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Clear cell renal cell carcinoma (ccRCC) is globally the most prevalent renal

cancer. The cells of origin in ccRCC have been identified as proximal tubular

epithelial cells (PTEC); however, the transcriptomic pathways resulting in the

transition from normal to malignant PTEC state have remained unclear.

Immunotherapy targeting checkpoints have revolutionized the management

of ccRCC, but a sustained clinical response is achieved in only a minority of

ccRCC patients. This indicates that our understanding of the mechanisms

involved in the malignant transition and resistance to immune checkpoint

therapy in ccRCC is unclear. This review examines recent single-cell

transcriptomics studies of ccRCC to clarify the transition of PTEC in ccRCC

development, and the immune cell types, states, and interactions that may limit

the response to targeted immune therapy, and finally suggests stromal cells as

key drivers in recurrent and locally invasive ccRCC. These and future single-cell

transcriptomics studies will continue to clarify the cellular milieu in the ccRCC

microenvironment, thus defining actional clinical, therapeutic, and prognostic

characteristics of ccRCC.
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Introduction

Kidney cancer is the seventh most common adult-onset

cancer in Australia (1). At diagnosis, 75% of these kidney

cancers will be subtyped as clear cell renal cell carcinoma

(ccRCC) with a 5-year survival rate of 50%–69% (2–4).

However, if at diagnosis the ccRCC tumor measures greater

than 7 cm or has metastasized, then 5-year survival decreases to

10% (3, 5). Clinical outcomes of ccRCC are variable and

prediction of survival based on available clinical parameters

has been attempted (6). Variability within similar clinical

categories occurs, likely due to a combination of limited

biomarkers and tumor heterogeneity which hampers more

precise prognostication (7). The challenges of poor survival

and clinical variation have resulted in numerous detailed

cellular profiling studies for ccRCC, providing mechanistic

insight for targeted therapeutics. However, gaps persist in our

understanding of the complex and variable cell types and states

in ccRCC.

Understanding the complex cellular milieu in ccRCC

requires knowledge of both individual and integrated cell types

and their states. The key cell types in ccRCC are tubular

epithelial, immune, and stromal cells that can each attain

variable cell states. Individually, these cellular phenotypes have

been profiled within ccRCC by various analytical methods. In

this review, we summarize the reported individual cellular

phenotypes from single-cell transcriptomics studies of ccRCC,

to provide an integrated view of key cell types and states that

reside in the ccRCC microenvironment.
Cellular origin of ccRCC—all paths
lead to ccRCC

The development of ccRCC is initiated at the gene level.

Multiple genomic studies in human ccRCC have revealed a

complete or partial biallelic loss in chromosome 3p encoding

VHL (von Hippel–Lindau tumor suppressor gene) (8). The loss

in chromosome 3p has been attributed to faulty chromothripsis,

forming micronuclei during mitosis in normal proximal tubular

epithelial cells (PTEC) (9, 10). The trigger for the micronuclei

formation in normal PTEC has been attributed to their

susceptibility to hypoxic microenvironments, a hallmark in

ccRCC progression (11, 12). Alteration in VHL expression,

present in 80%–93% of primary ccRCC cases, forms a self-

perpetuating hypoxic PTEC microenvironment (13–17).
ccRCC development in mouse models

However, singularly this altered VHL expression lacks the

capacity to induce ccRCC development in mouse models
Frontiers in Oncology 02
(12, 17–19). Verification of additional genetic alterations in

ccRCC was demonstrated in a mouse model study that

combined deletion of Vhl, transformation-related protein 53

(Trp53), and retinoblastoma (Rb1) genes to induce ccRCC

development (18). In this study, two key aspects of ccRCC

were demonstrated. First, the positive staining of malignant

cells by proximal tubule protein markers (CD10, AQP1, or

NAP12A) confirmed PTEC as the cellular origin of ccRCC

(18). Second, the multiple genetic deletions in this mouse

model demonstrated a combined genetic variability underlying

the development of ccRCC. Similarly, in humans, the

development of ccRCC has been reported in PTEC with

altered VHL, following additional inactivation of polybromo 1

(PBRM1), BRCA-associated protein 1 (BAP1), and/or SET

domain containing 2 (SETD2) genes (12, 17, 19).
ccRCC cellular origin in human studies

Further support for PTEC as the cellular origin of ccRCC has

been provided by two human single-cell transcriptomics studies,

matching the captured ccRCC PTEC transcriptome to single

and/or bulk normal and ccRCC transcriptomes (20, 21).

Collectively, these two transcriptomics studies identified the

expression of carbonic anhydrase 9 (CA9), vascular cell

adhesion molecule-1 (VCAM1), solute carrier family 17

member 3 (SLC17A3), intercellular adhesion molecule 1

(ICAM1), integrin subunit beta 8 (ITGB8), alpha kinase 2

(ALPK2), and vimentin (VIM) in ccRCC PTEC (20, 21).

Surprisingly, in ccRCC patients the adjacent morphologically

normal kidney tissue demonstrated protein marker staining for

VCAM1 within CA9-positive PTEC. The VCAM1 and CA9-

positive PTEC were termed precursor PTEC and defined as

morphologically normal PTEC with VHL+/- mutation (20). This

identification of precursor PTEC in morphologically normal

kidney implicates identifiable transcriptomic alteration

following genomic alteration. Additionally, this precedes

morphological change in ccRCC development and supports a

proposed transition from normal to precursor and finally

malignant PTEC states.
An inflamed PTEC state

Intriguingly, the precursor PTEC expressing VCAM1 and

CA9 appear transcriptomically similar to inflamed PTEC with

VCAM1, but without CA9 expression. The transcriptomic

profile of inflamed PTEC was identified by a multi-omics

study performed on normal human kidney tissues (22). These

inflamed PTEC are defined with VCAM1, ICAM1, CD24,

CD133, and HAVCR1 expression resulting in response to acute

and/or chronic tubular injury. Again, this tubular injury is

perpetuated by the susceptibility of tubules to hypoxic
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conditions. Indeed, trajectory inference modeling of the

captured PTEC transcriptome revealed a continuum from

normal to inflamed PTEC that expanded in tubular injury-

related inflammation (21). Since the transcriptomic profile of

inflamed PTEC provides the strongest similarity to malignant

PTEC, an alternative PTEC transition from normal to inflamed

to precursor and finally malignant PTEC state can be proposed

in ccRCC development (Figure 1).
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Alternative transcriptomics pathway in
ccRCC development

The above-mentioned transcriptomic studies validated earlier

mouse models by confirming PTEC as the cellular origin of

ccRCC in humans (20–22). However, they proposed an

alternative inflamed PTEC transcriptomic state under hypoxic

injury that perpetuates normal to malignant transition of PTEC
FIGURE 1

The transition of proximal tubular epithelial cells (PTEC) in the development of ccRCC. PTEC are the cell of origin in ccRCC that under hypoxic
conditions transition from normal to malignant state. PTEC transition from normal (Step 1) to precursor VHL+/- (Step 2) and finally malignant
VHL-/- (Step 3) after additional genetic alterations are acquired. Alternatively, under hypoxic conditions, PTEC may transition to an inflamed
PTEC VCAM (Step 1.a) state due to tubular injury. This inflamed PTEC state is bidirectional until a loss of VHL+/- within the inflamed PTEC is
acquired, resulting in the non-reversible transitions to the precursor PTEC (Step 2) state and finally the malignant (Step 3) state after the loss of
both VHL-/- and additional genetic alterations are acquired. Once PTEC transition to the malignant state, they can develop primary ccRCC (Step
3.a) lesions within the kidney or locally invasive ccRCC (Step 3.b) lesions that extend into adjacent large vessels and/or metastatic ccRCC (Step
3.c) lesions that spread to distant organs.
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in ccRCC development (Figure 1). Furthermore, transcriptomic

profiling in adjacent normal kidney demonstrates that normal to

precursor PTEC transition initiates within morphologically

normal kidney. Here, the normal (VHL+/+) and precursor

(VHL+/-) PTEC transition bidirectionally between these two

states. The precursor (VHL+/-) PTEC transition to irreversible

malignant PTEC, if further necessary genetic alterations like

VHL-/- with PBRM1, BAP1, and/or SETD2 mutations are

somatically acquired. The proposed alternative transcriptome

pathway suggesting normal to inflamed to precursor and finally

malignant PTEC transition also initiates within morphologically

normal kidney. Here, the normal and inflamed (VHL+/+) PTEC

transition between these two states, as progenitor stem-like PTEC

and/or dedifferentiated mature PTEC, to repair the injury that has

resulted from transient hypoxic conditions (23, 24). However,

during this repair process, mitotic activity increases in the

inflamed PTEC, making somatic loss in VHL+/- plausible and

thus allowing irreversible transition to the precursor PTEC state.

The final transition to malignant PTEC still requires further

necessary ccRCC associated genetic alterations and mutations.

While uncertainty remains on whether inflamed PTEC

transitioning to the precursor state are progenitor stem-like or

dedifferentiated mature (CD133 and CD24) PTEC (22, 24–27), it

does raise the possibility that within a subset of ccRCC, the origin

may be progenitor stem-like PTEC rather than dedifferentiated

mature PTEC (28).
Locally invasive and metastatic ccRCC

Once PTEC transition to a malignant ccRCC state, they can

form (1) a tumor lesion limited to the kidney (2); a locally

invasive lesion extending into adjacent medium and/or large

vessels; or (3) a metastatic lesion spreading to distant organs.

The above-mentioned single-cell transcriptomics profiles are

from primary ccRCC lesions. However, a recent single-cell

transcriptomics study of ccRCC primary, locally invasive, and

adjacent normal tissue identified enhanced extracellular matrix

(ECM) remodeling by malignant PTEC in locally invasive

lesions (29). This indicates that while locally invasive ccRCC

lesions may result from opportunistic extension into vasculature

due to proximity, the extending malignant PTEC also require

supporting ECM (29, 30). This ECM remodeling can be profiled

by the collagen gene markers COL20A1, COL28A1, TGFB1,

COL6A2, COL1A2, and COL4A2. Similarly, metastatic ccRCC

progression has been profiled by 17 metastasis-associated gene

(MAG) markers identified in a single-cell transcriptomics study

conducted on 121 single cells (31, 32). These single cells were

captured from parental metastatic and patient-derived

xenografted primary and metastatic ccRCC samples (31, 32).

These MAGs include chemokines (CCL20 and CXCL1), and

mitochondrial (MT-ND3, MT-ND4, and MT-RNR2) and cancer

(NDUFA5, NNMT, BHLHE41, ALDH1A1, and BNIP3) markers.
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Expression of these MAG markers is correlated with a higher

likelihood of ccRCC recurrence.

In summary, single-cell transcriptomics studies confirm

PTEC as the cellular origin of ccRCC. However, the transition

from normal to malignant PTEC states may occur via several

transcriptomics pathways, which are important to define for

potential clinical, therapeutic, and prognostic reasons.
Immune cells in ccRCC—exhausted
when things get bad

ccRCCs are defined as immunogenic cancers, which has further

been reconfirmed transcriptomically. An immunogenic

transcriptome profile initiates with upregulation of gene sets

associated with inflammatory cytokines, interferon gamma, and

antigen processing on major histocompatibility complex (MHC) by

inflamed and malignant PTEC, recruiting immune cells to the

ccRCC microenvironment (21, 22, 33). Recruited monocytes enter

the kidney tissue and differentiate to macrophages, activating the

innate immune response through phagocytosis, exogenous antigen

presentation, and immunomodulation (34). The activated innate

immune response further recruits T cells, activating the adaptive

immune response. In this manner, abundant myeloid and lymphoid

cell types and states are recruited to the ccRCC microenvironment,

characterizing ccRCC as immunogenic (35–39).
A dysfunctional immune response
in ccRCC

Multiple studies in human ccRCC however, reveal an inverse

correlation between abundant immune infiltrate in ccRCC and

patient survival, suggesting a dysfunctional immune response

(33, 39–43). Understanding this dysfunctional immune response

requires an understanding of the infiltrating immune cell types,

states, and interactions in the ccRCC microenvironment. Several

single-cell transcriptomics and clonal studies have been

performed in human ccRCC (21, 33, 42–46), which profile the

captured immune cell populations from ccRCC tumor (primary,

metastatic, treated, and non-treated), adjacent normal kidney,

and/or peripheral blood samples. These provide insight into the

transcriptomic profiles of myeloid and lymphoid cell types,

states, and their interactions in ccRCC (47–50), with particular

emphasis on tumor-associated macrophages (TAMs) and CD8+

T cells in the ccRCC microenvironment as both drive the tumor

progression and evasion.
TAM in ccRCC

Single-cell transcriptomics studies with ccRCC samples have

identified synchronous pro-inflammatory M1-like TAMs and
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anti-inflammatory M2-like TAMs (Figure 2). The former are

defined by high expression levels of MHC class II molecules and

cytokines IL1B, IL6, IL8, and TNF, while the latter are defined by

high expression levels of MHC class II molecules and CD163,

FOLR2, MS4A4A, SEPP1, and MSR1 (21, 43). Furthermore,

identification of TAM within metastatic ccRCC is defined by

high expression of both HLA class I and II genes in conjunction

with IFI27, CTSL, CTSS, C1QA, C1QB, SERPING1, APOE, and

PLTP (43, 44). These TAM populations within ccRCC

demonstrate high plasticity covering a continuum from M1-

like to M2-like states; thus, intermediate TAM subpopulations

are defined based on HLA-DR or interferon signaling gene

expression levels (21, 33, 43, 53, 54). This continuum of TAM

states across different stages of ccRCC has been inferred by

trajectory analysis to commence from classic/non-classic

monocyte to M1-like to M2-like and finally metastatic TAMs

across normal, early, locally advanced, and metastatic ccRCC

tissue (43). Indeed, a general shift in the TAM states with ccRCC
Frontiers in Oncology 05
progression is typified by an increase in dysfunctional M2-like

TAMs with a simultaneous decrease in M1-like TAMs (43).
CD8+ T cells in ccRCC

Similarly, the transcriptome expression of CD8+ T cells in

ccRCC samples demonstrates a heterogeneous population and a

continuum progressing to terminally exhausted clonotypes

(Figure 2) (38, 42). Transcriptome expression and/or inferred

cell activity has identified naïve, cytotoxic, exhausted,

progenitor, and terminally exhausted CD8+ T cells (33, 42–

45). Transcriptomics and clonotyping profiles in conjunction

with inferred pseudotime trajectory analysis of CD8+ T cells in

ccRCC suggest higher exhausted CD8+ T cells with low TCR

diversity in advanced and metastatic ccRCC microenvironments

compared to those of normal kidney tissues and peripheral

blood (39, 42–44). The identification of immune inhibitory
FIGURE 2

A timeline of tumor-associated macrophage (TAM) and CD8+ T cell states during the transition of PTEC in the development of ccRCC. During
hypoxic injury, the inflamed PTEC increase the expression of inflammatory cytokine and interferon gamma (IFN) signaling to recruit monocytes
(Step 1.a) from the peripheral circulation. These recruited monocytes transition to M1-like TAM states (Step 2) and commence antigen
processing and presentation, thus activating the naïve CD8+ T cells (Step 1.b) within the kidney to transition to the cytotoxic CD8+ T cell state
(Step 3). During the malignant PTEC state, the M1-like TAMs increase angiogenesis, complement, tumor necrosis factor alpha (TNFa), and IFN
signaling. However, as the ccRCC lesion progresses, the M1-like TAMs transition to the M2-like TAM state (Step 4). The cytotoxic CD8+ T cells
transition to an exhausted CD8+ T cell state (Step 5) composed of a heterogeneous mix of progenitor and terminally exhausted states (51, 52).
The subpopulation of exhausted CD8+ T cells that exhibit progenitor transcriptome may respond to immune checkpoint therapy until they
attain a terminally exhausted CD8+ T cell state. In metastatic ccRCC, the M2-like TAM (Step 6) attain metastatic TAM transcriptome profile
expressing both the HLA class I and II genes. However, in advancing ccRCC lesions, the M2-like TAMs and exhausted CD8+ T cells co-occur
and form inhibitory interactions that limit response to immune checkpoint therapy.
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markers on CD8+ T cells has been concordant with bulk RNA-

seq studies demonstrating potential epigenetic reprogramming

resulting in exhaustive states via TOX2 (39, 55–57). Within the

exhausted CD8+ T cell population, the identification of

progenitor and terminally exhausted subpopulations suggests a

spectrum of exhausted states that may transition from

progenitor (TCF7) to terminally exhausted (ENTPD1) state

(33, 43, 51, 52).
Inhibitory interaction between M2-like
TAMs and exhausted CD8+ T cells

Unlike most CD8+ T cells, exhausted CD8+ T cells appear to

develop many inhibitory interactions with M2-like TAMs,

suggesting that ccRCC progression might result from their co-

occurrence in advancing ccRCC (43). Due to the loss of spatial

information with single-cell transcriptomics, protein marker

staining with CD163 (for M2-like TAMs), PD-1, and TIM-3

(for exhausted CD8+) has been used to confirm virtual co-

localization within the ccRCC microenvironment (43). Further

ligand–receptor gene inferencing revealed an increase in

immune checkpoint interactions such as PD-L1-PD-1, CD80/

CD86-CTLA4 , NECTIN2/PVR-TIGIT, LGALS9-TIM-3 ,

TNFRSF14-BTLA, and SPP1-CD44 between M2-like TAMs

and exhausted CD8+ T cells, in advanced ccRCC (43).

Inversely, the identification of CSF1 and MIF ligands on

exhausted CD8+ T cells suggests M2-like polarization via

interactions with CSF1R and CD74 receptors on TAMs. These

inferred ligand–receptor interactions between M2-like TAMs

and exhausted CD8+ T cells suggest that their inhibitory

interaction increases as ccRCC progresses.
M2-CD8 exhaustion gene signature
correlates with worse survival in ccRCC

Therefore, both TAMs and CD8+ T cells transition to an

anti-inflammatory and exhaustive state within the tumor

microenvironment as ccRCC progresses (Figure 2). These

dysfunctional M2-like TAMs and exhausted CD8+ T cells

additionally form inhibitory interactions that further

perpetuate a dysfunctional immune response. To confirm

immune dysfunction resulting from the inferred inhibitory

interactions, there has been further investigation of the

generated M2-CD8 exhaustion gene signature. First, the

expression of this M2-CD8 exhaustion signature was

confirmed by mass cytometry (54) and the Cancer Genome

Atlas (TCGA) (58) ccRCC datasets to be present in advanced

ccRCC. Next, the effect that M2-CD8 exhaustion has on

treatment outcomes was investigated in advanced and/or

metastatic ccRCC patients treated with either PD-1 blockade

or mTOR inhibition (43, 59). This showed no association
Frontiers in Oncology 06
between response or progression-free survival with the

expression of M2-CD8 exhaustion signature with either

treatment. In fact, increased M2-CD8 exhaustion signature in

TCGA and treatment datasets correlated with worse overall

survival in ccRCC patients (43). This suggests that M2-like

TAMs and exhausted CD8+ T cells may not respond to PD-1

blockade in ccRCC as is clinically expected.
A subset of progenitor exhausted CD8+

T cells in ccRCC

Clinical trial data suggest that ccRCC does otherwise respond

to immune checkpoint blockade (ICB), like PD-1 inhibitor (60).

The function of ICB is to block inhibitory signals that limit

immune cell activation, thus allowing tumor reactive immune

cells to overcome this pro-tumor regulatory mechanism and

initiate an effective anti-tumor immune response (61). Indeed,

other studies demonstrate that exhausted CD8+ T cells include a

subset of progenitor exhausted CD8+ T cells (TCF7) within the

tumor microenvironment that respond to PD-1 blockade and then

transition to a terminal exhausted (ENTPD1) state (Figure 2) (43,

51, 52, 62–66). Further investigation of ccRCC transcriptomics

data has identified this terminal exhausted subset within the

progenitor exhausted CD8+ T cell population with TNFRSF9 (or

4-1BBLow) and upregulated GZMA and FASLG, confirming the

presence of progenitor exhausted CD8+ T cells (33). Based on this,

it can be concluded that effective response to immune checkpoint

therapy in advanced and metastatic ccRCC requires an absolute or

relative absence of dysfunctional M2-like TAMs and exhausted

CD8+ T cells, or the presence of progenitor exhausted CD8+ T

cells. Resistance to immune checkpoint therapy in ccRCC can

additionally be attributed to failed reversal or reinvigoration of

dysfunctional M2-like TAMs and exhausted CD8+ T cells, as has

been suggested in other cancers (42–45, 56, 57, 67–71). Therefore,

it is controversial whether additional checkpoint therapies,

targeting additional immune checkpoints, will confer clinical

benefit to ccRCC patients with an immune profile composed of

M2-like TAMs and terminally exhausted CD8+ T cell states.

Unlike other solid malignancies, tumor mutation burden and

PD-L1 status in ccRCC are not predictive indicators of immune

checkpoint therapy outcome (46), suggesting that dysfunctional

immune responses associated with infiltrating immune cell types

and states may be better predictors of clinical response and

therapeutic resistance to immune checkpoint therapy in ccRCC.

Stromal cells in the ccRCC
microenvironment—an elusive
tumor driver

In ccRCC, the biallelic loss of VHL alleles in malignant

PTEC activates and stabilizes the hypoxia-inducible factors
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(HIFs), further supporting the transcription and secretion of

HIF target genes, like vascular endothelial growth factor (VEGF)

(21). This VEGF upregulation in the ccRCC microenvironment

supports proangiogenic and immunosuppressive processes. The

above-mentioned single-cell transcriptomics studies have

inferred angiogenic activity with the secretion of VEGFA

ligand by malignant PTEC and macrophages, which interact

with the VEGF-signaling receptors on endothelial cells (KDR,

FLT1, NRP2, NRP1, and ACKR1), macrophages (NRP2 and

NRP1), and fibroblasts (NRP1) (20, 21, 39, 45). Furthermore,

angiogenic and proliferative activity in ccRCC has been inferred

via PGF and EFNA1 ligands secreted by malignant PTEC, which

interact with the receptors on endothelial cells, TAMs, and

fibroblasts (39). These transcriptome profiles support the well-

known proangiogenic act iv i t ies within the ccRCC

microenvironment, morphologically characterized as a highly

vascular tumor with favorable response to antiangiogenic

treatments (72).
Cancer-associated fibroblasts in
recurrent and locally invasive ccRCC

However, like immune checkpoint therapies, antiangiogenic

treatments fail to maintain a sustained clinical response in ccRCC

patients. Thus, some focus and attention has turned to non-

malignant and non-immune stromal cells. These include cancer-

associated fibroblasts (CAF) within the ccRCC microenvironment

due to their possible immunosuppressive functions. The
Frontiers in Oncology 07
recruitment of CAF within the ccRCC microenvironment is

proposed to occur via interactions with malignant PTEC that

upregulate COL20A1, COL28A1, and TGFB1 (29). These

infiltrating CAF are able to reduce CD8+ T cell infiltration within

ccRCC microenvironments, particularly within recurrent ccRCC as

identified by a recent single-cell transcriptomics study (Figure 3)

(73). In this study, the immunosuppressive behavior mediated by

CAF was attributed to the secretion of Galectin-1 (Gal1), which was

noted within the captured transcriptome by the substantial

expression of LGALS1. Gal1, a well-known immunosuppressor

within various tumor microenvironments, mediates apoptosis of

cytotoxic CD8+ T cells. This apoptotic activity of CAF was

demonstrated within both in vitro and in vivo Gal1 knockdown

models. Furthermore, the immunosuppressive nature of CAF was

confirmed by reduced progression-free survival in ccRCC patients

whose malignancies were observed to have high CAF infiltration

and who had received immune checkpoint therapy (73). In addition

to these immunosuppressive properties within the tumor

microenvironments, the secreted Gal1 by CAF has been reported

to promote epithelial–mesenchymal transition (EMT) in gastric

cancer. Interestingly, CAF mediated EMT has been proposed

within locally invasive ccRCC that rapidly extends into

surrounding large vessels (Figure 3). Here, a single-cell

transcriptomics study in locally invasive ccRCC identified CAF-

mediated extracellular matrix remodeling by the increased gene

signature for the EMT pathway (29). Therefore, in both recurrent

and locally invasive ccRCC, CAF infiltrate should be considered as

an additional key cell type driving tumor progression and

immunosuppression (29, 73).
FIGURE 3

Stromal cells in recurrent and locally invasive ccRCC. Cancer-associated fibroblasts (CAF) are stromal cells that have been identified as drivers in
the recurrent and locally invasive ccRCC microenvironment. In recurrent ccRCC, the infiltrating CAF secrete Gal1 that binds to the activated
CD8+ T cells and thus mediating T cell apoptosis. In locally invasive ccRCC, the infiltrating CAF increase the expression of genes within the
epithelial–mesenchymal transition (EMT) pathway, leading to an increased extracellular matrix remodeling within the invasive ccRCC lesion.
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Conclusion

ccRCCs are characterized as hypoxic, immunogenic, and

angiogenic tumors. An understanding of ccRCC requires

investigation of all these characteristics not only within tumor

cells but also in immune and stromal cells that infiltrate the

ccRCC microenvironment. Recent application of single-cell

transcriptomics within the ccRCC tumor (primary, metastatic,

treated, and non-treated), adjacent normal kidney, and/or

peripheral blood samples has expanded our understanding of

the divergent cell types and states of ccRCC. The identification of

inflamed PTEC poses the possibility of an alternative

transcriptomic pathway in the development of ccRCC. There

is growing evidence suggesting a dysfunctional interaction

between M2-like TAMs and exhausted CD8+ T cells and/or

the lack of progenitor exhausted CD8+ T cells in advanced and

metastatic ccRCC might play a major role in resistance to

available immune checkpoint therapies. Recent identification

of immunosuppressive and extracellular matrix remodeling

activities by CAF suggests stromal cells as additional elusive

drivers in recurrent and locally invasive ccRCC. Therefore, a

complete account of PTEC, immune and stromal cell types and

states within the ccRCC microenvironment is shedding light on

tumor progression and evasion in early, local, and metastatic

ccRCC and informing future clinical management, therapeutics,

and prognostics.
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