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[1] Using sugarcane as a case study, this paper shows how an agronomic model can be
used to estimate the marginal value of stored irrigation water with uncertain future rain.
We do this by estimating production functions that have the water available for use as the
variable factor of production (referring to them as allocation production functions).
These differ from more ‘‘traditional’’ production functions which use the water actually
applied as the variable factor of production (referred to here as irrigation production
functions). We note that the amount of water actually applied is jointly determined by the
amount of water that is available and by rainfall. Hence imperfect information vis-à-vis
future rain means that irrigation water may be overvalued if the difference between the
water available for use and the water actually used is not considered. We use results from
simulations of sugarcane irrigation in northern Australia to demonstrate the potential
magnitude of this overvaluation, and to examine the ‘‘value’’ of prepurchased irrigation
water in various circumstances. INDEX TERMS: 1842 Hydrology: Irrigation; 1854 Hydrology:

Precipitation (3354); 6309 Policy Sciences: Decision making under uncertainty; 6314 Policy Sciences:
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1. Introduction

[2] Increasingly, governments around the world are
focusing thought on water policy. In Australia the Council
of Australian Governments has developed a strategic
framework for the reform of the water industry. Specific
reforms apply in the Murray-Darling, the Great Artesian
Basin, and the Lake Eyre Basin [Lenzen and Foran, 2001].
Importantly, substantial payments to the states from the
federal government are contingent upon the implementation
of those reforms [Pigram, 1999]. In the post-war era, water
policy often focused on supply: to wit the Snowy Mountains
Scheme and the Ord Irrigation Area. More recent policy has
tended to focus on demand, the aim being to ration a limited
supply of water across competing demands. More and more,
market solutions are being sought: policies which require
individuals to make an assessment of the ‘‘worth’’ of water
in different uses.
[3] It is generally accepted that the ‘‘best’’ policies

allocate water to the activities which generate the highest
social benefit. More specifically, economic theory indicates
that to maximize net social benefits (NSB) one should
allocate the first unit of water to the activity with the highest
marginal NSB, the second unit of water to the activity
with the second-highest marginal NSB, and so on, until
water resources are exhausted. Understandably, numerous

problems are encountered when attempting to translate
this theoretical ideal into practical policy. Problems which
have received most attention in the literature are, arguably,
that of (1) determining the marginal NSB of water in
different activities, particularly nonpriced activities such as
environmental goods [Meinzen-Dick and van der Hoek,
2001; Renwick, 2001], and (2) determining which policy
instruments are most likely to achieve a socially optimal
water allocation in which circumstances [Dinar, 1998;
Varela-Ortega et al., 1998; Wichelns, 1999; Kilgour and
Dinar, 2001].
[4] In Australia, almost two thirds of water use is for

irrigation [Lenzen and Foran, 2001]. The current focus on
market solutions therefore means that many irrigators are
facing either the prospect or the reality of ‘‘water markets,’’
and need to assess the value of irrigation water. There are,
undoubtedly, many irrigators who know, or could make an
educated guess at, the marginal value of irrigation across
different uses. However, some may not, particularly, those
who have had access to ‘‘free’’ water for many years and
have not therefore needed to consider its marginal value in
detail. Mackie-Mason et al. [1999] analyzed consumer
behaviour in new markets with complex prices, noting
that there is a ‘‘substantial’’ (consumer) learning curve.
Irrigators who have never considered the marginal value
of water may therefore ‘‘work it out,’’ but the process may
involve much trial and error. To some, the ‘‘errors’’ may
mean loss of livelihood or lifestyle. Furthermore, imperfect
information and/or risk averse behavior may affect the
operation of the market [e.g., Akerlof, 1970]. Research
which helps fill at least some of the information gaps
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regarding the marginal ‘‘value’’ of irrigation water, may
therefore help both irrigators, and policy makers alike.
[5] There is a substantial body of literature investigating

optimal irrigation strategies from both an economic and an
agronomic perspective. But we are unaware of any which
explicitly differentiates between the amount of water avail-
able for use (conceptually equivalent to that which has been
prepurchased at the beginning of the season), and that which
is actually applied to the crop throughout the growing
season. We believe the distinction to be important for
forward planning.
[6] This is because the amount of water actually applied to

a crop will depend upon (1) the amount of water available,
and (2) the amount, and timing of rainfall during the
growing season. To illustrate, assume that grower A has a
prepurchased allocation of water which allows him/her to
apply up to 1000 mm to the crop over a one year period
(from July to June), whereas grower B only has enough to
apply 100 mm per hectare. Suppose also, that water is
applied ‘‘optimally’’ in the middle of a crop’s life; not much
is required early in the crop’s life, and one should not apply
water late in season so as to avoid reducing the sugar content
of the yield (as illustrated in Figure 1). Finally, suppose that
the crop is grown in the tropics, with a typical wet season
between October/November and February/March. If the wet
season starts early, say in early November, grower B may not
end up using any of his/her allocation; grower A might use
just 100 mm. If the wet season is late, starting in, say, the end
of December, grower B might use 60% of his/her allocation,
and grower A might use 67%.
[7] In other words, the amount of water actually applied

throughout a season is jointly determined by the amount that
is available and by rainfall. Not surprisingly, the amount
actually used frequently differs from the amount available
for use. Australian Bureau of Agriculture and Resource
Economics [1999], for example, provides estimates of the
average proportion of allocation used per farm in three
regions. These were 83% for Loxton; 92% for Sunraiysia,
and 59% for the Murrumbidgee Irrigation Area.
[8] This is somewhat problematic since irrigators are

occasionally asked to decide how much water to purchase
at the beginning of a season - in the knowledge that any

un-used ‘‘excess’’ cannot be held-over until the next
season and hence has no residual value. Decision makers
therefore need information about the value of prepurchased
or ‘‘allocated’’ water, and it is to this end which the paper is
focused.
[9] More specifically, we use an agronomic simulation

model to estimate short-run production functions and hence
the marginal value of water allocations in different situa-
tions. Our production functions differ from those of other
researchers since we use the water available for use as the
variable factor of production. We call these allocation
functions (as opposed to ‘‘traditional’’ production functions,
referred to here as irrigation functions, which use the water
actually applied as the variable factor of production). They
are, nevertheless production functions since they describe
the maximum amount that can be produced with different
amounts of a variable input (allocation); given technology,
given rainfall, given other factors of production, and assum-
ing that any ‘‘unused’’ portion of the allocation has no
residual value. Unless it is optimal to use all allocations in
all years, the two approaches will generate different esti-
mates of the marginal value of water. We investigate the
implications of that using the following organizational
structure:
[10] In section 2, we elaborate on the allocation versus

irrigation problem and use results from the simulations to
illustrate the potential magnitude of the different ‘‘valua-
tions’’ obtained from the different production functions. In
section 3, we present simulated results from a small subset
of the 56 different allocation functions estimated during our
investigations. The primary aim of the analysis is not to
generate empirical results for policy, but rather to show how
the allocation approach can be used in conjunction with
‘‘real’’ climatic data with ‘‘real’’ soil information and with
agronomic models to generate valuable information for
irrigators and policy makers, alike. In the concluding
section, we discuss the implications of our analysis.

2. Production Functions

[11] That crop yields are not just a function of the amount
of water applied, but also of when it is applied is well
documented in the literature. Scheierling [1997], for exam-
ple, found that for maize ‘‘highest yields often obtained when
irrigation water is applied toward the beginning of the
season.’’ Tilahun and Raes [2002] found that reductions or
increases in irrigation will have the largest impact on maize
and groundnut yields if timed to coincide with flowering.
Zhang and Oweis [1999] similarly found that timing was
important for wheat yields and the story is no different for
sugarcane which in some conditions responded considerably
more to irrigation before canopy closure than after [Inman-
Bamber et al., 1999]. This means that yield response curves
(empirically observed relationships between irrigation water
and yields) are not analytically equivalent to short-run
production functions, because yield-response curves do not,
necessarily, describe the maximum yield which can be grown
with a given quantity of water.
[12] In theory, one can determine the ‘‘value’’ of irrigation

water by estimating a short run production function, from
which one can derive a water demand function. Other ways
of estimating the value of irrigation water are not considered
here. Interested readers are directed to Renwick [2001] and

Figure 1. Optimal timing of irrigation with different
allocations.
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Al-Weshah [2000] for examples of the ‘‘residual method.’’ In
practice it can be very difficult to estimate the curves from
experimental data. One can estimate a yield-response curve
for 10 different water allocations, but one cannot guarantee
that the curve is an ‘‘optimal’’ one. Consequently, one might
need to use 100 different experimental plots (10 different
water allocations, each using 10 different irrigation strate-
gies). However, then, results may differ from region to
region, according to climate, soil type, crop type (etc.).
Hence the need for more experimental plots and more
research funding. To this end, agronomic models which
simulate crop growth offer themselves as a cost-effective
alternative.
[13] Nowadays, simulation models are frequently used to

examine ‘‘optimal’’ irrigation and water use strategies [see,
e.g., Bergez et al., 2002; Tilahun and Raes, 2002; Kipkorir
et al., 2001; Garrido, 2000; Raghuwanshi and Wallender,
1998; Scheierling, 1997]. Although approaches and focuses
vary from study to study, most research of this type
simulates crop growth under a variety of different irrigation
strategies, selecting that which maximizes yield. These
relations are analytically equivalent to the ‘‘theoretically
correct’’ production functions, since they describe the
maximum output which can be had from a given amount
of irrigation.
[14] Here we present the output of an agronomic model

(APSIM-Sugarcane) that uses real climatic data to generate
a set of simulated sugar-cane production functions in seven
different regions (using a variety of different soil-types, crop
start-dates, etc). APSIM simulates growth of a uniform
block of cane. It requires data on soil, crop, weather, and
management practices and makes predictions about a range
of different variables including: biomass yield and sucrose
content (see Keating et al. [1999], Inman-Bamber et al.
[1999], and Muchow and Keating [1998] for a detailed
description of the way in which APSIM works).
[15] We simulated cane growth in seven different regions

using: 41 years of ‘‘real’’ climatic data; 4 different soil-
types; 2 different crop-start dates: 10 different irrigation
strategies; and 11 different water allocations (i.e., total
quantity of water available for use during a 12 month
growing season). The irrigation strategies were based on
simulated yield loss due to water stress. At one extreme,
was a strategy that applied water the day after yield
accumulation was suppressed due to water stress. With this
strategy water allocations can run out relatively early in the
crop’s life and can lead to severe yield loss if rains fail to
sustain growth. A strategy at the other extreme, was one
which did not irrigate until yield accumulation fell substan-
tially. This strategy spread water-use over a longer period.
For each region, year, soil, start-date and water allocation,
we selected one crop: that with the highest sucrose yield
(corresponding to an ‘‘optimal’’ irrigation strategy). By
plotting sucrose yield against water allocation (for each
year, soil type, region and start-date), we were thus able to
derive a set of short-run production functions.
[16] Before proceeding further, we wish to reiterate the

difference between allocation production functions and the
irrigation production functions typically used by other
researchers [e.g., Bergez et al., 2002; Tilahun and Raes,
2002; Kipkorir et al., 2001; Garrido, 2000; Raghuwanshi
and Wallender, 1998; Scheierling, 1997]. Allocation pro-

duction functions show the maximum yield for each allo-
cation. Irrigation production functions show the maximum
yield for each quantity of irrigation used. Unless it is
optimal to use all allocations in all years, the different
production functions will generate different estimates of
the marginal value of water. While absolute differences will
vary by crop, region, climate (etc), one expects the gap
between estimates to increase as the gap between allocation
and actual irrigation increases.
[17] Figure 2 shows the simulated irrigation against water

allocation (averaged across all regions, start-days and soil
types) for our model runs. At low allocations, the full
amount is used because rainfall plus allocation is less than
crop requirement. As allocation rises, the proportion used
falls to as little as 65% at the highest level; crop require-
ments are satisfied by rainfall plus only 65% of the
allocation. In one region, for example (Mackay), there were
2460 ‘‘observed’’ values for sucrose yield for each water
‘‘allocation’’ (41 years, for each of 3 different soil types,
2 different crop start dates and 10 different irrigation
strategies). At the highest water allocation, only 3 of those
2460 ‘‘observations’’ used all water.
[18] Production functions which optimize on irrigation

rather than on allocation, are overvaluing prepurchased
water since they implicitly assume that all of the water will
be used thereby contributing to production. Clearly, this will
not be so in all cases. More formally, short run production
functions which use the total water available for irrigation as
the variable factor of production (allocation functions) show
the increase in sucrose (S) from an increase in water
allocations (@S/@A). Short-run production functions which
use irrigation as the variable factor of production (irrigation
functions) show the increase in sucrose from the increase in
irrigation (@S/@I). Hence @S/@A = (@S/@I)(@I/@A) and if @I/
@A is less than one, @S/@A must be less than @S/@I.
[19] A priori, one expects @I/@A to be affected by many

factors including: rainfall (wet years using lower propor-
tions of allocations); climate (wet regions using lower
proportion of allocations); soil (better quality soils needing
less irrigation and thus a lower proportion of allocation);
current allocation levels (the higher the allocation, the lower
the proportion used); and perhaps most importantly, on the
residual value of any unused allocation (e.g., if the unused
portion can be ‘‘carried over’’ until next year, then its value
is more appropriately reflected by the irrigation functions).
Hence it is difficult to draw generalizations about the

Figure 2. Irrigation versus allocation.
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empirical significance of the difference between @S/@A and
@S/@I. We can, however, comment on differences for these
simulations, assuming that all un-used allocation is ‘‘lost.’’
[20] Figure 3 shows the allocation and irrigation marginal

product (MP) curves for the Mareeba region. For any given
real price, the irrigation curve overestimates the ‘‘optimal’’
quantity. For example, if the ‘‘real’’ price is (approximately)
1, the allocation MP curve indicates an optimal allocation of
approximately 700 mm per hectare, whereas the irrigation
curve indicates that 900 mm is more appropriate. From an
alternative perspective, irrigators wishing to assess the
‘‘value’’ of water rights, may be enticed into paying too
much for allocations if using irrigation curves to estimate
the value of extra water. Such an overpayment could be
substantial at high allocations.
[21] To illustrate the overvaluation problem mathemati-

cally, let us suppose that water allocations must be pre-
purchased, that the residual value of an allocation is zero,
and that irrigators are risk-neutral, profit maximizers. Irri-
gators who use allocation functions to estimate the value of
water, will purchase irrigation water as long as it’s real price
(PA) is less than or equal to the expected value (EV) of its
marginal product (calculated from the allocation functions),
i.e., as long as:

PA � EV @S=@Að Þ

In contrast, irrigators who use irrigation functions to
estimate the value of water will purchase irrigation water
as long as its real price (PI) is less than or equal to the
expected value (EV) of its marginal product (calculated
from the irrigation functions):

PI � EV @S=@Ið Þ

PI � EV @S=@Að ÞEV @A=@Ið Þ

PI � PA EV @A=@Ið Þ

If it is not optimal to use all of one’s allocation (i.e., if the
EV(@I/@A) < 1), then the EV(@A/@I) > 1, and PI > PA. In
other words, those using irrigation functions will be inclined
to pay ‘‘too much’’ for their allocations.
[22] This result also extends to the case of risk averse

irrigators. To illustrate, note that those requiring compensa-
tion for risk may attach a risk ‘‘premium’’ (say, d > 0) to

prices. Those using allocation functions will prepurchase
irrigation water as long as its real price (PAR) is less than or
equal to PA (1 + d), whereas those using irrigation functions
will prepurchase irrigation water as long as its real price
(PIR) is less than or equal to:

EV @S=@Ið Þ 1þ dð Þ ¼ EV @S=@Að ÞEV @A=@Ið Þ 1þ dð Þ
¼ PAREV @A=@Ið Þ

While we acknowledge that short-run production functions
can be estimated using either water allocations or irrigation,
we contend that the allocation functions, are, on occasion,
most appropriate. This is so when: growers must pre-
purchase water allocations at the beginning of the season;
when there is imperfect knowledge about future rainfall; and
when un-used amounts have no residual value.
[23] As noted by Bond [1998, p. 553] ‘‘Irrigation sched-

uling in practice is far less precise than in design models,
and rain interruptions, irrigation failures, spatial variability
of irrigation rates, and other operational difficulties mean
that irrigation is unlikely to be applied as prescribed.’’
Unless one can forecast rainfall perfectly, production func-
tions which relate yield to irrigation cannot accurately
estimate the value of prepurchased allocations; they are
really just ex-post descriptions of what could have been
grown with ‘‘x’’ mm of water (and ‘‘y’’ mm of rain).

3. Allocation Production Functions as an
Information Source

[24] Before proceeding it is worth noting that our simu-
lations allowed us to estimate 56 different production
functions (across 7 regions, using 4 different soil types
and 2 different crop-start dates). This discussion only
focuses on a small selection of those (details of other
production functions available on request). Its primary
aim is not to generate empirical results for policy, but rather
to show how the allocation approach can be used in
conjunction with ‘‘real’’ climatic data with ‘‘real’’ soil
information and with agronomic models to generate valu-
able information for irrigators and policy makers, alike.
[25] The allocation functions are particularly useful when

considering irrigation strategies in areas of high rainfall
variability. Figure 4 shows two allocation production func-

Figure 3. The marginal product of sucrose in Mareeba.

Figure 4. Production functions from Mackay and Mary-
borough (wet and dry years).
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tions for each of the Mackay and Maryborough regions. The
functions are averaged across soil types and start-days, but
differentiated by rainfall. As expected, at low allocations,
dry years show substantially lower yields than wet ones, and
the differences between yields fall as water allocations rise.
[26] When rainfall is in the upper quartile, and water

allocations are low, simulated sucrose yields in Mackay and
Maryborough are relatively close. However, large differ-
ences are evident when rainfall is in the lower quartile,
particularly, at low allocations. This reflects different rain-
fall patterns. In Mackay, for example, mean rainfall from
1 July to 30 June during the years considered in these
simulations was 1685 mm. In Maryborough, mean rainfall
for the same period was only 1084 mm: less than the lower
quartile (of 1228 mm) in Mackay. Consequently, variations
in rainfall impact upon Maryborough’s cane yields more
significantly than on Mackay’s. The message is reinforced
by Figure 4.
[27] Figure 5, which shows the MP of Water Allocations

for wet and dry years in Maryborough and Mackay. As
expected: the marginal product of water allocations in dry
years is considerably higher than in wet years; the MPs are
similar in wet years; but the MPs differ significantly in dry
years (the drier region having much higher valuations).
[28] Evidently, year-to-year variations in rainfall gener-

ate much more significant variations in crop yields in some
regions than in others. There may also be substantial cross-
regional variations in the ‘‘value’’ of irrigation water. In
dry years, for example, an increase in water allocation
from 400 to 500 mm/ha, is ‘‘worth’’ almost twice as much
in Maryborough as it is in Mackay. These two regions do
not compete for the same water, but if they did, a transfer
of water resources from one area to another could generate
a significant pareto improvement. In the Murray Darling
Basin, where there is much cross-region competition for
water resources, the allocation production function ap-
proach suggested in this paper may have much to contrib-
ute to policy. Similarly, cross-regional comparisons of the
‘‘value’’ of extra water allocations may assist companies
with properties in many regions determine where best to
invest in irrigation infrastructure.
[29] These production functions also provide valuable

information on an intraregional scale. Figure 6 shows the
MP of extra allocations in the Burdekin and at Rocky Point,
for ‘‘early’’ and ‘‘late’’ crops. At high allocations, there is

little difference, but at low allocations, late crops derive
greater benefit from increased allocations than early crops,
irrespective of region. These simulations confirm a priori
expectations that an ‘‘even quantity of water across all
paddocks’’ strategy is not optimal in all cases. When water
resources are scarce, it may be best to irrigate late crops
before the early ones [Brennan et al., 1999].
[30] Crops grown on different soil types also respond

differently to irrigation. Figure 7 shows the MP of extra
water allocations in Mackay and Childers for two different
soil-types. That there are regional and soil-type differences
is not surprising, but some of the interactive effects were not
expected. For example, MP of water allocations for crops
grown in Yellow Chromosol is generally higher than the MP
of crops grown in Red Ferrosol. Yet the differences are
greater in Mackay than in Childers. This indicates that
growers in the Mackay region may have more to gain by
reallocating irrigation across soil-types than growers in
Childers.

4. Discussion

[31] In Australia, current water policy uses a range of
‘‘interlinked market based measures involving pricing water
for full cost recovery, establishing secure access to water
separate from land, and providing for permanent trading in
water entitlements’’ [Department of Primary Industry and
Energy, 1999, p. 5]. Such market based measures are
popular among current policy makers, at least partially

Figure 5. The marginal product of water allocations
(averaged across all soil types and start days).

Figure 6. Marginal products for different start days in the
Burdekin and at Rocky Point.

Figure 7. Marginal products for different soil types at
Mackay and Childers.
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because they are believed to be capable of achieving
‘‘optimal’’ water distributions. Yet for this to occur, ‘‘play-
ers’’ in the water market, need quality information, and as
noted by Environment Australia [2002, p. 3], ‘‘there is a
lack of reliable data available to assist with the character-
ization of the extent, location, value and efficiency gains in
irrigation management.’’ As in many other markets, inade-
quate information, constrains efficiency in water markets
[Bjornlund and McKay, 1996].
[32] Advances in computer technology mean that agro-

nomic modeling supported by field experimentation is a
cost-effective means of generating quality information.
Admittedly, one could criticize the modeling approach on
the grounds that it simplifies and abstracts from reality. But
the abstraction allows one to focus on a sub-set of functions
and variables, identifying relationships that might otherwise
be hidden within ‘‘real world’’ complexities. And because
one can repeat the simulations, altering just one variable (or
coefficient) at a time, one can conduct experiments. Experi-
ments capable of investigating the impact of almost any ‘‘x’’
on almost any ‘‘y’’; within a ‘‘computerized test-tube.’’ In
some sense, therefore, its abstractions are its strength.
[33] This does not mean that the agronomic model used

here is perfect. The model does not accurately simulate crop
growth in all cases - not because the model is deficient in
capturing knowledge about crop growth, but because
knowledge per se is deficient. The model is, nevertheless,
a particularly good support tool for policy and management
decisions because it integrates some of the best information
and knowledge available for making these decisions. One
should probably not place too much store on the cardinal
numbers presented, but the ordinal rankings and qualitative
conclusions are, we believe, robust.
[34] More generally, the modeling approach may help

with policy formation. One can, for example, use the model
to compare the yields of different irrigation strategies (e.g.,
evenly spread versus optimally timed) thereby estimating
the potential gains from improved water-use efficiency. One
could also use these kinds of models for a range of different
strategies across a range of different policy variables (water,
fertilizer, pesticide use, etc), generating ordinal (if not
cardinal) estimates of the effect of such strategies on final
outputs such as yield, or run-off.
[35] Agronomic models can be also be used to compare the

‘‘value’’ of extra allocations across regions, crop-start-dates,
and soil-types. This allows one to identify regions most likely
to be affected by drought and cases where profits (and/or
social welfare) can be increased by reallocating scarce water
resources across regions, crops, or paddocks. This will be
particularly important for long-term planning, when using
the allocation functions. In the Murray Darling, for example,
the price of temporary water will vary, optimally, according
to short-run variations in rainfall. However, the market
for ‘‘permanent’’ water is a forward looking one and the
information requirements of those trading in that market are
similar to those who must assess the worth of extra dams, of
water storage facilities [e.g., Smith and Maheshwari, 2002],
of extra irrigation channels, etc.
[36] Finally, this simulation approach has allowed us

demonstrate (and quantify) the effect which imperfect
information vis-à-vis rainfall has upon the ‘‘value’’ of
allocations relative to the ‘‘value’’ of water actually applied.

If it not optimal to use all of one’s allocation, and if the
residual value of any unused allocation is zero, then
irrigation functions will overestimate the marginal value
of extra water allocations, possibly by orders of magnitude.
In the Queensland sugarcane industry, irrigators do not
generally use all of their allocations. As noted in the
introduction, this is also true of irrigators in the Murray
Darling; and the situation most likely arises in other places
(using ‘‘allocations’’) throughout the world.
[37] Dinar [1998, p. 379], argues that the problem of

excessive water use is exacerbated by imperfect information
vis-à-vis: privately observed individual water intakes and
water production technologies. To that we add the issue of
unknowable future rains (an extreme form of asymmetric
information), suggesting that our methodological approach
to estimating allocation production functions provides
researchers with a means of estimating the empirical mag-
nitude of the problem in a broad range of situations.
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