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Abstract—During the past two decades, epileptic seizure de-
tection and prediction algorithms have evolved rapidly. How-
ever, despite significant performance improvements, their hard-
ware implementation using conventional technologies, such as
Complementary Metal–Oxide–Semiconductor (CMOS), in power
and area-constrained settings remains a challenging task; espe-
cially when many recording channels are used. In this paper,
we propose a novel low-latency parallel Convolutional Neural
Network (CNN) architecture that has between 2-2,800x fewer
network parameters compared to State-Of-The-Art (SOTA) CNN
architectures and achieves 5-fold cross validation accuracy of
99.84% for epileptic seizure detection, and 99.01% and 97.54%
for epileptic seizure prediction, when evaluated using the Uni-
versity of Bonn Electroencephalogram (EEG), CHB-MIT and
SWEC-ETHZ seizure datasets, respectively. We subsequently
implement our network onto analog crossbar arrays comprising
Resistive Random-Access Memory (RRAM) devices, and provide
a comprehensive benchmark by simulating, laying out, and
determining hardware requirements of the CNN component of
our system. To the best of our knowledge, we are the first to
parallelize the execution of convolution layer kernels on separate
analog crossbars to enable 2 orders of magnitude reduction
in latency compared to SOTA hybrid Memristive-CMOS Deep
Learning (DL) accelerators. Furthermore, we investigate the ef-
fects of non-idealities on our system and investigate Quantization
Aware Training (QAT) to mitigate the performance degradation
due to low Analog-to-Digital Converter (ADC)/Digital-to-Analog
Converter (DAC) resolution. Finally, we propose a stuck weight
offsetting methodology to mitigate performance degradation due
to stuck RON/ROFF memristor weights, recovering up to 32%
accuracy, without requiring retraining. The CNN component of
our platform is estimated to consume approximately 2.791W of
power while occupying an area of 31.255mm2 in a 22nm FDSOI
CMOS process.

Index Terms—CNN, Seizure Detection, Seizure Prediction,
EEG, RRAM, Memristive Crossbar Array

I. INTRODUCTION

EPILEPSY is a common neurological disorder that affects
approximately 1% of the world’s population [1]. A

seizure is characterized by excessive firing of neurons in the
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Fig. 1. An overview of a typical epileptic seizure detection and prediction
system. Acquired EEG signals are sampled and processed near-sensor using
an Analog Front End (AFE), prior to being sent wirelessly to edge device(s)
for real-time pre-processing and feature extraction. Features can then be fed
into ML and/or DL architectures, residing either on the IoT edge or in the
IoT cloud, which perform epileptic seizure detection and prediction.

brain, while epilepsy is a medical condition that involves re-
current seizures [2]. As the underlying occurrence mechanism
of epilepsy is not well understood [3]–[5], it requires exper-
imental methods of treatment that rely on accurate detection
and prediction systems, as depicted in Fig. 1.

EEG is the most common method used to monitor the
electrical activities of the brain, and can be used to detect and
predict seizures. There have been numerous applications of
traditional ML algorithms, such as Support Vector Machines
(SVMs), k-Nearest Neighbor (kNN), and Random Forest (RF)
classifiers to classify ictal (seizure), preictal (prior to a seizure)
and non-ictal (non-seizure) signals using EEG recordings. De-
spite being able to achieve high accuracies, these approaches
require the manual extraction and selection of features in the
time- or frequency-domain [6]. The optimal choice of such
feature extractions are largely unknown, experimental, and
dependant on specific patient signatures, such that there is no
one-fit-all solution.

Compared to traditional seizure classification algorithms,
DL-based algorithms have more advantages in complex EEG
signal feature extraction, as they do not require feature
engineering, and are capable of outperforming traditional
ML algorithms for epileptic seizure detection and prediction
tasks [7]. However, when these DL systems are implemented
using CMOS, there are problems such as large scale, high
calculation energy consumption and high delay, which hinder
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their efficacy; especially in resource-constrained environments.
In order to solve this kind of problem, this paper proposes

a neuromorphic calculation strategy based on a novel In-
Memory Computing (IMC) RRAM architecture, which uti-
lizes analog crossbars. Computer designers have tradition-
ally separated the role of storage and compute units. The
IMC paradigm blurs this distinction, and imposes the dual
responsibility on memory substrates: storing and computing
on data for massively parallel computing [8]. By exploiting
the physical characteristics of emerging analog device tech-
nologies, analog crossbars can be used to perform Vector-
Matrix Multiplications (VMMs), the most dominant operation
in CNNs, in as little as O(1) [9], [10], significantly reducing
the computational complexity during inference operations. Our
specific contributions are as follows:

1) To the best of our knowledge, we are the first to
parallelize the execution of convolution layer kernels on
separate analog crossbars to address the computational
bottleneck of CNNs, enabling 2 orders of magnitude
reduction in latency compared to current SOTA hybrid
Memristive-CMOS DL accelerators;

2) We reduce the number of required parameters by 2-
1,600x and 5-2,800x for epileptic seizure detection and
prediction tasks using deep learning models, while still
achieving SOTA performance;

3) We provide a comprehensive benchmark for hardware
memristor-based seizure prediction/detection systems by
simulating, laying out, and determining hardware re-
quirements of the CNN component of our system;

4) We propose a simplified stuck weight offsetting method-
ology for mitigating severe degradation of system per-
formance due to stuck RON/ROFF memristor weights.
We demonstrate that our method is capable of achieving
up to 32% performance recovery, without requiring
retraining, while incurring minimal hardware and com-
putational overhead.

To promote reproducible research, all of our simulation codes
are made publicly accessible1. The rest of the paper is struc-
tured as follows: In Section II, we overview and discuss related
work. In Section III, we present our epileptic seizure detection
and prediction system. In Section IV, we overview and discuss
our software methodology. In Section V, we overview and
discuss our hardware simulation methodology. In Section VI,
we present and discuss our results. Finally, we conclude the
paper in Section VII.

II. RELATED WORK

In this section, we present an overview of related work using
parallel CNNs and related work using traditional and neu-
romorphic ML architectures for the detection and prediction
of epileptic seizures using EEG and Intracranial Electroen-
cephalography (iEEG) signals.

A. Parallel CNNs
Parallel CNNs are composed of one or many convolutional

layers, which are executed in parallel and have been previously

1https://anonymous.4open.science/r/7f3fd487-2e87-4d47-8d26/

used in many applications. For example, in the ResNeXt [12]
family of architectures, parallel blocks containing convolu-
tional layers were used to increase network width, which can
decrease the time required to train a CNN [13]. When perform-
ing multi-modal DL, parallel convolutional layers can be used
to process different inputs in parallel [14], in order to improve
network throughput. Specifically for epileptic seizure detection
and prediction tasks, parallel convolutional layers have been
used to learn high-level representations simultaneously [15].
By parallelizing convolutional operations, inference time is
greatly reduced compared to current SOTA architecture that
rely on sequential convolution layers, as convolution layers
form the bottleneck of CNN inference.

B. Traditional EEG-based Seizure Detection and Prediction
Algorithms

As early as 1996, initial attempts were made to detect
seizures using EEG signals and traditional ML approaches.
Using a combination of Artifical Neural Networks (ANNs)
and wavelet transforms, sensitivity values of 76% [16] and
97% [17], were reported using standardized datasets. In the
late 2000s and early 2010s, SVMs encountered growing
interest. Namely, when using SVMs in combination with
feature extraction methods such as high-order spectra analysis,
wavelet transforms, Fast Fourier Transforms (FFTs), wavelet
decomposition and least-squares parameter estimators [18]–
[27], promising sensitivity, specificity, and accuracy values
≥98.5% were achieved. More recently, advances in the DL
domain using CNNs and Recurrent Neural Networks (RNNs),
have further benefited seizure detection algorithms. Current
SOTA models are capable of achieving accuracy ranging from
95-100% [28]–[31] across multiple datasets.

Early efforts for seizure prediction started in 1970s, where
seizure warning systems were designed with logic circuitry to
classify extracted features from a series of filters and analog
circuitry [32], [33]. To varying degrees of success, a variety of
methods have been proposed, including a rule-based method
using univariate measures [34], spike rate analysis [35], posi-
tive zero-crossing intervals analysis [36], statistical dispersion
measures [37], multidimensional probability evolution [38],
circadian concepts via probabilistic forecasting [39], and a
combination of reinforcement learning, online monitoring
and adaptive control theory [40]. Similarly to seizure detec-
tion, many DL techniques have also been applied. Notable
contributions include the combination of CNNs and RNNs,
capable of achieving 99.6% accuracy and a False Positive
Rate (FPR) of 0.004 per hour [41]. Moreover, supervised
deep convolutional autoencoder and bidirectional long short-
term memory networks have been used to achieve accuracy,
sensitivity, specificity, and precision values between 98-99%,
with F1-values ≥0.98. More recently, augmented DL network
architectures have been used to reduce computational com-
plexity for operation in resource-constrained environments.
One such approach, which employs CNNs with minimizing
channels, is capable of achieving 99.47% accuracy, 97.83%
sensitivity, 92.36% specificity, with a FPR of 0.0764 [42].
Finally, Siamese models have been used to achieve 88-91%

https://anonymous.4open.science/r/7f3fd487-2e87-4d47-8d26/


3

Raw EEG Signals Sampled EEG Signals Features

A
D

C

D
A

C

P
os

t P
ro

ce
ss

in
g

Prediction

g00

g10

g20

gM0

g01

g11

g21

gM1 gM2 gMN

g22

g12

g02

g1N

g0N

g2N

WL0

WL2

WL1

WLM

BL0 BL1 BL2 BLN

(f)

Accelerator

Preictal
Interictal

Ictal

(a) (b) (c) (d) (e)

mean
variance
skewness
kurtosis
coefficient of variation
median absolute 
deviation 
root mean square 
amplitude
shanon entropy

Extracted Features Average PoolingParallel 
Convolutional 
Layers

Fully Connected Layers

64

x0
x1
x2
x3
x4

x63

x13

x12

x11

x10

x9

x8

x7

x6

x5

1088

32x33

32x35 32x68

32x34

Flatten

8

2

F
ea

tu
re

 
E

xt
ra

ct
io

n

conv1
k=32
s=1
p=1, f=32

conv2
k=30
s=1
p=1, f=30

pool1
k=2

fc1
M=8

fc2
M=2

Fig. 2. A high-level system architecture overview. (a) Raw EEG signals are sampled and digitized using ADCs. (b) Features are extracted from sampled
EEG signals. (c) Extracted features are fed into a memristive DL accelerator. (d) Accelerator outputs are processed. Fig. 3 depicts the detailed hardware
implementation of the accelerator. (e) Processed accelerator outputs are used to determine interictal, preictal, and ictal states. (f) The novel neural network
architecture used consists of two parallel 1d-convolutional layers, one average pooling layer, and two fully connected (dense) layers. N is used to denote the
batch size, i.e., the number of batches presented to the network in parallel. f denotes the number of filter. k determines the filter size. s denotes the stride
length. p denotes the padding. M denotes the number of output neurons for each fully connected layer. Parts of this figure are derived from [11].

accuracy on the CHB-MIT dataset [43]. We refer the reader
to [44] for a comprehensive survey of EEG seizure detection
and prediction algorithms.

C. Hardware Implementations of EEG-based Seizure Detec-
tion and Prediction Algorithms

Many hardware implementations of epileptic seizure detec-
tion and prediction algorithms have been reported using a va-
riety of technologies; namely Field Programmable Gate Array
(FPGA), CMOS and Very-large-scale Integration (VLSI) [45],
[46]. Complementing traditional hardware implementations,
IMC architectures, which use memristive crossbar arrays to
perform repetitive operations in-memory, have gained increas-
ing popularity in recent years. Kudithipudi et al. implemented
a neuromemristive reservoir computing architecture to achieve
90% accuracy and Merkel et al. achieved 85% accuracy [47],
[48]. Nature-inspired memristive Cellular Automata (CA) was
implemented by Karamani et al. to emulate epilepsy-related
phenomena in the brain [49].

Recent works by Liu et al. implemented Finite Impulse
Response (FIR) filter bank on memristive crossbar array
to achieve 93.46% seizure detection accuracy and obtained
95% accuracy by using a memristive crossbar based signal-
processing stage combined with linear discriminant classi-
fier [50]. Lammie et al. pioneered the implementation of

CNNs for seizure prediction using memristor arrays, achieving
77.4% sensitivity and 0.85 Area Under the Receiver Operating
Characteristic Curve (AUROC) on the CHB-MIT dataset [11].

Seizure is a chronic, recurring condition that can mostly be
prevented through medication before onset [51], but even with
the best medications, 30% of the patients are drug-resistant
[52]. Closed-loop brain stimulation has been found to mitigate
and even improve symptoms [53], [54], but unpredictability of
seizure requires a closed-loop prediction system to provide ac-
curate warning with adequate preparation time for stimulation
[55]. This calls for the need for fast, low-latency computations,
as the changes within the patients can be noticed early-on, in
order to start treatments early to improve safety and quality of
life [56]. In doing so, symptoms and subsequent effects can
be minimized, including anxiety and social exposition [57].
The major limiting factor of seizure detection and prediction
algorithms is the reliance on patient specific features, leading
to undesirable results when generalized to other patients in the
real world [58]. With energy efficient computations, it enables
the deployment of such systems within wearable devices, so
that it can be coupled with the stimulation system, as well as
allowing data for a patient to be collected in the long-term to
further improve model’s predictions by fine tuning the model
to better recognize patient-specific signatures [59].

It is known that convolutional layers are the bottlenecks
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of CNNs. According to Cong et al., convolutions make up
more than 90% of CNN inference [60]. Therefore, accelerating
convolution is pivotal to efficient CNNs for future seizure
detection/prediction systems. Note that all existing hardware
implementations of CNN memristive accelerators focus on
sequential CNNs. Memristive crossbar acceleration of paral-
lelized convolution layers and blocks, found in many CNN
architectures such as ResNeXt [12], are explored in this work
to further reduce inference latency.

III. SEIZURE DETECTION AND PREDICTION SYSTEM

In this section, we present our seizure detection and pre-
diction system. As shown in Fig. 2, our system comprises of
five stages, depicted using Fig. 2(a)-(e). As the same network
architecture, depicted in Fig. 2(f), is used for both detection
and prediction, and networks are bench-marked using multiple
datasets, our proposed system can be reconfigured for both
epileptic seizure and prediction tasks. While we briefly detail
and discuss signal acquisition and pre- and post-processing
stages, here-on-in, the scope of this paper will be largely
confined to the accelerator step described in Fig. 2(d). We
leave a detailed hardware description and evaluation of other
stages to future work.

A. Parallel Convolutional Neural Network Architecture

The primary constraint put on our design was a fixed
modular tile size of 64×64. Practically, passive memristor-
based analog crossbar tiles of sizes up to 128×64 have been
used to perform VMMs [9], however such designs have only
been demonstrated using pseudo-crossbars having micron-size
electrodes. Such limitations in the maximum viable size are a
serious computational scalability challenge with electrodes in
the tenth of nanometer range that would prevent sinking large
currents through them [61]. Recently, a 4K memristor analog-
grade passive crossbar circuit has been fabricated [62], which
comprises several modular 64 x 64 passive crossbar tiles with
99% functional nonvolatile metal-oxide memristors. From an
original exploratory investigation, it was determined that for
the RRAM device being modelled, the largest feasible modular
tile size which is able to be programmed using a write-verify
scheme was 64×64. Consequently, this fixed modular tile size
was used in our designs to minimize the power and area
overhead of peripheral circuits and tile interconnects, which
are much larger when smaller fixed modular tiles are used.

B. Model Search and Selection

Most current state-of-the-art CNNs employ sequential con-
volution layers, whereby subsequent convolution operations
are dependent on results from previous layers. However, in
parallel CNNs, convolution layers can be processed simultane-
ously, enabling the use of multiple crossbars at the same time.
In addition, parallel convolution layers with different kernel
sizes enable the network to extract features of varying recep-
tive fields, providing the fully connected layers a diverse and
yet compact representation of the features for classification;
enabling a reduction in network parameters required.

Algorithm 1 Model Search and Selection Methodology
Input: Fixed modular crossbar tile size (m × n), OBJmax,

objectives to minimize, OBJmin, additional hardware design
constraints, w.

Output: Optimized network architecture (L,D,α,β), where
L is the number of convolutional layer blocks, D is the
number of fully connected layers, α is a vector containing
the sizes of the first kernel for each convolutional layer
when parallel convolutional layer execution is performed,
and β is a vector containing the number of output neurons
for each fully connected layer
minimize OBJ(m,n,L,D,α,β) subject to w.

procedure NETWORK ARCHITECTURE(m,n,L,D,α,β)
for l = 0 to L− 1 do . For each convolutional layer

Cinl = m . Input channels
Coutl = floor(n / 2) . Output channels
if parallel convolutional layer execution then

kl0 = αl, kl1 = m− 2−αl . Set kernel sizes
else

kl = m− 1 . Set kernel size
end if

end for
for d = 0 to D− 2 do . For each fully connected layer

md = βl . Set number of output neurons
end for
mD−1 = 2 . Last layer

end procedure

function OBJ(m,n,L,D,α,β,w)
maximize EVAL(Net) and minimize PARAMS(Net), .

i.e., determine L, D, α, and β, where EVAL determines
the validation accuracy, and PARAMS determines the total
number of network parameters

where,
Net = NETWORK ARCHITECTURE(m,n,L,D,α,β)

return OBJmin(Net)
end function

As shown in Fig. 2, our proposed CNN architecture consists
of two parallel convolution kernels. Algorithm 1 formalizes
the methodology used to search for and select the employed
model. For our selected model, latency was minimized us-
ing OBJmin. L, D, and β were fixed to values determined
empirically using a preliminary exploratory analysis, and α
was optimized as per Algorithm 1. The following additional
hardware design constraints were imposed for our design: all
convolutional layers must be capable of fitting onto one mod-
ular crossbar tile, and the total number of required modular
crossbar tiles must not exceed 8.

As the convolution operation bottlenecks CNN inference,
the size of kernels used in parallel convolution layers need to
be carefully considered to optimize both network performance
and latency. In our proposed architecture, shown in Fig. 2(f),
we have two parallel convolution layers and one average pool-
ing layer, comprising one convolutional block. To parallelize
the two convolution layers, it would be necessary to map the
weights of the two convolution layers onto two separate cross-
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bars. As a design choice, we wanted to retain the flexibility
of mapping both convolution layers onto the same crossbar, if
space complexity is prioritized over latency. Therefore, during
the kernel size search, we imposed a constraint of 62, i.e.,
m − 2, for the sum of convolution kernels, as 2 additional
rows are designated for implementing the bias for both parallel
convolution layers.

When denoting the kernel size of the first parallel con-
volutional layer as α, the kernel size of the second parallel
convolutional layer can be expressed as 62−α. To determine
the optimal network architecture, the University of Bonn’s
EEG seizure dataset [63] was used. Specifically, a 80:20 train
validation split was employed, and EVAL(Net) was used to
determine the 5-fold cross validation accuracy. Seed values
of 32 and 8 were arbitrarily set for the network architecture
search, to ensure reproducibility of results, and to reduce bias
between search and validation.

Empirically, L = 1, D = 2, and β=[8,] achieved substantial
performance. For the single convolutional block, α0 was
varied between 31 and 60. A validation accuracy of 100%
was achieved for all values of α0, except for α0 = 60, which
achieved an optimal validation accuracy of 99.375%. This
is not surprising, as the window size of input data is only
64. Therefore, convolution kernel sizes of 60 and 2 provides
two extreme and dramatically different receptive fields. In
particular, a kernel size of 2, which corresponds to around
10ms of data at 173.61Hz, is likely insufficient to capture
local correlation and learn seizure characteristics. The final
model was chosen using Occam’s razor principle, whereby
the simplest model is the best model. Consequently, a kernel
size of 32 was selected, as a kernel size 31 would be the
simplest to implement due to symmetric convolution kernel
sizes; however 32 provides a more diverse receptive field.
To further demonstrate the advantage of varied kernel size,
a 5-fold cross-validation was performed using a) 64 filters
of kernel size 31 b) two parallel convolution layers each
with 32 filters of kernel size 30 and 32 (see Fig. 2). It was
observed that both networks are capable of achieving accuracy
varying between 99.61% to 99.83%, but varied kernel size
leads to +0.03%, -0.01%, +0.02% change in performance
on Bonn, SWEC-ETHZ and CHBMIT datasets, respectively,
compared to using 64 filters of kernel size 31. Although a
small degradation in performance is observed for SWEC-
ETHZ dataset, improvements are observed for both Bonn
and CHBMIT dataset. A net improvement is observed for
both seizure detection and prediction using a varied kernel
size, while both experiments employ an identical number of
weights.

C. Hardware Architecture Hierarchy

In Fig 3, we present our hardware architecture hierarchy.
The processing engines comprises 7 memristive crossbar array
tiles, as well as I/O registers, eDRAM buffers, and peripheral
circuits for ReLU, subtract, and average pooling. We present
two configurations for our tile, Time-Division Multiplexing
(TDM), and parallelized. In the TDM case, each tile contained
a S+H and an ADC for reading out column currents, and one

Fig. 3. Architecture hierarchy of our memristive DL accelerator with (a)
TDM and (b) Parallelized Implementation.

DAC per row for reading inputs in parallel, as shown in Fig.
3(a). In the parallelized case, each tile contains 64 ADCs, as
shown in Fig. 3(b).

IV. SOFTWARE METHODOLOGY

To train and evaluate our epileptic seizure detection and
prediction system, we benchmarked our system using one
epileptic seizure detection task and two epileptic seizure
prediction tasks. For epileptic seizure detection, the University
of Bonn’s EEG seizure dataset [63] was used. For epileptic
seizure prediction, the CHB-MIT Scalp EEG [64], and the
long-term SWEC-ETHZ iEEG [65] datasets were used.

To perform epileptic seizure detection and prediction, EEG
and iEEG samples can be categorized as either ictal, interictal
or preictal. Ictal samples indicate the presence of a seizure,
interictal samples are periods between seizures, and preictal
samples can be used to detect the onset of a seizure. For
epileptic seizure detection, binary classification is performed
between ictal and interictal samples. For epileptic seizure
prediction, binary classification is performed between preictal
and interictal samples. For both epileptic seizure detection
and prediction tasks, on account of unbalanced classes, 5-fold
cross validation was used to train and validate our network
architecture.

A. Training and Evaluation Methodologies

1) Epileptic Seizure Detection: The University of Bonn’s
EEG seizure dataset is comprised of 5 sets (A-E), where set
A is normal with open eyes, set B is normal with closed eyes,
set C and D is seizure free intervals, and set E is seizure
only activities. Each set contains 100 single-channel EEG time
series of 23.6 seconds, with 4,096 samples in each time series.
All data were collected at 173.61 Hz, at a resolution of 12 bits.
To perform binary classification between ictal and interictal
samples, all samples from sets A and E were used.
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TABLE I
OVERVIEW OF CASES USED TO PERFORM EPILEPTIC SEIZURE PREDICTION

FROM THE CHB-MIT SCALP EEG (CHB-MIT) AND THE LONG-TERM
SWEC-ETHZ IEEG (SWEC-ETHZ) DATASETS.

Patient Seizures Interictal Hrs.∗ Preictal Hrs.∗ Interical Smp.† Preictal Smp.� Synthetic Preictal Smp.�

CHB-MIT

1 7 33.74 0.43 1,898 24 42
2 3 32.85 0.14 1,848 8 14
3 7 30.86 0.39 1,736 22 37
5 5 33.85 0.30 1,904 17 30
8 5 14.93 0.36 840 20 3

SWEC-ETHZ

1 2 19.91 1.00 1,120 56 108
2 2 19.91 1.00 1,129 56 108
3 4 29.87 1.99 1,680 112 216
5 4 29.87 1.99 1,680 112 216
6 8 69.69 3.48 3,920 196 430

∗Hours. †Samples.
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Fig. 4. Depiction of (a) our adopted overlapped sampling technique extracting
n samples from a continuous preictal segment, and (b) the SPH and SOP
terms. As can be seen, continuous preictal segments are extracted during the
SPH. All preictal samples that occur during the SOP period are discarded.

Both sets (A and E) were divided into samples of 64 seconds
periods and randomly shuffled. No augmentation and pre-
processing techniques, such as normalization, were performed,
as CNNs are capable of automatic feature extraction from
time-series data and are robust to noise. The lack of need
for pre-processing steps implies reduced hardware complexity
to perform such operations. Using the network model (with
optimal kernel sizes determined in Section III-B), a 5-fold
cross-validation strategy was used to determine network’s
performance. To determine performance, the mean of left out
set accuracy, sensitivity, specificity, false-positive rate and the
AUROC across folds of 5-fold cross-validation were reported.

2) Epileptic Seizure Prediction: The CHB-MIT Scalp EEG,
and the long-term SWEC-ETHZ iEEG datasets were used.
The CHB-MIT Scalp EEG dataset comprises of 23 cases,
which were collected from 22 subjects (5 males, ages 3–22;
and 17 females, ages 1.5–19). The last case was obtained 1.5
years after the first, from one of the female subjects [64]. All
signals were sampled at 256Hz with 16-bit resolution, using
23-26 electrodes. During data acquisition, no augmentation
steps were performed.

The long-term SWEC-ETHZ iEEG dataset comprises of 18
patients with pharmaco-resistant epilepsy, who were evaluated
for surgery at the Sleep-Wake-Epilepsy-Center (SWEC) of
the University Department of Neurology at the Inselspital
Bern [65]. All signals were sampled at either 512Hz or 1025Hz
with 16-bit resolution, using 26-100 electrodes. During data
acquisition, after analog-to-digital conversion, a digital band-
pass filter was used to filter signals between 0.5 and 150Hz
using a fourth-order Butterworth filter. Moreover, forward and
backward filtering was applied to minimize phase distortion.

Due to computation burden of crossbar simulation, we
report the performance using the first 5 viable cases of the

the CHB-MIT Scalp EEG and long-term SWEC-ETHZ iEEG
datasets, reducing the computation required, similar to [15],
[66]. In Table I, we present an overview of all cases used
to perform binary classification between preictal and interictal
samples. A case was categorized as viable if it contained valid
labels (namely time-stamps) and data files (i.e., no recording
files were missing or corrupt). For both datasets, the first 22
channels of each patient were extracted and used. All signals
were down-sampled to 256Hz, and a window size (batch size)
of 64s was used when extracting samples. After discarding
seizures that occur in the first 20-minute monitoring period,
a Seizure Occurance Period (SOP) of 30m and a Seizure
Prediction Horizon (SPH) of 5m were used to extract and label
preictal samples for all cases; both of which have previously
demonstrated significant performance [66]. These terms are
defined visually in Fig. 4. Interictal samples were extracted
from one hour recording segments containing no seizures (ictal
samples) to reduce class inbalance during training.

Next, 176 features per sample were extracted (8 per channel
per window/batch interval): the mean, variance, skewness,
kurtosis, coefficient of variation, median absolute deviation of
EEG amplitude and Root Mean Square Amplitude (RMSA),
and the shannon entropy. Since the input size of the proposed
network is 64, the dimensionality of the input data needed to
be reduced. A correlation analysis was first performed across
the 176 extracted features, but no particular channel could be
removed as no strongly correlated channels were discovered.
Using Principal Component Analysis (PCA), linear dimen-
sionality reduction via Singular Value Decomposition (SVD)
enabled the projection of data to lower dimensional space of 64
principal axes. During training, synthetic preictal samples were
generated using an overlapped sampling technique inspired
by [44], by sliding a 64s window with a stride of 32s across
continuous preictal segments extracted during the SPH period,
as depicted in Fig. 4. The same cross-validation training and
evaluation strategy and metrics as described in Section IV-A1
was employed.

V. HARDWARE METHODOLOGY

In this section, we discuss our device technology selec-
tion, memristor crossbar array implementations of CNNs, and
present our adopted hardware simulation methodology.

A. Device Technology Selection

Computing with charge-based computing devices is attrac-
tive due to their technological maturity, even though they have
a relatively large area footprint even at advanced technology
nodes and face severe scaling challenges [67]. Resistance-
based memory, in contrast, can be scaled to the nanometer
scale, and has the potential of forming cross-point structures
without using access devices, achieving ultra high density.
RRAM devices are used in our design, as they are widely
considered to be the most promising emerging resistance-
based memory technology- they operate faster than Phase-
Change Memory (PCM), have a simpler and smaller cell struc-
ture than Magnetoresistive Random-Access Memory (MRAM)
and Conductive Bridging Random-Access Memory (CBRAM)
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Fig. 5. A comparison of possible mapping schemes. (a) visualizes the
staggering mapping of convolution weights, which is commonly adopted due
to its ability to produce all results within a single pass through the crossbar
array. (b) visualizes our proposed mapping scheme, without staggering of
convolution weights and sparsity in crossbar, at the cost of increased read/write
operations. (c) provides a comparison of methods (a) and (b), visualizing when
one method should be chosen over the other.

Tile 1 Tile 2 Tiles 3-6

Tile 7 Legend

First Convolutional Layer 
Weights | conv1

First Convolutional Layer 
Biases | conv1

Second Convolutional Layer 
Weights | conv2

Second Convolutional Layer 
Biases | conv2

Weights | fc1

Weights | fc2

Unused Devices

First Fully Connected Layer

Second Fully Connected Layer

Fig. 6. The crossbar parameter mapping layout adopted. Seven 64 × 64
modular crossbar tiles are utilized. Bias terms of fully connected layers,
and the single pooling layer, pool1, are computed using additional digital
circuitry. To reduce the number of unused devices, parameters of different
layers are shared between tiles.

devices, and are made of materials that are common in
semiconductor manufacturing [67].

B. Memristor Crossbar Array Implementations of Parallel
CNNs

Consider the conductance values of a crossbar array as a
matrix and input voltages to a crossbar as a vector. The output
current from the crossbar, determined using Kirchoff’s and
Ohm’s Law represents the result of the VMM. Such operations
form the core of CNNs. Being able to accelerate and paral-
lelize them would facilitate the real-time operation of deeper
and heavier neural networks for epileptic seziure detection and
prediction in resource-constrained hardware [68].

To represent signed weight matrices on memristive crossbar
arrays, as negative conductance values cannot be expressed us-
ing analog memristive devices, a differential mapping scheme
was adopted, where two columns of memristors are chosen
to represent positive and negative weights, respectively. The

signed output is thus the arithmetic difference of current from
both columns. In the case of 1D CNNs, fully connected
and convolutional layers can be decomposed into a series
of dot products between inputs, represented as voltages, and
weights, represented as memristive conductance. For convo-
lutional layers, the im2col algorithm [69] can be used to
map convolutional kernels onto separate crossbar columns.
With a single pass, m 1D convolutions can be performed
simultaneously, where m represents the number of columns.
Average pooling and ReLU operations are performed using
additional digital circuitry.

C. Hardware Simulation Methodology

Based on existing literature from Section II-C, all mapping
of convolution kernels onto crossbars are sparse, whereby the
convolution kernels form a sparse diagonal matrix, as depicted
in Fig. 5(a). This naive approach is extremely space demand-
ing, as the kernels are staggered multiple times throughout
the crossbar array, rendering a lot of memristive cells unused.
To reduce the space requirement of mapping scheme (a), one
possible approach is to build upon the input-stationary concept.
One may remap the crossbar weights during inference and
replace them with different kernel weights, while reusing the
input fetched from memory.

On the other hand, one may build upon the weight-stationary
concept, as depicted in Fig. 5(b). In this scheme, convolution
kernels can be mapped without staggering before inference.
For kernels to convolve against different parts of the signal, the
input signal slides. The bottleneck of this approach now lies
within fetching input data, requiring additional read/write op-
erations on the peripheral of the crossbar compared to mapping
scheme (a). The weight-stationary approach is more efficient
compared to the input-stationary approach, as crossbar weight
writes can be very time and energy consuming, compared to
fetching of inputs and staggering them with shifting circuitry.
Fig. 5(c) provides visualization of when one scheme should
be adopted over the other.

A comparison of the naive approach and our proposed
weight-stationary approach is performed for our network ar-
chitecture in Table II. As can be observed, the number of
memristor cells required for scheme (b) (depicted in Fig. 5
(b)) is significantly smaller, due to the compact nature of the
mapping. This comes, however, at the cost of 33x increase
in computation. When taking sparsity, i.e. unused memristors
depicted by the gray background in Fig. 5 (a), into considera-
tion, scheme (b) demonstrates even more significant reduction,
i.e. 63x-73x fewer memristors required, while the computation
increase remains constant. Unlike convolutional layers, fully
connected layers do not involve sliding of signals, so VMMs
for fully connected layers were implemented using the naive
scheme (a). Using scheme (b), we mapped convolutional
kernels within our trained network onto crossbars tiles of
64×64. While scheme (b) was chosen for our hardware design,
if scheme (a) were chosen with different nker and lker values,
or the added space complexity is not of concern, the staggered
weights of scheme (a) would enable all rows of the crossbars to
be employed simultaneously. By choosing the input size of our
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TABLE II
CROSSBAR MAPPING COMPARISON FOR SPACE AND COMPUTATION TRADE-OFF USING SCHEMES (A) AND (B) IN FIG. 5.

Layer Number of Memristor Cell Required Number of Memristor Cell Required Inc. Sparsity

Scheme (a) Scheme (b) Area Reduction Computation Increase Scheme (a) Scheme (b) Area Reduction Computation Increase

conv1 69,696 2,112 33x 33x 133,184 2,112 63x 33x
conv2 69,440 1,984 35x 35x 145,600 1,984 73x 35x
fc1 17,424 17,424 None None 17,424 17,424 None None
fc2 36 36 None None 36 36 None None

TABLE III
5-FOLD CROSS-VALIDATION RESULT FOR EPILEPTIC SEIZURE DETECTION AND PREDICTION USING OUR NETWORK ARCHITECTURE.

Dataset Bonn CHB-MIT SWEC-ETHZ

Partition Set A vs. E Patient 1 Patient 2 Patient 3 Patient 5 Patient 8 Patient 1 Patient 2 Patient 3 Patient 5 Patient 6

Accuracy 99.84 ± 0.37 99.50 ± 0.89 99.95 ± 0.11 99.95 ± 0.13 99.73 ± 0.57 98.96 ± 2.33 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.86 ± 0.22 100.00 ± 0.00
Sensitivity 99.87 ± 0.28 98.64 ± 2.79 100.00 ± 0.00 100.00 ± 0.00 99.62 ± 0.70 99.76 ± 0.54 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
Specificity 99.80 ± 0.45 99.73 ± 0.37 100.00 ± 0.00 99.93 ± 0.15 99.77 ± 0.52 97.38 ± 5.85 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.77 ± 0.39 100.00 ± 0.00
FP per Hour N/A 0.13 ± 0.17 0.00 ± 0.00 0.03 ± 0.07 0.10 ± 0.22 0.53 ± 1.19 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.08 ± 0.13 0.00 ± 0.00
AUROC 99.84 ± 0.37 99.31 ± 1.06 100.00 ± 0.00 99.82 ± 0.39 99.63 ± 0.79 99.04 ± 2.15 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.84 ± 0.25 100.00 ± 0.00

network to be 64, we maintain the flexibility of mapping with
scheme (a) to make use of all crossbar rows simultaneously.

As Fig. 6 demonstrates, for parallel convolution layers to
be accelerated simultaneously, it was necessary to map the
weights of the conv1 and conv2 onto two separate crossbar
tiles. The weight of the fc1 layer is a matrix of 1088×8, and
using a differential weight scheme, would require 1088×16
memristors. The weight matrix can be further divided into 17
sections of 64×16 weights. To maximize the usage of each
64×64 crossbar array, 4 sections of 64×16 weights can be
stacked horizontally onto each crossbar, requiring a total of 5
crossbar tiles.

Since there are unused memristors on the convolution tiles
and fc2 layer operations are not performed immediately after
convolution operations, we decided to map the weights of fc2
onto the convolution layer tile, instead of using another tile.
Note that since the simulation serves as a validation for proof-
of-concept, we decided to use the same dimensions for all
7 crossbar tiles. We do recognize that tile 1, 2 and 7 have
many unused memristor devices, as a result, performing small
VMMs on a large switch matrix. This leads to large power
overhead due to high amortized ADC/DAC power over a small
matrix and charge/discharge of long row and column wires
without using full length for computation. To address such
problem in a real medical device, instead of using square tiles,
tile 1, 2 and 7 can be easily mapped onto rectangular tiles of
the exact required dimensions.

D. Impact of Device and Crossbar Non-Idealities

Memristors and memristive crossbar arrays are prone to
numerous device and circuit non-idealities which have been
demonstrated to severely impact the performance of mem-
ristive DL accelerators [70]. Consequently, they should be
comprehensively simulated prior to circuit-level realization.
In this paper, preliminary simulations were performed using
the MemTorch [71] simulation framework, and comprehen-
sive simulations of the system using passive crossbar arrays
were performed using the crossbar array model provided

by [72]. Non-idealities considered include input and output
resolutions, weight write resolution, weight write deviation,
stuck RON/ROFF devices, line and source resistance, and
conductance range variation.

Other memristive phenomena, such as the dynamic behav-
ior of switched memristive neural networks after program-
ming [73], and read disturbance [74], are not accounted for,
as practical metal-oxide memristors are endurance-limited,
during programming a write-verify scheme is used, and during
inference, all Bit Line (BL) voltages are constrained to have
a maximum absolute amplitude of 0.3V [74].

E. Stuck Weight Offsetting Methodology

Stuck RON/ROFF weights are known to cause significant
network performance degradation in memristive crossbar ar-
rays. Existing works have demonstrated performance recovery
through a variety of techniques. In 2014, Kannan et al. took
inspiration from SRAM/DRAM technologies and repaired
crossbar defects using redundant rows and columns [75].
In 2017, Liu et al. proposed to identify significant weights
before applying a retraining and remapping algorithm [76].
In 2018, Xia et al. proposed a mapping algorithm with inner
fault tolerance to leverage the differential mapping scheme
of crossbar arrays to tolerate faults [77]. In 2019, Zhang et
al. proposed the use of matrix transformations to reduce the
magnitude of error introduced by stuck-at-fault devices [78].
Also in 2019, Yeo et al. modified conventional transimpedance
amplifiers to detect when abnormal current is detected at a
particular column due to stuck-at-fault devices and repair by
retraining the network with the known defects [79]. Among
those works, significant hardware or software overhead is
introduced through rewriting and tuning of weights, retraining
of networks or using additional circuitry.

To minimize the overhead, we propose stuck weight offset-
ting, which improves upon the inner fault tolerance method.
Inner fault tolerance first identifies all available (non stuck-at-
fault) devices and initializes them to default values. Then, the
scheme goes through all available devices and adjusts each
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TABLE IV
COMPARISON OF OUR BASELINE SOFTWARE MODEL AGAINST SOTA FOR

SEIZURE DETECTION USING THE UNIVERSITY OF BONN DATASET

Paper Pre-processing Method Parallelization Parameters Accuracy (%)

Ullah et al. (2018) 3 1D-CNN 7 21,436 99.90
We et al. (2018) 3 1D-CNN 7 16,778,144 92.00
Abdelhameed et al. (2018) 3 2D-CNN 7 106,388 98.00
Liu et al. (2019) 3 2D-CNN 7 N/R∗ 99.60
Turk et al. (2019) 3 2D-CNN 7 1,603,080 99.45
Abdelhameed et al. (2021) 3 2D-CNN 7 10,304,467 100.00

Ours 7 1D-CNN 3 10,778 99.84

∗Not reported.

value such that the represented values cannot be made any
closer to the target matrix parameter. Intuitively, this serves to
minimize the incorrect contribution of the RON/ROFF weight.
We propose to bypass the initialization of available devices
to default values and to focus on the complementary weight
of stuck-at-fault devices only. Before writing any weights to
the crossbar, all stuck-at-fault devices are identified. For each
stuck-at-fault device, if the complementary weight is not stuck-
at-fault, we calculate its complementary weight to minimize
the difference between represented value and target value. All
calculated values, along with normal weights, are then written
onto the crossbar. This modification reduces overhead by two
means. First, all crossbar weights are only required to be
written once, as opposed to twice in the inner fault tolerance
method (from default to adjusted). Second, our method focuses
on complementary weights for stuck-at-fault devices only, as
opposed to all available devices for all target parameters. This
method incurs minimum additional computational cost, and
does not require retraining.

F. Quantization Aware Training for Lower Resolution Systems

A high resolution system is often not feasible to deploy on
edge devices, given power consumption constraints and sam-
pling frequency requirements, which are fundamental tradeoffs
for resolution in DACs and ADCs. However, lower resolution
systems with improved power and frequency performance can
exhibit performance degradation. This effect was observed for
some patients, and more details can be found in Section VI-C.
For significant performance degradation (a degradation of 5%
or more compared to full resolution system), we propose to
perform Quantization Aware Training (QAT) prior to mapping
the weights onto memristive crossbar arrays [86]. During
QAT, we quantized the convolutional and fully connected
layers of the network to the resolution equivalent to or even
lower than that of the resolution of the crossbar weights
and ADC/DAC resolution. Quantized layers are implemented
using the Brevitas library [86], which provides PyTorch-
compatible convolution and fully connected layers of specified
weight resolutions. In addition, inputs to the network were
quantized, while intermediate outputs remained not quantized.
Network architecture and other training parameters remained
unchanged.

VI. RESULTS AND DISCUSSION

Prior to the investigation of device and crossbar non-
idealities, we report baseline software results for epileptic

seizure detection and prediction using our network archi-
tecture, in Table III. 5-fold cross-validation was performed
using a different seed to eliminate bias on the first fold.
To demonstrate the generalizability of the designed network
to different domains and patients, the same architecture was
applied for seizure detection and prediction. Unlike the Bonn
dataset, both the CHB-MIT and SWEC-ETHZ datasets are
multi-channel EEG datasets with larger memory and com-
putation requirements within the time domain. In order to
reduce the time and memory complexity, pre-processing steps
as described in Section IV-A2 were applied to transform the
dataset into frequency domain. The shown results suggest that
the proposed network is sufficient and can generalize well for
both detection and prediction.

A. Comparisons Against SOTA Software Implementations

In Tables IV and V, we compare our baseline software
implementations that use full precision (32-bit) floating-point
parameters against other software implementations in literature
for epileptic seizure detection and prediction, respectively.
As shown in the Tables, for epileptic seizure detection we
achieve SOTA performance in 3/4 criteria, while for prediction
we obtain SOTA performance in 3/6 criteria. Specifically,
for detection, our network architecture is able to achieve
an accuracy of 99.84% across all samples without any pre-
processing steps, while requiring only 10,778 parameters. This
is ∼2x fewer parameters than the smallest model in [28],
which achieved a slightly higher accuracy of 99.90%, while
employing various pre-processing steps. Except for the model
used in [87], which achieves a 100% accuracy, but requires
over 10M parameters, all the other models shown in Table IV,
achieve lower accuracy values despite significantly higher
number of network parameters.

For epileptic seizure prediction, pre-processing is per-
formed. Across both datasets, our network architecture
achieves the highest sensitivity while requiring the fewest
number of parameters. We report close specificity and accu-
racy values to [15], which has also used a 1D-CNN archi-
tecture with parallelization, but needs ∼10x more parameters.
Finally, we report the highest FPR across both datasets, how-
ever, unlike previous works, we performed no post-processing
steps, which may cause this. Also, only two out of the nine
previous works have reported their FPR, which makes the
comparison incomplete. When mapping trained parameters to
ideal crossbars with fully analog devices without any device
or circuit non-idealities, the same results were achieved.

B. Generalization Between Datasets

To determine whether or not our trained networks have
the ability to generalize, we evaluated the performance of
networks trained using the CHB-MIT dataset on the SWEC-
ETHZ dataset, and vice-versa in Fig. 7. In addition, we
report the cross validation accuracy for networks which have
been retrained using transfer learning. To perform transfer
learning, parameters were frozen for all layers except the
last two fully connected layers, and the weights and biases
of the last two fully connected layers were re-trained using
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TABLE V
COMPARISON AGAINST SOTA FOR SEIZURE PREDICTION USING THE SWEC-ETHZ AND CHB-MIT DATASETS

Paper Method Parallelized Parameters Sensitivity (%) Specificity (%) Accuracy (%) FPR†

CHB-MIT

[66] 2D-CNN 7 N/R� 81.20 N/R� N/R� 0.16
[80] * 2D-CNN 7 N/R� N/R� N/R� 92.00 N/R�
[81] 2D-CNN 7 49,560 82.71 88.21 98.19 N/R�
[82] * 2D-CNN 7 N/R� 88.80 88.60 88.70 N/R�
[83] * 3D-CNN 7 28,459,615 96.66 99.14 98.33 N/R�
[84] * 2D-CNN 7 9,695,012 84.00 99.00 99.00 0.2
[15] 1D-CNN 3 105,538 95.55 99.68 99.64 N/R�

Ours 1D-CNN 3 10,778 99.24 98.68 99.01 0.47

SWEC-ETHZ

[85] * Ensemble HD 7 N/R� 96.38 97.31 96.85 N/R�
[15] 1D-CNN 3 105,538 94.57 99.86 99.81 N/R�

Ours 1D-CNN 3 10,778 98.22 97.02 97.54 0.99

*Indicates the results are reported across the entire dataset and patient-wise performance was not reported. †False positive rate (per hour). �Not reported.

Fig. 7. The ability of our trained networks to generalize between different datasets when performing epileptic seizure prediction. The cross validation accuracy
is reported for networks which have not been retrained, and for networks that have been retrained after 1 and 10 training epochs, respectively, when transfer
learning was performed. In addition, the standard evaluation accuracy is reported for each dataset and patient, to facilitate comparisons.

the training set of the evaluation dataset. Direct evaluations
to/from either of these datasets and the University of Bonn
dataset were not made, as the University of Bonn dataset is
used for epileptic seizure detection and not prediction, and it
is structured differently.

C. Quantization-Aware Training

To demonstrate the effectiveness of QAT, we evaluated the
performance of our network architecture when trained with
and without QAT. Comparisons are made in Fig. 9. During
QAT training, inputs and network weights were reduced to

6-bit resolution, while network architecture and other training
parameters were held constant, as described in Fig. 2(f). The
accuracy, sensitivity, specificity, AUROC, and FPR metrics
were all reported and compared. When using 6-bit ADCs and
DACs, it can be observed that for all patients and metrics,
except for specificity of patient 5 from the CHB-MIT dataset,
QAT network yields significant performance improvements.

D. Effects of Non-Idealities on System Performance

Fig. 8 provides a summary of the impact of non-idealities
on our system for epileptic detection and prediction. For the
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(a) (b) (c) (d)

(e) (f) (g) (h)

University of  Bonn
Averaged Across Seeds Averaged Across Patients

SWEC-ETHZ
Averaged Across Patients

CHB-MIT

Fig. 8. The impact of all (a-g) non-idealities on the University of Bonn, CHB-MIT, and SWEC-ETHZ datasets. (h) summarizes performance recovery by
applying our proposed stuck weight offsetting to address the performance degradation of stuck-at fault devices. For the University of Bonn dataset, each
data-point shows the mean and standard deviation across five arbitrary seed values: 5, 6, 7, 8, and 9.

(a) (c) (d)(b) (e)

Without QAT With QAT

Fig. 9. The impact of QAT on our network architecture tasked for epileptic seizure prediction (a-e) evaluated using the CHB-MIT and SWEC-ETHZ datasets
when network parameters are quantized to 6-bit fixed-point resolution. Only patients that exhibited a degradation of 5% or more when quantized to 6-bit
fixed-point resolution (from full-precision floating-point) were investigated.

University of Bonn dataset, as samples between patients are
not explicitly distinguished, the mean and standard deviation
of test set accuracy is reported across samples using five
arbitrarily chosen seed values. For the CHB-MIT and SWEC-
ETHZ datasets, the mean and standard deviation of test set
accuracy is reported across samples for the first five viable
patients of each dataset, respectively. Across datasets, some
patients were observed to be more robust to non-idealities
than others. This was observed in our investigations for
patients 1, 2, 3 from the SWEC-ETHZ dataset, and patient

2 from the CHB-MIT dataset, for which non-idealities have
minimal impact. For the rest of the patients, however, no
clear pattern was established with regards to robustness against
non-idealities. We attribute the varying degree of effectiveness
between patients to underlying patient specific signatures.

E. Stuck Weight Offsetting

As observed in Fig. 8(d), stuck RON/ROFF devices lead
to severe performance degradation. At 1% stuck-at fault and
above, system performance can drop below 50% accuracy,
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TABLE VI
POWER, AREA, AND LATENCY METRICS FOR THE SIMULATED MEMRISTIVE DL ACCELERATOR USING A 22 NM CMOS PROCESS. USING OUR TDM
ARCHITECTURE, VMMS ARE PERFORMED IN O(n), WHERE n IS THE NUMBER OF COLUMNS OF THE OUTPUT VECTOR. USING OUR PARALLELIZED

ARCHITECTURE, VMMS ARE PERFORMED IN O(1).

Component Params.
Time-Division Multiplexing (TDM) Parallelized

Specification Area
(mm2)

Power
(mW)

Latency
(us)*

Total Latency
(us)

Energy
(uJ) Specification Area

(mm2)
Power
(mW)

Latency
(us)*

Total Latency
(us)

Energy
(uJ)

DAC Resolution 6 bits 2.58E+01 2.69E+03 8.00E-04 2.15E+00 5.78E+00 6 bits 2.58E+01 2.69E+03 8.00E-04 3.36E-02 9.03E-02Number 7x64 7x64

ADC
Resolution 6 bits

4.62E+00 7.00E+01 1.00E-01 2.69E+02 1.88E+01
6 bits

2.96E+02 4.48E+03 1.00E-01 6.00E-01 2.69E+00Number 7 7x64
Frequency 10MHz 10MHz

ReLU Number 2 9.60E-03 3.28E-02 9.80E-02 9.80E-02 3.22E-06 2 9.60E-03 3.28E-02 9.80E-02 9.80E-02 3.22E-06

Average Pool Number 1 3.83E-04 1.59E+00 8.49E-05 8.49E-05 1.35E-07 1 3.83E-04 1.59E+00 8.49E-05 8.49E-05 1.35E-07

Adder Number 10 5.34E-03 1.74E-02 3.06E-04 6.13E-04 1.06E-08 10 5.34E-03 1.74E-02 3.06E-04 6.13E-04 1.06E-08

Subtractor Number 7 2.46E-04 2.87E-01 3.34E-04 1.28E-01 3.69E-05 7x32 7.88E-03 9.20E+00 3.34E-04 2.01E-03 1.85E-05

S+H† Number 7x64 8.98E-06 3.81E-03 8.33E-04 5.00E-03 1.90E-08 7x64 8.98E-06 3.81E-03 8.33E-04 5.00E-03 1.90E-08

eDRAM Buffer Size 2KB 4.72E-03 1.81E+01 1.15E-04 2.30E-04 4.17E-06 2KB 4.72E-03 1.81E+01 1.15E-04 2.30E-04 4.17E-06Bus Width 128 128

eDRAM-Tile Bus Number 192 4.50E-03 3.5E+00 9.02E-05 9.02E-05 3.16E-07 192 4.50E-03 3.5E+00 9.02E-05 9.02E-05 3.16E-07

IR† Size 1KB 8.10E-01 6.74E-01 8.21E-05 1.64E-04 1.11E-07 1KB 8.10E-01 6.74E-01 8.21E-05 1.64E-04 1.11E-07

OR† Size 512B 8.70E-04 4.18E-01 8.21E-05 1.64E-04 6.87E-08 512B 8.70E-04 4.18E-01 8.21E-05 1.64E-04 6.87E-08

Scenario: ¯RON

Crossbar
Number 7

2.87E-04 8.67E+00 2.03E-03 5.82E+01 5.06E-01
7

2.87E-04 8.69E+00 2.03E-03 1.30E-01 1.13E-03Size 64x64 64x64
Bits per cell 32 32

Total 3.13E+01 2.79E+03 3.29E+02 9.19E+02 3.22E+02 7.21E+03 8.70E-01 6.27E+00

Scenario: ( ¯RON + ¯ROFF)/2

Crossbar
Number 7

2.87E-04 4.35E+00 6.07E-03 1.74E+02 7.58E-01
7

2.87E-04 4.35E+00 6.07E-03 3.88E-01 1.69E-03Size 64x64 64x64
Bits per cell 32 32

Total 3.13E+01 2.79E+03 4.45E+02 1.24E+03 3.22E+02 7.21E+03 1.13E+00 8.12E+00

∗The latency is listed as individual element. †S+H = Sample and Hold, IR = Input Register, OR = Output Register.

rendering the system ineffective. In response to such degrada-
tion, we apply our proposed simplified stuck weight offsetting
method. Comparing Fig. 8(h) against (d), it is evident that the
stuck weight offsetting method improves the average accuracy
across all stuck device percentages and datasets. At 1% stuck-
at fault, the average accuracy improved by as much as 20%
for the Bonn dataset and more than 10% for SWEC-ETHZ
and CHB-MIT. The largest improvement was found for the
CHB-MIT dataset at 5% stuck-at fault, improving accuracy by
32.11%. At higher stuck device percentages, reduced accuracy
recovery is observed. This can be explained by the fact that at
higher stuck device percentages, more network information
cannot be recovered. Minimizing the contribution of stuck
weight cannot fully retrieve the missing information, thereby
leading to reduced accuracy recovery. In addition, the proposed
method greatly reduces the standard deviation across patients
and seeds, thanks to reduced contribution of stuck RON/ROFF
devices to final output.

The limitation of this method lies within its inability to
deal with both elements of the complementary weight being
stuck RON and ROFF simultaneously. If a positive (negative)
weight is stuck RON and negative (positive) weight is stuck
ROFF, stuck weight offsetting cannot provide any further
adjustment to minimize the error. Meanwhile, if both weights
are stuck RON or ROFF, the lost weights cannot be recovered,
contributing nothing to the final output.

F. Power, Area, and Latency Requirements

The following assumptions, all supported by SOTA DL
accelerators, are made when estimating the power, area and
latency requirements of our proposed memristive DL acceler-
ator depicted in Fig. 3, targeting a 22nm CMOS process with
device integration at the Back-End-Of-The-Line (BEOL). A
memristive device has a fixed area of 100 × 100 nm2 [103],
[104] and the device read latency is 6 ns [105]. An ADC oper-
ating frequency is 10 MHz [105], with a power consumption
of 10 mW [105] and a device area of 1.1 × 0.6 mm2 [104],
[106]. A DAC operating frequency is 1.25 GHz, with per unit
power consumption of 6 mW and a device area of 0.0576
mm2 [107]. Other peripheral circuitry with different purposes,
including the activation function [108], average pooling layer
made up from 4-to-1 multiplexers [109], [110], Sample and
Hold (S+H) [111], subtractor [112], and adder [113] circuits,
were listed with more detail in Table VI.

All the peripheral components are scaled to 22nm technol-
ogy by factors introduced in [114] and all buffers with their
associated connections have energy, area and latency estimated
by CACTI 7.0 [115]. For all calculations, the source resistance
and line resistance of 20 Ω and 2 Ω are used respectively.
To account for RC delays within crossbars when signals are
propagated, the methodology presented in [116] was used,
with CSA, Tsettling, and Cwrite parameters from [117]. The
largest total device latency was used for all devices.

In Table VI, four scenarios are considered: two where
the resistance of all active (utilized) devices was fixed to



13

TABLE VII
PERFORMANCE SUMMARY AND COMPARISON OF OUR SIMULATED SYSTEM AND EXISTING SEIZURE DETECTION/PREDICTION SYSTEM

IMPLEMENTATIONS IN THE LITERATURE.

Paper Technology Algorithm(s) No.
Channels

Analog
Front-End∗

Feature
Extract.†

Area
(mm2)

Latency
(s)

Power
(mW)

Energy
(uJ) Pred.� Eval.

Task(s)

ML-Based

[88] CMOS (180nm) BPF,
LSVM 8 3 3 25.00 2.00 N/R◦ N/R◦ 7 CHB-MIT

[89] CMOS (180nm) BPF, NL−SVM 8 3 3 25.00 2.00 N/R◦ N/R◦ 7 CHB-MIT
[90] CMOS (130nm) NL−SVM 18 7 3 N/R◦ 4.80 N/R◦ N/R◦ 7 CHB-MIT

[91] CMOS (180nm)
FFT,
ApEn,
LLS

8 3 3 13.47 0.8 2.80 2.24E
+03 7 In Vivo

[92] CMOS (180nm)
BPF,
D2A−LSVM 16 3 3 25.0 1.0 N/R◦ N/R◦ 7 CHB-MIT

[93] CMOS (180nm) BPF,
NL−SVM 8 3 3 25.0 2.0 0.23 460.00 7 CHB-MIT

[46] CMOS (130nm) FIR, PLV 64 3 3 3.86 N/R◦ 1.07 N/R◦ 3 In Vivo

[94] CMOS (130nm) FIR, PLV/
SE/CFC 32 3 3 7.59 0.25 0.71 177.50 3 In Vivo

[95] CMOS (180nm)
DWT,
KDE,
SVM

8 3 3 5.83 N/R◦ 0.67 N/R◦ 3 CHB-MIT

[96] CMOS (40nm) FFT,
NL−SVM 14 7 3 4.50 0.71 1.90 1.35E

+03 7 CHB-MIT

[97] CMOS (65nm) CHT,
XGBoost−DT 16 3 3 0.38 N/R◦ 0.40 N/R◦ 7 CHB-MIT, iEEG.org

[98] CMOS (180nm) FFT 1 3 3 N/R◦ N/R◦ 7.89 N/R◦ 7 CHB-MIT

[99] CMOS (90nm) ICA 8 7 3 0.4 0.1 8.16E
-02 8.16 7 In Vivo

[72] CMOS (180nm) LLS 1 3 3 10.41 0.72 2.86E
-02 20.59 7 In Vivo

DL-Based

[100] CMOS (65nm) RNN 8 7 7 10.15 N/R◦ 17.80 N/R◦ 7 N/R◦

[101] FPGA
(M2GL 025-VF256) MLP 1 7 3 N/R◦ N/R◦ 159.70 N/R◦ 7 Bonn

[102] CMOS (180nm) SNN 1 7 3 0.15 64.98E
-03

5.40E
-03 0.35 3 In Vivo

Ours (TDM) CMOS (22nm)/
RRAM (BEOL)

Manual feature
extraction,
CNN

22 7 7
31.25 4.45E

-04
2.79E

+03
1.24E

+03
3

Bonn,
CHB-MIT,

ETHZ-
SWECOurs (Par.) 322.31 1.13E

-06
7.20E

+03 8.12

∗Reported power, area, and latency requirements include the analog front end/signal acquisition component. †Reported power, area, and latency requirements
include feature extraction component(s). �Denotes whether systems are able to perform epileptic detection and/or prediction. ◦Not reported.

¯RON ≈ 10 kΩ, while considering either TDM or parallel use
of ADC, and two where the average resistance of all active
devices was assumed to be ( ¯RON+ ¯ROFF)/2 ≈ 55 kΩ, again for
either TDM or parallelized ADC. These resistance values are
representative of two weight distributions: uniform, where all
weights are zero, and normal, where all weights are centered
around zero. The first distribution was used to report the
maximum possible power consumption of our system, and the
second distribution was used to report the power consumption
of a typical CNN trained using L2-regularization. Considering
the marginal impact on total power consumption, ( 0.16% and
0.06% for TDM and parallelized configurations, respectively),
the power of each individual trained CNN was not determined
or reported.

For all scenarios, constant operation at 0.3V per cell [74]
was assumed. Neither RRAM crossbar tiles nor peripheral cir-
cuitry was assumed to be stacked vertically. Consequently, the
circuit area consumption was computed as the summation of
all individual elements. Both ADCs and DACs were assumed
to operate at 6-bit resolution, as stated in Section VI-C, for
the best performance with QAT.

As can be observed in Table VI, TDM implementations
consume significantly less power than parallelized implemen-

tations due to the smaller number of required ADCs. For the
worst case TDM scenario, i.e, when all active devices are
programmed to R−

ON with a constant 0.3V read voltage, our
proposed memristive DL accelerator has a latency of 445.22
µs, and consumes approximately 2.79W and 31.255 mm2 of
power and area. This is fairly low power consumption for a
DL accelerator to reside on a separate chip from the neural
implant, whereby the implant uses thermal energy to wirelessly
communicate with the accelerator [118], for reduced latency.

It is noted that we have chosen to optimize the latency
of our system at the cost of higher power consumption for
multiple reasons. Firstly, analog crossbars which are used to
perform IMC operations, in particular VMMs, require periph-
eral circuitry which is power- and area-hungry. Consequently,
independent of the latency of the system, when inference is
being performed, a large proportion of the total system’s area
and power is consumed by peripheral circuitry, registers, and
buffers. While TDM ADCs can be used to reduce the total
power consumption by increasing latency, other peripheral
circuits, registers, and buffers, are still required for operation.
Counterintuitively, in certain instances, the energy of the
system can be reduced by minimizing system latency during
active operation. In other instances, the performance of the
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system can greatly be improved at the cost of increased power
consumption.

Secondly, RRAM devices suffer from conductance drift
induced by read disturbances, which may aggregate, as the
analog current is summed up along each Word Line (WL)
during inference [74]. To mitigate this behavior, we have
constrained the absolute amplitude of BL voltages to 0.3V and
minimized the duration in which a voltage is applied to each
device, i.e., latency is minimized to avoid read disturbances,
and to prolong the lifespan of RRAM devices, at the cost of
increased power consumption. Lastly, as RRAM devices are
non-volatile, gating circuitry can be used to reduce the energy
consumption of both TDM and parallelized architectures, as
both of our architectures have a critical delay path which
is much shorter than typical signal acquisition sampling rate
periods. This also allows for input buffering to be performed,
so that constant operation is not required.

G. Comparison to Existing Hardware Implementations

In Table VII, we compare the performance of hardware
implementations of notable epileptic seizure detection and/or
prediction hardware systems in the literature. As many differ-
ent evaluation tasks were used, we did not report performance
metrics. Hardware implementations are broadly categorized as
either ML- or DL-based. As can be observed, both of our
implementations (reported for the ( ¯RON + ¯ROFF)/2 scenario
in Table VI) have significantly reduced inference latency, at
the cost of higher power consumption, compared to traditional
CMOS and FPGA-based implementations. It is worth noting
that, most of the previous designs have not reported a com-
plete power consumption analysis, are not capable of seizure
prediction, and use fewer channels, which can lead to lower
power consumption and silicon area.

While our proposed system is not currently competitive
in resource-constrained environments, it is intended to be
used as a reference design for future works implement-
ing epileptic seizure detection and prediction systems using
CMOS and memristors. Using analog Static Random-Access
Memory (SRAM), vertical stacking of crossbars and CMOS
components, and partial sensing approaches, the power and
area requirements of our simulated system could be greatly
reduced. We aim to investigate these in our future research.

VII. CONCLUSION

We proposed a parallel CNN architecture that can be used
to perform both epileptic seizure detection and prediction
rapidly. Compared to other works in literate, our architec-
ture requires significantly fewer parameters, and demonstrates
competitive performance on the University of Bonn, CHB-
MIT, and SWEC-ETHZ datasets. Using emerging memristive
devices and software-hardware optimization methodologies,
we demonstrated, through comprehensive simulations, that
our memristive DL accelerator is capable of performing real-
time operation, and consuming reasonable power in real-world
conditions. We also proposed and investigated a new simplified
stuck weight offsetting method to improve the robustness of
our system to non-idealities. This paper sets a clear path

towards the eventual circuit-level realization of a memristive
epileptic seizure detection and prediction system.
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