions, an ectotherm’s thermal niche will mainly be determined by the 

interaction of its thermoregulatory behaviour, thermal performances, and thermal tolerances (Gvoždík, 

2018).  

 

 

In chapter 2, I examined thermal performance in key fitness traits under a benign and 

stressful thermal environment and found temperature stress can alter the heritability, additive 

genetic variance, and evolvability of fitness traits in an inconsistent way. In Chapter 3, I 

described equipment that I designed for the purpose of investigating broad ecological and 

evolutionary questions on thermal tolerances, thermal performances, and thermoregulatory 

behaviour. This equipment was subsequently used to examine how thermal behaviour, 

measured as oviposition temperature preference, relates to the optimal performance 

temperature of key fitness traits in a generalist and a specialist species (Chapter 4). This 

thesis showed that an ultimate fitness trait is tightly coadapted to temperature preference. 

Lastly, I examined how a heatwave affects long-term thermal tolerances and thermal 

performances of key fitness traits (Chapter 5) and found that directional selection on thermal 

tolerance did not increase mean thermal tolerances but, instead, caused maladaptation in 

heatwave-survivor populations. 
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6.1 Thermal performance: genetic variance and covariances 

This thesis provided evidence that an important life history trait (fecundity) has greater 

evolvability under a stressful environment than under a benign environment for two species 

of closely-related Drosophila. This bodes well for the species examined here, both of which 

are found in tropical ecosystems—where gradual warming may push species past their 

current thermal tolerances, so adaptation will most likely be necessary (Kingsolver et al., 

2013). Incorporating adaptive genetic variation into climate change models is essential to 

accurately predicting species vulnerability. For example, adaptive genetic variation was 

incorporated into distribution changes under climate change scenarios for two species of bats 

and the results showed that accounting for additive genetic variance resulted in less predicted 

range-loss when compared to not incorporating additive genetic variance (Razgour et al., 

2019).  

 Historically, environmentally-dependent genetic variance has been well-studied 

because it is a key first step to understanding how environmental change affects adaptation 

potential (Rowiński & Rogell, 2017; Fischer et al., 2020). However, no trend has been 

detected; potentially because many studies focus on heritability rather than direct changes to 

additive genetic variance (Fischer et al., 2020). Heritability is sensitive to residual variation 

(including environmental variation), meaning comparisons between environments cannot be 

made (Houle, 1992; Hoffmann & Merilä, 1999; Rowiński & Rogell, 2017; Fischer et al., 

2020). This thesis presented a prime example of why heritability values are important to 

understanding the absolute change in a trait mean from one generation under selection to the 

next; but heritability may only tell a portion of the story when examining the evolutionary 

potential of a trait across environments. 

 For example, it has generally been assumed that life history traits exhibit low 

heritability due to decreased additive genetic variance (Mousseau & Roff, 1987; Falconer & 

Mackay, 1996; Merilä & Sheldon, 1999). Here, I showed that heritability for a life history 

trait (fecundity) is low in D. birchii and D. serrata, which coincides with previous research 

(Gilchrist & Partridge, 1999; Hoffmann & Shirriffs, 2002; Moraes et al., 2004; Kellermann et 

al., 2006). However, by explicitly measuring standardized metrics of additive genetic 

variance (i.e., the coefficient of additive genetic variance and evolvability), I showed that 

additive genetic variance in fecundity is actually very high. Instead of reduced additive 

genetic variance, an increased residual variance seems to be the main driver behind a low 

heritability value for fecundity in these species. This is important because it shows how 
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heritability values, that are standardized by total genetic variance, can be misleading when 

comparing individual components of genetic variance. Studies should additionally examine 

standardized additive genetic variance values that are more appropriate for comparisons 

across traits because they are standardized by the trait mean (Houle, 1992). This is because, 

as shown in this thesis, these values may indicate that a trait thought to have low heritability 

may still exhibit high additive genetic variance; and that this could be a result of increased 

non-additive genetic variance that is driving heritability down.  

 The results found here, that fecundity exhibits a low heritability but high additive 

genetic variance, coincide with a previous study on the collared flycatcher (Merilä & 

Sheldon, 2000) and a general review on available datasets (Merilä & Sheldon, 1999) that 

showed fitness traits generally exhibit a high residual variance due to non-additive genetic 

variance (i.e., increased environmental variance, dominance variance and epistatic variance) 

and early-development environmental effects. Additionally, Merilä and Sheldon (1999) found 

that residual variance in morphological traits is reduced compared to life history traits; 

consistent with what I found here in wing size. Overall, my results coincided with this review 

to provide additional evidence that the type of trait, as well as the environment, will influence 

the genetic architecture of a trait. 

 Another reason why there has been no discernible trend detected in how genetic 

variance changes across environments is that genetic variance values are specific to species 

and populations and are sensitive to even slight environmental changes (as evidence by 

changes between generations). Here, I found no consistent trend as to how genetic variance 

changed between thermal environments, closely-related Drosophila species, or populations 

within each species. More specifically, when comparing the results presented here and a 

similar study (Kellermann et al., 2006), it seems that even a 1°C or 2°C difference in thermal 

environment will affect the expression of genetic variance. Generally, this could be caused by 

a decreased trait mean that would produce a larger percentage change while still resulting in a 

similar absolute change—but in this case, it is specifically due to an increased additive 

variance. Investigation into how different magnitudes of change affect genetic variance 

would help to identify if a threshold exists—where additive genetic variance can be assumed 

to be the same under the threshold but not over. For example, if additive genetic variance for 

a trait changed between environments that differed by 1°C, but did not significantly change 

in environments that differed by 0.5°C or 0.1°C; then this knowledge can be incorporated 

into evolutionary trajectories.   
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 A link between the trait phenotypes assessed here and fitness in the wild will also aid 

in interpreting these results in an evolutionary framework (Werf et al., 2009). For example, 

although variation in morphological traits and the genes responsible for them is well studied 

in Drosophila, there are few studies quantifying how these morphological traits influence 

fitness in the field (Hine et al., 2004; Werf et al., 2009). 

 Perhaps the greatest consideration in a study like the one presented here is that traits 

are not individually selected for in the wild. Real-world fitness is fundamentally multivariate 

(Lande & Arnold, 1983; Catullo et al., 2019), meaning both fitness and morphological traits 

will be selected for in nature. Hence, determining whether genetic correlations exist between 

life history and morphological traits is important. If fitness is positively correlated to a 

morphological trait under selection, adaptation will occur and this will promote species 

survival in a novel environment. If the opposite is true, then selection on fitness may 

constrain evolution in the other trait (and vice versa; Conner, 2012; Wood & Brodie, 2016). 

For example, selection on desiccation resistance in D. melanogaster led to correlated changes 

in body size and fecundity in some experiments but not others (Hoffmann & Parsons, 1988b; 

Rose et al., 1992; Bubliy & Loeschcke, 2005; Telonis-Scott et al., 2006; Tejeda et al., 

2016)—emphasizing that genetic correlations are also environmentally-dependent. Here, I 

also investigated genetic correlations between fecundity and wing size in different 

environments. Although previous research has shown a high positive phenotypic and genetic 

correlation between wing length and fecundity in Drosophila (Chiang & Hodson, 1950; 

Tantawy & Vetukhiv, 1960; Santos et al., 1992; Woods et al., 2002), other studies have not 

found this relationship (Woods et al., 2002; Sgrò & Hoffmann, 1998b). This thesis also found 

inconsistent phenotypic and genetic correlations between fecundity and wing morphometric 

traits across environments—which is most likely due to environmental variation and/or 

environment-specific gene effects that are masking phenotypic correlations. 

   

6.2 Thermoregulatory behaviour and thermal performance 

Theory predicts that the thermal optimum for fitness should correlate with the temperature 

preference of a species, in order to maximize fitness at temperatures experienced in the wild 

(known as the ‘thermal coadaptation hypothesis; (Huey & Bennett, 1987; Huey & 

Kingsolver, 1989; Angilletta, 2009). This thesis confirmed that an ultimate fitness trait is 

tightly coadapted to temperature preference in two closely-related species, providing support 

for the thermal coadaptation hypothesis. Additionally, I tested two competing hypotheses 
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describing different methods of coadaptation between temperature preference and thermal 

performance in a thermal generalist versus a thermal specialist species. I did not find 

supporting evidence for either hypothesis but instead I provide evidence that suggests 

temperature preference range is confined around the thermal optimum in a thermal generalist 

and thermal specialist species, regardless of thermoregulatory behaviour and performance 

strategy.  

 This is important because thermoregulatory behaviour, which is controlled by 

temperature preference in ectotherms (Angilletta, 2009), is thought to promote and/or hinder 

adaptation to changing conditions (Angilletta, 2009; Dillon et al., 2009; Buckley et al., 2015). 

Specifically, thermoregulatory behaviour may ‘conserve’ thermal performance because 

individuals will use behaviour to move to preferred microclimates and this will reduce 

selection from novel environmental conditions (i.e., the ‘Bogert effect’; Bogert, 1949; Huey 

et al., 2003; and see Buckley et al., 2015 for example). Species that use thermoregulatory 

behaviour as a ‘buffer’ to climate change may potentially have an increased risk of extinction 

because of this (Huey & Kingsolver, 1993; Huey et al., 2003; Kearney et al., 2009; Buckley 

et al., 2015). Hence, understanding the relationship between thermoregulatory behaviour and 

performance may help to inform researchers how temperature preferences will affect 

adaptation. For example, if temperature preference is currently located above the thermal 

performance optima for key fitness traits and the environmental temperature increases, 

thermoregulatory behaviour may promote adaptation. However, the more common prediction 

is that preferred temperatures sit below the thermal optimum (Martin & Huey, 2008; Huey et 

al., 2012) and that climate warming will cause temperature preferences to increase. This will 

result in either a temperature preference closer to the thermal optimum (which will increase 

fitness) or a temperature preference above the thermal optimum (which will decrease fitness; 

see Fig. 1 in Huey et al., 2012).   

 Here, I found no trend as to whether temperature preference is located above or below 

thermal optima. Rather, I found that the location of temperature preference in relation to the 

thermal optimum (above or below) was conserved across species within each trait. This is 

relevant because the species studied here are sister-species, so this result may indicate that the 

selective pressure for temperature preference to coadapt with each trait was the same for both 

species regardless of localized selection imposed by the different environments they reside in. 

Incorporating phylogeny, as well as additional data from other closely-related species, would 

inform us whether a more concrete trend exists in where temperature preference is located in 

comparison to peak thermal performance for specific types of traits. Temperature preference 
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could then be used as a proxy for thermal performance in species that thermal stress tests 

cannot be performed on, such as rare or threatened species. For example, I show that 

temperature preference is highly correlated to productivity (a trait directly related to 

reproductive success), and not coadapted with development speed and wing size. If 

researchers are interested in the temperature where optimum fitness occurs, temperature 

preference may be a good indicator. However, if researchers are looking for temperatures that 

maximize a certain developmental or morphological trait, temperature preference may 

provide an optimum temperature range but may not provide a precise prediction. 

 Whether temperature preference is heritable and under what conditions also needs to 

be considered. Temperature preference has been found to exhibit a high heritability in some 

species of Drosophila (see Dillon et al., 2009 for review), and a low heritability in others 

(Castañeda et al., 2019). Understanding whether temperature preference is coadapted to 

certain fitness traits through behaviour or through genetic covariances or gene-environment 

effects would shed light on the mechanisms of coadaptation. It may be possible that both are 

true (temperature preference has coadapted to certain thermal optimums from behaviour and 

from genetic linkages), but understanding the multifaceted aspects of temperature preference 

and performance is fundamental to understanding a species thermal niche.  

 Additionally, investigating the range of temperature preferences within a population is 

important because a population that exhibits a narrow temperature preference range (a 

thermal specialist) may have more trouble adapting to novel conditions than a species that 

exhibits a wider temperature preference range (a thermal generalist; Buckley et al. 2015). In 

any case, if temperature preference can adapt will depend on the amount of additive genetic 

variance a population exhibits in temperature preference (Sinervo et al., 2010; Buckley et al., 

2015). Plasticity in temperature preference has also been relatively overlooked and could 

provide an extra buffer to climate change in many species (Gvoždík, 2012). However, 

plasticity in temperature preference may detrimentally affect adaptation potential by 

decreasing selection on both thermal tolerances and thermal behaviour, or it may aid 

adaptation if the ability to be plastic in temperature preference is being selected for.  

 

6.3 Thermal tolerance and thermal performance  

This thesis provides evidence that heat-induced mortality from a heatwave may not always 

increase the thermal tolerance of a population, and hence populations may not be better 

adapted to surviving a second heatwave. In addition, the results suggest that maladaptation to 
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subsequent heat events can occur, and this is likely caused by decreased genetic diversity in 

small populations that survive heatwaves. 

  Loss of genetic diversity will directly affect adaptation potential to novel 

environments and may cause additional detrimental effects from increased inbreeding 

depression (e.g., Coleman et al., 2020; Gurgel et al., 2020). Reduced genetic diversity may be 

the most serious consequence of an extreme heat event, but is often overlooked because it is 

not always evident from examining phenotypes alone (Gurgel et al., 2020). This leads to what 

is termed ‘cryptic’ genetic diversity loss. Additionally, decreased genetic diversity may also 

lead to detrimental performance effects, such as not being able to compete or predate 

adequately (Sanz-Lázaro, 2016; Zhang et al., 2016; Grant et al., 2017). Empirical research 

into how whole communities are affected by heatwaves needs to be conducted, in addition to 

empirical studies into the adverse effects of heatwaves on genetic diversity in the wild, which 

are currently scarce (Gurgel et al., 2020).  

 Furthermore, how selection on thermal tolerance affects thermoregulatory behaviour 

should also be considered. This thesis has shown that thermoregulatory behaviour is 

coadapted to thermal performance and that thermal performance is adversely affected by hard 

selection on thermal tolerance—so a relationship between acute thermal tolerances and 

thermoregulatory behaviour also needs to be considered. If the two are genetically linked or 

correlated then selection on one will affect the other. This is important because many 

ectotherms have a very small thermal ‘safety margin’ (i.e., the difference between the 

environmental temperature and a species’ maximum thermal tolerance limit), so any warming 

in environmental temperature will be detrimental to species without the ability to regulate 

behaviourally (e.g., Sunday et al., 2014). However, if selection on thermal tolerances also 

causes adaptation in thermoregulatory behaviour, then species should exhibit increased 

adaptation potential.  

 An important consideration when examining the results from this chapter is that 

thermal tolerance evolution may be influenced by the methodology employed (Terblanche et 

al., 2007; Sgrò et al., 2010; Rezende et al., 2011; Terblanche et al., 2011; Kingsolver & 

Umbanhowar, 2018). For example, some studies use static tests of thermal tolerance and 

other studies use dynamic, ramping tests. Static tests include those such as static knockdown 

assays that test the immediate response of an individual to a stressful temperature. 

Conversely, ramping knockdown assays test the response of an individual to acclimate more 

slowly to temperatures that rise gradually over several hours. Initially, ramping assays were 

thought to be more ecologically relevant because extreme temperatures in nature will usually 
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occur over several hours to several days (Terblanche et al., 2007; Overgaard et al., 2011). 

However, recent studies have found that ramping assays may cause a higher level of heat 

stress due to associated factors such as increased dehydration and resource depletion. 

Because of this, the shorter, high-temperature static assays are thought to provide a better 

estimate of the adaptive potential of heat tolerance (Blackburn et al., 2014; van Heerwaarden 

& Sgro, 2014; Castañeda et al., 2019). Overall, results from static assays usually depict a 

higher evolutionary potential for the trait being measured than ramping assays (Blackburn et 

al., 2014; van Heerwaarden & Sgro, 2014; Castañeda et al., 2019), and provide a more 

precise estimate of the genetic component of heat tolerance traits (Rezende et al., 2011; 

Santos et al., 2011; Castañeda et al., 2019). Hence in this thesis, I used static heat knockdown 

assays to predict the adaptive potential of heat tolerance in several populations. However, 

research into how a static versus ramping assay affects thermal performance measures would 

further this field. Specifically, investigating the difference in how thermal tolerance selection 

imposed by static and ramping assays affects long-term thermal tolerance and performance 

can provide insight into how the onset of extreme events (an acute onset or a slow onset) 

affects population’s thermal tolerances, thermal performance, and thermal behaviour.  

 An additional consideration on the potential effects of heatwaves in the wild is that a 

population’s current thermal tolerance may not correlate perfectly to their current distribution 

because of biotic constraints on their fundamental niche (i.e., the realized niche)—meaning 

their thermal tolerances may extend into other environments (Bocsi et al., 2016; Catullo et 

al., 2019; Razgour et al., 2019). This would mean that directional selection from a heatwave 

or other extreme weather events would not occur and certain populations may not be affected 

by extreme weather events at all (Catullo et al., 2019). 

 

6.4 Conclusion 

When taken together, the results presented here show that thermal performance is related to 

thermoregulatory behaviour and that both can be directly affected by changing temperatures 

and changing thermal tolerances. These results give a synthesized view of the thermal niche 

of two closely-related Drosophila species. However, how thermal performance, thermal 

behaviour, and thermal tolerance will respond to increasing environmental temperatures, and 

whether adaptation of each facet will occur, will also be dictated by biotic interactions. For 

example, a theoretical study found that incorporating high levels of intraspecific competition 

into evolutionary rescue models lowered abundance, and decreased genetic diversity and the 
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rate of beneficial mutations (e.g., Osmond & de Mazancourt, 2012). Conversely, interspecific 

competition aided evolutionary rescue by pushing adaptation to occur at a more rapid rate. 

Competition, predation, parasitism, and diseases must be considered in the evolutionary 

framework when determining adaptation potential (Buckley & Roughgarden, 2006; Sinervo 

et al., 2010; Harley, 2011). 

 More generally, other factors such as demographic processes and gene flow may limit 

adaptation potential. Specifically, it’s been shown that the vulnerability of D. birchii to heat 

stress will depend heavily on demographic factors when population size is less than 20, will 

depend on both genetic and demographic factors when the population is around 100, and will 

not experience detrimental effects when the population in greater than 1000 (e.g., Willi & 

Hoffmann, 2009). Gene flow may also hinder adaptation when there is a large spill-over of 

alleles from the centre of a population to its range edges (e.g., Bridle & Vines, 2007), and this 

has been shown to occur along the southern geographical range of D. serrata (e.g., 

Magiafoglou et al., 2002).  

 A last consideration is that plasticity of thermal performance, thermal tolerance traits, 

and thermoregulatory behaviour also needs to be considered in the context of adaptation 

(Catullo et al., 2019). Phenotypic plasticity is often thought to help an individual survive 

changing environmental conditions (i.e., plastic rescue; Chevin et al., 2012; Kelly, 2019), but 

can also hinder adaptation by shifting phenotypes in the opposite direction of selection 

(Catullo et al., 2019; Fox et al., 2019).  

 This thesis emphasizes that predicting the adaptive response of a species to climate 

change will be challenging because the thermal niche is a multifaceted and complicated 

property. However, climate change is one of the greatest threats to biodiversity and continued 

detailed research that recognises the complexity of the thermal niche is required to determine 

whether adaptation will see species through this challenge.  
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Appendix A: Supporting information for Chapter 2 

Appendix A Table 1. Sample sizes, mean trait values, phenotypic variances (VP), additive variances (VA), 

residual variances (Vres), coefficient of additive variance (CVA), and evolvabilities (IA) for fitness as measured 

by fecundity in a benign (23ºC) and stressful (28ºC) environment.  

Standard errors for CVA were calculated by adding and subtracting the SE of heritability from the heritability value and 

then calculated VA from each estimate (i.e., #" = ℎ+	×	#() to obtain an approximate lower standard error (LSE) and 

upper standard error (USE).  

	

Fecundity 
 

 
  23°C (Benign environment) 

Species  Generation N 
mean ± SE (no. 

of offspring) VP VA Vres CVA x 102 
SE CVA x 10 
[LSE; USE] IA x 102 

D. birchii  Pooled 179 90.1 ± 2.78 1384.6 204.921 1179.679 15.888 [7.39; 21.22] 2.524 
  Dams 91 101.5 ± 2.60 630.4 - - - - - 
  Daughters 88 78.4 ± 4.70 1906.3 - - - - - 

D. serrata Pooled 154 144.19 ± 2.67 1105.1 57.465 1047.635 5.257 [0; 9.67] 0.276 
  Dams 81 131.2 ± 3.50 991.4 - - - - - 
  Daughters 73 158.7 ± 3.40 843.4 - - - - - 
  28°C (Stressful environment) 

D. birchii  Pooled - - - - - - - - 
  Dams 86 16.20 ± 1.86 299.8 - - - - - 
  Daughters - - - - - - - - 

D. serrata Pooled 152 85.34 ± 3.51 1879.5 75.180 1804.320 10.165 [0; 21.50] 1.032 
  Dams 84 76.8 ± 4.30 1548.1 - - - - - 
  Daughters 68 95.9 ± 5.60 2111.7 - - - - - 
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Appendix A Table 2. Sample sizes, mean trait values, phenotypic variances (VP), additive variances (VA), 

residual variances (Vres), coefficient of additive variance (CVA), and evolvabilities (IA) for wing size in a benign 

(23ºC) and stressful (28ºC) environment.  

Wing size is shown as the log centroid size, which produces an arbitrary unit of measurement for comparison purposes. 

Standard errors for CVA were calculated by adding and subtracting the SE of heritability from the heritability value and 

then calculated VA from each estimate (i.e., #" = ℎ+	×	#() to obtain an approximate lower standard error (LSE) and 

upper standard error (USE). 

	

Wing size 
 

 
  23°C (Benign environment) 

Species   Generation N 
mean ± SE (log 
centroid size) VP VA Vres CVA x 102 

SE CVA x 10 
[LSE; USE] IA x 102 

D. birchii  Pooled 173 6.8786 ± 0.0016 0.0005 0.0002 0.0003 0.224 [0.191; 0.253] 0.001 
  Dams 86 6.8813 ± 0.0026 0.0006 - - - - - 
  Daughters 87 6.8758 ± 0.0020 0.0004 - - - - - 

D. serrata Pooled 145 6.9076 ± 0.0020 0.0005 0.0005 0.0000 0.324 [0.299; 0.346] 0.001 
  Dams 79 6.9065 ± 0.0024 0.0004 - - - - - 
  Daughters 66 6.9088 ± 0.0034 0.0007 - - - - - 
  28°C (Stressful environment) 

D. birchii  Pooled - - - - - - - - 
  Dams 78 6.7723 ± 0.0026 0.0005 - - - - - 
  Daughters - - - - - - - - 

D. serrata Pooled 147 6.8159 ± 0.0019 0.0005 0.0001 0.0004 0.156 [0.105; 0.194] 0.0002 
  Dams 81 6.8091 ± 0.0026 0.0005 - - - - - 
  Daughters 66 6.8244 ± 0.0025 0.0004 - - - - - 
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Appendix A Table 3. Sample sizes, mean trait values, heritabilities (h2), phenotypic variances (VP), additive 

variances (VA), and residual variances (Vres) for the relative warp (RW) parameters for wing shape in a benign 

(23ºC) and stressful (28ºC) environment.  

Heritabilities shown in bold are significantly different from zero and the asterisks indicate the significance level for 

adjusted P-values (adjusted by False Discovery Rate; *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). The 

percentage of variation that each RW score accounts for is also shown. 

	
	
Wing shape 

 23°C (Benign environment) 

Species  Generation N mean ± SE h2 VP VA Vres 
% 

variation  

D. birchii RWb-1 Pooled 173 0.0061 ± 0.0008 0.412 ± 0.22*  1.12E-04 4.66E-05 6.58E-05 34.47 

  Dams 86 0.0069 ± 0.0011 - 1.12E-04 - - - 

  Daughters 87 0.0053 ±0.0010 - 8.94E-05 - - - 

 RWb-2 Pooled 173 0.0005 ± 0.0007 0.356 ± 0.22** 1.12E-04 3.05E-05 8.12E-05 16.97 

  Dams 86 0.0017 ± 0.0011 - 7.21E-05 - - - 

  Daughters 87 -0.0008 ± 0.0008 - 5.78E-05 - - - 

 RWb-3 Pooled 173 -0.001 ± 0.0007 0.680 ± 0.22*** 7.21E-05 4.90E-05 2.31E-05 13.09 

  Dams 86 -0.009 ± 0.0010 - 7.21E-05 - - - 

  Daughters 87 -0.0011 ±0.0008 - 5.33E-05 - - - 

 RWb-4 Pooled 164 0.0007 ± 0.0005 0.142 ± 0.22 3.73E-05 5.30E-06 3.20E-05 6.54 

  Dams 86 0.0011 ± 0.0007 - 3.73E-05 - - - 

  Daughters 87 0.0003 ± 0.0006 - 3.03E-05 - - - 

 RWb-5 Pooled 173 -0.0002 ± 0.0004 0.457 ± 0.22* 3.31E-05 1.51E-05 1.80E-05 6.07 

  Dams 86 -0.00004 ± 0.0006 - 3.58E-05 - - - 

  Daughters 87 -0.0003 ± 0.0006 - 3.07E-05 - - - 

 RWb-6 Pooled 173 0.0003 ± 0.0004 0.035 ± 0.22 2.62E-05 6.89E-10 2.62E-05 5.55 

  Dams 86 0.0005 ± 0.0006 - 2.75E-05 - - - 

  Daughters 87 0.00003 ± 0.0005 - 2.52E-05 - - - 

D. serrata RWs-1 Pooled 145 0.0116 ± 0.0009 1.00 ± 0.25**** 1.05E-04 1.05E-04 0.00E+00 41.11 

  Dams 79 0.010 ± 0.0010 - 1.04E-04 - - - 

  Daughters 66 0.013 ± 0.0010 - 1.02E-04 - - - 

 RWs-2 Pooled 145 0.0002 ± 0.0007 0.836 ± 0.25* 7.56E-05 6.32E-05 1.24E-05 15.96 

  Dams 79 0.0002 ± 0.0090 - 6.63E-05 - - - 

  Daughters 66 0.0003 ± 0.0110 - 8.77E-05 - - - 

 RWs-3 Pooled 145 -0.0017 ± 0.0006 1.00 ± 0.25**** 5.79E-05 5.79E-05 0.00E+00 10.27 

  Dams 79 -0.0025 ± 0.0008 - 5.62E-05 - - - 

  Daughters 66 -0.008 ± 0.0009 - 5.90E-05 - - - 

 RWs-4 Pooled 145 -0.0004 ± 0.0005 0.514 ± 0.25 4.01E-05 2.06E-05 1.95E-05 7.24 

  Dams 79 -0.0011 ± 0.0006 - 3.00E-05 - - - 

  Daughters 66 0.0005 ± 0.0009 - 5.12E-05 - - - 

 RWs-5 Pooled 145 0.0008 ± 0.0005 0.510 ± 0.25 3.58E-05 1.82E-05 1.75E-05 6.45 

  Dams 79 0.0008 ± 0.0007 - 3.96E-05 - - - 

  Daughters 66 0.0008 ± 0.0005 - 3.58E-05 - - - 
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Wing shape	 	 	 	 	 	 	 	 	 		Appendix A Table 3 continued… 
 

28°C (Stressful environment) 

Species  Generation N mean ± SE h2 VP VA Vres 
% 

variation 

D. birchii RWb-1 Pooled - - - - - - 34.47 

  Dams 78 -0.0135 ± 0.0011 - 9.41E-05 - - - 

  Daughters - - - - - - - 

 RWb-2 Pooled - - - - - - 16.97 

  Dams 78 -0.001 ± 0.0011 - 9.63E-05 - - - 

  Daughters - - - - - - - 

 RWb-3 Pooled - - - - - - 13.09 

  Dams 78 0.0022 ± 0.0008 - 5.50E-05 - - - 

  Daughters - - - - - - - 

 RWb-4 Pooled - - - - - - 6.54 

  Dams 78 -0.0016 ± 0.0006 - 2.45E-05 - - - 

  Daughters - - - - - - - 

 RWb-5 Pooled - - - - - - 6.07 

  Dams 78 0.0004 ± 0.0006 - 2.93E-05 - - - 

  Daughters - - - - - - - 

 RWb-6 Pooled - - - - - - 5.55 

  Dams 78 -0.0006 ± 0.0007 - 3.55E-05 - - - 

  Daughters - - - - - - - 

D. serrata RWs-1 Pooled 147 -0.0116 ± 0.0009 0.268 ±0.25** 1.06E-04 2.84E-05 7.76E-05 41.11 

  Dams 81 -0.015 ± 0.001 - 1.14E-04 - - - 

  Daughters 66 -0.008 ± 0.001 - 7.11E-05 - - - 

 RWs-2 Pooled 147 -0.0002 ± 0.0009 0.668 ±0.25* 1.12E-04 7.45E-05 3.70E-05 15.96 

  Dams 81 -0.0015 ± 0.0012 - 1.19E-04 - - - 

  Daughters 66 0.0014 ± 0.0012 - 1.00E-04 - - - 

 RWs-3 Pooled 147 0.0017 ± 0.0006 0.576 ±0.25 5.67E-05 3.27E-05 2.40E-05 10.27 

  Dams 81 0.0024 ± 0.0008 - 4.82E-05 - - - 

  Daughters 66 0.0009 ± 0.0010 - 6.69E-05 - - - 

 RWs-4 Pooled 147 0.0004 ± 0.0006 0.414 ±0.25 4.45E-05 1.84E-05 2.61E-05 7.24 

  Dams 81 0.00001 ± 0.0008 - 5.00E-05 - - - 

  Daughters 66 0.0008 ± 0.0008 - 3.81E-05 - - - 

 RWs-5 Pooled 147 -0.0008 ± 0.0005 0.430 ±0.25 3.86E-05 1.66E-05 2.20E-05 6.45 

  Dams 81 0.00001 ± 0.0007 - 3.91E-05 - - - 

  Daughters 66 -0.0018 ± 0.0007 - 3.66E-05 - - - 
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Appendix A Table 4: Phenotypic correlations between traits in D. birchii and D. serrata reared under two 

temperatures.  

rP is the phenotypic correlation and the P-value is adjusted by False Discovery Rate and was obtained from a F-test of 

the linear regression of one trait on the other. Bold values indicate significance and significance level is shown in 

asterisks (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). In addition, a F-test was conducted to determine if the 

interaction of population with this regression was significant, which tests whether the phenotypic correlation varies 

between the two populations of a species. Where there was a significant interaction, rP was estimated for each 

population individually.  

	
	

Trait 1 ~ 
Trait 2 Species Trait 

Generation            
        Population rP SE P-value   rP SE P-value 

 
Fecundity ~ 
Wing size 

   Benign (23°C)  Stressful (28°C) 

D. birchii  Dams 0.30 0.108 0.437  0.22 0.117 0.647 
  Mt. Lewis -0.14 0.147 0.763  - - - 

  Paluma 0.76 0.147 0.104  - - - 
  Daughters 0.58 0.103 0.073  - - - 

 D. serrata  Dams -0.14 0.117 0.760  -0.18 0.117 0.707 
      Daughters 0.12 0.123 0.763   0.52 0.125 0.202 
Fecundity ~  
Wing shape 

D. birchii RWb-1 Dams -0.22 0.108 0.625   - - - 
  Daughters 0.10 0.108 0.763  - - - 
 RWb-2 Dams 0.10 0.109 0.763  - - - 

   Daughters 0.20 0.108 0.647  - - - 
  RWb-3 Dams 0.06 0.109 0.834  - - - 
   Daughters -0.26 0.108 0.507  - - - 

  RWb-4 Dams -0.20 0.109 0.647  - - - 
   Mt Lewis -0.76 - 0.104  - - - 
   Paluma 0.04 - 0.507  - - - 
   Daughters -0.16 0.108 0.707  - - - 
  RWb-5 Dams 0.16 0.109 0.707  - - - 
   Daughters -0.40 0.106 0.243  - - - 
  RWb-6 Dams -0.10 0.109 0.763  - - - 
   Daughters 0.42 0.106 0.218  - - - 
 D. serrata RWs-1 Dams 0.10 0.115 0.763  0.24 0.11 0.625 
   Daughters 0.08 0.126 0.837  -0.22 0.11 0.647 
  RWs-2 Dams -0.16 0.115 0.707  0.10 0.11 0.787 
   Daughters 0.04 0.126 0.902  -0.52 0.12 0.203 
  RWs-3 Dams 0.10 0.115 0.763  0.42 0.11 0.247 
   Daughters -0.04 0.125 0.902  0.06 0.13 0.856 
  RWs-4 Dams 0.10 0.115 0.763  0.26 0.11 0.581 
   Daughters -0.14 0.125 0.763  0.54 0.12 0.202 
  RWs-5 Dams 0.16 0.115 0.760  -0.40 0.11 0.283 
   Daughters 0.36 0.125 0.437  0.48 0.12 0.218 
   Mt Lewis - - -  0.98* - 0.049 

      Paluma -  - -   -0.06 - 0.897 
Wing size ~  
Wing shape 

D. birchii   Dams 0.26 - 0.437   0.33 - 0.218 

  Daughters 0.39 - 0.065  - - - 
 D. serrata  Dams 0.43 - 0.052  0.28 - 0.401 

      Daughters 0.59* - 0.049   0.28 - 0.565 
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Appendix A Table 5: Genetic covariances and correlations between traits in D. birchii and D. serrata reared 

under a benign (23ºC) and stressful (28 ºC) environment.   

Genetic covariances and correlations were calculated in both directions, meaning one trait in the dam was regressed 

on the other trait in the daughters and vice versa. N indicates the number of family pairs used in the regression, the 

slope for the regression is indicated by ., the genetic covariance of one trait on the other is covXY, the covariances for 

the individual traits are shown as covXX and covYY, and the genetic correlation (rG) was calculated using the equation 

set forth in Falconer and Mackay (1996). The adjusted P-value for the regression is noted (adjusted by False Discovery 

Rate), as well as the P-value for a F-test on the interaction. between population and the trait value (P-valuePop). If 

population was significant, individual parameters were estimated for each. Genetic correlations shown in the paper were 

calculated from the mean of the genetic covariances in both directions. 	  

Species Dam - daughter  Benign (23ºC) 

                  Population N . covXY covXX covYY rG P-value P-valuepop 

D. birchii Fecundity–Wing size 85 0.14 0.280 0.148 0.476 1.05 0.869 0.863 

 Wing size–Fecundity 82 -0.09 -0.180 0.476 0.148 -0.68 0.869 0.335 

 Fecundity–RWb-1 85 -0.07 -0.140 0.148 0.462 -0.54 0.869 0.407 

 RWb-1–Fecundity 82 0.03 0.060 0.462 0.148 0.23 0.932 0.282 

 Fecundity–RWb-2 85 0.07 0.140 0.148 0.356 0.61 0.869 0.354 

 RWb-2–Fecundity 82 -0.03 -0.060 0.356 0.148 -0.26 0.932 0.671 

 Fecundity–RWb-3 85 -0.13 -0.260 0.148 0.680 -0.82 0.869 0.867 

 RWb-3–Fecundity 82 0.03 0.060 0.680 0.148 0.19 0.932 0.485 

 Fecundity–RWb-4 85 -0.07 -0.140 0.148 0.284 -0.68 0.869 0.141 

 RWb-4–Fecundity 82 0.02 0.040 0.284 0.148 0.20 0.960 0.273 

 Fecundity–RWb-5 85 0.06 0.120 0.148 0.457 0.46 0.876 0.013 

 Mt Lewis 40 0.32 0.640 0.148 0.457 2.46 0.490 - 

 Paluma 45 -0.21 -0.420 0.148 0.457 -1.61 0.869 - 

 RWb-5–Fecundity 82 -0.04 -0.080 0.457 0.148 -0.31 0.932 0.658 

 Fecundity–RWb-6 85 -0.19 -0.380 0.148 0.035 -5.28 0.655 0.683 

 RWb-6–Fecundity 82 -0.13 -0.260 0.035 0.148 -3.61 0.869 0.592 

 Wing Size–RWb-1 81 0.08 0.160 0.476 0.462 0.34 0.869 0.759 

 RWb-1–Wing Size 81 -0.04 -0.080 0.462 0.476 -0.17 0.932 0.293 

 Wing Size–RWb-2 81 0.12 0.240 0.476 0.356 0.58 0.869 0.218 

 RWb-2–Wing Size 81 0.07 0.140 0.356 0.476 0.34 0.869 0.327 

 Wing Size–RWb-3 81 -0.07 -0.140 0.476 0.680 -0.25 0.869 0.579 

 RWb-3–Wing Size 81 0.07 0.140 0.680 0.476 0.25 0.869 0.980 

 Wing Size–RWb-4 81 -0.03 -0.060 0.476 0.284 -0.16 0.932 0.734 

 RWb-4–Wing Size 81 0.03 0.060 0.284 0.476 0.16 0.932 0.156 

 Wing Size–RWb-5 81 0.07 0.140 0.476 0.457 0.30 0.869 0.297 

 RWb-5–Wing Size 81 -0.08 -0.160 0.457 0.476 -0.34 0.869 0.993 

 Wing Size–RWb-6 81 -0.03 -0.060 0.476 0.035 -0.46 0.932 0.663 

 RWb-6–Wing Size 81 0.02 0.040 0.035 0.476 0.31 0.960 0.643 
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         Appendix A Table 5 continued… 

Species Dam - daughter  Benign (23ºC) 

                  Population N . covXY covXX covYY rG P-value P-valuepop 

D. serrata Fecundity–Wing size 63 -0.08 -0.160 0.052 1.000 -0.70 0.932 0.292 

 Wing size–Fecundity 70 -0.16 -0.320 1.000 0.052 -1.40 0.869 0.078 

 Fecundity–RWs-1 63 0.11 0.220 0.052 1.000 0.96 0.869 0.736 

 RWs-1–Fecundity 86 0.06 0.120 1.000 0.052 0.53 0.932 0.821 

 Fecundity–RWs-2 63 -0.09 -0.180 0.052 0.836 -0.86 0.869 0.832 

 RWs-2–Fecundity 68 0.08 0.160 0.836 0.052 0.77 0.869 0.001 

 Paluma 34 0.42 0.840 0.836 0.052 4.03 0.234 - 

 Raglan Ck 34 -0.36 -0.720 0.836 0.052 -3.45 0.455 - 

 Fecundity–RWs-3 63 0.1 0.200 0.052 1.000 0.88 0.869 0.857 

 RWs-3–Fecundity 68 0.29 0.580 1.000 0.052 2.54 0.234 0.905 

 Fecundity–RWs-4 63 -0.12 -0.240 0.052 0.514 -1.47 0.869 0.934 

 RWs-4–Fecundity 68 -0.03 -0.060 0.514 0.052 -0.37 0.932 0.469 

 Fecundity–RWs-5 63 0.11 0.220 0.052 0.514 1.35 0.869 0.511 

 RWs-5–Fecundity 68 0.12 0.240 0.052 0.510 1.47 0.869 0.106 

 Wing Size–RWs-1 63 0.01 0.020 1.000 1.000 0.02 0.981 0.630 

 RWs-1–Wing Size 62 0.17 0.340 1.000 1.000 0.34 0.869 0.364 

 Wing Size–RWs-2 63 0.19 0.380 1.000 0.836 0.42 0.869 0.771 

 RWs-2–Wing Size 62 -0.04 -0.080 0.836 1.000 -0.09 0.932 0.631 

 Wing Size–RWs-3 63 0.08 0.160 1.000 1.000 0.16 0.869 0.421 

 RWs-3–Wing Size 62 0.13 0.260 1.000 1.000 0.26 0.869 0.667 

 Wing Size–RWs-4 63 0.17 0.340 1.000 0.514 0.47 0.869 0.896 

 RWs-4–Wing Size 62 0.01 0.020 0.514 1.000 0.03 0.981 0.296 

 Wing Size–RWs-5 63 -0.15 -0.300 1.000 0.510 -0.42 0.869 0.076 

 RWs-5–Wing Size 62 0.1 0.200 0.510 1.000 0.28 0.869 0.790 
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          Appendix A Table 5 continued…	
Species Dam - daughter   Stressful (28 ºC) 

                   Population   N . covXY covXX covYY rG P-value P-valuepop 

D. serrata Fecundity–Wing size 63 0.02 0.040 0.040 0.226 0.42 0.981 0.715 

 Wing size–Fecundity 64 0.06 0.120 0.226 0.040 1.26 0.944 0.769 

 Fecundity–RWs-1  63 0.05 0.100 0.040 0.268 0.97 0.932 0.609 

 RWs-1–Fecundity  64 -0.02 -0.040 0.268 0.040 -0.39 0.960 0.641 

 Fecundity–RWs-2  63 0.12 0.240 0.040 0.668 1.47 0.869 0.149 

 RWs-2–Fecundity  64 0.08 0.160 0.668 0.040 0.98 0.869 0.217 

 Fecundity–RWs-3  63 -0.01 -0.020 0.040 0.576 -0.13 0.981 0.504 

 RWs-3–Fecundity  64 -0.08 -0.160 0.576 0.040 -1.05 0.869 0.850 

 Fecundity–RWs-4  63 0.36 0.720 0.040 0.414 5.60 0.164 0.057 

 RWs-4–Fecundity  64 -0.22 -0.440 0.414 0.040 -3.42 0.651 0.331 

 Paluma  26 0.05 0.100 0.414 0.040 0.78 0.932 - 

 Raglan Ck  38 -0.46 -0.920 0.414 0.040 -7.15 0.164 - 

 Fecundity–RWs-5  63 0.01 0.020 0.040 0.430 0.15 0.981 0.183 

 RWs-5–Fecundity  64 0.00 0.000 0.430 0.040 0.00 0.983 0.293 

 Wing Size–RWs-1  62 -0.31 -0.620 0.226 0.268 -2.52 0.234 0.419 

 RWs-1–Wing Size  62 -0.09 -0.180 0.268 0.226 -0.73 0.869 0.748 

 Wing Size–RWs-2  62 0.05 0.100 0.226 0.668 0.26 0.932 0.518 

 RWs-2–Wing Size  62 -0.06 -0.120 0.668 0.226 -0.31 0.932 0.171 

 Wing Size–RWs-3  62 -0.13 -0.260 0.226 0.576 -0.72 0.869 0.908 

 RWs-3–Wing Size  62 0.11 0.220 0.576 0.226 0.61 0.869 0.823 

 Wing Size–RWs-4  62 0.07 0.140 0.226 0.414 0.46 0.876 0.035 

 Paluma  26 0.38 0.760 0.226 0.414 2.48 0.512 - 

 Raglan Ck  36 -0.16 -0.320 0.226 0.414 -1.05 0.869 - 

 RWs-4–Wing Size  62 -0.10 -0.200 0.414 0.226 -0.65 0.869 0.366 

 Wing Size–RWs-5  62 0.18 0.360 0.226 0.430 1.15 0.869 0.227 

 RWs-5–Wing Size  62 0.10 0.200 0.430 0.226 0.64 0.869 0.917 
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Appendix A Table 6: Genetic correlations between fitness, wing size, and wing shape in two different thermal 

environments.  

rG denotes the genetic correlation between trait one (trait1) and trait two (trait2) and SE is the standard error for the 

genetic correlation. Wing shape variables are shown as the relative warp (RW) scores that contribute to > 5% variability. 

Bold values indicate a statistically significant correlation based on standard errors. P-values were adjusted for False 

Discovery Rate and significance level is shown with asterisks (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). 

 

    
Benign (23ºC)  Stressful (28 ºC) 

Species trait1 trait2 rG SE P-value  rG SE P-value 

D. birchii Fecundity Wing size 0.19 0.32 1.000  - - - 

 Fecundity RWb-1 -0.15 0.11 1.000  - - - 

 Fecundity RWb-2 0.17 0.28 1.000  - - - 

 Fecundity RWb-3 -0.32 0.19 1.000  - - - 

 Fecundity RWb-4 -0.24 0.39 1.000  - - - 

 Fecundity RWb-5 0.08 0.29 1.000  - - - 

 Fecundity RWb-6 0.00 0.00 0.000  - - - 

 Wing size RWb-1 0.09 0.07 0.500  - - - 

 Wing size RWb-2 0.46 0.14 0.006**  - - - 

 Wing size RWb-3 0.00 0.13 1.000  - - - 

 Wing size RWb-4 0.00 0.25 1.000  - - - 

 Wing size RWb-5 -0.02 0.17 1.000  - - - 

 Wing size RWb-6 -0.08 0.21 1.000  - - - 

D. serrata Fecundity Wing size -1.00 0.04 6.96E-120****  0.84 0.29 0.019* 

 Fecundity RWs-1 0.75 0.16 2.60E-05****  0.29 0.76 1.000 

 Fecundity RWs-2 -0.05 0.45 1.000  1.00 0.27 0.166 

 Fecundity RWs-3 1.00 0.73 1.000  -0.59 0.43 1.000 

 Fecundity RWs-4 -0.92 0.10 4.37E-12****  1.00 0.13 4.44E-08**** 

 Fecundity RWs-5 1.00 0.49 1.000  0.08 0.71 1.000 

 Wing size RWs-1 0.18 0.08 0.094  -1.00 0.54 0.203 

 Wing size RWs-2 0.16 0.11 0.394  -0.03 0.22 1.000 

 Wing size RWs-3 0.21 0.09 0.085  -0.06 0.27 1.000 

 Wing size RWs-4 0.25 0.14 0.215  -0.10 0.28 1.000 

 Wing size RWs-5 -0.07 0.12 1.000  0.90 0.06 8.36E-45**** 
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Appendix A Figure 1: An example of a wing image, showing the 10 landmark positions in sequential order that were 

used to compute centroid size for wing size and relative warp scores for wing shape.  
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Appendix A Figure 2: Fecundity of dams and their daughters exposed to two different thermal environments for the 

entirety of their life. Fecundity is based on total egg count of 72 hrs. Error bars show the standard deviations and means 

and sample sizes are shown in Appendix A Table 1.  
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Appendix A Figure 3: Wing size of dams and their daughters exposed to two different thermal environments for the 

entirety of their life. Wing size is shown as log centroid size that is measured in arbitrary units. Error bars show the 

standard deviations and means and sample sizes are shown in Appendix A Table 2. 
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Appendix A Figure 4: PCA plots showing the RW 1 and RW 2 axes for wing shape in (a) Drosophila birchii and (b) D. 

serrata grouped by temperature treatment and for all individuals measured (i.e., both dams and daughters). Enlarged 

images of wings show the directionality and position (indicated by the black arrows) of change to each landmark between 

the minimum (shown) and maximum (end of the arrow) relative warp score for RWb/s-1. Means and samples sizes are 

shown in Appendix A Table 3. 
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Appendix B: Supporting information for Chapter 3 

Appendix B Supplementary Material 1: Costing and retailer information for parts needed to make one adjustable 

temperature array (ATA). 

ATA part Components Retailer Price/part Quantity Cost 

Temperature 
strip 

Temperature Strip: Temperature points 

Baseboard Local hardware store $5.00 1 $5.00  
Aluminium water-cooled heat-
exchange bars 

Online retailer $12.00 3 $36.00  

7 W thermoelectric Peltier heat pump 
(-55°C to 88°C) 

Online retailer $1.00 18 $18.00  

Aluminium machined vial holders Local hardware store and 
machined at University 
workshop 

$10.00 1 $10.00  

DS1820 temperature sensor Local electronics store or 
online retailer 

$0.50 18 $9.00  

16-pin female plug-socket cable Online retailer $3.00 3 $9.00  
Temperature Strip: Water-cooling system 

Aluminium heatsink bars As above - - - 
6 mm plastic tubing Local hardware store $1.40/1m 1 $1.40 
Irrigation manifolds Local hardware store $1.00 1 $1.00 
Water feature/pond pump + tubing 
(optional) 

Local hardware store $50.00 1 for entire 
system 

$50.00 

Hose clamps Local hardware store $0.25 2 $0.50 

Control box 

Control Box: Electronics 

16-channel 12-bit PWM servo drivers 
(i.e., switching solid-state relays) 

Local electronics store or 
online retailer 

$2.00 3 $6.00 

Dual-channel H-bridge motor driver 
shields (i.e., switching solid-state 
relays) 

Local electronics store or 
online retailer 

$2.00 18 $36.00 

16-pin male plug-socket cables Local electronics store or 
online retailer 

$3.00 3 $9.00 

Solderless breadboard jumper cable 
wires 

Local electronics store or 
online retailer 

$10.00/100 1 $10.00 

Control Box: Microcontroller 
a) WeMoS-D1R2 microcontroller (i.e., 
embedded microcontroller) 

Local electronics store or 
online retailer 

$7.00 1 $7.00 

b) 400 kW resistors Local electronics store or 
online retailer 

$0.50 2 $1.00 

Control Box: LED Lighting System 

a) WS2812 RGB LED module string Local electronics store or 
online retailer 

$5.00 1 $5.00 

b) 400 kW Ohm 0.5W metal film 
resistors 

Local electronics store or 
online retailer 

$0.50 3 $1.50 

Cage 

Experimental setup: Cages 

a) 34 L clear storage containers Local hardware store $8.00 1 $8.00 
b) Pantyhose Local grocery or department 

store 
$2.00 1 $2.00 

TOTAL COST OF 1 ATA UNIT:        $175.40 
  

Notes: The water feature is in grey as only one is needed per water-cooling system. This cost is not included in the 

total cost for 1 ATA unit. 
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Appendix B Supplementary material 2: Design and construction of the temperature strip components. 

 

Temperature strip 

The components used to create 18 temperature points are listed in Table 1 and shown in Fig. 1 of the main manuscript. 

We chose to use aluminium for parts due to its high conductivity. To construct the temperature strip, the aluminium 

heatsink bars were mounted end to end onto the stable baseboard. Next, each temperature point was made by gluing a 

heat pump to the aluminium heatsink bars and then an aluminium vial holder to each heat pump (Fig. 1a) using a silicone 

thermal conductive glue. Each heat pump contains a positive and negative feedback wire, which were soldered to the 

16-pin plug socket cable (Fig. 1b).  

 

Once assembled, a single temperature sensor was super-glued to each vial-holder (Fig 1c). Each temperature sensor 

contains three pins (power, data, and ground). All pins must be connected to the microcontroller to allow for data 

collection and over/under temperature feedback to control the specified temperatures. To do this, a copper wire was 

soldered in parallel to the temperature sensor power pins at each chamber using a daisy-chain. The data and ground pins 

were then daisy-chained in the same way with their own copper wires. The three copper wires were then connected to 

the 16-pin plug-socket cable to provide real-time temperature measurements for each temperature point (Fig. 1b).   

 

Water-cooling system 

The water-cooling system uses a cold-water reservoir that pumps water through aluminium heatsink bars to redistribute 

and strip excess heat away from the temperature strips and is necessary for the heat pumps’ performance. The water-

cooling system can be attached to a constantly flowing cold water tap (i.e., mains water) or a simple water pump can be 

used to cycle water through the system if the user can keep the reservoir water cold. The heat-exchange bars have a U-

shaped hollow with 6 mm connections to allow water to flow through and strip away excess heat. Here, we attached the 

‘in-flow’ tubing for each ATA to each other via a T-junction irrigation manifold, which was connected to the cold-water 

tap. We then connected the ‘out-flow’ tubing for each ATA to each other to allow for heated water leaving heat-exchange 

bars to be dispensed back to the reservoir area (Appendix B Figure 2.1). 

 

	

Appendix B Figure 2.1: The design of the water system is shown above, with black arrows indicating the ‘in-flow’ of 

cool water from the water reservoir to and throughout the heat-exchange bars. Grey arrows indicate the ‘out-flow’ of 

water that has stripped excess heat from the heat-exchange bars and is returning to the reservoir to be cooled. 
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Appendix B Supplementary Material 3: The components of the control box are shown above. The set up and 

placement of parts inside the control box and the wiring needed to connect the electronic components can be seen in 

the schematic. Both solderless breadboard jumper cable wires and standard hook-up wires were used. 
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Appendix B Supplementary Material 4: LED lights correspond to each temperature point and change based on the 

following equation, where warm colours (red–red-yellow) indicate heating response to deviance while cold colours 

(blue–blue-green) indicate a cooling response. This allows for quick indication of the temperature of a specific 

temperature point.  

 

Colour Display Actual temperature deviance 

from target temperature (tT) 

Red Flashing −5°C < tT 

Red Solid −5 to −1°C < tT  

Red-yellow Solid −1 to −0.5°C < tT   

Green Solid −0.5°C < tT < 0.5°C 

Blue-green Solid 0.5 to 1°C > tT 

Blue Solid 1 to 5°C > tT 

Blue Flashing 5°C > tT 

  



 165 

Appendix B Supplementary Material 5: Additional data and results. 

 
Validation tests: temperature deviations 

Please refer to Appendix B Figures 5.1, 5.2 below for additional plots showing temperature deviations in actual 

temperatures to temperature set-points for each of the four thermal landscapes examined in the validation tests.  

 

Temperature variation within vials: methods and results 

Methods 

We tested how temperatures varied within vials by setting up one ATA with a closed vial design and one ATA with an 

open cage design in a controlled temperature room at 23°C and 50% RH. Chambers within each ATA were randomly 

assigned to one of three testing temperatures (15°, 25°, or 36°C) and randomly assigned to have a resource present or 

to not have a resource present. Data loggers (Thermochron DS1921G. Maxi3m Integrated. San Jose, CA) were placed 

at the bottom and top of each vial and set to record every minute for 24 hrs. Data loggers at the bottom of each vial were 

placed either on 5 mL Drosophila yeast-agar-sugar mix resource (i.e., 1 cm from the bottom) or on no resource (0.5 cm 

from the bottom of the vial). Data loggers at the top were taped to the inside of the vial at 2 cm from the top of the vial. 

Foam stoppers were then placed in the vials above the data loggers for the closed vial setup. A cage was placed on top 

of vials for the open cage setup. Each treatment (open caged–resource, open caged–no resource, closed vial–resource, 

closed vial–no resource) was tested at each temperature three times.  

 

Results 

Results are shown below in Appendix B Table 5.1 and Figures 5.1, 5.2. A clear temperature gradient was found within 

the vial as heated or cooled air mixed with ambient air (23°C). Temperature affected gradient; with higher temperatures 

(27.197 ± 0.894 SD) recorded at the top of the vial in the 36°C testing vial, no gradient found within the 25°C testing 

vials (24.609 ± 0.423 SD), and lower temperatures (23.697 ± 0.423 SD) recorded at the top of the vial in the 15°C testing 

vials. Experimental setup (open cage or closed vial) and treatment (resource or no resource) did not make a difference 

to the temperature gradient recorded. 
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Appendix B Table 5.1: Mean deviations and an accuracy measure (RMSE) for data collected at the top and bottom of vials for both the closed vial and open cage setups, 

with vials that have resources or are empty (no resource).  

Target 
Temperature 
(°C) 

Statistic	

CLOSED VIAL OPEN CAGE 

Bottom1 Top2 Bottom1 Top2 

Resource No 
Resource Resource No 

Resource Resource No 
Resource Resource No 

Resource 

15°C 
Mean deviation ± sd −0.80 ± 

0.50 
−0.80 ± 

0.95 8.78 ± 0.25 8.50 ± 0.21 −0.67°C ± 
0.25 

−0.50°C ± 
0.00 

8.89°C ± 
0.35 

8.86°C ± 
0.39 

RMSE 0.50 0.95 0.25 0.21 0.25 1.28 x e-13 0.35 0.39 

25°C 
Mean deviation ± sd 0.33 ± 1.43 0.39 ± 

0.91 
−0.54 ± 

0.13 
−0.67 ± 

0.24 
0.55 ± 

0.43 SD 
−0.44 ± 

0.58 
0.05 ± 

0.16 SD 
−0.49 ± 
0.53 SD 

RMSE 1.43 0.91 0.13 0.24 0.43 0.58 0.16 0.53 

36°C 
Mean deviation ± sd 0.634 ± 

0.63 
1.46 ± 
0.14 

8.62 ± 
0.24 

9.67 ± 
0.63 

0.67 ± 
0.62 SD 

0.49 ± 
0.50 SD 

7.85 ± 
1.08 SD 

8.73 ± 
0.26 SD 

RMSE 0.63 0.13 0.24 0.63 0.62 0.49 1.08 0.26 

	 	

Position of 
data logger in 
vial 

Experimental 
design 

RMSE              
(C°) 

Bottom 
Closed vial 0.92 
Open cage 0.56 

Top 
Closed vial 0.62 
Open cage 0.74 

 
Notes: 1 indicates data logger was placed at the bottom of the vial either directly on the resource or in the empty vial. 2 indicates the data logger was placed 2 cm from the top 

of the vial.  
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Appendix B Figure 5.1: Raw temperature deviations from the validation tests for several niche landscapes over short- and long-term durations.  
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Appendix B Figure 5.2: Boxplots showing how temperature varies within vials (at the bottom and top of the vial) for three different set temperatures for both experimental 

setups and with resources present or not present.   
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Appendix B Supplementary Material 6: The following table shows a list of thermal apparatuses similar to ours and that have, or can be, used for experimental ecology and 

evolution. This is not a comprehensive list, but includes, to the best of our knowledge, similar equipment. The table outlines how our equipment differs from other works in 5 

important aspects (i.e., Ecological and evolutionary potential investigations, temperature settings, operation and setup, replication, and temperature range).  

Reference Description and 
overall function 

Point of difference 
Equipment facet Prior work Our work 

Greenspan, S.E., 
Morris, W., Warburton, 
R., Edwards, L., Duffy, 
R., Pike, D.A., … 
Alford, R.A. (2016).   
Low-cost fluctuating-
temperature chamber 
for experimental 
ecology. Methods in 
Ecology and Evolution, 
7(12), 1567-1574. doi: 
10.1111/2041-
210X.12619 
 
 
 

Describes a low-cost 
incubator used to 
create thermal 
cycles/regimes for 
experimental ecology.  

Ecological and 
evolutionary 
potential 
investigations 

- Physiological tolerances and thermal limits, 
thermoregulation behaviour, plasticity, 
experimental evolution, incubation of small 
model organisms 

- Physiological tolerances and thermal limits, 
species interactions, thermoregulation 
behaviour, plasticity, experimental evolution, 
incubation of small model organisms 

Temperature 
settings 

- Single temperature 
- Constant or dynamic temperature regime 

- Single temperature or thermal gradient with 
specified middle temperatures 

- Constant or dynamic temperature regime 

Operation and 
setup 

- Single, large unit 
- Controlled via microcontroller connected to 

Peltier cooler and digital temperature sensor 
- Low-cost and parts are commercially 

available 

- Series of small, independent units 
- Controlled via microcontroller connected to 

Peltier coolers, digital temperature sensors, 
tri-coloured LED light, and water-cooling 
system 

- Robust and parts are commercially available 
- Fully customizable 

Replication - Replicates can be within or across incubators - Replicates can be within or across incubators 

Temperature 
range 

- 13.1°–35.5°C - 8°– 42°C 

Kong, D.J, Axford, 
J.K., Hoffmann, A.A., 
& Kearney, M.R. 
(2016). Novel 
applications of 
thermocyclers for 
phenotyping 
invertebrate thermal 
responses. Methods in 
Ecology and Evolution, 
7(10), 1201-1208. doi: 
10.1111/2041-
210X.12589 
 

Tests thermocyclers 
as incubators to 
assess thermal 
responses in eggs. 

Ecological and 
evolutionary 
potential 
investigations 

- Thermal tolerance and thermal physiology, 
incubation of very small model organisms 
(uses PCR tubes) 

- Physiological tolerances and thermal limits, 
species interactions, thermoregulation 
behaviour, plasticity, experimental evolution, 
incubation of small model organisms 

Temperature 
settings 

- Single temperature or thermal gradient within 
thermocycler 

- Constant or dynamic temperature regime 

- Single temperature or thermal gradient with 
specified middle temperatures 

- Constant or dynamic temperature regime 
Operation and 
setup 

- Bought two types of ‘Biometra thermocyclers’ 
(Gottingen, Germany) 

- Not “do-it-yourself” and therefore not 
customizable 

- Controlled via microcontroller connected to 
Peltier coolers, digital temperature sensors, 
tri-coloured LED light, and water-cooling 
system 

- Robust and parts are commercially available. 
Replication - Replicates nested within thermocycler - Replicates can be within or across incubators 
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Temperature 
range 

- 3°– 99°C - 8°– 42°C 

• Rajpurohit, S. & 
Schmidt, P.S. (2016). 
Measuring thermal 
behaviour in smaller 
insects: A case study 
in Drosophila 
melanogaster 
demonstrates effects 
of sex, geographic 
origin, and rearing 
temperature on adult 
behaviour. Fly, 10(4), 
149-161. doi: 
10.1080/19336934.20
16.1194145 

 

 Ecological and 
evolutionary 
potential 
investigations 

- Thermal behaviour and preferences - Physiological tolerances and thermal limits, 
species interactions, thermoregulation 
behaviour, plasticity, experimental evolution, 
incubation of small model organisms 

Temperature 
settings 

- Thermal gradient 
- Gradient across bar is variable due to the 

linear fashion of the water thermal gradient 
- Constant temperature regime 

- Single temperature or thermal gradient with 
specified middle temperatures 

- Constant or dynamic temperature regime 

Operation and 
setup 

- An aluminium bar with two Peltier coolers on 
either end of the bar and mounted over 
heats-sink 

- Controlled via microcontroller connected to 
Peltier coolers, digital temperature sensors, 
tri-coloured LED light, and water-cooling 
system 

- Robust and parts are commercially available 
Replication - Replicates across bars. - Replicates can be within or across incubators 

Temperature 
range 

- 12°– 32°C - 8°– 42°C 

Wolfe, G.V., Reeder, 
W.H., & Ervin, B. 
(2014). Novel 
materials enable a 
low-cost temperature-
light gradient incubator 
for microbial studies. 
Journal of 
Microbiological 
Methods, 97, 29-33. 
doi: 
10.1016/j.mimet.2013.
12.001 
  
 
 

Describes a low-cost 
incubator used to 
study growth of 
microbial 
communities, with 
temperature and LED 
light controls. 

Ecological and 
evolutionary 
potential 
investigations 

- Thermal tolerances and thermal physiology, 
incubation of very small species (designed 
for algae and bacteria cultures) 

- Physiological tolerances and thermal limits, 
species interactions, thermoregulation 
behaviour, plasticity, experimental evolution, 
incubation of small model organisms 

Temperature 
settings 

- Thermal gradient 
- Gradient across wells is variable due to the 

linear fashion of the water thermal gradient 
- Constant temperature regime 

- Single temperature or thermal gradient with 
specified middle temperatures 

- Constant or dynamic temperature regime 

Operation and 
setup 

- Low-cost, but fragile block material with 
thermal conductivity similar to aluminium 
(Kfoam: graphite foam material) 

- Heating/cooling takes ~1hr to reach target 
temperatures and form gradient 

- Controlled via microcontroller connected to 
Peltier coolers, digital temperature sensors, 
tri-coloured LED light, and water-cooling 
system 

- Robust and parts are commercially available 
- Heating/cooling takes ~5mins to reach target 

temperatures 
- Fully customizable 

Replication - Replicates nested within incubator. - Replicates can be within or across incubators 

Temperature 
range 

- 12°–48°C - 8°– 42°C 
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Woods, A.H. & 
Bonnecaze, R.T. 
(2006). Insect eggs at 
a transition between 
diffusion and reaction 
limitation: temperature, 
oxygen, and water. 
Journal of Theoretic 
Biology, 243(4), 
483-492. doi: 
10.1016/j.jtbi.2006.07.
008 
 

Describes a thermal 
gradient bar for 
testing development 
time of eggs along a 
thermal gradient.  

Ecological and 
evolutionary 
potential 
investigations 

- Thermal tolerance and thermal physiology, 
incubation of very small model organisms 
(uses PCR tubes) 

- Physiological tolerances and thermal limits, 
species interactions, thermoregulation 
behaviour, plasticity, experimental evolution, 
incubation of small model organisms 

Temperature 
settings 

- Thermal gradient  
- Gradient across wells is variable due to the 

linear fashion of the thermal gradient 
- Constant temperature regime 

- Single temperature or thermal gradient with 
specified middle temperatures 

- Constant or dynamic temperature regime 

Operation and 
setup 

- Temperature controlled via constantly 
circulating temperature baths. 

- Controlled via microcontroller connected to 
Peltier coolers, digital temperature sensors, 
tri-coloured LED light, and water-cooling 
system 

- Robust and parts are commercially available 
Replication - Replicates nested within thermal gradient 

bar. 
- Replicates can be within or across incubators 

Temperature 
range 

- 22°– 32°C - 8°– 42°C 

Elsgaard, L. & 
Jorgensen, L.W. 
(2002). A sandwich-
designed temperature-
gradient incubator for 
studies of microbial 
temperature 
responses. Journal of 
Microbiological 
Methods, 49(1): 
19-29. doi: 
10.1016/S0167-
7012(01)00361-X 
 

Describes a thermal 
gradient used to study 
microbial growth.  

Ecological and 
evolutionary 
potential 
investigations 

- Thermal tolerances and thermal physiology, 
incubation of very small species (designed 
for algae and bacteria cultures) 

- Physiological tolerances and thermal limits, 
species interactions, thermoregulation 
behaviour, plasticity, experimental evolution, 
incubation of small model organisms 

Temperature 
settings 

- Thermal gradient  
- Gradient across wells is variable due to the 

linear fashion of the thermal gradient 
- Constant temperature regime 

- Single temperature or thermal gradient with 
specified middle temperatures 

- Constant or dynamic temperature regime 

Operation and 
setup 

- Temperature controlled at hot end using an 
electric plate and at cold end using a Peltier 
cooler and liquid cooling system 

- Controlled via microcontroller connected to 
Peltier coolers, digital temperature sensors, 
tri-coloured LED light, and water-cooling 
system 

- Robust and parts are commercially available 
- Fully customizable 

Replication - Replicates nested within incubator - Replicates can be within or across incubators 

Temperature 
range 

- 0°–40°C with high precision (±0.08°C) - 8°– 42°C with precision of ±0.5°C 



 172 

Thomas, T.H., 
Scotten, H.L., 
Bradshow, J.S. (1963). 
Thermal gradient 
incubators for small 
aquatic organisms.” 
Limnology and 
Oceanography, 357-
360. doi: 
10.4319/lo.1963.8.3.0
357 
 

Describes three 
thermal gradient 
“blocks” used to 
incubate algae, 
bacteria, and 
foraminifera cultures.  

Ecological and 
evolutionary 
potential 
investigations 

- Thermal tolerances and thermal physiology, 
incubation of very small species (designed 
for algae and bacteria cultures) 

- Physiological tolerances and thermal limits, 
species interactions, thermoregulation 
behaviour, plasticity, experimental evolution, 
incubation of small model organisms 

Temperature 
settings 

- Thermal gradient  
- Gradient across wells is variable due to the 

linear fashion of the water thermal gradient 
- Constant temperature regime 
- Heating/cooling takes ~1hr to reach target 

temperatures and form gradient. 

- Single temperature or thermal gradient with 
specified middle temperatures 

- Constant or dynamic temperature regime 
Heating/cooling takes ~5mins to reach target 
temperatures. 

Operation and 
setup 

- Thermal gradient is created by circulating 
cold water at one end and hot water at 
opposite end of an aluminium block, and 
vials are placed in holes drilled into block.  

- Requires shaking of module continuously to 
achieve an approximately linear temperature 
gradient across module, which could disrupt 
living organisms 

- Controlled via microcontroller connected to 
Peltier coolers, digital temperature sensors, 
tri-coloured LED light, and water-cooling 
system 

- Fully customizable 

Replication - Replicates nested within one “block” - Replicates can be within or across incubators 

Temperature 
range 

- 10°–30°C - 8°– 42°C 

Lu, H., Land, B., & 
Johnson, B. Peltier 
Temperature 
Controller. Cornell 
University ME Design 
Project Report. Cornell 
University, New York.  
 

Describes a low-cost 
controller used to 
control a bath 
temperature for petri 
dishes used in 
Drosophila 
experiments. 

Ecological and 
evolutionary 
potential 
investigations 

- Thermal physiology - Thermal physiology, thermoregulation 
behaviour, species interactions, plasticity, 
experimental evolution, incubation of small 
model organisms 

Temperature 
settings 

- Creates thermal pulses to a petri dish. 
- Single temperature 
- Constant temperature regime 

- Single temperature or thermal gradient with 
specified middle temperatures 

- Constant or dynamic temperature regime 
Operation and 
setup 

- A feedback control box and temperature box 
are used to control and regulate a Peltier 
cooler to heat/cool wells 

-  Each are separate units and able to connect 
to each other via plugs 

- Controlled via microcontroller connected to 
Peltier coolers, digital temperature sensors, 
tri-coloured LED light, and water-cooling 
system 

- Fully customizable 
Replication - Replicates nested within or across thermal 

baths 
- Replicates can be within or across incubators 

Temperature 
range 

- 15°–35°C - 8°– 42°C 



Appendix C: Supporting information for Chapter 4 

Appendix C Table 1: Pre-defined functions used to fit non-linear least square models. 
Functions were fit to each population and species dataset (N = 4 per temperature point) to determine the function that 

best represented each individual dataset for parametrization of thermal performance curves. 
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Lynch, M., Gabriel, W. 
(1987). Environmental 
tolerance. The American 
Naturalist. 129, 283–303. 
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23.5
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Angilletta Jr, M. J. (2006). 
Estimating and 
comparing thermal 
performance curves. 
Journal of Thermal 
Biology, 31(7), 541-545. 

Type 2 
modified 
Gaussian 
2008 

!"#$%#&'()" =
!+,-	×	"01

2
67+829:;<

?×@=

=

, 0 < 	CD86

!+,-	×	"01

2
67+829:;<

?× @×E =

=

, 0 ≥ CD86

 

Phillips et al. (2014). Do 
evolutionary constraints 
on thermal performance 
manifest at different 
organizational scales? 
Journal of Evolutionary 
Biology. 27, 2687-2694. 
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Niehaus, Amanda C., et 
al. (2012). Predicting the 
physiological 
performance of 
ectotherms in fluctuating 
thermal environments. 
Journal of Experimental 
Biology 215.4: 694-701. 

quadratic !"#$%#&'()" = ' + I + G"&1 + ) + G"&1
? 

Montagnes, David JS, et 
al. (2008). Short-term 
temperature change may 
impact freshwater carbon 
flux: a microbial 
perspective. Global 
Change Biology 14.12: 
2823-2838.  

cubic !"#$%#&'()" = ' + I + G"&1 + ) + G"&1
?
+ L + G"&1

Q 

 

quartic !"#$%#&'()" = ' + I + G"&1 + ) + G"&1
?
+ L +	G"&1

R
+ " + G"&1
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Appendix C Table 2: Productivity non-linear least square model fit scores.   
Models with the lowest AICc score were chosen as the best fit for parametrization of productivity thermal performance 

curves. Models with a AICc score < 2 from the lowest AICc value (see ∆AICc) were included in model averaging for 

parametrization. Models weighted by the inverse of the variance. 

 

Species Population Model name sigma ∆AICc AIC AICc BIC df.residual 

D. serrata Granite beta 3.78 72 2956 2965 2961 12 
  Type2.modgaussian.2008 1.06 0 2887 2893 2891 13 
  gaussian.1987 4.44 75 2964 2968 2968 14 
  Type1.modgaussian.2006 1.32 11 2898 2903 2902 13 
 Raglan beta 4.7 65 2937 2945 2942 12 
  Type2.modgaussian.2008 2.14 17 2892 2897 2896 13 
  gaussian.1987 4.33 61 2937 2941 2941 14 

    Type1.modgaussian.2006 1.31 0 2874 2880 2878 13 
D. birchii Mt Lewis beta 1.85 6 5139 5147 5144 12 

  Type2.modgaussian.2008 1.88 2 5138 5143 5142 13 
  gaussian.1987 1.91 0 5138 5141 5141 14 
  Type1.modgaussian.2006 1.91 2 5137 5143 5142 13 
 Paluma beta 1.46 19 4522 4531 4527 12 
  Type2.modgaussian.2008 1.47 15 4522 4527 4526 13 
  gaussian.1987 1.51 31 4539 4543 4543 14 
  Type1.modgaussian.2006 1.15 0 4507 4512 4511 13 
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Appendix C Table 3: Development speed non-linear least square model fit scores.   
Models with the lowest AICc score were chosen as the best fit for parametrization of development speed thermal 

performance curves. Models with a AICc score < 2 from the lowest AICc value (see ∆AICc) were included in model 

averaging for parametrization. Models were not weighted. 
 

Species Population Model name sigma ∆AICc AIC AICc BIC df.residual 

D. serrata Granite gaussian.1987 0.00525 0.5 -95 -90 -92.8 10 

  Type2.modgaussian.2008 0.00438 0 -99.1 -90.5 -96.2 9 

  Type1.modgaussian.2006 0.00513 4.1 -95 -86.4 -92.1 9 

  beta 0.00487 8.7 -95.8 -81.8 -92.4 8 

 Raglan gaussian.1987 0.00502 0 -96.2 -91.2 -93.9 10 

  modgaussian.2008 0.00487 3.4 -96.3 -87.8 -93.5 9 

  modgaussian.2006 0.00494 3.8 -95.9 -87.4 -93.1 9 

  beta 0.00531 11.6 -93.6 -79.6 -90.2 8 

D. birchii Mt Lewis gaussian.1987 0.00931 33.2 -67.2 -60.5 -65.6 8 

  Type2.modgaussian.2008 0.00244 9.6 -96.1 -84.1 -94.2 7 

  Type1.modgaussian.2006 0.00817 36.2 -69.5 -57.5 -67.5 7 

  beta 0.00103 0 -115 -93.7 -112 6 

 Paluma gaussian.1987 0.00445 1.7 -91.4 -85.6 -89.4 9 

  Type2.modgaussian.2008 0.00448 6.7 -90.6 -80.6 -88.2 8 

  Type1.modgaussian.2006 0.0034 0 -97.3 -87.3 -94.8 8 

  beta 0.00481 15.6 -88.5 -71.7 -85.6 7 
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Appendix C Table 4: Wing size non-linear least square model fit scores.   
Models with the lowest AICc score were chosen as the best fit for parametrization of wing size thermal performance 

curves. Models with a AICc score < 2 from the lowest AICc value (see ∆AICc) were included in model averaging for 

parametrization. Models were not weighted. 
 

Species Population Model name sigma ∆AICc AIC AICc BIC df.residual 

D. serrata Granite gaussian.1987 6.32 0 82.9 88.6 84.8 9 

  Type1.modgaussian.2006 6.13 4.1 82.7 92.7 85.1 8 

  beta 6.45 12.4 84.3 101 87.3 7 

  quartic 6.45 12.4 84.3 101 87.2 7 

  cubic 6.26 4.6 83.2 93.2 85.6 8 

  quadratic 6.4 0.3 83.2 88.9 85.1 9 

 Raglan gaussian.1987 6.69 0.1 90.9 95.9 93.2 10 

  Type1.modgaussian.2006 6.97 5.2 92.6 101 95.4 9 

  beta 7.42 13.2 94.7 109 98.1 8 

  quartic 6.7 10.2 92 106 95.4 8 

  cubic 6.99 5.2 92.7 101 95.5 9 

D. birchii Mt Lewis quadratic 6.66 0 90.8 95.8 93 10 

  gaussian.1987 13 0.5 92.1 98.8 93.7 8 

  Type1.modgaussian.2006 11.7 3.7 90.4 102 92.4 7 

  beta 12.5 14.7 92.1 113 94.5 6 

  quartic 11.7 13.7 90.6 112 93 6 

  cubic 12.9 6.7 92.6 105 94.6 7 

  quadratic 12.7 0 91.7 98.3 93.3 8 

 Paluma gaussian.1987 15.4 11.5 95.9 103 97.5 8 

  Type1.modgaussian.2006 12.2 11.5 91.2 103 93.2 7 

  beta 14.7 25.5 95.7 117 98 6 

  quartic 7.44 10.5 80.7 102 83.1 6 

  cubic 7.14 0 79.5 91.5 81.5 7 

  quadratic 15.6 11.5 96.2 103 97.8 8 
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Appendix C Table 5: Temperature preference non-linear least square model fit scores.   
Models with the lowest AICc score were chosen as the best fit to determine temperature preference. Models with a AICc 

score < 2 from the lowest AICc value (see ∆AICc) were included in model averaging for parametrization. Models 

weighted by the inverse of the variance. 
 

Species Population Model name sigma ∆AICc AIC AICc BIC df.residual 

D. serrata Granite beta 2.91 9 4106 4114 4111 12 

  modgaussian.2008 2.43 0 4098 4103 4102 13 

  gaussian.1987 2.68 3 4101 4105 4105 14 

  modgaussian.2006 2.86 6 4104 4109 4108 13 

 Raglan beta 3.12 7 4216 4224 4221 12 

  modgaussian.2008 3.12 4 4215 4221 4219 13 

  gaussian.1987 2.96 6 4219 4223 4223 14 

    modgaussian.2006 2.92 0 4212 4217 4216 13 

D. birchii Mt Lewis beta 9.14 0 128 132 132 14 

  modgaussian.2008 8.97 2 128 134 132 13 

  gaussian.1987 8.49 0 126 132 131 13 

  modgaussian.2006 9.64 6 131 140 136 12 

 Paluma beta 1.39 9 6175 6184 6180 12 

  modgaussian.2008 1.28 0 6169 6175 6173 13 

  gaussian.1987 1.34 3 6175 6178 6178 14 

  modgaussian.2006 1.32 0 6170 6175 6174 13 
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Appendix C Table 6: Thermal performance curve parameters.  
TPC parameters and confidence intervals are shown in grey. 
 

Trait Species Population Topt (C°) Topt CI (C°) Pmax  Pmax CI B80 (C°) 

Productivity D. serrata Granite 28.40 (28.09, 28.71) 74.28 (68.99, 79.56) 7.14 

  Raglan 24.69 (24.52, 24.85) 87.72 (83.68, 91.76) 8.56 

 D. birchii Mt Lewis 23.61 (23.21, 24.01) 64.35 (55.38, 73.32) 3.44 

    Paluma 23.64 (23.43, 23.86) 60.06 (54.59, 65.53) 4.44 
Development speed D. serrata Granite 27.29 (26.14, 27.45) 0.111 (0.106, 0.116) 10.06 

 Raglan 26.64 (26.06, 27.21) 0.110 (0.106, 0.115) 10.46 

 D. birchii Mt Lewis 28.74 (26.14, 28.95) 0.126 (0.107, 0.1268 6.49 

    Paluma 26.75 (26.07, 27.11) 0.113 (0.108, 0.117) 9.79 

Wing size D. serrata Granite 20.00 (7.71, 22.81) 980.69 (952.92, 1033.91) 11.00 

  Raglan 20.00 (12.48, 21.71) 974.23 (955.96, 1003.01) 13.00 

 D. birchii Mt Lewis 20.00 (16.03, 23.60) 930.12 (905.45, 954.91) 10.00 

  Paluma 21.55 (16.34, 24.01)  942.41 (906.1, 960.81) 13.00 
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Appendix C Table 7: Temperature preference for D. serrata and D. birchii.  
Tpref, temperature preference percentiles Tset, and peak temperature preference range (B80) for each population and 

species. Confidence intervals are also shown.  
 

Species Population Tpref (C°) Tpref CI (C°) 80% Tset (C°) 80% Tset CI (C°) B80 

D. serrata Granite 28.40 (27.057, 29.734) 25.49 – 28.89 (24.51, 26.63) – (28.68, 29.01) 2.943 

 Raglan 25.43 (24.642, 26.219) 23.78 – 27.11 (23.16, 24.36) – (26.62, 27.69) 7.436 

D. birchii Mt Lewis 24.07 (20, 28.678) 21.95 – 25.33 (21.38, 22.62) – (24.72, 25.89) 4.719 

 Paluma 25.35 (24.556, 26.152) 24.24 – 27.59 (23.46, 24.87) – (26.95, 28.20)  2.581 
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D. serrata (generalist) 

	
	
D. birchii (specialist) 

	
Appendix C Figure 1. Standard and weighted model fit to four pre-defined functions for productivity of a generalist 

and specialist species. 
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D. serrata (generalist) 

	
	
D. birchii (specialist) 

	
Appendix C Figure 2. Standard model fit to four pre-defined functions for development speed of a generalist and 

specialist species. 
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D. serrata (generalist) 

	
	
D. birchii (specialist) 

	
Appendix C Figure 3. Standard model fit to four pre-defined functions for wing size of a generalist and specialist 

species. 
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D. serrata (generalist) 

	
 
D. birchii (specialist) 

	
Appendix C Figure 4. Standard and weighted model fit to four pre-defined functions for temperature preference of a 

generalist and specialist species. 
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Appendix D: Supporting information for Chapter 5 

Appendix D Table 1: Heritability analysis.  
A. Broad-sense heritability (H2) for static heat knockdown time (KDT) in Drosophila birchii populations obtained from a 

variance component analysis in isofemale lines. Estimates include additive variance (VA), between-line variance 

(Vbetween), within-line (Vwithin), and total variance (Vtotal). B. Variance components with lower and upper confidence 

intervals (CI) and ANOVA P-values obtained by comparing REML models with and without the factor of interest. 

 
A. Heritability estimates  
Population H2 95% CI for H2 VA Vbetween Vwithin Vtotal 

Mt Lewis 0.60 0.53, 0.73 3.38 2.00 3.62 5.62 
Paluma 0.49 0.14, 0.73 3.31 1.96 4.74 6.70 

  
B. Variance component estimates 

Population Factor Variance P-value 
Lower CI 

(2.5%) 
Upper CI 
(97.5%) 

Mt Lewis Run 1.14 0.002 0.60 1.61 
 Line 2.00 0.04 0.44 1.93 
 Replicate 2.55 0.07 0.00 2.15 

  Residual 1.07 - 0.58 2.08 
Paluma Run 0.62 < 0.001 0.00 1.31 

 Line 1.96 0.04 0.17 1.98 
 Replicate - - - - 
 Residual 4.74 - 1.83 2.62 
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Appendix D Table 2: The expected response to selection (i.e., change in trait means) for heat knockdown time 
after the intial heatwave (‘heatwave 1’) and the GLMM estimates and effects for heat knockdown time in the 
second heatwave (‘heatwave 2’).  

A. Expected changes in trait means calculated from the following equation: ST = UVTℎT
?, where the intensity of selection 

(i), the observed standard deviation of family means (VT), and the heritability of family means (ℎT?) are used to 

calculate the expected response (ST). B. Estimated regression parameters, standard errors, t-values, P-values and 

the R2 value for the gamma GLMM fit to knockdown time data for the second static heat knockdown assay (‘heatwave 

2’). C. Random variance component estimates and the intraclass correlation for random structure of gamma GLMM. 

 
A. Expected response to selection 

Population Treatment i VT h2 Rf ∆KDt 

Paluma Control 0.00 2.69 0.49 0.000 15.69 
 Moderate 0.79 2.52 0.49 0.977 16.67 
 Severe 1.73 3.07 0.49 2.607 18.30 

Mt Lewis Control 0.00 2.58 0.60 0.000 16.13 
 Moderate 0.79 2.46 0.60 1.170 17.30 
 Severe 1.73 2.14 0.60 2.222 18.35 

 
B. Treatment effects 

  Estimate ± SE* t value P-value 
Lower CI 

(2.5%)* 
Upper CI 
(97.5%)* R2 

Intercept 19.910 ±1.030 100.21 <0.001 18.72763 21.11534 0.995 
Moderate -0.141 ±1.014 -0.494 0.621 -0.64774 0.44812  

Severe 0.404 ±1.015 1.396 0.163 -0.15164 1.04712  
       

C. Variance component estimates 

Factor Variance         SD Intraclass correlation 
  

 
Mass bred 0.0012 0.0347 0.994    

Run 0.0014 0.0373     
Vial 0.0007 0.0262     

Residual 0.0075 0.0866     
 
*The asterisk indicates the estimate was back-transformed from the log scale because the gamma GLMM used the ‘log’ 
link.  
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Appendix D Table 3. Productivity non-linear least square model fit scores.   
Models were weighted by the inverse of the variance. The model with the lowest AICc score was chosen as the best fit 

for parametrization of productivity thermal performance curves. Models noted with an asterisk were the model with the 

second lowest AICc score and used for parameterization due to extreme parameter predictions and visual misfit of the 

data from the model with the lowest AICc score.  
 

Treatment Population Model name sigma ∆AICc AIC AICc BIC df.residual 
Control Mt Lewis modgaussian.2008 0.505 6 5460 5465 5464 13 

  gaussian.1987 0.506 0 5456 5459 5459 14 
  modgaussian.2006 0.502 3 5456 5462 5460 13 
 Paluma modgaussian.2008 0.456 9 4811 4817 4815 13 
  gaussian.1987 0.564 79 4884 4887 4887 14 
  modgaussian.2006 0.327 0 4803 4808 4807 13 

Moderate Mt Lewis modgaussian.2008 0.211 2 4848 4853 4852 13 
  gaussian.1987 1.17 95 4943 4946 4946 14 
  modgaussian.2006* 0.171 0 4846 4851 4850 13 
 Paluma modgaussian.2008 0.424 0 5416 5422 5420 13 
  gaussian.1987 0.678 23 5442 5445 5445 14 
  modgaussian.2006 0.448 0 5417 5422 5421 13 

Severe Mt Lewis modgaussian.2008 0.739 38 5888 5894 5892 13 
  gaussian.1987* 0.602 35 5888 5891 5891 14 
  modgaussian.2006 0.329 0 5850 5856 5854 13 
 Paluma modgaussian.2008 0.289 0 5327 5332 5331 13 
  gaussian.1987 0.393 14 5342 5346 5346 14 
  modgaussian.2006 0.345 4 5330 5336 5334 13 
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Appendix D Table 4. Development speed non-linear least square model fit scores.   
The model with the lowest AICc score was chosen as the best fit for parametrization of development speed thermal 

performance curves. Models with a AICc score < 2 from the lowest AICc value (see ∆AICc) were included in model 

averaging for parametrization. Models were not weighted. 

 

Treatment Population Model name sigma ∆AICc AIC AICc BIC df.residual 
Control Mt Lewis gaussian.1987 0.00154 3.8 -96.7 -88.7 -95.5 7 

  modgaussian.2008 0.0194 61.9 -45.6 -30.6 -44.1 6 
  modgaussian.2006 0.000878 0 -107 -92.5 -106 6 
  quadratic 0.00169 5.7 -94.8 -86.8 -93.6 7 
  cubic 0.00128 7.5 -100 -85 -98.5 6 
  quartic 0.00118 19.1 -101 -73.4 -99.6 5 
 Paluma gaussian.1987 0.0013 0 -89.7 -79.7 -89 6 
  modgaussian.2008 0.0157 55.2 -44.5 -24.5 -43.5 5 
  modgaussian.2006 0.00121 9.1 -90.6 -70.6 -89.6 5 
               quadratic 0.00144 1.8 -87.9 -77.9 -87.1 6 
  cubic 0.001 5.6 -94.1 -74.1 -93.1 5 
  quartic 0.00111 29.5 -92.2 -50.2 -91 4 

Moderate Mt Lewis gaussian.1987 0.00226 1.1 -89.1 -81.1 -87.9 7 
  modgaussian.2008 0.00147 0 -97.2 -82.2 -95.7 6 
  modgaussian.2006 0.0018 3 -93.1 -78.1 -91.6 6 
  quadratic 0.00243 2.6 -87.6 -79.6 -86.3 7 
  cubic 0.00214 7.6 -89.6 -74.6 -88.1 6 
  quartic 0.0012 9.2 -101 -73 -99.2 5 
 Paluma gaussian.1987 0.00147 1.9 -87.5 -77.5 -86.7 6 
  modgaussian.2008 0.0181 57.5 -41.9 -21.9 -41 5 
  modgaussian.2006 0.00131 10.2 -89.2 -69.2 -88.2 5 
  quadratic 0.00132 0 -89.4 -79.4 -88.6 6 
  cubic 0.0013 10.1 -89.3 -69.3 -88.4 5 
  quartic 0.00145 34 -87.4 -45.4 -86.2 4 

Severe Mt Lewis gaussian.1987 0.00217 136.3 -52.7 -12.7 -53.5 3 
  modgaussian.2008 0.0166 - -28.8 Inf -29.8 2 
  modgaussian.2006 0.00146 - -57.9 Inf -58.9 2 
  quadratic 0.00178 133.9 -55.1 -15.1 -56 3 
  cubic 0.00116 - -60.7 Inf -61.7 2 
  quartic 0.000982 0 -64.8 -149 -66.1 1 
 Paluma gaussian.1987 0.00366 0 -71.1 -61.1 -70.3 6 
  modgaussian.2008 0.00389 11.5 -69.6 -49.6 -68.7 5 
  modgaussian.2006 0.00355 9.8 -71.3 -51.3 -70.3 5 
  quadratic 0.00389 1.1 -70 -60 -69.2 6 
  cubic 0.00361 10.1 -71 -51 -70 5 
  quartic 0.00403 34.1 -69 -27 -67.8 4 
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Appendix D Table 5. Wing size non-linear least square model fit scores.   
The model with the lowest AICc score was chosen as the best fit for parametrization of wing size thermal performance 

curves. Models with a AICc score < 2 from the lowest AICc value (see ∆AICc) were included in model averaging for 

parametrization. Models were not weighted. 

 
Treatment Population Model name sigma ∆AICc AIC AICc BIC df.residual 
Control Mt Lewis gaussian.1987 9.37 0 77.6 85.6 78.8 7 

  modgaussian.2008 44.2 38.4 109 124 111 6 
  modgaussian.2006 9.78 8.3 78.9 93.9 80.4 6 
  quadratic 9.45 0.1 77.7 85.7 79 7 
  cubic 9.34 7.4 78 93 79.5 6 
  quartic 10.2 22.4 79.9 108 81.7 5 
 Paluma gaussian.1987 8.2 0 67.8 77.8 68.6 6 
  modgaussian.2008 8.98 12 69.8 89.8 70.7 5 
  modgaussian.2006 8.61 11.2 69 89 70 5 
  quadratic 8.4 0.4 68.2 78.2 69 6 
  cubic 8.04 10 67.8 87.8 68.8 5 
  quartic 6.72 29.2 64.5 107 65.7 4 

Moderate Mt Lewis gaussian.1987 12.2 0.6 82.8 90.8 84 7 
  modgaussian.2008 13.1 9.5 84.7 99.7 86.2 6 
  modgaussian.2006 8.14 0 75.2 90.2 76.7 6 
  quadratic 11.9 0.1 82.3 90.3 83.5 7 
  cubic 9.61 3.2 78.5 93.5 80 6 
  quartic 9.18 15.7 77.8 106 79.6 5 
 Paluma gaussian.1987 12 0 74.6 84.6 75.4 6 
  modgaussian.2008 11.4 9.5 74.1 94.1 75.1 5 
  modgaussian.2006 12.1 10.6 75.2 95.2 76.2 5 
  quadratic 12 0 74.6 84.6 75.4 6 
  cubic 12.9 11.7 76.3 96.3 77.3 5 
  quartic 11.4 31.4 74 116 75.2 4 

Severe Mt Lewis gaussian.1987 4.01 120.1 37.5 77.5 36.7 3 
  modgaussian.2008 4.83 - 39.3 Inf 38.3 2 
  modgaussian.2006 4.91 - 39.5 Inf 38.5 2 
  quadratic 4 120.1 37.5 77.5 36.7 3 
  cubic 4.88 - 39.5 Inf 38.4 2 
  quartic 6.87 0 41.4 -42.6 40.1 1 
 Paluma gaussian.1987 15 0.5 78.6 88.6 79.4 6 
  modgaussian.2008 16 11.9 80.2 100 81.2 5 
  modgaussian.2006 14.5 10.2 78.3 98.3 79.3 5 
  quadratic 14.6 0 78.1 88.1 78.9 6 
  cubic 15.1 11 79.1 99.1 80.1 5 
  quartic 13.7 30.9 77.4 119 78.6 4 
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Appendix D Table 6: Pre-defined functions used to fit non-linear least square models. 
Functions were fit to each population and treatment data set (N = 4 per temperature point) to determine the function 

that best represented each individual dataset for parametrization of thermal performance curves. 

 
 
Model name Equation Reference 

Gaussian 
!"#$%#&'()" = !+,-		×	"01

23.5
67+829:;<

,

=

 

Lynch M and Gabriel 
W. 1987. 
Environmental 
tolerance. The 
American Naturalist. 
129, 283–303. 

Type 1 
modified 
Gaussian 
2006 

!"#$%#&'()" = !+,-	×	"01

23.5
67+829:;<

,

>

 

Angilletta MJ. 2006. 
Estimating and 
comparing thermal 
performance curves. 
Journal of Thermal 
Biology, 31(7), 541-
545. 

Type 2 
modified 
Gaussian 
2008 

!"#$%#&'()" =
!+,-	×	"01

2
67+829:;<

?×@=

=

, 0 < 	CD86

!+,-	×	"01

2
67+829:;<

?× @×E =

=

, 0 ≥ CD86

 

Phillips et al. 2014. Do 
evolutionary 
constraints on thermal 
performance manifest 
at different 
organization scales? 
Journal of Evolutionary 
Biology, 27; 2687-
2694. 

quadratic !"#$%#&'()" = ' + I + G"&1 + ) + G"&1
? 

Montagnes et al. 2008. 
Short-term 
temperature change 
may impact freshwater 
carbon flux: a microbial 
perspective. Global 
Change Biology 14.12: 
2823-2838. 
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?
+ L + G"&1

Q 
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?
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R
+ "

+ G"&1
R 
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Appendix D Table 7: Productivity GLMM.  
A. Estimated regression parameters, standard errors, z-values, P-values, and the R2 value for the zero-inflated, 

negative-binomial GLMM for total offspring as a function of treatment, population, and temperature. Temperature was 

modeled as a quadratic and an interaction between the quadratic variable and treatment was included, as well as an 

interaction between population and treatment. Time effects and potential dependency between individuals within the 

same replicate was accounted for by a random term nested within treatment. B. Treatment estimates for the fixed 

values were back-transformed from the log scale. C. Random variance component estimates for replicate nested 

within treatment.  
 
A. Treatment effects (log scale) 

  Estimate ± SE* z-value P-value R2 

Intercept -77.084 ± 8.845 -8.715 < 0.001 0.764 
Moderate treatment -0.115 ± 0.139 -0.831 0.406  

Severe treatment -1.091 ± 0.258 -4.235 < 0.001  
Population Paluma 0.015 ± 0.082 0.186 0.852  

Temperature^2 -16.467 ± 1.802 -9.136 < 0.001  
Temperature 2.816 ± 0.307 9.158 < 0.001  

Moderate treatment:Population Paluma -0.079 ± 0.136 -0.59 0.555  
Severe treatment:Population Paluma 0.441 ± 0.271 1.622 0.105  

 
 

 
 
C. Variance component estimates 
Groups   Variance SD Correlation 

Replicate (Intercept) 0.0164 0.128   

 Moderate 0.039 0.197 0.390  
 Severe 0.011 0.107 1.000 0.410 

 
*The asterisk indicates the estimates were back-transformed from log scale because the ‘log’ link was used in the 
negative binomial GLMM. These estimates represent magnitudes of change (or multipliers) due to the ‘log’ link. 

B. Treatment estimates (back-transformed from log scale)* 

Treatment Population Temperature^2 Temperature response SE df 
Lower CI 
(2.5%)* 

Upper CI 
(97.5%)* 

Control Mt Lewis 1.15E-16 28 5.21 1.431 369 3.037 8.94 
Moderate treatment Mt Lewis 1.15E-16 28 4.64 1.386 369 2.582 8.35 

Severe treatment Mt Lewis 1.15E-16 28 1.75 0.649 369 0.844 3.63 
Control Paluma 1.15E-16 28 5.29 1.421 369 3.12 8.97 

Moderate treatment Paluma 1.15E-16 28 4.35 1.328 369 2.39 7.93 
Severe treatment Paluma 1.15E-16 28 2.76 0.828 369 1.531 4.98 
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Appendix D Table 8: Significance tests for differences in TPC parameters between heatwave treatments.  
A one-way ANOVA with a post hoc Tukey HSD test was used to assess deviances in TPC parameters (Pmax, CTmax, 

Topt, and B80) between heatwave treatments. 

 
 
   ANOVA Tukey procedure post hoc analysis 
Trait Parameter   F-value P-value Estimate SD P-value 
Productivity Pmax Treatment 62.527 0.004 - - - 

  Intercept - - 64.065 1.968 - 
  Moderate - - -15.904 2.783 0.022 
  Severe - - -31.116 2.783 0.003 
 Ctmax Treatment 1.687 0.323 - - - 
  Intercept - - 29.026 0.978 - 
  Moderate - - -0.090 1.383 0.998 
  Severe - - -2.245 1.383 0.364 
 Topt Treatment 0.185 0.840 - - - 
  Intercept -  23.530 0.749 - 
  Moderate -  0.644 1.059 0.826 
  Severe -  0.343 1.059 0.945 
 B80 Treatment 5.291 0.104 - - - 
  Intercept -  3.715 0.835 - 
  Moderate -  2.869 1.181 0.998 
  Severe -  -0.777 1.181 0.364 

Development speed Pmax Treatment 3.732 0.153 -   -  - 
  Intercept - - 0.123 0.003 - 
  Moderate - - -0.003 0.005 0.771 
  Severe - - -0.012 0.005 0.150 
 Ctmax Treatment 1.687 0.323 - - - 
  Intercept - - 29.026 0.978 - 
  Moderate - - -0.090 1.383 0.998 
  Severe - - -2.245 1.383 0.364 
 Topt Treatment 3.417 0.169 - - - 
  Intercept - - 28.232 0.675 - 
  Moderate - - 0.015 0.955 1.000 
  Severe - - -2.155 0.955 0.207 
 B80 Treatment 0.455 0.672 - - - 
  Intercept - - 6.069 1.135 - 
  Moderate - - 0.686 1.605 0.907 
  Severe - - -0.844 1.605 0.865 

Wing size Pmax Treatment 2.192 0.259  -  -  - 
  Intercept - - 937.321 9.578 - 
  Moderate - - -22.955 13.546 0.341 
  Severe - - -25.907 13.546 0.280 
 Ctmax Treatment 1.687 0.323 - - - 
  Intercept - - 29.026 0.978 - 
  Moderate - - -0.090 1.383 0.998 
  Severe - - -2.245 1.383 0.364 
 Topt Treatment 2.968 0.195 - - - 
  Intercept - - 20.526 0.395 - 
  Moderate - - 0.126 0.559 0.973 
  Severe - - 1.237 0.559 0.214 
 B80 Treatment 1.687 0.323 - - - 
  Intercept - - 9.026 0.978 - 
  Moderate - - -0.090 1.383 0.998 
  Severe - - -2.245 1.383 0.364 
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Appendix D Table 9: Development speed LMM.  
A. Analysis of deviance table to test the significant of main effects in the LMM on development speed.  B. Estimated 

regression parameters, standard errors, t-values, P-values, and the R2 value for the linear mixed-effects model for 

development speed as a function of treatment and temperature. Temperature was modeled as a quadratic. Time effects 

and potential dependency between individuals within the same replicate was accounted for by a random term nested 

within treatment.  C. Random variance component estimate for replicate nested within treatment.  
 
 
A. Analysis of deviance table (type II) 

 Chisq Df Pr(>Chisq) 

Treatment 0.8728 2 0.6464 
Temperature^2 25.637 1 4.12E-07*** 
Temperature 54.675 1 1.42E-13*** 

 
B. Treatment effects 

  Estimate ± SE DF t-value P-value R2 

(Intercept) -0.2884 ± 0.053 181 -5.439 0.000 0.895 
Moderate treatment 0.0004 ± 0.002 9 0.230 0.823  
Severe treatment -0.0004 ± 0.002 9 -0.679 0.514  
Temperature^2 -0.0304 ± 0.006 181 -5.063 0.000  
Temperature 0.0163 ± 0.002 181 7.394 0.000  
      
C. Variance component estimates 

  (Intercept) Residual 
Intraclass 

correlation   
Standard deviation 0.003 0.002 0.585   
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Appendix D Table 10: Wing size LMM.  
A. Analysis of deviance table to test the significant of main effects in the LMM on wing centroid-size. B. Estimated 

regression parameters, standard errors, t-values, P-values, and the R2 value for the linear mixed-effects model for wing 

size as a function of treatment, population, and temperature. Temperature was modelled as a quadratic and an 

interaction between the quadratic variable and treatment was included, as well as an interaction between treatment and 

the linear term for temperature. Time effects and potential dependency between individuals within the same replicate 

was accounted for by a random term nested within treatment.  C. Random variance component estimate for replicate 

nested within treatment. 

 
 
A. Analysis of deviance table (type II) 

 Chisq Df Pr(>Chisq) 

Population 71.559 1 2.20E-16*** 

Treatment 49.637 2 1.67E-11*** 
Temperature^2 70.698 1 2.20E-16*** 
Temperature 54.491 1 1.56E-13*** 

 
B. Treatment effects 

  Estimate ± SE DF t-value P-value R2 

(Intercept) -287.95 ± 400 528.0 -0.720 0.472 0.552 

Population Paluma 24.39 ± 2 528.0 10.404 0.000  

Moderate treatment 295.27 ± 545 33.0 0.542 0.592  
Severe treatment -1953.54 ± 625 33.0 -3.125 0.004  

Temperature^2 -158.14 ± 43 528.0 -3.653 0.000  

Temperature 49.35 ± 17 528.0 2.948 0.003  

Moderate treatment: Temperature^2 41.34 ± 59 528.0 0.702 0.483  
Severe treatment: Temperature^2 -212.25 ± 68 528.0 -3.105 0.002  

Moderate treatment: Temperature -12.92 ± 23 528.0 -0.566 0.571  

Severe treatment: Temperature 80.76 ± 26 528.0 3.089 0.002  

      

C. Variance component estimates 

  (Intercept) Residual 
Intraclass 

correlation   

Standard deviation 2.176 30.659 0.005   
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Appendix D Figure 1: Productivity non-linear least square model fit and selection.   

Standard verse weighted nonlinear least square models for productivity of each treatment and population. Model shown 

in red is the best fit per AICc score and the model selected for parametrization. Weighted models were used due to 

heteroscedasticity of total offspring across temperature gradient.  
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Appendix D Figure 2: Development speed non-linear least square model fit and selection.   

Standard nonlinear least square models for development speed of each treatment and population. Model(s) shown in 

red is the best fit per AICc score and the model selected for parametrization. If an AICc score was less than 2 from the 

best fit model, the model was included in model averaging.  Non-weighted models were used instead of weighted 

because of homoscedasticity of errors of development speed and unequal sample sizes across temperature gradient.  
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Appendix D Figure 3: Wing size non-linear least square model fit and selection.   

Standard nonlinear least square models for wing size of each treatment and population. Model(s) shown in red is the 

best fit per AICc score and the model selected for parametrization. If an AICc score was less than 2 from the best fit 

model, the model was included in model averaging. Non-weighted models were used instead of weighted because of 

unequal sample sizes across temperature gradient.  
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Appendix D Figure 4: Productivity GLMM fit.   
A. Predicted values (grey) from the zero-inflated negative binomial GLMM compared to the raw data (observed; black) 

for each treatment. B. QQ-plot for standardized residuals and residuals verse model predictions for simulated 

residuals to check model fit. No deviations in residuals were detected against model predictions nor model parameters 

(both included and not included in the final model), and all tests of normality, independence, dispersion, and outliers 

indicated no significant problems.  
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Appendix D Figure 5: Development speed LMM fit.  
A. Predicted values (grey) from the LMM compared to the raw data (observed; black) for each treatment for development 

speed. B. QQ-plot for standardized residuals, and, C.  residuals verse model predictions to check model fit. No 

deviations in residuals were detected against model predictions nor model parameters (both included and not included 

in the final model), and all tests of normality, independence, dispersion, and outliers indicated no significant problems.  
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Appendix D Figure 6: Wing size GLMM fit.  
A. Predicted values (grey) from the LMM compared to the raw data (observed; black) for each treatment for wing size. 

B. QQ-plot for standardized residuals, and, C.  residuals verse model predictions to check model fit. No deviations in 

residuals were detected against model predictions nor model parameters (both included and not included in the final 

model), and all tests of normality, independence, dispersion, and outliers indicated no significant problems.  
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