
Citation: Zhang, B.; Du, Y.; Chen, X.;

Lim, E.G.; Jiang, L.; Yan, K. Potential

Benefits for Residential Building with

the Participation of a Photovoltaic

Battery System in Peer-to-Peer

Energy Trading . Energies 2022, 15,

3913. https://doi.org/10.3390/

en15113913

Academic Editors: Albert Smalcerz

and Marcin Blachnik

Received: 30 April 2022

Accepted: 20 May 2022

Published: 25 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Potential Benefits for Residential Building with Photovoltaic
Battery System Participation in Peer-to-Peer Energy Trading
Bidan Zhang 1, Yang Du 2,*,† , Xiaoyang Chen 3 , Eng Gee Lim 3, Lin Jiang 1 and Ke Yan 4

1 Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3BX, UK;
bidan@liverpool.ac.uk (B.Z.); ljiang@liverpool.ac.uk (L.J.)

2 College of Science and Engineering, James Cook University, Douglas 4811, Australia
3 Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University,

Suzhou 215000, China; xiaoyang.chen02@xjtlu.edu.cn (X.C.); enggee.lim@xjtlu.edu.cn (E.G.L.)
4 Department of the Built Environment, College of Design and Engineering, National University of Singapore,

Singapore 117566, Singapore; bdgyan@nus.edu.sg
* Correspondence: yang.du@jcu.edu.au
† Current address: College of Science and Engineering, James Cook University, Smithfield 4878, Australia.

Abstract: The increasing number of residential buildings that are installing distributed energy
resources enforces the need for schemes to facilitate a local energy balance. With the continuing
evolution of Internet of Things (IoT) technology, Peer-to-Peer (P2P) energy trading is becoming a
viable solution to incentivize prosumers and promote efficient energy sharing in a community. This
paper develops a model to quantitatively analyze the potential benefits of P2P energy trading for
residential buildings that have installed photovoltaic battery systems. The integration of the bidding
strategy into a residential energy-management system is feasible to realize cost savings for prosumers.
However, the coordination between the bidding strategy and the optimal scheduling of energy has
received far too little attention. To better participate in the P2P market, we propose a novel separate
bidding energy-management system (SBEMS) that can realize rolling optimal energy scheduling
while determining energy bids. The model’s effectiveness is verified via case studies of 75 participants
in a community. The results indicate that the prosumers can reduce their costs by up to 24% by
employing the proposed SBEMS in the P2P market. In addition, the proposed method is found to
offer better performance in terms of economic and technical indices.

Keywords: Peer-to-Peer energy trading; bidding strategy; continuous double auction; energy-
management system; photovoltaic battery system

1. Introduction

Inspired by regulatory incentives and plummeting costs, the installation of distributed
energy resources (DERs) is boosting. In particular, the amount of residential photovoltaic
(PV) generation in the United States has been reported to increase from 4947 GWh to
25,370 GWh between 2014 and 2020 [1]. Meanwhile, sold-back energy from small-scale
residential was 78,760 MWh in 2020, exceeding the commercial and industrial sectors [2]. A
coordinated effort among multiple DER owners can improve local energy utilization and
facilitate the efficient scheduling of flexible loads [3].

A large number of residential consumers have been transformed into prosumers.
This situation necessitates providing them with automated tools to help them fulfil their
energy-related transactions and management [4]. Meanwhile, smart grids are undergoing
technological advancement, including the development of the so-called smart home, the
installation of ubiquitous smart metering devices, and the evolution of Internet of Things
(IoT) technology [5,6]. Prosumers will, therefore, be able to possess PV, household batteries,
smart meters, and energy-management systems, allowing them to manage their energy
demand and generation on a proactive basis [7]. When coordinated properly, DERs owned
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by prosumers can bring significant value to the grid by reducing losses and alleviating
network constraints. Otherwise, it may be necessary to curtail renewable energy sources
or upgrade expensive infrastructures [8–10]. The existing energy market arrangements
are not conducive to active coordination within the distribution network. Producing and
consuming on such a small scale cannot be integrated into the wholesale market distribution
system [11]. Therefore, it is expected to stimulate the development of schemes that facilitate
interactions between these prosumers and consumers in the energy-sharing context.

Conventionally, the feed-in tariff (FiT) scheme has been implemented by market
operators to incentivize prosumers to sell their energy surplus to power grids [12,13].
However, delivering power from low-voltage distribution networks to a high-voltage
transmission grid over a long distance can result in significant transmission losses [14].
Furthermore, this scheme does not provide the opportunity of trading freedom for the
prosumers.

In this context, the Peer-to-Peer (P2P) energy trading paradigm encourages localized
transactions [15–17] and provides a remedy for this problem. P2P trading reduces the stress
on the grid supply compared to traditional FiT and presents the potential for promoting
local energy consumption and offering greater profits to participants [18,19].

In a P2P market, demand refers to the quantity of energy a buyer needs, and supply
refers to how much energy the sellers can provide. From the economic perspective, P2P
trading mechanisms can be classified into four categories, namely, supply and demand ratio
(SDR) [20–24], mid-market rate (MMR) [22–24], bill sharing (BS) [22–24], and double auction
(DA)-based trading [25–31]. The SDR, MMR, and BS methods adopt a unified clearing
method and do not allow participants to submit their price orders. There is generally a
lack of communication between participants in the trading process, and, as a result, they
are unable to determine whether the transaction results will meet their expectations [23].
Accordingly, in order to meet the increasingly flexible needs of market participants, the DA
mechanism is being implemented to enable prosumers to participate more actively in the
trading process, including the submission of orders, demands, and bids [27,32]. Specifically,
in the DA mechanism, only the orders that meet or exceed the participants’ expectations
will be traded. Transaction prices are determined by the current market order matching
scenario, which may be either uniform or non-uniform [25]. With predefined rational goals
(participants only trade at a profit), the DA transaction always moves toward a Pareto
optimal allocation, thus resulting in more balanced and efficient commodity trading [33].
In this regard, proper bidding strategies and energy management programs become critical
to reaping the benefits of a DA-based market.

Residential buildings are subject to greater randomness than commercial buildings in
terms of energy management since individual consumption patterns are more difficult to
predict. Solar photovoltaic systems that integrate battery storage devices are a preferred
solution that provides flexibility [34]. The cost-effectiveness of a clean energy fee structure
can be realized when the residence is equipped with a PV battery system [35], reducing
the demand reliance of the residence upon the central electrical system [36]. The use of
distributed battery storage can reduce the load on the transmission network in addition to
lowering conversion and transmission losses [37]. In addition, the energy storage between
residential units can be shared using an auction-based mechanism [38]. Battery applications
in the P2P market demonstrate their potential to benefit both the power network and
prosumers [18,20,39–42]. As a result of its controllability, the battery can be used for energy
balance [20,40], as well as improving economic benefits [18,41–43]. While the batteries offer
more flexibility in terms of trading, their operational costs need to be factored into the
control and bidding procedures. Conversely, uncontrollable devices such as PV generation
incur zero marginal cost but offer less flexibility [5]. Therefore, it is imperative that energy
management considers both flexibility and energy trading profit to reduce the total costs.

Researchers have proposed a variety of strategies for DA-based P2P energy trading.
In [29], the zero intelligence (ZI) and eyes on the best (EOB) strategies were applied to
a DA-based P2P market. The results indicate that even market participants with little
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learning ability and trading knowledge can fairly benefit from the bidding mechanism. The
work in [27] compares three bidding strategies, namely, the best-offer approach, ZI, and
market-power approach in a DA market. The key findings indicate that the best bidding
strategy is the best-offer game theory approach, which shows near ideal economic efficiency
and outperforms other strategies on three indicators. A novel adaptive aggressiveness
(AA) bidding strategy is proposed in [30], wherein autonomous trading agents can be
used to participate in the continuous double auction (CDA) market. The agent updates
the aggressiveness of its bidding behavior based on the market information observed
after every bid or ask appears in the market to improve the economic benefits. In [31],
a novel electricity transaction mode based on Blockchain and CDA is proposed, and
three bidding strategies(ZI, ZI-plus, AA) are analyzed. The results show that the CDA
mechanism can be used in community electricity transactions, and the AA strategy can help
market participants make significant returns. The authors of these papers are concerned
with developing new bid strategies. Nevertheless, the coordination of bidding behaviors
with energy scheduling decision making has not been considered simultaneously, and the
characteristics of different devices were neglected. In addition, it is not yet clear which
strategies may be most effective in a residential building equipped with a PV battery system.
It would be ideal for residential participants to modify their energy plans according to the
transaction information and the bidding strategies to assure greater benefits.

In light of the above, we attempt to investigate the potential benefits derived from
residential prosumers participating in P2P energy trading. Furthermore, an energy-
management system that incorporates separate bid strategies for controllable and un-
controllable devices will help to address the differences in device schedules and costs.
However, the roles of separate bidding strategies for controllable and uncontrollable de-
vices remain unclear. In most previous studies, participants were assumed to employ the
same strategy when bidding at an auction. Nevertheless, participants in a real market may
implement different strategies, leading to entirely different outcomes. Similarly, retail price
variations may also influence participants’ decisions and should be considered accordingly.

To solve the above-mentioned problems, this paper aims to develop a P2P energy
trading model to explore whether it can facilitate the integration of DERs for residential
buildings and benefit residents. In addition, we developed an energy-management system
to coordinate scheduling and bidding strategies. In comparison with the conventional
energy-management system, the proposed system is able to process bids separately to
achieve individual optimization. The main contributions of this paper can be summarized
as follows:

• A P2P energy trading model is developed; the trading framework includes a FiT
scheme for the retail market and a discriminatory CDA trading mechanism for the
P2P energy trading coordinator.

• A SBEMS is proposed to realize rolling optimal energy scheduling while determining
energy bids. With respect to the previous works of the energy-management systems,
this method integrates two strategies for enhancing participation in the P2P market.

• Simulations of the competition between prosumers on the local P2P market are ex-
amined using three strategic combinations under an imposed dynamic retail price.
A discussion of the potential benefits of residential prosumers who have installed a
PV battery system participating in P2P energy trading systems is evaluated using
five indices.

The remainder of this paper is organized as follows. Section 2 provides an overview
of the P2P trading scheme and the trading algorithm. Section 3 describes the SBEMS model.
Section 4 demonstrates case studies of a community with 75 residents. Section 5 presents a
conclusive summary of the study.
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2. P2P Trading Scheme Description

This section describes the implementation of a community based on a P2P market.
That said, each prosumer within the community submits their own bids and only shares
the required information without the central control.

2.1. P2P Trading Framework

As mentioned previously, the CDA-based P2P market structure is suitable for privacy-
conscious residents, because they only submit prices and energy orders without losing
control of the DERs. Prosumers can also trade with the external retail market at specific retail
and export prices. They will prefer trading energy locally through the P2P trading platform
to obtain a better potential benefit. As shown in Figure 1, the P2P trading framework
includes three information and two physical layers. Each information layer has its specific
function, and the trading data are exchanged through the information network. Since a
consumer can be regarded as a prosumer with zero energy production, they will be referred
to as prosumers in the rest of this paper. Referring to Figure 1, the functionalities of each
section will be introduced in the following sections.

Local community

Retail market 
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Price information Energy quantity
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Figure 1. Framework of local P2P trading using continuous double auction.

Energy Trading Coordinator (ETC): In the P2P energy trading scheme, prosumers
first trade their power generation and consumption directly with each other at market-
clearing prices. The ETC manages transactions via the CDA mechanism, which can be
implemented as a self-contained web platform that does not require human intervention. Its
main functions are setting and executing trading rules, monitoring energy trading activities,
as well as metering, billing, and information sharing. Likewise, ETC will protect the privacy
of participants; their individual information and order/transaction information will remain
confidential. The CDA-based market comprises a series of concurrent time-slots, and the
ETC shares the transaction information in real time.

Retail Market: After a local P2P transaction is completed, the unbalanced energy
(unfilled orders) of prosumers will continue to be replenished in the retail market and
exchanged with the power grid. Under the FiT scheme, the electricity surplus and elec-
tricity deficit of prosumers are settled by the retail market at the export and retail prices,
respectively. To encourage prosumers to consume locally, the export price is usually set
much lower than the retail price of electricity purchased from the grid [23].

Energy-Management System (EMS): EMS is responsible for controlling batteries and
making bidding decisions. To make sure that residents’ habits are not affected, we consider
only controlling the battery without shifting the load. Before each transaction, the system
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performs a rolling optimization by using the collected data to make control decisions.
These data include load data, PV power generation, battery operation information, external
market transaction information, and billing information.

The interaction between the information and the physical layers is reflected in Figure 1.
The trading procedures act as a rolling transaction. In the first step, each prosumer’s SBEMS
makes their own energy consumption schedule and submits individual bids to the ETC
in the first 15 min at the beginning of a trading cycle. Next, the ETC determines the MCP,
as shown in the diagram of the CDA mechanism. This method guarantees that the total
welfare will be maximized through the sorting principle and clearing algorithm [25,27].
Most generally, the market-clearing price is set between the retail and export price so that
each seller and buyer can benefit from the P2P market. The transaction results will then
be announced and sent to prosumers within 15 min after the submitted order has been
processed. The third step is to execute the successfully matched orders within 15 min after
receiving ETC feedback, and the bidding process for the following transaction will begin
as well. At the same time, the unbalanced energy is traded on the retail market based on
meter measurements without the need for the participant to bid again. The final step is
that the ETC and the retail market generate bills and then send them to prosumers. The
settlement period can be determined according to market conditions, and a daily settlement
is adopted in this paper.

2.2. CDA Transaction Formulation

There are several underlying assumptions in implementing CDA transactions. A fair
machine executes an automated auction following an algorithmic formulation. Orders
containing participant information are converted into numbered orders, protecting the
participants’ privacy. To maintain a weak budget balance, the sellers can only sell energy
for a price below or equal to the buyers’ price, whereas the buyers can purchase energy
for a price that is above or equal to the sellers’ price. The low-price-first-match strategy
can effectively encourage competition among prosumers and attract consumers with a
lower market-clearing price. Following the nature ordering rule, bid prices are sorted in
descending order, while ask prices are sorted in ascending order. When k = 0.5, the CDA
with the average mechanism will exhibit individual rationality, economic efficiency, and
budget balance [27]. The market-clearing price is determined between each matched pair.
Therefore a single market-clearing price will not exist in each auction interval.

It should be noted that the energy order can be regarded as a single divisible commod-
ity under the k-discriminatory CDA market mechanism, which allows one prosumer to
trade with several other prosumers. The full-day trading time is divided into several peri-
ods (in this paper, the length of each period ∆t =15 min). In the trading period, prosumer i
will submit energy selling orders which queue in the order book buy (OBB), and energy
purchasing orders of prosumer j queue in the order book sell (OBS). The order book at t is
shown in (1) and (2).

OBBt =
{(

Bi,1, QB
i,1

)
· · ·
(

Bi,m, QB
i,m

)}
(1)

OBSt =
{(

Sj,1, QS
j,1

)
· · ·
(

Sj,n, QS
j,n

)}
(2)

The transaction algorithm set in this paper is summarized in Algorithm 1. The clearing
prices and volumes were derived using the transaction algorithm after sorting the orders
in OBB and OBS by price. The clearing results ensure that social welfare is maximized due
to the sorting principle and the average mechanism [25].
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Algorithm 1 The transaction algorithm of t.

Input: OBBt, OBSt
Output: clearing price PT

j,i,m,n, Transaction quantity QT
j,i,m,n

1: Initial: n = m = i = j = 1;
2: while doSj,n ≤ Bi,m
3: if Qs

j,n = 0 then
4: n = n + 1;
5: end if
6:
7: if QB

i,m = 0 then
8: m = m + 1;
9: end if

10:
11: PT

j,i,m,n =
(

Bi,m − Sj,m
)
∗ k + Sj,m;

12:
13: if QS

j,n ≤ QB
i,m then

14: QT
j,i,m,n = QB

i,m −QS
j,n;

15: QS
j,n = 0;

16: QB
i,m = QB

i,m −QT
j,i,m,n;

17: j = j + 1;
18: end if
19:
20: if QB

i,m ≤ QS
j,n then

21: QT
j,i,m,n = QS

j,n −QB
i,m;

22: QB
i,m = 0;

23: QS
j,n = QS

j,n −QT
j,i,m,n;

24: i = i + 1;
25: end if
26:
27: if j >length of OBSt or i >length of OBBt then
28: break;
29: end if
30: end while

3. Separate Bidding Energy-Management System Model

This section introduces the proposed SBEMS model for controllable and uncontrollable
devices, including battery, PV, and load. Considering the local prosumers installed with
PV and battery in the secondary distribution network, the function of SBEMS is to manage
battery scheduling and share information with the ETC according to optimization strategies.
Conventionally, the battery is used as a backup system to complement the intermittent
PV generation [18,40]. In that case, battery units are charged with PV power during the
daytime and discharged to supply higher residential load demands in the evening. On the
other hand, the battery can also be used for arbitrage when there is a price difference in
electricity prices [44]. That said, batteries can discharge at high electricity prices and charge
low electricity prices. Generally, the battery is not designed to have the right to bid alone in
these situations.

The CDA transaction can be considered to be a non-cooperation game, where the
buyers and sellers know only their own valuations. The CDA ranking rules do not re-
quire prosumers to negotiate with one another, so there is no need for information sharing
between them. Accordingly, this paper assumes that there is no cooperation among pro-
sumers, but rather that they only maximize their self-interests strategically. Individual
prosumers will devise their own energy management plans and bidding strategies based
on the information about their DERs and the prices revealed by the retail market.
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Due to the flexibility of controllable devices, their bidding strategy will be different
from that of uncontrollable devices. Therefore, unlike previous studies where a prosumer
only needed to submit one order, in this paper, we consider that a prosumer can submit
two orders with different prices and electricity quantities. One potential benefit of this
separate bidding is that, when the profit of the controllable devices does not meet the
expectation, the device can choose not to respond. As a controllable device, the battery will
submit an order separately following the controllable device’s bidding strategy, with retail
market price information, P2P market price information, PV, and load.The load and PV are
regarded as uncontrollable devices, so they submit an order simultaneously. Furthermore,
it is recommended that prosumers avoid simultaneous purchase and sale orders, since
self-utilization is the most advantageous method.

The objective function for SBEMS is displayed in (3), which relates to load, PV, battery
data, and price information from the ETC and the retail market. The optimization of SBEMS
operation allows for the minimization (or maximization) of any project function St and
can be solved by many available solvers (e.g., IBM CPLEX and Gurobi). In this case, the
aim is to minimize the cost of electricity and obtain the maximum potential revenue from
the PV and battery. Before each trading cycle, SBEMS optimizes the individual household
benefit from the bidding period t to the future period (t + m · ∆t), then generates orders
and realizes optimal control of the battery. Meanwhile, the market-clearing price of the
local P2P market has a price floor of the FiT export price and is capped by the incumbent
electricity retail price. Thus, the SBEMS sets the maximum trading price for each bidding
decision for the real-time retail price, and the minimum is the real-time export price.

St = min
t+m·∆t

∑
t
−prdischa

t − prP
t − prdem

t + cP
t + ccha

t (3)

The battery control is activated only when the profit is higher than the operating
cost. We assume that the battery operating cost cBES mainly comes from two aspects.
On one hand, frequent charging and discharging will reduce the life cycle of the battery.
The purchase cost of the battery is then divided by the total number of charge–discharge
cycles. On the other hand, the utilization efficiency of the battery cannot reach 100%,
and each charge/discharge of the battery can cause a certain amount of energy waste.
Hence, the operational cost of a battery, cBES, should also be taken into account during the
decision-making process.

The battery-charging cost is shown in (4). The power can be obtained through three
ways: PV power generation CV

t , energy purchase in the P2P market CP
t , and energy

purchase in the retail market CG
t . To promote self-consumption, charging from the PV is

set as the cheapest way at minimum price PExp
i , and charging from the retail market is the

most expensive way at the highest price PRet
i .

ccha
t =

(
PExp

i · CV
t + BBES

t · CP
t + PRet

i · CG
t

)
· cBES · ∆t (4)

The profit from battery discharging is shown in (5). The power discharged by the
battery can be sold to the retail market at the lowest price PExp

t , to the P2P market at
battery bidding price SBES

t , and used by the load at the highest price PRet
i . Due to the price

uncertainty in the local P2P market, this assumption is most beneficial when replenishing
the household load.

prdischa
t =

(
PExp

t · DG
t + SBES

t · DP
t + PRet

i · DD
t

)
· cBES · ∆t (5)

The cost of electricity purchased from the P2P market is presented in (6), and the
income from selling electricity is shown in (7), where the bid price is set according to the
uncontrollable device bidding strategy.
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cP
t = BP

t · EBPt · ∆t (6)

prP
t = SP

t · ESPt · ∆t (7)

Compared with the abovementioned situation that all devices submit one order into
the market, this objective function includes the profit SBES

t ·DP
t and cost BBES

t ·CP
t of battery

participation in the P2P market. These two variables are not included in the consideration
of a conventional unified bidding strategy.

The profit of the PV electricity surplus supplementing the users’ load is presented
in (8). The price set as the highest price indicates that residents are encouraged to give
priority to self-consumption of excess PV power to avoid transmission losses.

prdem
t = PRet

t · pvD
t · ∆t (8)

3.1. Battery Constraints

The battery energy flow model considers power charging and discharging, operation
efficiency, and storage level. The proposed algorithm does not allow the battery to charge
and discharge simultaneously. The battery’s charging and discharging rate is limited to a
specified rate as shown in (9) and (10), where CMax and DMax are the maximum allowable
charging and discharging power, and CMin and DMin are the minimum allowable charging
and discharging power. The physical characteristic of the battery, as described in (11),
where a lower bound and an upper bound limit the storage level SOC. The state of charge
for the battery in a time step t is determined by Equation (12).

CMin ≤ CV
t + CP

t + CG
t ≤ CMax (9)

DMin ≤ DG
t + DP

t + DD
t ≤ DMax (10)

SOCMin ≤ SOCt ≤ SOCMax (11)
SOCt = SOCt−∆t + ηC

(
CV

t + CP
t + CG

t
)

− 1
ηD

(
DV

t + DP
t + DG

t
) (12)

3.2. Energy Balance Constraints

Each prosumer’s power flow balance is required amongst the PV, battery, load, P2P
market, and the utility grid. Constraint (13) means that the electricity obtained from the
PV should not exceed the maximum generation value pvMax

t . Equation (14) indicates that
the energy obtained from the battery, DD

t , P2P market, EBPt, and PV +pvD
t must meet the

resident’s load usage demt.

CV
t + ESPt + pvD

t ≤ pvMax
t (13)

DD
t + EBPt + pvD

t = demt (14)

3.3. Controllable Device Bidding Strategy

The bidding price and quantity relationship can be expressed as a linear equation for
the controllable device. This bidding strategy involves generating bids and optimizing
energy control. In this work, only the battery is treated as the controllable device for
bidding, since load shifting is not considered. The time-varying price in a P2P market allows
participants to arbitrage by buying energy at a low price and selling it at a higher price.

Participants do not know the bidding strategies of other people in the market, so they
set the probability of accepting the bid based on the retail and export prices. Equation (15)
shows the relationship between bid acceptance probability and the bidding price for
purchasing energy from the P2P market. Due to CDA’s sorting mechanism, sellers will
be the first to match when they offer the lowest price, and then they will be ranked at the
end when they offer the highest price and lose orders. Similarly, buyers can easily receive
orders when the bid price is the highest, and the chance of matching is easily lost when the
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bid price is the lowest. It is assumed that when the bidding price is set to the highest, the
probability of winning the purchase request is 100%, and at the lowest price, the probability
is 0%. Buyers tend to buy more quantity when the energy price is low, while the probability
of winning needs to be taken into account as in (16).

ρB
t =

BBES
t

PRet
t − PExp

t

− PExp
t

PRet
t − PExp

t

(15)

CP
t = −CMax−CMin

PRet
t −PExp

t
·
(

BBES
t + cBES) · ρB

t

+
CMax ·PRet

t +CMin ·PExp
t

PRet
t −PExp

t
· ρB

t w1

(16)

The seller’s bidding strategy is opposed to the one of buyer’s, with the goal of selling
more electricity at a higher price. Equation (17) represents the bid acceptance probability
for the seller. The higher the bid price is set, the lower the probability of winning becomes.
The sellers’ bidding decision equation is shown in (18).

ρS
t = 1− SBES

t

PRet
t − PExp

t

+
PExp

t

PRet
t − PExp

t

(17)

DP
t = DMax−DMin

PRet
t −PExp

t
·
(
SBES

t − cBES) · ρS
t

−DMax ·PRet
t −DMin ·PExp

t

PRet
t −PExp

t
· ρS

t w2

(18)

The order generation constraints are shown in (19) and (20), which state that the
purchase order is submitted when the battery is charging, and the selling order is submitted
when the battery is discharging.

QB
j,n = CP

j,t, Bj,n = BBES
t ; CP

j,t > 0 (19)

QS
j,n = DP

j,t, Sj,n = SBES
t ; DP

j,t > 0 (20)

3.4. Uncontrollable Device Bidding Strategy

The strategy for uncontrollable devices is different from that for controllable devices,
as it does not need to consider optimal energy control. A residential load and PV are
considered to be uncontrollable devices in this study. According to [5], renewable energy
has a zero marginal cost and is intermittent. Therefore, the purpose of bidding for PV is to
increase local consumption (self utilization and P2P trading) in order to maximize the yield.
Considering the potential savings on energy costs from the P2P market, it is recommended
that the load purchase electricity primarily from this market.

The strategy for uncontrollable energy is a modified best-offer approach. Due to the
natural ordering rules, sellers with lower prices can clear their bids before sellers with
higher prices. In other words, a seller must bid lower than all other sellers in order to win a
non-zero return. This is described as a ’winner-takes-all’ situation, because the losing party
receives a zero payoff. One of the benefits of this strategy is that it can ensure orders for the
uncontrollable device can be traded first and avoid unnecessary waste.

Best-Offer Approach: Prosumers compete in bidding at the best price, regardless of
the market’s supply and demand. In this case, the ask price from the buyer is always set as
the maximum trading price, and the bid price of the seller is set as the minimum trading
price. In [5], it is mentioned that the marginal cost of renewable generation outputs is
zero, so the bid price of the energy surplus should be set to zero according to the best-offer
approach. However, this assumption might not be suitable for the trading rules in this
paper. Instead, we modify the best-offer approach so that, even if the prosumer does not
participate in the P2P market, the energy surplus can be sold to the retail market at an export
price to make a profit. Similarly, the price of the energy deficit purchased on the P2P market
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should not exceed the retail price, otherwise the electricity bill will increase. Participating
in the P2P market is aimed at obtaining greater potential profits, so the minimum limit of
the best-offer approach is set as the real-time export price, and the maximum limit is set
as the real-time retail price. This strategy seeks to maximize the local consumption of PV
generation while increasing the profit of all prosumers. Orders can be generated as follows:

QS
j,n = ESPj,t, Sj,n = PExp

t ; ESPj,t > 0 (21)

QB
j,n = EBPj,t, Bj,n = PRet

t ; EBPj,t > 0 (22)

Consider the possibility that residential participants may use several competing strate-
gies simultaneously. We introduce two other bidding strategies to compare with the
proposed strategy to evaluate its performance. The AA method is a strategy proposed for
double auction transactions. Users need to consider historical market-clearing prices and
bidding success rates to pursue more benefits. We have also implemented a ZI strategy
in consideration of the fact that market participants may exhibit unpredictable behavior.
When these mixed strategies are entered into the unified market, this can determine if the
separate bidding strategy will be affected.

Adaptive-Aggressiveness Approach: AA strategy is an adaptive learning quotation
strategy, which involves a short-term and a long-term learning mechanism to update
the prosumer’s bidding aggressiveness to remain competitive in the market [30,31]. This
strategy can change the behavior of market participants according to different situations.
When a bid fails, it has the option of being more active to increase its odds of being able
to trade. On the other hand, when the bid is successful, it can choose to become more
conservative in an attempt to increase its profits. In other words, participants can react
to market information by taking more or less aggressive actions based on their market
performance. In (23), P̂ can be calculated using the moving average method, based on the
historical clearing prices, where ∑t

i=t−N+1 wi = 1, wi−1 = ρwi.

P̂ =
∑t

i=−N(wi×PT
i )

N
(23)

The role of the aggressiveness model is to generate the current target price given
the prosumers’ current degree of aggressiveness. The adaptive learning process refers
to both parties’ short-term and long-term learning to adjust r and θ according to market
information. Short-term learning performance is as shown in (24) and (25).

r(t + 1) = r(t) + β1(δ(t)− r(t)) (24)

δ(t) = (1± λr)rshout ± λa (25)

The long-term learning performance is as follows:

θ(t + 1) = θ(t) + β2(θ
∗(α)− θt) (26)

α = 1
P̂

√
∑N

i=1(PT
t −P̂)

2

N (27)

θ∗(α) = (θmax − θmin)
(

1− α−αmin
αmax−αmin

)
e2
(

α−αmin
α max−αmin

−1
)
+ θmin (28)

In the bidding layer, the prosumer employs a set of bidding rules to decide whether or
not to submit a bid or an ask and at what price if it decides to do so. The pricing strategy of
the seller as (29) and the pricing strategy of the buyer is expressed as (30), where η ∈ [1, ∞)
is a constant that determines the rate of increase (decrease) of the bids (asks).

SP
t = PExp

t +
(

τ − PExp
t

)
/η (29)
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BP
t = PRet

t −
(

PRet
t − τ

)
/η (30)

Zero-Intelligence Strategy: ZI strategy assumes that each prosumer will bid randomly
without any strategic expectation and ignores the market’s historical price and cost of
electricity [27]. We assume that bid/ask prices are randomly sampled from a uniform
distribution ranging from the real-time retail and export prices. Some studies [27,45,46]
have demonstrated that prosumers can benefit from local interactions on the demand side
and trade in electricity surplus, even in situations of zero intelligence.

3.5. Bidding Constrains

Assuming that the prosumers participating in the P2P market are rational, they expect
to obtain greater benefits than participating in the retail market, so the setting of bidding
action constraints is reasonable. If an order submitted by a prosumer exceeds the FiT
scheme’s price range, the order is not competitive in the P2P market. Therefore, the bidding
price should be controlled within the maximum and minimum price range. The bidding
price for uncontrollable devices is constrained by (31) and (32). For the controllable devices,
the bidding price range can be adjusted according to the prosumer’s expectations as shown
in (33) and (34).

PMin
s ≤ SP

s ≤ PMax
s (31)

PMn
s ≤ BP

s ≤ PMax
s (32)

PMin
s + λBES ≤ SBES

s ≤ PMax
s (33)

PMin
s ≤ BBES

s ≤ PMax
s − λBES (34)

4. Case Studies
4.1. Simulation Platform and Data

To ensure the fidelity of the simulated P2P transaction model, we use household
load/generation datasets and real-time power market prices collected in New York,
USA [47,48]. The electricity consumption data and PV generation data from real-world
measurements were taken from Pecan Street in June 2019, which measures circuit-level
electricity usage and generation from volunteer homes. We assume that the retail price
in the simulation is the real-time power market price from New York in June 2019 and
set the export price as 45% of the retail price. A total of 75 single-family households in a
community are simulated to utilize different bidding strategies to participate in the local
P2P market. All cases are implemented based on MATLAB, among which the SBEMS
model calls the CPLEX optimization toolbox and Yalmip toolbox.

As shown in Figure 2, the 75 households are divided into three groups to adopt three
bidding strategies, i.e., Group 1 (ZI), Group 2 (AA), and Group 3 (Best-Offer). A total of 25
unique load/generation portfolios were used within each group, and seven prosumers in
each group are assumed to have a battery–PV system. The parameters of the battery can be
found from [41]. Two sets of cases are simulated. As shown in case 1, which is based on
the SBEMS proposed in this paper, the battery has its bidding strategy and communication
functions. In contrast, the battery in the reference case does not have its bidding strategy
and can only be controlled.
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Group 1 Group 2 Group 3

(b)

Group 1 Group 2 Group 3

(a)

Figure 2. Proposed case configuration for case studies: (a) Case 1, SBEMS; (b) Case 2, reference.

4.2. Local P2P Energy Transaction Results

Table 1 shows the results of the average clearing price of each group over weekdays
and weekends. The randomly selected weekday and weekend electricity prices are shown
in Figure 3. It is found that group 3 shows a relatively lower average clearing price, and
the average transaction price of SBEMS is lower than the reference. The reason behind
this is that more low-priced orders were traded. Lower transaction prices can attract more
buyers to participate in the market. For sellers, it is still profitable for the transaction price
to be higher than the retailer’s recovery price. The success rate presents the ratio of the
number of successful bids to the total number of bids in a group. From Table 1, it can
be seen that group 3 presents the highest success rate. The results indicate that adopting
the best-offer approach can help win more orders than the other strategies. It offers the
highest/lowest price each time and obtains priority under the ranking mechanism. It is
observed from Table 1 that the success rate of the AA strategy is higher than that of the ZI
strategy. The AA strategy can adjust its aggressiveness for bidding behavior depending on
market data collected after each purchase or sale. By adopting a ZI strategy, bids are made
with randomness within the scope, and most market information is ignored. Although this
strategy can also profit from the market, its success rate is generally low.

Furthermore, Table 1 shows that the SBEMS has a lower success rate than the reference.
One of the reasons for the bid’s failure is that the transaction price fails to meet expectations.
Compared to the orders for PV/load with zero marginal cost, orders for the batteries have
a lower competitive advantage, since the cost is considered in the bidding process. CDA
market rules dictate that orders with greater competitive advantages (lower-priced sales
orders and higher-priced purchase orders) are matched first. The success rate of battery
orders is relatively low when SBEMS issues battery bids separately. When the battery orders
fail to match, it is not profitable for the battery to operate in the current market situation.
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Figure 3. Retail market price on (a) weekday and (b) weekend.

Table 1. Comparison of average clearing prices and success rates.

Index
SBEMS Reference

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3

Average clearing price weekday ($/kWh) 0.0164 0.0162 0.0153 0.0168 0.0167 0.0156

Average clearing price weekend ($/kWh) 0.0119 0.0119 0.0113 0.0126 0.0127 0.0121

Success rate weekday 0.3240 0.4345 0.6826 0.3608 0.4947 0.7565

Success rate weekend 0.4166 0.4896 0.7765 0.4276 0.4868 0.8195

4.3. Energy Analysis

Figure 4 illustrates the detailed demand profile of the entire community, where the
positive value represents electricity production and the negative value represents electricity
consumption. It is noteworthy to point out that, in the case of adopting SBEMS, battery
charging and discharge are different from those of the reference case. Figure 4a,c shows
that the battery’s charge/discharge is related to the energy deficit and surplus in the
entire community. Batteries are charged more when the energy surplus is sufficient and
discharged when the energy deficit is high. According to Figure 4b,d, the charging and
discharging operations correlate with the retail market price curve, as depicted in Figure 3.
For example, the battery discharge peaks occur around 18:00 on a weekday, along with the
highest electricity price. The battery shows a peak charging rate at the lowest electricity
price point, which appears around 10:00 on the weekend. Through SBEMS, the battery
can exchange information with the P2P market by using a separate bidding strategy.
When the PV surplus exceeds the load demand, a flood of low-price orders attracts the
battery to charge. In the reference case, the battery works more frequently. It does not bid
independently and seeks benefit from the retail market electricity price difference between
the “peak” and “valley”.

The power flow of the two cases is presented in Figure 5. As shown in Figure 5a,b,
the peak values of grid import and grid export are at least 40 kW lower than the reference
case. The results in Figure 5c,d show the peak values of the grid import and export are
about 45% and 25% lower than the reference case, respectively. The adoption of SBEMS
resulted in a lower amount of being energy exchanged with the utility grid. Regarding
P2P internal transactions, the results show that the local peak value of energy trading
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is slightly higher than the reference case for weekdays and weekends. It is important
to note that, despite the fact that PV generation and load curves differ significantly for
weekday and weekend, in both cases the adoption of SBEMS results in a lower peak power
exchange with the utility grid and greater local self-sufficiency. High peak power results
in high costs for the network reinforcement and a heavy burden on the power system’s
operation [23]. Consequently, the adoption of SBEMS may have the potential to reduce
power grid infrastructure investments.
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Figure 4. Detailed demand profile of the community: (a) weekday-SBEMS, (b) weekday-reference,
(c) weekend-SBEMS, and (d) weekend-reference.
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Figure 5. Type day profile of the whole community: (a) weekday-SBEMS, (b) weekday-reference, (c)
weekend-SBEMS, and (d) weekend-reference.
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4.4. Discussion

This section first performs an economic analysis of the three groups. Then five in-
dexes, covering both economic and technical aspects, will be used to evaluate the overall
performance of different P2P trading frameworks, namely, the participation willingness
index, the energy balance index, the power flatness index, and the self-sufficiency index.
The readers are referred to [23] for more detailed information on the indexes.

When multiple strategies compete in the market simultaneously, the total bill can
be utilized to assess which method will provide prosumers with the most economical
gain. The total bill includes electricity sales and purchases and the battery cost for a single
day. After adopting the SBEMS, the electricity bills for each group are shown in Figure 6.
Group 3, using the proposed best-offer approach to cooperate with a controllable device
bidding strategy, maintains the lowest total electricity bill, which results in high economic
efficiency. Cost savings of up to 27.3% are observed compared with the reference. It is
worth noting that, even though the AA strategy takes historical data into account and
has a relatively complex bidding decision-making process, it does not gain more benefits
than the best-offer approach. Therefore, the bidding strategy should consider the specific
market climate, with different tactics being tested to see which is the most competitive.
Furthermore, while comparing the SBEMS and reference, it can be noted that all three
strategy groups demonstrate the superiority of separate bidding by having lower total bills
than the reference. In other words, it is necessary to manage and bid for controllable and
uncontrollable devices separately.
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Figure 6. Electricity bill of 3 groups: (a) weekday, (b) weekend.

Table 2 shows the five indexes used to evaluate the effectiveness of the separate bidding
strategy. The economic benefit index measures the cost savings and income increases of
all prosumers within the community after participating in P2P trading, reflecting the total
economic benefit increase for residents. The higher the index value, the higher the economic
benefit prosumers receive:

EBI =
valueP2P − valueFiT

|valueFiT |
, (35)

where the revenue and expenditures are represented by valueP2P after participating in
P2P trading and by valueFiT after participating in the FiT scheme, in which the revenue
is represented by a positive number and the expenditure by a negative number. The
positive value of the EBI indicates that the economic benefit is increasing; the negative
value indicates that it is decreasing.

The participation willingness index measures the percentage of prosumers who receive
more benefits after participating in P2P energy trading, reflecting the overall participation
willingness of the whole population:

PWI =
NLowercost

N
, (36)
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where the NLowercost represents the number of prosumers who receive economic benefits in
P2P energy trading than that under direct trading with the retailer; N is the total number
of prosumers participating in the P2P trading.

Table 2. Comparison of technical and economic indexes.

Index Case 1:
SBEMS

Case 2:
Reference

Conventional Paradigm:
FiT Scheme

Weekday Weekend Weekday Weekend Weekday Weekend

Economic benefit index 0.248 0.224 0.109 0.101 0 0

Participation willingness index 0.833 0.880 0.826 0.805 0.280 0.280

Energy balance index 0.668 0.545 0.486 0.428 0.287 0.197

Power flatness index 0.717 0.833 0.759 0.832 ____ ____

Self-sufficiency index 0.557 0.478 0.477 0.414 0.321 0.291

Average value 0.605 0.592 0.532 0.516 0.277 0.192

The energy balance index measures the total energy exchange with the utility grid for
both import and export. A higher index value reflects the higher enhanced energy balance
ability of the P2P energy trading:

EBI = 1− ∑t∈T|∑n∈N(∑j∈L ln,j,t+∑j∈G gn,j,t)|
∑t∈T ∑n∈N ∑j∈L ln,j,t+∑t∈T ∑n∈N ∑j∈G|gn,j,t| , (37)

where the numerator represents the sum of the energy imbalance throughout the consid-
ered time horizon, while the denominator represents the total amount of production and
consumption over the same time horizon, which is used to normalize the index.

The power flatness index is used to evaluate the impact of peak power, considering
both the positive and negative directions. The higher value reflects the utilization rate and
operational efficiency of the power equipment increase:

PFI = 1− maxt(|∑n∈N(∑j∈L ln,j,t+∑j∈G gn,j,t)|)
1
T ∑t∈T |∑n∈N(∑j∈L ln,j,t+∑j∈G gn,j,t)| , (38)

which is calculated based on a quotient between peak power and average power over a
period of time, in which both the power surplus and deficit are considered.

The self-sufficiency index measures the capacity of local power generation to meet the
local demand, and a higher value of it represents a lower energy interchange with the main
grid, hence fewer power transmission losses:

SSI = 1− ∑t∈T+∈T ∑n∈N(∑j∈L ln,j,t+∑j∈G gn,j,t)
∑t∈T ∑n∈N ∑j∈L ln,j,t

, (39)

which assesses the level of self-sufficiency in P2P trading areas based on the proportion of
energy dependent upon the exchange with the utility grid.

It can be observed from Table 2 that, compared with the FiT scheme, P2P energy
trading has better performance in terms of economic benefit, participation willingness,
energy balance, and self-sufficiency index. The power flatness index is not involved in the
assessment scope, because there is no P2P trading area in the conventional FiT paradigm.
The index values show that the adoption of P2P trading achieves an economic benefit
increase and improves the efficiency of local energy utilization. P2P trading could create
an opportunity to solve grid problems by all market participants rather than reinforcing
the grid. This could contribute to the resilience and security of the community network.
The SBEMS model proposed in this study can further enhance the economic and technical
benefits. The following paragraphs will discuss these two points in detail.
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Regarding the economic benefit index, it is observed that the SBEMS with separate
bidding can result in more economic benefits than the reference case with conventional
unified bidding (simulation indicates about a 13% increase) on both a weekday and a
weekend. Combined with the result shown in Figure 5, the SBEMS can help prosumers
avoid operating their battery during the less profitable time interval, thus increasing their
economic benefits. The participation willingness indexes for SBEMS are higher than the
reference on a weekday and a weekend. The utilization of SBEMS can increase the incen-
tives for prosumers, so most prosumers are willing to use the system for energy trading.
Compared with traditional bid-management methods, the index value demonstrated that
SBEMS has a greater ability to provide economic benefits to more prosumers. As a result,
their willingness to participate in P2P trading increases.

The SBEMS achieves a better energy balance and self-sufficiency index performance
from a technical perspective. The results show that the energy balance index in case 1 is
37% and 27% higher than the reference case on a weekday and a weekend, respectively. The
self-sufficiency index is at least 15% higher. Thus, all prosumers in a community adopting
the separate bidding method would help reduce grid stress and improve the reliability
of the local power supply. The power flatness index in case 1 is slightly lower. This is
due to the amount of local energy trading, and the peak value in case 1 is greater than
in case 2. The relatively small deviation in the index indicates that the effects of cases 1
and 2 on the power grid are similar. To evaluate the overall performance, all five indexes
were considered and weighted equally. The average value shows that the SBEMS is at least
13.7% higher than the reference. Based upon the results, it can be concluded that SBEMS
promoted the overall performance.

P2P energy trading is one of the key drivers behind a broader penetration of renewable
energy in the electricity system and further decentralizing energy production. It could
result in higher cost savings and potential income generation for prosumers. This paper
developed a model to quantitatively analyze the potential benefits of P2P energy trading
for residential buildings based on which several further works can be further conducted.
Detailed findings are necessary to quantify the true potential benefits of the P2P energy
trading model to provide long-term benefits to all parties involved. For example, if sys-
tem operators plan networks without considering the potential for P2P energy trading
platforms to unlock embedded flexibility, then networks will be overbuilt. This is likely
to result in higher network charges and reduce the value of the flexibility that P2P energy
trading platforms may offer, undermining otherwise valuable business models. For fu-
ture policy-making decisions made at the central level, the availability of clear rules that
allow for experimental and technological change is an important enabler of innovation and
investment. Meanwhile, updated regulations need to be developed regarding balancing
responsibilities and determining network charges.

5. Conclusions

In this paper, a local P2P energy market is modeled, in which a CDA-based trading
framework and a decentralized residential SBEMS are presented. Residential buildings
with PV battery systems installed can benefit from participating in P2P markets. The SBEMS
allows residential prosumers to submit individual orders and create rolling scheduling for
energy by incorporating two bidding strategies.

The results demonstrate that P2P energy trading can be utilized as a solution to
integrate the PV battery system installed in residential buildings. In contrast to the FiT
scheme, DERs can be sold at higher prices, while residents can enjoy a lower electricity
purchase price. Through localized transactions, the energy exchange between communities
and the utility grid is reduced, resulting in lower energy transportation costs and losses for
the grid. Therefore, the P2P market can bring potential benefits to power grid infrastructure
investments. Compared with the conventional energy-management system, the proposed
SBEMS can provide a comprehensive improvement in terms of (1) a reduction of the total
bill of a group by 27%; (2) an economic benefit index indicating an approximate 13%
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increase; (3) a participation willingness index up to 0.88; (4) the self-sufficiency index being
at least 15% higher; and (5) the energy balance index being up to 37% higher. Moreover,
the proposed combination (best-offer approach with the battery bidding strategy) strategy
can outperform others under a dynamic auction system.
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Nomenclature
t Index to refer to the tth trading time unit
∆t Trading time horizon
OBBt Order book buy, contains all buyers at t
OBSt Order book sell, contains all sellers at t
St Total benefit of a prosumer at t
prdischa

t Profit from battery discharging at t
prP

t Profit from selling energy in P2P market at t
prdem

t Profit from PV surplus supplementing demand at t
ccha

t Battery charging cost at t
cP

t Cost of energy purchased from P2P market at t
PT

j,i,k,n Clearing price of buyer i order k with seller j order n
Bi,k Order k price of buyer i
QB

i,k Order k quantity of buyer i
Sj,n Order n price of seller j
QS

j,n Order n quantity of seller j
k Order number of buyer
n Order number of seller
PExp

t Export price
cBES Battery operating cost
CV

t Battery charging from PV
CP

t Battery charging from P2P market
PRet

t Retail price
CG

t Battery charging from utility grid
BBES

t Battery bidding price for buyer
DG

t Battery discharging for utility grid
SBES

t Battery bidding price for seller
DP

t Battery discharging for P2P market
BP

t Uncontrolled energy bidding price for buyer
ESPt Energy selling to P2P market
SP

t Uncontrolled energy bidding price for seller
EBPt Energy buying from P2P market
DMin Minimum limitation of battery discharging
DMax Maximum limitation of battery discharging
CMin Minimum limitation of battery charging
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CMax Maximum limitation of battery charging
SOCt State of charge of the battery at t
SOCMin Minimum allowable state of charge
SOCMax Maximum allowable state of charge
ηC Charging efficiency of battery
ηD Discharging efficiency of battery
pvD

t Energy sold to P2P market from PV
pvMax

t Maximum energy produced by PV at t
demt Demand at t
ρB

t Probability of success in buying
ρS

t Probability of success in selling
ω Random value
wi Weight parameter of deal i
τ Target price
`t Limit price for buyer
cj Limit price for seller
r Aggressiveness degree
β Learning parameter
α The normalized standard deviation value
θ Varies parameter
τ Current target price in AA strategy
r Current degree of aggressiveness
λBES Preference value of battery bidding

References
1. Net Generation by Energy Source: Residential Sector, 2014-April 2020; U.S. Energy Information Administration: Washington, DC,

USA, 2020.
2. Form EIA-861M Detailed Data Net Metering; U.S. Energy Information Administration: Washington, DC, USA, 2020. Available

online: https://www.eia.gov/electricity/data/eia861m/xls/net_metering2020.xlsx (accessed on 2 January 2021).
3. Askeland, M.; Backe, S.; Bjarghov, S.; Lindberg, K.B.; Korpås, M. Activating the potential of decentralized flexibility and energy

resources to increase the EV hosting capacity: A case study of a multi-stakeholder local electricity system in Norway. Smart
Energy 2021, 3, 100034. [CrossRef]

4. Toquica, D.; Agbossou, K.; Henao, N.; Malhamé, R.; Kelouwani, S.; Amara, F. Prevision and planning for residential agents in a
transactive energy environment. Smart Energy 2021, 2, 100019. [CrossRef]

5. Yang, J.; Dong, Z.Y.; Wen, F.; Chen, Q.; Luo, F.; Liu, W.; Zhan, J. A Penalty Scheme for Mitigating Uninstructed Deviation of
Generation Outputs From Variable Renewables in a Distribution Market. IEEE Trans. Smart Grid 2020, 11, 4056–4069. [CrossRef]

6. Wen, H.; Du, Y.; Chen, X.; Lim, E.; Wen, H.; Jiang, L.; Xiang, W. Deep Learning Based Multistep Solar Forecasting for PV
Ramp-Rate Control Using Sky Images. IEEE Trans. Ind. Inform. 2021, 17, 1397–1406. [CrossRef]

7. Javadi, M.S.; Gough, M.; Lotfi, M.; Esmaeel Nezhad, A.; Santos, S.F.; Catalão, J.P.S. Optimal self-scheduling of home energy-
management system in the presence of photovoltaic power generation and batteries. Energy 2020, 210, 118568. [CrossRef]

8. Morstyn, T.; Teytelboym, A.; Hepburn, C.; McCulloch, M.D. Integrating P2P Energy Trading With Probabilistic Distribution
Locational Marginal Pricing. IEEE Trans. Smart Grid 2020, 11, 3095–3106. [CrossRef]

9. Chen, X.; Du, Y.; Wen, H.; Jiang, L.; Xiao, W. Forecasting-Based Power Ramp-Rate Control Strategies for Utility-Scale PV Systems.
IEEE Trans. Ind. Electron. 2019, 66, 1862–1871. [CrossRef]

10. Chen, X.Y.; Du, Y.; Lim, E.; Wen, H.Q.; Yan, K.; Kirtley, J. Power ramp-rates of utility-scale PV systems under passing
clouds: Module-level emulation with cloud shadow modeling. Appl. Energy 2020, 268, 114980. doi: 10.1016/j.apenergy.
2020.114980. [CrossRef]

11. Littlechild, S. Retail competition in electricity markets. Expectations, outcomes and economics. Energy Policy 2009, 37, 759–763.
[CrossRef]

12. Couture, T.D.; Cory, K.; Kreycik, C.; Williams, E. Policymaker’s Guide to Feed-in Tariff Policy Design; National Renewable Energy
Lab. (NREL): Golden, CO, USA, 2010.

13. Tushar, W.; Saha, T.K.; Yuen, C.; Morstyn, T.; McCulloch, M.D.; Poor, H.V.; Wood, K.L. A motivational game-theoretic approach
for peer-to-peer energy trading in the smart grid. Appl. Energy 2019, 243, 10–20. [CrossRef]

14. An, D.; Yang, Q.; Yu, W.; Yang, X.; Fu, X.; Zhao, W. SODA: Strategy-Proof Online Double Auction Scheme for Multimicrogrids
Bidding. IEEE Trans. Syst. Man, Cybern. Syst. 2018, 48, 1177–1190. [CrossRef]

15. Zhang, C.; Wu, J.; Zhou, Y.; Cheng, M.; Long, C. Peer-to-Peer energy trading in a Microgrid. Appl. Energy 2018, 220, 1–12.
[CrossRef]

16. Tushar, W.; Yuen, C.; Mohsenian-Rad, H.; Saha, T.; Poor, H.V.; Wood, K.L. Transforming Energy Networks via Peer-to-Peer Energy
Trading The potential of game-theoretic approaches. IEEE Signal Process. Mag. 2018, 35, 90–111. [CrossRef]

https://www.eia.gov/electricity/data/eia861m/xls/net_metering2020.xlsx
http://doi.org/10.1016/j.segy.2021.100034
http://dx.doi.org/10.1016/j.segy.2021.100019
http://dx.doi.org/10.1109/TSG.2020.2993049
http://dx.doi.org/10.1109/TII.2020.2987916
http://dx.doi.org/10.1016/j.energy.2020.118568
http://dx.doi.org/10.1109/TSG.2019.2963238
http://dx.doi.org/10.1109/TIE.2018.2840490
http://dx.doi.org/10.1016/j.apenergy.2020.114980
http://dx.doi.org/10.1016/j.enpol.2008.09.089
http://dx.doi.org/10.1016/j.apenergy.2019.03.111
http://dx.doi.org/10.1109/TSMC.2017.2651072
http://dx.doi.org/10.1016/j.apenergy.2018.03.010
http://dx.doi.org/10.1109/MSP.2018.2818327


Energies 2022, 15, 3913 20 of 21

17. Fu, M.; Xu, Z.Y.; Wang, N.; Lyu, X.Y.; Xu, W.S. “Peer-to-Peer Plus” Electricity Transaction within Community of Active Energy
Agents Regarding Distribution Network Constraints. Energies 2020, 13, 2408. [CrossRef]

18. Luth, A.; Zepter, J.M.; del Granado, P.C.; Egging, R. Local electricity market designs for peer-to-peer trading: The role of battery
flexibility. Appl. Energy 2018, 229, 1233–1243. [CrossRef]

19. Neves, D.; Scott, I.; Silva, C.A. Peer-to-peer energy trading potential: An assessment for the residential sector under different
technology and tariff availabilities. Energy 2020, 205, 118023. [CrossRef]

20. Long, C.; Wu, J.; Zhou, Y.; Jenkins, N. Peer-to-peer energy sharing through a two-stage aggregated battery control in a community
Microgrid. Appl. Energy 2018, 226, 261–276. [CrossRef]

21. Liu, N.; Yu, X.; Wang, C.; Li, C.; Ma, L.; Lei, J. Energy-sharing model with price-based demand response for microgrids of
peer-to-peer prosumers. IEEE Trans. Power Syst. 2017, 32, 3569–3583. [CrossRef]

22. Long, C.; Zhou, Y.; Wu, J. A game theoretic approach for Peer-to-Peer energy trading. Energy Procedia 2019, 159, 454–459.
[CrossRef]

23. Zhou, Y.; Wu, J.; Long, C. Evaluation of peer-to-peer energy sharing mechanisms based on a multiagent simulation framework.
Appl. Energy 2018, 222, 993–1022. [CrossRef]

24. Long, C.; Wu, J.; Zhang, C.; Thomas, L.; Cheng, M.; Jenkins, N. Peer-to-peer energy trading in a community microgrid. In
Proceedings of the 2017 IEEE Power and Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5.

25. Chen, K.X.; Lin, J.; Song, Y.H. Trading strategy optimization for a prosumer in continuous double auction based peer-to-peer
market: A prediction-integration model. Appl. Energy 2019, 242, 1121–1133. [CrossRef]

26. Faqiry, M.N.; Das, S. Double Auction With Hidden User Information: Application to Energy Transaction in Microgrid. IEEE
Trans. Syst. Man Cybern. Syst. 2019, 49, 2326–2339. [CrossRef]

27. Lin, J.; Pipattanasomporn, M.; Rahman, S. Comparative analysis of auction mechanisms and bidding strategies for P2P solar
transactive energy markets. Appl. Energy 2019, 255. [CrossRef]

28. Guerrero, J.; Sok, B.; Chapman, A.C.; Verbic, G. Electrical-distance driven peer-to-peer energy trading in a low-voltage network.
Appl. Energy 2021, 287. [CrossRef]

29. Li, Z.; Ma, T. Peer-to-peer electricity trading in grid-connected residential communities with household distributed photovoltaic.
Appl. Energy 2020, 278, 115670. [CrossRef]

30. Vytelingum, P.; Cliff, D.; Jennings, N.R. Strategic bidding in continuous double auctions. Artif. Intell. 2008, 172, 1700–1729.
[CrossRef]

31. Jian, W.; Wang, Q.; Zhou, N.; Yuan, C. A Novel Electricity Transaction Mode of Microgrids Based on Blockchain and Continuous
Double Auction. Energies 2017, 10, 1971.

32. Han, D.; Zhang, C.Z.H.; Ping, J.; Yan, Z. Smart contract architecture for decentralized energy trading and management based on
blockchains. Energy 2020, 199, 117417. [CrossRef]

33. Guerrero, J.; Chapman, A.C.; Verbic, G. Decentralized P2P Energy Trading Under Network Constraints in a Low-Voltage Network.
IEEE Trans. Smart Grid 2019, 10, 5163–5173. [CrossRef]

34. Yang, F.; Xia, X.H. Techno-economic and environmental optimization of a household photovoltaic-battery hybrid power system
within demand side management. Renew. Energy 2017, 108, 132–143. [CrossRef]

35. Raziei, A.; Hallinan, K.P.; Brecha, R.J. Clean energy utility for multifamily housing in a deregulated energy market. Energy Build.
2016, 127, 806–817. [CrossRef]

36. Pietila, A.; Beausoleil-Morrison, I.; Newsham, G.R. Zero peak housing: Exploring the possibility of eliminating electrical draws
from houses during periods of high demand on the electrical grid. Build. Environ. 2012, 58, 103–113. [CrossRef]

37. Müller, D.; Monti, A.; Stinner, S.; Schlösser, T.; Schütz, T.; Matthes, P.; Wolisz, H.; Molitor, C.; Harb, H.; Streblow, R. Demand side
management for city districts. Build. Environ. 2015, 91, 283–293. [CrossRef]

38. Tushar, W.; Chai, B.; Yuen, C.; Huang, S.; Smith, D.B.; Poor, H.V.; Yang, Z. Energy Storage Sharing in Smart Grid: A Modified
Auction-Based Approach. IEEE Trans. Smart Grid 2016, 7, 1462–1475. [CrossRef]

39. Qin, Z.; Mo, Y.; Liu, H.; Zhang, Y. Operational flexibility enhancements using mobile energy storage in day-ahead electricity
market by game-theoretic approach. Energy 2021, 232, 121008. [CrossRef]

40. El-Baz, W.; Tzscheutschler, P.; Wagner, U. Integration of energy markets in microgrids: A double-sided auction with device-
oriented bidding strategies. Appl. Energy 2019, 241, 625–639. [CrossRef]

41. Rodrigues, D.L.; Ye, X.; Xia, X.; Zhu, B. Battery energy storage sizing optimisation for different ownership structures in a
peer-to-peer energy sharing community. Appl. Energy 2020, 262, 114498. [CrossRef]

42. Huang, H.; Nie, S.L.; Lin, J.; Wang, Y.Y.; Dong, J. Optimization of Peer-to-Peer Power Trading in a Microgrid with Distributed PV
and Battery Energy Storage Systems. Sustainability 2020, 12, 923. [CrossRef]

43. Alabdullatif, A.M.; Gerding, E.H.; Perez-Diaz, A. Market Design and Trading Strategies for Community Energy Markets with
Storage and Renewable Supply. Energies 2020, 13, 31. [CrossRef]

44. Alam, M.R.; St-Hilaire, M.; Kunz, T. Peer-to-peer energy trading among smart homes. Appl. Energy 2019, 238, 1434–1443.
[CrossRef]

45. Ilic, D.; Silva, P.G.D.; Karnouskos, S.; Griesemer, M. An energy market for trading electricity in smart grid neighbourhoods. In
Proceedings of the 2012 6th IEEE International Conference on Digital Ecosystems and Technologies (DEST), Campione d’Italia,
Italy, 18–20 June 2012; pp. 1–6. [CrossRef]

http://dx.doi.org/10.3390/en13092408
http://dx.doi.org/10.1016/j.apenergy.2018.08.004
http://dx.doi.org/10.1016/j.energy.2020.118023
http://dx.doi.org/10.1016/j.apenergy.2018.05.097
http://dx.doi.org/10.1109/TPWRS.2017.2649558
http://dx.doi.org/10.1016/j.egypro.2018.12.075
http://dx.doi.org/10.1016/j.apenergy.2018.02.089
http://dx.doi.org/10.1016/j.apenergy.2019.03.094
http://dx.doi.org/10.1109/TSMC.2018.2800006
http://dx.doi.org/10.1016/j.apenergy.2019.113687
http://dx.doi.org/10.1016/j.apenergy.2021.116598
http://dx.doi.org/10.1016/j.apenergy.2020.115670
http://dx.doi.org/10.1016/j.artint.2008.06.001
http://dx.doi.org/10.1016/j.energy.2020.117417
http://dx.doi.org/10.1109/TSG.2018.2878445
http://dx.doi.org/10.1016/j.renene.2017.02.054
http://dx.doi.org/10.1016/j.enbuild.2016.06.026
http://dx.doi.org/10.1016/j.buildenv.2012.06.019
http://dx.doi.org/10.1016/j.buildenv.2015.03.026
http://dx.doi.org/10.1109/TSG.2015.2512267
http://dx.doi.org/10.1016/j.energy.2021.121008
http://dx.doi.org/10.1016/j.apenergy.2019.02.049
http://dx.doi.org/10.1016/j.apenergy.2020.114498
http://dx.doi.org/10.3390/su12030923
http://dx.doi.org/10.3390/en13040972
http://dx.doi.org/10.1016/j.apenergy.2019.01.091
http://dx.doi.org/10.1109/DEST.2012.6227918


Energies 2022, 15, 3913 21 of 21

46. Vytelingum, P.; Ramchurn, S.D.; Voice, T.D.; Rogers, A.; Jennings, N.R. Trading agents for the smart electricity grid. In Proceedings
of the 9th International Conference on Autonomous Agents and Multiagent Systems, Toronto, ON, Canada, 10–14 May 2010.

47. ENERGY MARKET and OPERATIONAL DATA. Available online: https://www.nyiso.com/energy-market-operational-data
(accessed on 2 January 2021).

48. Pecanstreet Dataport. 2021. Available online: https://www.pecanstreet.org/dataport/ (accessed on 2 January 2021).

https://www.nyiso.com/energy-market-operational-data
https://www.pecanstreet.org/dataport/

	Introduction
	P2P Trading Scheme Description 
	P2P Trading Framework 
	CDA Transaction Formulation

	Separate Bidding Energy-Management System Model 
	Battery Constraints
	Energy Balance Constraints
	Controllable Device Bidding Strategy
	Uncontrollable Device Bidding Strategy
	Bidding Constrains

	Case Studies 
	Simulation Platform and Data
	Local P2P Energy Transaction Results
	Energy Analysis 
	Discussion

	Conclusions 
	References

