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ABSTRACT

Dynamic intron retention (IR) in vertebrate cells
is of widespread biological importance. Aberrant
IR is associated with numerous human diseases
including several cancers. Despite consistent re-
ports demonstrating that intrinsic sequence features
can help introns evade splicing, conflicting find-
ings about cell type- or condition-specific IR reg-
ulation by trans-regulatory and epigenetic mecha-
nisms demand an unbiased and systematic analy-
sis of IR in a controlled experimental setting. We
integrated matched mRNA sequencing (mRNA-Seq),
whole-genome bisulfite sequencing (WGBS), nucle-
osome occupancy methylome sequencing (NOMe-
Seq) and chromatin immunoprecipitation sequenc-
ing (ChIP-Seq) data from primary human myeloid and
lymphoid cells. Using these multi-omics data and ma-
chine learning, we trained two complementary mod-
els to determine the role of epigenetic factors in the
regulation of IR in cells of the innate immune sys-
tem. We show that increased chromatin accessibil-
ity, as revealed by nucleosome-free regions, con-
tributes substantially to the retention of introns in
a cell-specific manner. We also confirm that intrinsic
characteristics of introns are key for them to evade
splicing. This study suggests an important role for
chromatin architecture in IR regulation. With an in-

creasing appreciation that pathogenic alterations are
linked to RNA processing, our findings may provide
useful insights for the development of novel thera-
peutic approaches that target aberrant splicing.

GRAPHICAL ABSTRACT

INTRODUCTION

The role of introns in mammalian genomes remains largely
unexplained. Given the time and energy required for the
transcription and subsequent excision of introns from pre-
mRNA, it was important to recognize in recent years that
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introns can be selectively retained in mature mRNA tran-
scripts and thereby contribute significantly to transcrip-
tomic complexity (1,2). Intron retention (IR) is a form of
alternative splicing that was assumed to occur due to the
failure of the spliceosome to excise an intron from a pre-
mRNA transcript. However, growing evidence suggests that
IR is highly regulated by multiple complementary factors
(3).

IR is widespread across human tissues and affects >80%
of protein-coding genes (4). For example, dynamic IR
profiles have been identified in key genes involved in
haematopoietic cell differentiation and activation (1,5–8).
Fates of intron-retaining transcripts can be diverse and in-
clude (i) nonsense-mediated decay triggered by intronic pre-
mature termination codons, (ii) detention in the nucleus
or nuclear degradation and (iii) translation into alternative
protein isoforms or creation of neoepitopes (3,9,10). A bet-
ter understanding of how IR is regulated is crucial to de-
termining factors leading to aberrant IR, which has been
associated with multiple diseases including cancer (11–13).

Despite numerous studies that describe the role of re-
tained introns in key biological functions in animal and hu-
man diseases (3,9,11), a comprehensive understanding of
their regulation is still lacking. Retained introns have con-
served intrinsic characteristics such as a higher GC con-
tent, shorter lengths and weaker splice sites in comparison
with their non-retained counterparts (2,3,14). These fea-
tures predispose introns to retention but cannot explain the
dynamic IR profiles observed in numerous biological pro-
cesses. The regulation of alternative splicing has been the
focus of many studies. Evidence suggests that alternative
splicing is regulated at least at two levels: (i) locally, where
trans-acting splicing regulators interact with cis-acting reg-
ulatory elements; and (ii) globally, through the structure
of chromatin, which is largely governed by epigenetic fac-
tors, including nucleosome assembly, histone modifications
and CpG methylation (15). Previous reports have shown
that, apart from intrinsic sequence-based features, intron
expression can be regulated through RNA-binding proteins
(RBPs) and core components of the splicing machinery
(1,4), as well as changes to the RNA polymerase II (Pol
II) elongation rate (16). Moreover, an increasing number of
studies have found links between epigenetic profiles and IR;
reporting that IR is associated with reduced CpG methy-
lation (8,17–19) and various histone modifications (20,21).
However, these reports have typically established the asso-
ciation of IR with only one epigenetic factor at a time. The
question of whether there are dominant epigenetic factors
that underpin IR regulation remains unanswered.

In the quest to find a splicing regulatory ‘code’, several
studies have used machine learning methods to train mod-
els that predict exon usage with increasing precision (22,23).
Moreover, some models were developed to predict cryptic
splicing events caused by genetic variations and to link these
to human diseases (24–26). However, the computational
prediction of IR events has not been attempted to date, and
the role of epigenetic marks has rarely been considered in
computational models of splicing regulation (3,27).

In this study, we sought to systematically elucidate the
role of epigenetic marks in the regulation of IR. We anal-
ysed genome-wide profiles of six histone modifications,

CpG methylation and nucleosome occupancy at single-
base resolution in primary lymphoid and myeloid cells. Us-
ing machine learning, we developed models that predict
IR in primary human immune cells. More specifically, we
trained a logistic regression with an elastic net (EN) clas-
sifier and a conditional random forest (cRF) classifier with
matched transcriptomic and epigenomic data from mono-
cytes, macrophages, naı̈ve T cells, central memory T cells
and effector memory T cells (Figure 1). Our results show
that intrinsic characteristics are key for introns to evade
splicing and that epigenetic marks modulate IR levels in a
cell type-specific manner, where the dominant factor for dy-
namic IR regulation is chromatin organisation.

MATERIALS AND METHODS

Multi-omics data analysis

To investigate how IR is regulated in primary immune cells,
we integrated epigenomic and transcriptomic data from
the German Epigenome Program (DEEP). Primary mono-
cytes and T cells (naı̈ve, central memory and effector mem-
ory) were retrieved from two healthy donors. Monocyte-
derived macrophages were retrieved as follows: elutriated
monocytes were seeded at 1 × 106 cells/ml in macrophage
serum-free medium (Invitrogen) supplemented with 50
ng/ml recombinant human monocyte colony-stimulating
factor (rhMCSF; R&D Systems). Cells were incubated at
37◦C, 5% CO2 for 5 days before macrophage cells were
collected. Cell isolation, differentiation, DNA/RNA ex-
traction and library preparation for mRNA sequencing
(mRNA-Seq), whole-genome bisulfite sequencing (WGBS),
nucleosome occupancy methylome sequencing (NOMe-
Seq) and chromatin immunoprecitiation sequencing (ChIP-
Seq) experiments are described in detail in these articles
(28,29). Donors gave their written and informed consent
prior to participating in the study. The study was approved
by the ethics committees of the University Hospital Regens-
burg (Ethikkommission der medizinischen Fakultät, pro-
posal 08/119) and the Charite Universitaetsmedizin Berlin
(application numbers EA1/116/13 and EA1/105/09).

mRNA-Seq data processing and identification of IR events.
RNA-Seq reads (FASTQ format) of each technical
replicate were tested for quality using FastQC v.0.11.5
(github.com/s-andrews/FastQC). Further processing,
including adaptor trimming, was performed within the
IRFinder algorithm for IR quantification (4). Sequenc-
ing reads were mapped to the human reference genome
(GRCh38, v86) using STAR v2.7 with default parameters
(30). IRratios, a quantitative measure of IR levels, were
determined as:

I Rratio = Intronic Abundance
Intronic Abundance + Exonic Abundance

,

where the intronic abundance is defined as the trimmed
mean of the reads that map to an intron, after exclusion of
features that overlap the intron and removal of the highest
and lowest 30% of values. Exonic abundance is defined as
the number of reads that map across an exon–exon junc-
tion. Library size normalization (i.e. between-sample nor-
malization) was not required as the ratio between intronic
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Figure 1. Experimental design and computational workflow to determine regulators of IR. Raw high-throughput data were processed for each biological
replicate and amalgamated by cell type from the indicated number of samples (n). The output was used for feature extraction: IR events were treated as a
binary outcome and we trained an elastic net regression model and a conditional random forest model with a total of 48 sequence-based and epigenetic
features. Using feature ranking, we identified the factors that were most strongly associated with IR outcomes and compared the performances of both
modelling strategies. These steps were repeated for each cell type.

and exonic abundance is determined from within the same
transcriptome (4).

IRFinder extracts introns from the ENSEMBL tran-
script annotations (GTF file, hg38, v86) as the region be-
tween two exons in any transcript. Regions covered by a gtf
feature within an intron were excluded as they could con-
found an accurate measurement of IR. Introns that were
present in at least 10% of a gene’s mature mRNA tran-
scripts (IRratio ≥0.1) with an overall intron depth ≥10
and ≥90% read coverage were considered retained. Re-
tained introns were further filtered for those where the
flanking exons had a percent spliced in index (PSI) ≥0.9.
Non-retained introns were defined as those with an IRratio
≤0.01 and intron depth <10. Only introns from expressed
host genes [fragments per kilobase per million (FPKM) ≥1]
with a length <10 000 bp were selected for downstream
analyses. For the intron classification system introduced by
Braunschweig et al. (14), additional filtering criteria were
applied:

Type A Type B Type C
• Length <10 000
• 5′ and 3′ exon
spliced-in
• no known
overlapping exon
• 5′ and 3′ exon type:
constitutive

• Length <10000
• 5′ and 3′ exon
spliced-in
• known overlapping
exon
• 5′ and 3′ exon type:
constitutive

• Length <10 000
• 5′ and 3′ exon
spliced-in
• no known
overlapping exon
• 5′ or 3′ exon type:
alternative

In contrast to Braunschweig et al., we kept the 10 kb in-
tron length filter for consistency. Our initial assessment indi-
cated that >10 kb long introns are almost exclusively found
in non-retained introns and often present the first intron in
a transcript.

We used Cufflinks v2.1.1 (31) to estimate gene abundance
in FPKM. Only introns from host genes with FPKM ≥1
were selected for the downstream analyses.
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WGBS data processing. Raw WGBS FASTQ files were
assessed for quality using FastQC v.0.11.5 (github.com/s-
andrews/FastQC). Standard Illumina adaptors used for the
library preparation were trimmed using cutadapt v.1.10 (32)
with a quality cut-off of 20 bp and a minimum read length
of 30 bp. Trimmed reads were mapped to the GRCh38 ref-
erence genome, duplicate reads removed and methylation
calling performed using Bismark v.0.19.0 (33). Only CpG
sites with a coverage of >5 reads were retained for further
analysis.

ChIP-Seq data processing. ChIP-Seq data for six his-
tone modifications (H2K27ac, H3K27me3, H3K36me3,
H3K4me1, H3K4me3 and H3K9me3) were aligned to
the human GRCh38 reference genome using STAR
v2.7 (30). Duplicate reads were removed using Picard
v.2.18.4 (broadinstitute.github.io/picard/) and further
processed using MACS2 v.2.2.6 (34) to identify his-
tone modification peaks, with default parameters and
q-value cut-off of 0.01. All histone modifications were
processed in the ‘narrow peak’ mode to extract peak
summit coordinates. Narrow peaks were used because
wide peaks frequently tend to spread across retained
and non-retained introns. For visualisation in Integrative
Genomics Viewer (IGV; 35), we generated coverage tracks
using bamCoverage from deepTools2 (36) with the fol-
lowing parameters --binSize 1 --normalizeUsing
BPM --effectiveGenomeSize 2913022398 --
extendReads 200. For histone mark (HM) line plots,
we subtracted ChIP-Seq input from respective HM ChIP-
Seq read counts and normalised based on bins per million
(BPM) mapped reads using bamCompare and parameters
--binSize 1 --scaleFactorsMethod read-
Count --effectiveGenomeSize 2913022398
--operation subtract --normalizeUsing
BPM.

NOMe-Seq data processing. Raw FASTQ files were as-
sessed for quality using FastQC v.0.11.5 (github.com/s-
andrews/FastQC). Reads were mapped to the GRCh38
reference genome, duplicate reads removed and methyla-
tion calling performed using Bismark v.0.19.0 (33). GCH
methylation information was extracted with the cover-
age2cytosine utility with --nome parameter.

Nucleosome-free regions (NFRs) were predicted using
the gNOMePeaks tool (37) with default parameters, which
include 4000 bp up- and downstream from each peak for
background signal calculation and the maximum distance
between GpC sites of 150 bp. We used the same algorithms
to predict nucleosome positioning by substituting GCH
methylation, as required input, with GCH occupancy (1 –
GCH methylation) and reducing the background region to
1000 bp up- and downstream from each peak and the dis-
tance between GCH sites to 20 bp.

Elastic net and conditional random forest modelling

Feature selection. Model features were associated with
three genomic regions around retained and non-retained
introns: (i) ±100 bp from the 5′ splice site; (ii) ±100 bp
from the 3′ splice site; and (iii) ±100 bp from the middle of

an intron, each region being 200 bp long. GC content was
extracted using bedtools v.2.26.0 (38) nuc command. For
splice site strength calculations, we used MaxEntScan (39).
CpG density values were obtained using Repitools (40). The
PSI of flanking exons was calculated as described in (41).
Exons with PSI ≥0.9 were considered as included. Branch
point strength and distance were computed using the SVM-
BPfinder algorithm (42).

We considered RBPs as putative trans-regulators of dy-
namic IR. We extracted RBP-binding motif data from the
ATtRACT database (attract.cnic.es) (43) and identified mo-
tifs of differentially expressed RBPs (myeloid versus lym-
phoid) that reside within or adjacent to dynamic introns
(±100 bp from the 5′ splice site, 3′ splice site or middle of
the intron).

To generate epigenetic features, we overlapped three re-
gions of interest with the pre-processed epigenetic data.
NFRs were defined as regions >40 bp in length with a P-
value ≤0.05 (Fisher test comparing CpG methylation in the
NFR with the surrounding background). Presence or ab-
sence of an NFR was dichotomized as ‘yes’ = 1 and ‘no’ =
0. Information about nucleosome location was included in
the model in a similar manner (nucleosomes were defined
as regions >140 bp in length with a P-value ≤0.05).

The relationship between histone modification and IR
was included in the model through the presence or absence
of an overlap with a histone signal region. It was categorised
as 0 = no overlap, 1 = overlap with a region of HM signal,
2 = overlap with a region of strong signal [strong signal =
mean (HM pile-up) + SD (HM pile-up)]. The full list of fea-
tures is presented in Supplementary Table S1.

Model training and validation. To identify features impor-
tant for IR, we constructed a binary classification model
using the EN algorithm. We approached the problem in
a naı̈ve manner, i.e. we did not impose any prior assump-
tions about the factors that might potentially play a role,
and therefore an equal penalty factor was applied to all fea-
tures. EN classification was performed in the caret R pack-
age (44) using the glmnet method (45) for a binary out-
come. The group imbalance, due to the different number of
retained and non-retained introns identified as suitable for
modelling, was handled by down-sampling, using the down-
Sample command. Parameter �, determining the overall
size of the regularization penalty, was optimized by the 10-
fold cross-validation procedure. Features were ranked based
on the absolute values of the model coefficients.

We repeated this in silico analysis to validate our results
using an independent machine learning algorithm, cRF. In
cRF, unlike standard RF where the first split variable is ran-
domly selected, an association test between the outcome
and the model predictors is performed first. The ranked
P-values are then used to identify the covariate with the
strongest association with the outcome, which is later used
for the first binary split at cutpoint c for a continuous co-
variate or at category C for a categorical covariate. cRF
classification was also performed in caret using the cforest
method as implemented in the party R package (46). The
cRF model provides an unbiased measure of variable im-
portance, which we used to rank the most important fea-
tures for IR prediction.
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To avoid overfitting, we ranked the features’ importance
using both EN and cRF techniques (47). Moreover, our
findings were validated across different blood cell lineages
from different humans.

Analysis of lineage-determining transcription factors

Transcription factor (TF) affinity scores were calculated
around the splicing sites of retained and non-retained in-
trons using TEPIC Version 2.2 (48). We also provided in-
formation about the open chromatin regions previously pre-
dicted by the gNOMePeaks pipeline using NOMe-seq data
to the algorithm. We filtered TFs with affinity scores >0.1
and reported those with the highest affinity scores in at least
one of the five cell types.

Statistical analysis

All statistical analyses were performed in R v.4.0. For the
identification of differentially retained introns, we used the
Audic and Claverie test (49). We have used the IRFinder’s
built-in Bayesian statistic adapted for digital counts, i.e. the
Audic and Claverie test, because of the small number of bio-
logical replicates (two for monocyte and T cells, and one for
macrophages). P-values ≤ 0.05 were considered significant.
Clustering was performed using unsupervised hierarchical
clustering with complete linkage. Gene Ontology (GO) en-
richment analysis on host genes of dynamic introns was per-
formed using the R Bioconductor package enrichR (50).

Differentially retained introns versus dynamic introns

Dynamic introns are retained in one or more cell types
based on our criteria for retention (IRratio ≥0.1; intron
depth ≥10; ≥90% read coverage) and not retained in one or
more cell types (IRratio ≤0.01; intron depth <10). Differ-
entially retained introns are determined based on pairwise
comparisons (cell type A versus cell type B) with Audic and
Claverie tests. They need to fulfil the retention criteria in at
least one of the two cell types. Introns with a P-value ≤0.05
and �IR ≥0.1 are considered significantly differentially re-
tained.

RESULTS

Intrinsic features of retained introns are consistent across cell
types

To investigate how IR is regulated in primary immune
cells (CD4+ T cells, monocytes and macrophages), we inte-
grated transcriptomics (mRNA-Seq) data with epigenomics
data including genome-wide CpG methylation (WGBS), hi-
stone modifications (ChIP-Seq) and nucleosome occupancy
(NOMe-Seq) (Supplementary Table S2). The cells were iso-
lated from peripheral blood of two healthy donors, except
for the monocyte-derived macrophages. Using the IR iden-
tification software IRFinder (4), we quantified IR events of
expressed genes (FPKM >1) in five cell types across myeloid
and lymphoid cells, representing two modes of differentia-
tion: monocyte to macrophage differentiation and naı̈ve T-
cell differentiation into central memory (CM) and effector
memory (EM) T cells.

We identified a total of 26 147 retained introns in 12 379
genes, some of which were retained in both myeloid and
lymphoid cells while others were cell type specific (Sup-
plementary Figure S1A). The number of retained introns
detected was independent of sequencing depth (Supple-
mentary Figure S1B). Consistent with previous reports, re-
tained introns in our dataset are shorter in length, exhibit
a higher GC content and have weaker splice site strengths
compared with non-retained introns (Supplementary Fig-
ure S1C). In addition, we found that retained introns have
weaker branch points that are on average further away from
the adjacent splice site compared with branch points in non-
retained introns (Supplementary Figure S1D).

Our analysis revealed diverse splicing patterns in myeloid
and lymphoid cells. While 40% of the retained introns in
myeloid cells were significantly differentially retained (�IR
≥0.1; P <0.05 Audic–Claverie test) between monocytes and
macrophages (571/1425), T cells displayed greater stabil-
ity regarding IR, with only 8% of introns classified as dif-
ferentially retained (146/1812 in naı̈ve T versus CM, and
80/969 in CM versus EM). In contrast to the monocyte to
macrophage differentiation, where we observed a reduction
in IR events (Figure 2A), the overall number of retained in-
trons remained consistent in all CD4+ T cells. These pat-
terns coincide with fewer differences in gene expression
amongst T-cell types in contrast to major gene expression
changes in monocyte to macrophage differentiation (Sup-
plementary Figure S1E). Interestingly, more dynamic IR
profiles have previously been described in the context of
CD4+ T-cell activation which coincided with marked dif-
ferences in gene expression (6). Supplementary Figure S1F
shows expression profiles of the genes harbouring introns
that remain non-retained during monocyte to macrophage
differentiation or T-cell maturation.

Most retained introns in our analysis overlapped with
HMs, i.e. H3K9me3, H3K27me3, H3K27ac, H3K36me3,
H3K4me1 and H3K4me3, or with an NFR (predicted from
NOMe-seq data) located around their 5′ and 3′ splice sites
(±100 bp) as well as the middle of an intron (Supplemen-
tary Figure S2A). Interestingly, many non-retained introns
(∼50%) lacked such epigenetic marks in lymphoid cells (as
opposed to only 20–30% of retained introns). H3K36me3
was the most frequently observed histone modification fol-
lowed by NFR peaks. In retained introns, between 30% and
60% of H3K36me3 signals were classified as strong (see
the Materials and Methods), whilst in non-retained introns,
the proportion of overlap with the regions of strong signal
ranged between 2% and 18% (Supplementary Table S3).

CpG methylation profiles (extracted from WGBS data)
for retained and non-retained introns displayed a character-
istic bimodal distribution, with two distinct peaks at 0% and
100%. Differential methylation was predominantly found
at the splice sites when we compared regions of genomic
DNA associated with IR and no IR. At the 5′ splice sites,
we observed higher methylation levels in non-retained com-
pared with retained introns in all five cell types. However,
there was a cell type specificity in terms of CpG methyla-
tion within introns and 3′ splice sites (Supplementary Fig-
ure S2B).

The M.CviPI enzyme, used in NOMe-seq experiments,
methylates GpC sites that are not bound by nucleosomes.
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Figure 2. IR prediction and model feature association analyses. (A) Scatter plots of differential IR events (blue, significant; yellow, not significant) between
monocytes (Mo) versus macrophages (Ma) (left), naı̈ve (TN) versus central memory (CM) T cells (middle), and CM versus effector memory (EM) T cells
(right). The scatter plots include only those introns with an IR difference of �IR ≥0.1 and an IRratio >0.1 in one of the two cell types. (B) Receiver operating
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EN and cRF algorithms. The scores were scaled to values that add up to 1.0 and the size of a bar corresponds to the effect size. (F) Model performance
using feature subsets (HM, histone modification; DNA meth, DNA methylation).
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GCH methylation levels (where H is any nucleobase except
guanine) provide information about chromatin accessibil-
ity. Unlike endogenous CpG methylation, GC dinucleotides
are rarely fully methylated (51), therefore mid-range levels
(>20%) are usually sufficient to indicate open chromatin re-
gions. In our data, chromatin accessibility (i.e. GCH methy-
lation) increased from monocytes to macrophages, with
slightly higher levels in non-retained introns, while lym-
phoid cells had increased chromatin accessibility (GCH
methylation levels 15–35%) but with higher levels in re-
tained introns compared with non-retained introns (Supple-
mentary Figure S2C).

To determine important factors for IR regulation, we
compiled a list of features grouped into different classes: (i)
sequence-based features: intron length, GC content, splice
site strength, CpG density, branch point strength and dis-
tance (also referred to as intrinsic features); (ii) transcrip-
tomics features: PSI values of the flanking exons; and (iii)
epigenomics features extracted from the WGBS, ChIP-Seq
(H3K9me3, H3K27me3, H3K27ac, H3K36me3, H3K4me1
and H3K4me3) and NOMe-Seq data (Supplementary Table
S1). We then used these features (n = 48) to train EN mod-
els for each cell type and predict whether introns are either
retained or non-retained. The performance of our models
was assessed based on the area under the receiver operating
characteristic curve (AUC) values, which ranged between
0.87 and 0.95 (Figure 2B) and values for the area under the
precision recall (PR) curve (accuracy) ranging between 0.85
and 0.95 (Figure 2C). The consistently high values suggest
that the model choice was appropriate for the task.

The EN model assumes a monotonic linear relationship
between the class variable and the model features. To de-
termine whether this assumption is adequate for IR classi-
fication, we also trained cRF models, which do not make
any prior assumption about the relationship between the
outcome of interest and the model features. Comparing the
results from both types of models, we found that cRF per-
formed slightly better than EN, with AUC values ranging
between 0.91 and 0.98 (Figure 2D; Supplementary Figure
S3A) and PR values between 0.87 and 0.95 (Supplementary
Figure S3B).

Next, to evaluate whether the learned relationship be-
tween the model features and IR was generalisable across
cell types, we trained our model with data from one cell
type and tested it with data from another cell type. For all
training/test data pairs, the AUC and accuracy metrics were
comparable with those models that were trained and tested
on the same cell type (Supplementary Table S4).

To assess which features contribute most to the model
performance (and thus the relevance of a feature to IR), we
used variable-importance measures (VIMs). For EN, these
are the regression coefficients ordered from lowest to high-
est, where parameters with larger values have a greater ef-
fect. For cRF, variable importance was calculated as the
mean decrease in accuracy after permutation of each model
feature. Given the known properties of retained introns, it
was no surprise that intrinsic features, such as length, GC
content and CpG density, were ranked as the top predictors,
with a high level of agreement across all cell types analysed
(Figure 2E). Again, we observed consistency between the

EN and cRF models, except for minor variations in the or-
der in which important features were ranked.

Epigenetic features were also ranked among the top five
predictors across all models and cell types; however, their
nature and relative importance varied between cell types
(Figure 2E). Overall, EN models ranked epigenetic features
as moderately to very important (VIM between 0.4 and
0.8), which is comparable with the intrinsic features (rang-
ing between 0.3 and 1). In contrast, cRF identified epige-
netic features as somewhat important, with VIM mostly
below 0.50 (Supplementary Figure S3C, D). Nevertheless,
intrinsic features were consistently identified as most rele-
vant for correctly classifying IR, suggesting that these fea-
tures predispose introns to be retained irrespective of cell
or tissue type. Therefore, it was no surprise that model per-
formances dropped only slightly when trained with intrin-
sic features only and poorer performances were observed in
models trained with epigenetic features only (Figure 2F).

We also investigated whether different types of introns
may have evolved different forms of regulation, with differ-
ent features involved. Braunschweig et al. proposed three
types of introns (Type A, B and C) that differ not only in
their intrinsic sequence-based features but also in their rel-
ative levels of inclusion and in the impact their inclusion
has on resulting transcripts (14). The majority, i.e. 96%, of
the introns included in our analyses represent Type A in-
trons. These introns are flanked by constitutive exons. Type
A introns that are retained have a higher GC content and
shorter length compared with non-retained introns in that
class, thus following the same trend as observed for all re-
tained introns (Supplementary Figure S4A). Type B introns
overlap with annotated exons from other isoforms or an
antisense gene. Differences in length between retained and
non-retained Type B introns are smaller than in Type A
introns and insignificant in macrophages, T-naı̈ve and T-
effector memory cells. Likewise, the differences in GC con-
tent are also smaller and insignificant in macrophages. In-
trinsic features of Type C introns, which are flanked by alter-
native exons, resemble those of Type A introns (Supplemen-
tary Figure S4A). The sample size of non-retained Type B
and retained Type C introns were too small for model-based
classification (Supplementary Table S5). Therefore, feature
importance could only be determined for Type A introns,
which returned the results concordant to those described
above.

To further check if our results might be biased by a certain
dominant group of introns, we returned to the original set
of retained and non-retained introns and divided it into bins
- first, by intron length and then, by the host gene expres-
sion (Supplementary Figure S4B, C). We then performed
machine learning on each of those bins: short introns (<100
nt), medium introns (100–500 nt) and long introns (>500
nt), as well as genes expressed at a low (1 ≤FPKM <25),
medium (25 ≤FPKM <75) and high level (FPKM ≥75).
Variable importance analysis revealed very similar results
for all introns, with intrinsic features (i.e. GC content and
length) consistently topping the list of IR predictors (Sup-
plementary Table S6). These results support the idea that in-
trinsic features predispose introns to retention, irrespective
of their length or transcriptional activity of the host gene.
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Though, when we compared intron characteristics be-
tween the different classes we found significant differences
in GC content and length, except for Type A and B introns,
which have similar GC and length profiles (Supplementary
Figure S5).

Chromatin accessibility is predicted to be the strongest regu-
lator of IR

In the previous section, we classified IR on a cell type-
specific basis and determined the intrinsic features as having
the strongest association with IR outcomes. However, we
often find that an intron is retained in one cell type but not
in another. In those cases, factors beyond intrinsic features
are the likely drivers of this transition.

To find these IR determinants, we modified our ini-
tial modelling approach by focusing only on the dynamic
introns––those that changed their retention status between
cell types (Figure 3A). In total, 1540 introns matched this
criterion with various IR patterns (Figure 3B; Supplemen-
tary Figure S6). Results of a GO enrichment analysis sug-
gest that genes hosting dynamic introns are involved in
chromosome organisation and RNA processing (Supple-
mentary Figure S7A). Genes with dynamic introns that
are differentially expressed between myeloid and lymphoid
cells, i.e. those that are putatively affected by changing IR
profiles, are also associated with processes including chro-
mosome organisation and RNA processing (Supplemen-
tary Figure S7B).

We used dynamic introns to train EN and cRF models
with both epigenetic and intrinsic features. The cRF model
performed better than the EN model, achieving AUCs of
0.85 and 0.76, respectively (Figure 3C). cRF also achieved a
higher area under the PR curve value (0.83) than EN (0.73)
(Figure 3D). The poorer performance of EN might be a
reflection of the model’s inability to fully utilise complex
structures within the omics data, thus supporting the no-
tion that a relationship between chromatin modifiers and IR
is indeed non-linear, as previously suggested (52). To verify
this hypothesis, we used another classifier (SVM, support
vector machine) that is able to pick up non-linear relation-
ships as well. Although inferior to the cRF classifier, SVM
performed significantly better than the EN classifier, sup-
porting the concept of a non-linear relationship between
chromatin modifiers and IR (Supplementary Figure S8).

Evaluation of feature rankings revealed that, despite
varying model performances, both EN and cRF models
identified features related to chromatin accessibility as most
important for correct IR classification (Figure 3E). These
features include GCH methylation and GCH (i.e. nucleo-
some) occupancy, and the presence of NFRs. GCH methy-
lations at the 5′ and 3′ splice sites were determined as the
most important features discriminating retained from non-
retained introns in both models. Supplementary Table S7
shows the average percentage GCH methylation values at
the 5′ and 3′ splice sites of all retained introns and dynam-
ically retained introns. The cRF classifier also identified
CpG methylation as somewhat important for IR classifica-
tion, which has a known relationship with chromatin acces-
sibility (53–55). Interestingly, the cRF model also identified
GC content as a moderately important contributor to IR

outcomes, whilst the EN model included HMs (H3K27ac
and H3K36me3) among the top 10 predictors (Supplemen-
tary Figure S9A).

To confirm the importance of chromatin accessibility in
IR regulation, we performed gene-specific NOMe-Seq to
compare the patterns of DNA methylation and nucleosome
occupancy spanning the exonic and intronic regions (exon
4 to intron 7) of Lmnb1 in promyelocytes and granulo-
cytes. Lmnb1 (Lamin B1) is known to contain dynamic in-
trons starting from intron 5 and is important during gran-
ulopoiesis in mice (1). Our data indicate loss of DNA
methylation and nucleosome occupancy in granulocytes,
upstream of intron 5, which is where we start to see IR in-
creased in granulocytes (Figure 4). These epigenetic marks
are present at higher levels in myeloid progenitors.

Finally, we tested whether RBPs, as putative trans-
regulators of dynamic IR, can improve our model perfor-
mance. We extracted RBP-binding motifs from the AT-
tRACT database (43) and identified motifs that reside
within or adjacent to dynamic introns (myeloid versus
lymphoid). Only three of these RBPs were differentially
expressed between myeloid and lymphoid cells (ENOX1,
IGF2BP3 and SAMD4A; P-adj. <0.05; log2FC >2). We
incorporated this information as features in our classifica-
tion models. The results show that RBP-related features im-
proved the model performance marginally from AUC =
0.85 without RPB features to AUC = 0.882 (with RPB
features). The best ranked RBP-related feature was for
IGF2BP3 with binding sites at the centre of dynamic introns
(rank #27).

Epigenetic IR regulation is independent of gene expression
regulation

It is reasonable to assume that changes in the epigenetic
landscape might not directly affect IR but rather gene ex-
pression (56). To confirm that the features identified as rele-
vant to IR are independent from gene expression regulation,
we split dynamically retained introns into three groups: (i)
host gene expression is reduced along with the change in
IR status; (ii) host gene expression remained stable (log2FC
FPKM ≤2); and (iii) host gene expression increased (Fig-
ure 5A). For most of the dynamic introns, we observed only
marginal differences in host gene expression (n = 1220),
whilst down- and up-regulated host genes were associated
with 73 and 247 dynamically retained introns, respectively.
Correlation analyses suggested that IR ratios of dynamic in-
trons are on average slightly positively correlated with host
gene expression (Supplementary Figure S10). We repeated
the classification analysis on the group of introns where the
IR changes were not accompanied by host gene expression
changes. Since the relationship between IR and epigenetic
model features is not linear, as was established in the previ-
ous section, we only used the cRF algorithm.

The model fitted to this data subset achieved an AUC of
0.83 (Figure 5B) and an area under the PR curve value of
0.78 (Supplementary Figure S9B). The features that were
selected as important were GCH methylation at the 5′ and
3′ splice sites and GC content in the same order as in the
model trained on all dynamically retained introns (Figure
5C). This observation held true for host genes that were

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkac994/6819938 by Jam

es C
ook U

niversity user on 15 N
ovem

ber 2022



Nucleic Acids Research, 2022 9

Mo Ma CM

IR in Monocytes

IR in Macrophages

IR in T Naïve 

IR in T Central 

IR in T Effector IR in myeloid cells
IR in lymphoid cells other

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00

False Positive Rate
S

en
si

tiv
ity

Conditional RF (0.85)

Elastic Net (0.76)

ROC

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Recall

P
re

ci
si

on

PR

GCH Methylation (middle)

1.00

Conditional RF (0.83)

Elastic Net (0.73)

A

B C

E

cRF

EN

0.00 0.25 0.50 0.75 1.00

GCH Methylation (3')

GCH Methylation (5') GC content (intron) H3K36me3 Strong Signal (3')

H3K36me3 Strong Signal (5')

Retained Non-Retained

Chromatin Accessibility Features Intrinsic Features

Nucleosome Free Region (3')

Histone Modification Features

IR

1. Match retained and non-retained 
    introns by genomic location

2. Data Integration

1
0

1
0
0

1

3. Classification Model

Conditional 
Random

no IR

IR Elastic Net 
Regression

4. Performance 
Evaluation

5. Feature Ranking 6. Clustering

TN EM

D

Mo

Ma

TN

CM

EM

}

Figure 3. Analysis of dynamic intron retention. (A) Modified modelling strategy from Figure 1. Only introns that were found to be in retained and non-
retained states in different cell types were included in the analysis. (B) Alluvial plot illustrating the dynamics of IR states among the five cell types (n =
1540). (C) ROC and (D) PR curves comparing the performance of cRF (brown) and EN (black) trained with features associated with dynamic introns. (E)
Variable importance scores for the top five features identified by EN and cRF algorithms, scaled between 0 and 1.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkac994/6819938 by Jam

es C
ook U

niversity user on 15 N
ovem

ber 2022



10 Nucleic Acids Research, 2022

Figure 4. NOMe-Seq analysis of Lmnb1 exon 4/intron 5. (A) Map of Lmnb1 indicating exons as vertical black lines and introns in between them. The red
arrow indicates the direction of transcription. (B) Nucleosome occupancy as assessed using GpC methyltransferase (M.CviPI) accessibility. GpC maps
of regions spanning exon 4/intron 5 are shown with GpCs indicated by blue vertical lines. Exons are shaded in light orange. Each horizontal line below
the maps represents a single allele, with green circles indicating accessible GpCs. Inaccessible GpCs are in white. Pink lines indicate contiguous M.CviPI-
inaccessible regions occupied by nucleosomes. There is a 40% depletion of nucleosome occupancy in exon 4/intron 5 in granulocytes compared with
promyelocytes. (C) Methylation of CpG sites (lollipops), with black circles indicating methylated dinucleotides and white circles indicating unmethylated
dinucleotides. A lack of CpG methylation was observed near the exon 5/intron 5 boundary in granulocytes compared with promyelocytes, but not in other
regions.

expressed at both a high and a low level (Supplementary
Figure S9C). We therefore concluded that the observed epi-
genetic changes associated with IR modulation are inde-
pendent from gene expression regulation. In Figure 5D,
we show two exemplary introns where greater chromatin
accessibility was associated with an increase in IR: phos-
phatidylinositol glycan anchor biosynthesis class T (PIGT)
helps build the glycosylphosphatidylinositol anchor which
is found on the surface of various blood cells (Figure 5D,
left). PIGT is known to express many isoforms through al-
ternative splicing including IR. The nucleotide-binding pro-
tein SEPTIN8 is a regulator of cytoskeletal organisation,

which has multiple alternatively spliced transcript variants
as well (Figure 5D, right).

Next, we assessed whether lineage-determining TFs
(LDTFs) might regulate chromatin accessibility in dynamic
introns. We analysed TF binding affinities in retained and
non-retained introns using TEPIC (48). In total, we identi-
fied 21 TFs with differential affinity scores in dynamic in-
trons (Supplementary Table S8). These results suggest that
there are multiple instances where the binding affinity of an
LDTF is different between retained and non-retained in-
trons. However, it remains to be determined whether these
TFs cause changes in chromatin accessibility or whether
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Figure 5. Analysis of introns from genes with non-differential expression levels. (A) Scatter plot of host gene expression for introns that change their IR
status. Light-coloured dots, separated by dashed diagonal lines, represent differentially expressed genes (FC ≥3; P ≤0.05). (B) ROC curve indicating the
performance of a cRF model fitted on the data from non-differentially expressed genes (GE, gene expression). (C) Ranking of the features based on scaled
variable importance scores. (D) Integrative Genomics Viewer (IGV) plots revealing higher density and hypermethylation levels of GCH sites in the splice
site regions of differentially retained introns in both high and low expressed gene examples (NFR, nucleosome-free region; GCH, methylation methylation
levels of GC dinucleotides followed by any nucleobase except guanine).

chromatin accessibility facilitates changes in TF binding
affinity.

Changes in chromatin structure are associated with cell type-
specific IR

As chromatin accessibility was identified as the strongest
predictive factor for dynamic IR, we closely examined its re-
lationship with retained and non-retained introns. We iden-
tified five distinct GCH methylation profiles in the ±200 bp
region around the 5′ splice site of retained introns (Figure
6A, left). Similar clustering profiles were identified in the
region around 3′ splice sites and the middle of introns (Sup-
plementary Figure S11). To understand changes in chro-
matin status in the context of dynamic IR, we plotted the
GCH methylation values of the same introns when they
were not retained (Figure 6A). The associated heatmap
shows that GCH methylation is widely depleted in non-
retained introns, with no distinct clustering. In retained in-
trons, however, we observed a clear increase in GCH methy-
lation immediately upstream or downstream from the 5′
splice site (Figure 6B, clusters 1, 3 and 4). We also iden-

tified a group of retained introns with relatively low levels
of GCH methylation (cluster 2) and another with partic-
ularly strong GCH methylation (cluster 5). To ensure that
the observed differences in chromatin accessibility levels
are associated with IR, we repeated the analysis and com-
pared GCH methylation levels between dynamic retained
introns and i) random non-retained introns across genome,
matched by length and GC content; ii) non-retained introns
from the same host gene (Figure 6C). The results largely
support the trends identified in Figure 6B. Additionally, we
explored whether the identified GCH methylation patterns
are associated with differences in intrinsic features between
introns that comprise those groups (Figure S12A, B & C) or
whether the clusters belong to a particular cell type (Figure
S12D). Of note, dynamic introns in cluster 1 representative
of instances with elevated GCH methylation levels on both
sides of the 5′ splice site are characterised by more ‘normal’
intron features, i.e. they are longer and have lower GC and
a stronger 5′ splice site than other dynamically retained in-
trons.

Upon visualising the intronic regions that changed their
IR status between cell types, we observed greater chromatin
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Figure 6. GCH methylation clustering in differentially retained introns. (A) Clustering of GCH methylation in the ±200 bp region around the 5′ splice site
(ss). Each line corresponds to one intron that is in either a retained (left) or a non-retained state (right). Cluster 1 (n = 185), cluster 2 (n = 367), cluster 3
(n = 211), cluster 4 (n = 302), cluster 5 (n = 174). (B) Line plots showing average GCH methylation values (i.e. chromatin accessibility) in retained versus
non-retained introns across five clusters. (C) Line plots showing average GCH methylation values in retained versus (random) non-retained introns.

accessibility levels in retained introns (Figure 7A). More-
over, for the majority of introns, we found that IR gain was
accompanied by a reduction in H3K36me3 signal (Figure
7A). Based on the observed patterns, we hypothesise that
there is an association between chromatin dynamics and IR:
chromatin is more likely to be in a permissive state (high
GCH methylation) in the vicinity of retained introns and
more compact (low GCH methylation) around constitu-
tively spliced introns. Indeed, we observed that chromatin
becomes more accessible as introns become retained (65%
of observations). In other cases, the IR status changes with-
out any change to the chromatin state (35% of observa-
tions).

Based on the observations concerning chromatin acces-
sibility, we sought to assess the relationship between IR
and epigenetic factors in the context of changing chromatin
states, i.e. differential GCH methylation (Figure 7B), and
stable chromatin status, i.e. non-differential GCH methyla-
tion (Figure 7C). In our analysis, we separated first introns
from other introns to detach epigenetic signals associated
with gene promoters. The patterns of CpG methylation,
and H3K27ac, H3K4me3 and H3K4me1 levels in retained
and non-retained introns were similar in both chromatin
modes (dynamic and stable). First non-retained introns dis-
played enrichment for HMs and reduced CpG methylation
levels, while first retained introns had negligible levels of

HMs and were marked by the absence of CpG methylation
(Figure 7B, C, top rows). In contrast, the above-mentioned
HMs were silenced in the internal introns irrespective of
the IR status, while the H3K36me3 signal increased. In-
terestingly, H3K36me3 levels were reduced in retained in-
trons associated with dynamic chromatin (Figure 7B, sec-
ond row, far right), while they remained similar in retained
and non-retained introns associated with stable chromatin
(Figure 7C, second row, far right). To determine whether
H3K36me3 and chromatin accessibility (%GCH) are inter-
dependent, we normalised the H3K3me3 signal by fitting a
generalised linear model where H3K3me3 counts depend
on GCH methylation values. After removing the nucleo-
some occupancy effect, we found the H3K3me3 diminished
with no differences between retained and non-retained in-
trons, thus confirming that H3K36me3 is interlinked with
nucleosome occupancy (Supplementary Figure S13).

One of the most interesting results of this analysis was
that there are no differences in epigenetic marks between in-
ternal retained and non-retained introns when a stable chro-
matin state is maintained (Figure 7C, bottom row). This is
probably due to other factors, such as RBPs, that modulate
IR independent of chromatin accessibility. We also cannot
exclude the possibility that there are other as yet undiscov-
ered mechanisms of IR modulation, such as RNA modifi-
cations (57), demanding further investigation.
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DISCUSSION

In this study, we have employed a machine learning
approach to determine regulators of IR in primary
haematopoietic cells. For the first time, we provide in-
tegrated matched transcriptomic, nucleosome occupancy,
CpG methylation and six histone modification profiles from
five primary human cell types representing two indepen-
dent systems of haematopoietic cell differentiation. Previ-
ous studies have described features that are associated with
retained introns, including a higher intronic GC content,
shorter intron lengths, weaker 5′ and 3′ splice site strengths
and some epigenetic marks (2,14,17). Braunschweig et al.
had previously assessed the importance of intrinsic features
(length and GC content) of introns and neighbouring ex-
ons, as well as splice site strengths, for IR decisions. Us-
ing Kolmogorov–Smirnov statistics and a logistic regres-
sion model, they found that cis-acting features are predic-
tive of IR in human neural tissues. However, this and other
studies have used single or paired omics layers (mRNA-Seq;
WGBS) only, missing out on important epigenetic factors.
Moreover, they often used individual cell lines for their anal-
yses, missing out on cell type-specific differences in epige-
netic IR regulation.

Machine learning helps determine regulators of alternative
splicing

We applied supervised machine learning using EN and cRF
algorithms as well as a support vector machine. Unlike deep
learning methods, which are very capable of identifying
complex relationships but do not provide tools to determine
how exactly an outcome was determined (58), these multi-
variate models allow the identification of features that con-
tribute most to the outcome of interest (IR). Such a mod-
elling strategy is ‘data independent’ and can be applied to
other forms of alternative splicing as well. For example, RF
has been used to study the importance of chromatin modifi-
cations in the interaction between topologically associated
domains (59), and EN was used to model prognostic alter-
native splicing signatures in breast cancer (60).

Intrinsic features cannot explain dynamic intron retention

Intrinsic features, such as length and GC content, have been
consistently reported in association with IR across cell types
(1,4) and even across vertebrate species (2,14). Indeed, our
models demonstrated that intrinsic features are the domi-
nant predictors of IR even when we trained them with data
from one cell type and tested their performance on another
cell type. However, since intrinsic features cannot account
for dynamic IR changes, we suspected that epigenetic fac-
tors modulate IR, which was confirmed by our models when
we trained them with features associated with dynamic IR
events. When we trained these models with only intrinsic
features, the prediction accuracies became rather poor.

However, there are other known factors that can influ-
ence the retention of an individual or small groups of in-
trons. These include RBPs (4), RNA Pol II elongation rate
(3,17) and decoy exons (i.e. cryptic exons) (61). A recent
study by Parra et al. has shown that decoy exons interact

with splice acceptor sites and thereby block intron excision,
a phenomenon that seems widespread in terminal erythro-
poiesis (62). Moreover, aberrant IR can be triggered by mu-
tations to splice sites, branch points or other splicing mo-
tifs, and perturbations to splicing enhancer/repressor ex-
pression (11). However, these factors were not included in
our model because we aimed to specifically determine the
impact that epigenetic marks have on IR regulation.

Previous studies have mostly focused on investigating the
functional links between chromatin organization and gene
expression regulation, and found that NFRs at a transcrip-
tion start site are strongly associated with transcription ini-
tiation (63). Nucleosomes were also reported to be prefer-
entially positioned in exons to facilitate their identification
among flanking introns by the splicing machinery (64,65).
However, it is important to note that these findings were re-
vealed using the micrococcal nuclease digestion with deep
sequencing (MNase-Seq) protocol, which is more suscepti-
ble to GC content bias. Kelly et al. (66) showed that nucle-
osome enrichment in exons vs. introns was not observed in
NOMe-Seq data, which they attributed to the technical dif-
ferences between the two experimental approaches. NOMe-
Seq data include the percentage of methylated reads at a
given position as opposed to the count of mapped reads in
MNase-Seq data. Similarly, our NOMe-Seq-based analysis
of chromatin accessibility, quantified by GCH methylation,
did not reveal a specific preference for nucleosomes to be
positioned in exons rather than introns.

Our data strongly support the notion that IR is mod-
ulated through changes in chromatin accessibility. These
changes could be caused by the cell type-specific action
of TFs and chromatin modulators driving differentiation
and polarisation of immune cells. Therefore, it should be
noted that cell-intrinsic differences in chromatin accessibil-
ity might not be induced for the sole purpose of regulating
IR. Our study did reveal the regions of clear GCH enrich-
ment clusters either upstream, downstream or directly at the
splice sites of retained introns in contrast to non-retained
introns. High GCH methylation levels, like those observed
in retained introns, are indicative of NFRs, regions of pos-
sible nucleosome eviction that are characterised by a high
density of methylated GCH sites and unmethylated CpG
dinucleotides (37). Interestingly, You et al. showed that a
loss of nucleosome-depleted regions accompanied by nu-
cleosome occupancy precedes changes in endogenous CpG
methylation in OCT4 and NANOG genes in the embryonic
carcinoma cell line NCCIT (67). The formation of an NFR
upstream from the 5′ exon/intron boundary led to DNA hy-
pomethylation and the depletion of H3K36me3 in SETD2-
deficient tumours (68). It is therefore reasonable to conclude
that alteration of the epigenetic landscape attributed to IR
initially starts with changes in nucleosome architecture and
subsequent transcriptome rewiring.

Apart from signalling a nucleosome eviction, high levels
of GCH methylation potentially mark regions with longer
inter-nucleosomal spacing, also known as DNA linker re-
gions. A study estimating nucleosome phasing in single cells
found great agreement between average linker length mea-
sured with scNOMe-Seq and the phase estimates derived
from MNase-Seq (69). Linker length ranges between ∼20
and 90 bp, varies among different species and tissues, and
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even fluctuates within a single cellular genome (70). Nucle-
osome phasing has been linked to alternative splicing be-
fore, where RNA Pol II elongation rates increase upon hi-
stone depletion, and pre-mRNA splicing is delayed (71).
Previous studies identified nucleosomes as physical barri-
ers to efficient transcription elongation in vitro; however,
in vivo they are efficiently removed from transcribed chro-
matin (72). RNA Pol II was also found to be involved in
maintaining nucleosome phasing in the transcribed region,
where longer RNA Pol II dwell times, associated with slow
transcription, allowed for remodelling of H3K36me3 pro-
files (73).

In regions further downstream of transcription start sites,
nucleosome positioning becomes less stable (63) and linker
region lengths become non-uniform. We therefore propose
that the differences in DNA methylation and H3K36me3
signal observed in internal introns reflect the underlying
changes in nucleosome organisation, that in turn propagate
IR. In the presence of IR, transcription rates are faster over
more spaced out nucleosomes which does not allow suffi-
cient time for a ‘writer’ to deposit H3K36me3 in the splicing
region (73). CpG sites in the DNA linker regions are usually
unmethylated (69) and therefore may explain the reduced
DNA methylated levels associated with IR (74).

In the proximity of transcription start sites, strong
histone modification levels (like those we observed for
H3K4me3 and H3K27ac) indicate a well-positioned nucle-
osome (75), while reduced histone modification levels, par-
ticularly reduced H3K4me3, are associated with TF bind-
ing (76). TF-binding sites can undergo nucleosome remod-
elling (77) in the form of nucleosome shifts or nucleosome
eviction, and the formation of an NFR with associated
changes to RNA Pol II elongation rates. We propose that
IR in first introns might be a by-product of functional his-
tone modifications and nucleosome remodelling for the pur-
pose of TF recruitment in the regions proximal to transcrip-
tion start sites. Interestingly, Dey and Mattick have recently
identified enrichment of H3K4me3 histone modifications
in short first retained introns of long non-coding RNAs
(78).

In conclusion, our results advance our understanding of
alternative splicing regulation. We found an unanticipated
strong contribution of chromatin organization in IR mod-
ulation where nucleosomes position upstream or down-
stream of retained introns (determined by the length of
linker regions and NFRs) to facilitate acceleration of RNA
Pol II elongation and increased IR. Furthermore, the mod-
els generated in this study can be adapted to study epi-
genetic gene expression and alternative splicing regulation
in other cell systems, other species, in health or disease,
and further our understanding of these essential biological
mechanisms.
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González-Vallinas,J., Eyras,E., Le Dily,F., Zaurin,R., Soronellas,D.,
Vicent,GuillermoP. et al. (2013) Nucleosome-driven transcription
factor binding and gene regulation. Mol. Cell, 49, 67–79.

78. Dey,P. and Mattick,J.S. (2021) High frequency of intron retention
and clustered H3K4me3-marked nucleosomes in short first introns of
human long non-coding RNAs. Epigenetics Chromatin, 14, 45.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkac994/6819938 by Jam

es C
ook U

niversity user on 15 N
ovem

ber 2022


