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Abstract: The Kunjin strain of West Nile virus (WNVKUN) is a mosquito-transmitted flavivirus
that can infect farmed saltwater crocodiles in Australia and cause skin lesions that devalue the
hides of harvested animals. We implemented a surveillance system using honey-baited nucleic acid
preservation cards to monitor WNVKUN and another endemic flavivirus pathogen, Murray Valley
encephalitis virus (MVEV), on crocodile farms in northern Australia. The traps were set between
February 2018 and July 2020 on three crocodile farms in Darwin (Northern Territory) and one in
Cairns (North Queensland) at fortnightly intervals with reduced trapping during the winter months.
WNVKUN RNA was detected on all three crocodile farms near Darwin, predominantly between March
and May of each year. Two of the NT crocodile farms also yielded the detection of MVE viral RNA
sporadically spread between April and November in 2018 and 2020. In contrast, no viral RNA was
detected on crocodile farms in Cairns during the entire trapping period. The detection of WNVKUN

and MVEV transmission by FTATM cards on farms in the Northern Territory generally correlated with
the detection of their transmission to sentinel chicken flocks in nearby localities around Darwin as
part of a separate public health surveillance program. While no isolates of WNVKUN or MVEV were
obtained from mosquitoes collected on Darwin crocodile farms immediately following the FTATM

card detections, we did isolate another flavivirus, Kokobera virus (KOKV), from Culex annulirostris
mosquitoes. Our studies support the use of the FTATM card system as a sensitive and accurate
method to monitor the transmission of WNVKUN and other arboviruses on crocodile farms to enable
the timely implementation of mosquito control measures. Our detection of MVEV transmission and
isolation of KOKV from mosquitoes also warrants further investigation of their potential role in
causing diseases in crocodiles and highlights a “One Health” issue concerning arbovirus transmission
to crocodile farm workers. In this context, the introduction of FTATM cards onto crocodile farms
appears to provide an additional surveillance tool to detect arbovirus transmission in the Darwin
region, allowing for a more timely intervention of vector control by relevant authorities.

Keywords: mosquitoes; Kunjin virus; flaviviruses; surveillance; sentinel chickens; FTATM cards;
virus isolation; saltwater crocodile
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1. Introduction

Habitats containing permanent water sources that support mosquito breeding and
natural vegetation and that provide sanctuary to wading birds are ideal for the transmission
of mosquito-borne viruses. This type of environment is common in parts of tropical
northern Australia including the Darwin region of the Northern Territory. Such habitats
can be found on saltwater crocodile farms.

In 2016, the Kunjin strain of West Nile virus (WNVKUN), belonging to the genus
Flavivirus and the family Flaviviridae, was detected in the skin lesions of farmed saltwater
crocodiles (Crocodylus porosus) in the Northern Territory (NT) of Australia [1]. During the
tanning process, these lesions caused by WNVKUN lead to an unevenly structured and dyed
skin surface. As a result, crocodile skins found with these lesions are rejected, effecting
extensive economic losses for the Australian industry [2].

The mosquito-borne WNVKUN is endemic in northern Australia and is occasion-
ally associated with non-fatal cases of encephalitis in humans. However, the strain of
WNVKUN infecting crocodiles is of special interest since it is genetically similar to WNVKUN
NSW2011 [2], which was responsible for a large outbreak of fatal equine encephalitis in
south-eastern Australia in 2011 [3,4]. The equine virus was shown to be a newly emerged
strain that was more neuro-invasive in animal models of the WNVKUN disease, suggesting
changes in the epidemiology and ecology of the virus [5].

WNVKUN is predominantly transmitted by the mosquito vector Culex annulirostris
(Skuse), a ubiquitous species found throughout Australia [6–8], while wading birds, es-
pecially herons and egrets, are the vertebrate hosts for the virus [9,10]. In the context of
human health, the endemic flaviviruses Murray Valley encephalitis virus (MVEV) and
Kokobera virus (KOKV) are also transmitted by this vector in Australia [6,11–13]. While
MVEV causes sporadic cases of severe and fatal encephalitis in humans, infected individ-
uals mostly remain asymptomatic or present with mild symptoms [14]. KOKV infection
also occurs occasionally in humans, and may cause acute polyarticular manifestations
with febrile illness, taking several months to resolve in some cases [15]. However, these
flaviviruses have the potential to emerge as more significant human pathogens, similar
to WNVKUN, as environmental and societal changes could alter transmission cycles and
influence human infections [4,14,15].

While Cx. annulirostris is the dominant species found on commercial crocodile farms in
the NT, both Cx. quinquefasciatus (Theobald) and Cx. pullus (Theobald) have been detected
breeding on these farms [16–18]. Cx. quinquefasciatus and Cx. pullus have also been impli-
cated in flavivirus transmission. WNVKUN has occasionally been isolated from Cx. quin-
quefasciatus, a species that has been associated with WNV transmission to humans [19–21]
and in North America with transmission to alligators [22,23]. Johansen et al. (2009) sug-
gested that Cx. quinquefasciatus could transmit the virus from birds to humans, acting as
a bridge vector [19]. Flaviviruses have also been isolated from field collected Cx. pullus,
another ornithophilic species possibly maintaining flaviviruses in an enzootic cycle in
birds [10,24]. Cx. gelidus (Theobald) is of interest as it has shown a high competency for
transmitting WNV in laboratory experiments, such as the Australian subtype WNVKUN
and to a lesser extent MVEV [25], and an Indian prototype of WNV [26]. However, to date,
these flaviviruses have not been isolated from field collected specimens of these species
in Australia.

We established a virus-mosquito surveillance system using passive sentinel mosquito
arbovirus capture kits (SMACK traps) with honey-baited nucleic acid preservation cards
(FTATM cards) in order to develop a simple, real-time system to rapidly detect mosquito
transmission of WNVKUN on the crocodile farms [27]. In addition, we collected mosquitoes
within close proximity using CO2-baited encephalitis virus surveillance (EVS) traps to
assess the prevalence of vector species and to obtain isolates of WNVKUN for vector incrim-
ination. With a “One Health” approach in mind, we were also interested in the detection of
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MVEV, which is not known to infect crocodiles, but similar to WNVKUN, can cause serious
disease in humans [28].

This investigation aimed to establish a logistically convenient system to monitor
mosquito-borne flavivirus activity on crocodile farms and develop recommendations for
the timely implementation of control strategies. This also allowed us to further define the
transmission dynamics of WNVKUN on crocodile farms by comparing data from FTATM

detection with seroconversions to WNVKUN and MVEV in sentinel chicken flocks located
in nearby locations around Darwin during the same time period.

2. Materials and Methods
2.1. Locations of Crocodile Farms

The investigation was conducted on three commercial crocodile farms, identified as
Farms D1, D2, and D3, located in the rural areas of the Darwin region of the NT, Australia
(Figure 1), and one farm in the Cairns region (Farm C1) in northern Queensland, Australia
(Figure 1). Farms in the Darwin region are in close proximity to freshwater lagoons and
wetlands, which are known productive Cx. annulirostris breeding areas. The crocodile farm
in Cairns (C1) borders on saltwater mangrove environments with mosquitoes around the
breeder pens.
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2.2. Flavivirus Surveillance Using Nucleic Acid Preservation Cards

To assess the presence of WNVKUN and other flaviviruses at the four crocodile farms,
CO2-baited SMACK traps were deployed. SMACK has been successfully used in recent
years, with honey-soaked nucleic acid preservation cards (FTATM) incorporated into these
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mosquito traps. The honey attracts trapped mosquitoes, and while feeding they expectorate
saliva which also contains any transmissible virus. While the virus is quickly inactivated
on the cards, its RNA is preserved. Cards are then sent to the laboratory by normal post
and tested for viral RNA by qRT-PCR [27,29–32] (Figure 2).
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Figure 2. CO2-baited SMACK trap housing two honey-baited FTATM cards (arrows).

In Darwin, two traps were set at each farm in either vegetated areas, assessed to be
mosquito harbourage sites, or close to crocodile breeder or grower pens, with the traps
serviced and FTATM cards replaced approximately fortnightly during the high WNVKUN
risk period between January and July [33]. Traps were first set on farms D2 and D3 on
21 February 2018 and on farm D1 on 27 February and all were operated until 1 July 2020.
During that period, severe cyclone Marcus impacted both D1 traps set between 6 and 22
March 2018. They were replaced with a set running from 7 to 28 March with the following
set running just over a week between 28 March and 5 April. During the low WNVKUN risk
season, two traps remained operational at D2 and D3 between 2 July and 5 November 2018,
before all 6 traps were re-deployed between 5 November 2018 and 1 July 2019. During
the second off-season, only 1 trap at D2 was operated between 1 July to 5 November 2019,
before starting at D1 on 6 January and at D3 on 7 January 2020 with all 6 traps operational
until 1 July 2020. In total, 256 traps were set with 93 in 2018, 87 in 2019, and 76 in 2020,
fitted with 2 FTATM cards per trap (Table S1).

In Cairns, two traps were run from 6 March to 26 June 2018, 13 February to 5 June
2019, and from 7 January to 26 March 2020, totalling 44 traps (16 traps each in 2018 and
2019 and 12 traps in 2020) set at C1 with 2 FTATM cards per trap (Table S1).

During the fortnightly trap service, mosquito numbers were visually estimated for
each trap, then discarded. However, these estimates are not necessarily representative since
mosquitoes could escape, or as on a few occasions, ants could find access into traps and
eat the mosquitoes. Farms were also routinely sprayed to reduce mosquito numbers. The
FTATM cards from each trap were placed in separate sealable plastic bags and stored at
room temperature before being sent to the laboratory at Public Health Virology, Forensic
and Scientific Services, Queensland Health, for testing. Surgical gloves were used during
handling of the cards to avoid sample contamination.
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2.3. Processing of FTATM Cards and Detection of Viral RNA

In the laboratory, cards were kept at ambient temperature but placed on ice as soon
as processing began. Methods of elution as described in Hall-Mendelin et al. (2010) [27]
were followed with two modifications: the cards were vortexed in molecular grade wa-
ter to elute nucleic acids prior to extraction on a Qiagen BioRobot Universal System,
and QIAamp One-For-All Nucleic Acid Kit (Qiagen, Clifton Hill, VIC, Australia) was
used according to instructions. Viral RNA was detected by TaqMan RT-PCR using spe-
cific assays for WNVKUN and MVEV. WNVKUN RNA was amplified with the following
primers and probe: Primer Kunjin-F AACCCCAGTGGAGAAGTGGA at 900 nM/µL,
Primer Kunjin-R TCAGGCTGCCACACCAAA at 900 nM/µL, and Probe Kunjin MGB
6FAM-CGATGTTCCATACTCTGG-MGB at 150 nM/µL [34] (Finger, unpublished). MVEV
RNA amplification was performed using MVE-FOR ATCTGGTGYGGAAGYCTCA at
900 nM/µL, MVE-REV CGCGTAGATGTTCTCAGCCC at 900 nM/µL, and MVEV-Probe
6FAM-ATGTTGCCCTGGTCCTGGTCCCT-TAMRA at 200 nM/µL [34]. Detection of both
templates was performed in a 20 µL reaction volume in a Rotor-Gene Q real-time PCR
cycler (Qiagen, Chadstone, VIC, Australia). Cycling conditions were set as follows: one
cycle at 50 ◦C for 5 min, one cycle at 95 ◦C for 2 min, and 50 cycles at 95 ◦C for 3 s and
60 ◦C for 30 s using the Superscript III Platinum one-step quantitative qRT-PCR system
(Invitrogen, Carlsbad, CA, USA) which was used as per the manufacturer’s instructions.
Separate synthetic controls for primers and probe of both viruses, and no template controls
were included in each Rotor-Gene run [35]. A sample was generally deemed positive with
Ct values <40 and negative when Ct values were >40. These assays are NATA accredited.

2.4. Sentinel Chickens in Darwin

In order to issue timely public health warnings, sentinel chickens have been the
primary method for flavivirus surveillance in the NT since 1992, with seroconversions
to WNVKUN and/or MVEV recorded in most years [36], whereas Cairns (QLD) does not
operate a sentinel animal program for arbovirus detection.

Four sentinel chicken flocks consisting of 8 to 12 chickens were used, with the Leanyer
flock located 7 km from crocodile farm D1, the Beatrice Hill Farm (BHF) flock 10 km from
crocodile farm D3, and the Howard Springs and Bees Creek flocks situated 12 km and 0.05
km, respectively, from crocodile farm D2. The Leanyer, Howard Springs, and BHF flocks are
in close proximity to extensive wetlands and have been part of the NT flavivirus surveillance
program since 1992–1993, while the Bees Creek flock was only established in early March
2020. Chickens were bled monthly during the high risk WNVKUN period (January to
June), with an initial baseline bleed in December 2018 and 2019. Samples were tested
for antibodies to viruses using standard flavivirus neutralisation tests as described [37].
Bleeding of sentinel chickens was carried out under ethics approval (monitoring sentinel
animals for viruses of animal and human health significance number A11033. 100/annum)
granted by the Charles Darwin University Research Ethics Committee.

2.5. Mosquito Collections

Following detection of WNVKUN on FTATM cards from SMACK traps, encephalitis
virus surveillance (EVS) traps were then set at the same locations on the farms to maximise
the chance of collecting mosquitoes carrying WNVKUN for virus isolation, with a total of
22 traps set in 2018 and 17 traps in 2019.

To maintain the required cold chain for virus isolation work, mosquito traps were
transported from site in an insulated container with dry ice before mosquitoes were stored at
−80 ◦C. Mosquito identification to species level was performed on cold tables at the Medical
Entomology laboratory in Darwin using taxonomic keys [38–43]. Identified mosquito
species were stored in vials up to 50 specimens, and blood fed specimens or specimens
with mites attached were not processed.
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2.6. Virus Isolation

Mosquito pools containing up to 50 individuals were shipped to the laboratory on dry
ice and then stored at −80 ◦C until processing for flavivirus isolation. Pools of mosquitoes
were then homogenised in 2 mL of medium (Opti-MEM, GIBCO, Life Technologies, Grand
Island, NY, USA), supplemented with 3% fetal bovine serum (In Vitro Technologies, Aus-
tralian origin), antibiotics, and antimycotics (GIBCO, Life Technologies, Grand Island,
NY, USA), using one metal bead in a Tissue Lyser II (Qiagen, Hilden, Germany). After
centrifugation, supernatants were filtered. We used 0.2 µm size syringe filters for pools
containing < 5 mosquitoes and the 0.8/0.2 µm double filter units for larger pools (PALL
Corporation, Ann Arbor, MI, USA). Sterile homogenates were inoculated in quadruplet,
50 µL per well, on duplicate 96-well plates coated with a monolayer of C6/36 cells. The
cultures were incubated for 7 days at 28 ◦C, then fixed in cold 20% acetone after removal of
supernatants which were stored at −80 ◦C. Fixed, dried plates were stored at −20 ◦C. Pres-
ence of flaviviruses was detected on the plates with an ELISA using monoclonal antibodies
4G2 (pan flavivirus anti-E) and 4G4 (pan flavivirus anti-NS1) [44]. Briefly, plates were
blocked for 1 h with 100 µL per well of blocking buffer, prior to the addition of a cocktail of
4G2 and 4G4, each diluted 1:100 in blocking buffer, at 50 µL per well. After 1h incubation
at room temperature, the plates were washed 6 times then anti-mouse IgG HPR conjugate
(diluted 1/2000 in blocking buffer) was added at 50 µL per well. After further incubation
and washing of plates, TMB substrate (50 µL/well) was added to visualise the reaction,
and the reaction stopped with H2O2 buffer. Optical densities (OD) were measured with a
plate reader (TECAN Minilyser Spectra II, Tecan Group Ltd., Maennedorf, Switzerland) at
a wavelength of 450 nm and a reference wavelength of 620 nm. OD readings were called
positive when they were three × standard deviation higher than the negative samples.

Supernatant from samples reacting in this ELISA were re-inoculated onto fresh C6/36
cultures and incubated for 4 days at 28 ◦C. Supernatants were collected and plates fixed as
described above. A panel of mAbs specific for a range of medically significant flaviviruses
previously detected in Northern Australia (WNVKUN-specific—3.1112G, 10A1, 3.101C,
3.91D; MVEV-specific—10C6; JEV-specific 989; and KOKV-specific—1C1) were used to
identify virus in an ELISA system as described above. The identity of detected virus
was confirmed by a KOKV-specific RT-PCR and Sanger sequencing of the amplicon. The
reactive sample was also deep sequenced (HiSeq, Illumina, San Diego, CA, USA), using
standard methods that we have previously used for sequencing viruses from mosquitoes
captured in crocodile farms, published in [2].

2.7. Phylogeny

Multiple amino acid sequence alignments of the new KOKV isolate (KOKVA2019-0110,
accession number OL347997) and selected flaviviruses were performed with MAFFT v7.388
algorithm, using a scoring matrix of BLOSUM62, a gap open penalty of 1.53, and an offset
value of 0.123 [45,46]. FastTree 2.1.5 was used to construct a phylogenetic tree that uses the
maximum likelihood approximation method, with optimisation for Gamma20 likelihood
selected, while the branch support values were calculated using a Shimodaira-Hasegawa
test. Analyses were undertaken within the Geneious 11.1.5 package.

3. Results
3.1. WNVKUN and MVEV Surveillance on Crocodile Farms

Each trap contained two FTATM cards; a trap was classified as virus-positive when viral
RNA was detected on at least one of the cards. Between Feb 2018 and July 2020, WNVKUN
RNA was detected on FTATM cards in each year with the most detections occurring in
the months of January to May (Table 1, Table S1), consistent with the increased mosquito
activity during the monsoon season, late wet season, and the start of the dry season [47].
The most frequent WNVKUN activity was detected in March 2019 and April 2020, where
traps on all three farms yielded positive cards, often with both cards in the trap positive for
the virus, totaling 24 WNVKUN-positive and 8 MVEV-positive traps (Table S1).
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Table 1. WNVKUN- and MVE-positive FTATM cards from SMACK traps set between February 2018
and July 2020 compared to sentinel chicken seroconversions over the same period. Sentinel chicken
program was run January to June.

Croc Farm Collection Period Trap ID
Virus Detected

(Positive Cards/Cards
Set)

Chicken
Seroconversions

Date; Chicken Farm;
Virus

D1 March–December 2018 All Negative April 2018; LF; MVEV
January–February 2019 1 WNVKUN (1/2)

February 2019 1 WNVKUN (1/2)
February–March 2019 1 WNVKUN (2/2)

2 WNVKUN (2/2)
May 2019 1 WNVKUN (1/2)

April 2020 1 WNVKUN (1/2) January 2020; LF;
WNVKUN

2 WNVKUN (2/2)

D2 March 2018 2 WNVKUN (1/2)
March–April 2018 1 WNVKUN (1/2) May 2018; HSF; MVEV

June–July 2018 2 MVEV (1/2)
February–March 2019 1 WNVKUN (2/2)

2 WNVKUN (2/2) March 2019; HSF;
WNVKUN

July 2019 1 WNVKUN (1/2), MVEV
(1/2)

September–October
2019 1 WNVKUN (2/2), MVEV

(1/2)

April 2020 1 WNVKUN (2/2), MVEV
(1/2)

2 WNVKUN (1/2)
April–May 2020 1 WNVKUN (1/2)

2 WNVKUN (1/2)

D3 February –March 2018 1 WNVKUN (1/2) March 2018; BHF;
WNVKUN

March–April 2018 2 MVEV (2/2) March 2018; BHF;
MVEV

April–May 2018 2 MVEV (2/2) May 2018; BHF; MVEV
October–November

2018 1 MVEV (1/2)

February–March 2019 1 WNVKUN (2/2) March 2019; BHF;
WNVKUN

2 WNVKUN (2/2)
January 2020 A 2 WNVKUN (1/2)
January 2020 B 2 WNVKUN (2/2)

April 2020 1 WNVKUN (1/2)
May 2020 2 MVEV (1/2)

June–July 2020 2 WNVKUN (1/2)

D1, D2, and D3 are crocodile farms in rural Darwin, NT; LF Leanyer Farm sentinel chicken flocks near D1; HSF
Howard Springs Farm sentinel chicken flocks near D2; BHF Beatrice Hill Farm sentinel chicken flocks near D3.

In 2018, no virus was detected at crocodile farm D1 while WNVKUN RNA was detected
at D2 in March and April and at D3 in March, with a total of three traps positive for
WNVKUN RNA in the first year (Table 2). In 2019, WNVKUN RNA was detected in February,
March, and May at D1; in March, July, and October at D2; and in March at D3, with a total
of 11 traps positive for the virus (Table 2). In 2020, WNVKUN RNA was detected in January
and again in July at D3, in April at all three crocodile farms, and in May at D2, with a total
of 10 positive traps for this year (Table 2).
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Table 2. Number of SMACK traps set and numbers of virus-positive traps.

2018 2019 2020

Farm
Location # of Traps WNVKUN

Pos
MVEV

Pos
# of

Traps
WNVKUN

Pos
MVEV

Pos
# of

Traps
WNVKUN

Pos
MVEV

Pos

D1 26 0 0 26 5 0 26 2 0
D2 33 2 1 35 4 2 24 4 1
D3 34 1 3 26 2 0 26 4 1

93 3 4 87 11 2 76 10 2

C1 16 0 0 16 0 0 12 0 0

D1, D2 and D3 are crocodile farms in rural Darwin, NT. C1 is a crocodile farm in rural Cairns, Qld.

Detections of MVEV RNA were sporadically spread between April and November
over the two and a half years of trapping. Detection was most frequent in 2018, first
appearing at D3 in April and in May and then again in November. It was detected once
at D2 in July, with a total of four positive traps for MVEV RNA in this year (Table 2). In
2019, MVEV RNA was not detected until July and again in October, both times at D2. This
correlated with the sporadic appearance of WNVKUN at D2, with both viruses detected in
the same traps (Figure S1 and Table 2). In 2020, MVEV RNA was detected in April on the
same cards as WNVKUN at D2 and was found in May on a single card at D3 (Table 2).

WNVKUN RNA was not detected on the Cairns crocodile farm (C1), where it was the
only targeted virus.

In Darwin, detections of viral RNA on FTATM cards on the crocodile farms were
compared with sentinel chicken seroconversion to flaviviruses at the Beatrice Hill Farm, the
Leanyer, Howard Springs, and Bees Creek flocks (Figure 1). Between February 2018 and
June 2020, five seroconversions to WNVKUN were detected: at Beatrice Hill Farm (near D3),
a seroconversion was detected on 1 March 2018 and 7 March 2019; two at Howard Springs
(near D2) on 13 March 2019; and one at Leanyer (near D1) on 8 January 2020 (Figure 1). Each
of the seroconversions in 2018 and 2019 correlated with the detection of WNVKUN RNA on
FTATM cards at nearby farms in the same time period. While there were no positive FTATM

cards at D1 in January 2020 when seroconversion occurred in the nearby sentinel chicken
flock at Leanyer, the FTATM cards were positive at D3 indicating WNVKUN activity in the
general Darwin region.

Seroconversions to MVEV were only detected in 2018 (Tables 1 and S1). At the Beatrice
Hill Farm, sentinel chickens seroconverted to MVE on 29 March, and again on 3 May 2018.
At Leanyer, one chicken seroconverted on 10 April 2018 and one at Howard Spring on 2
May 2018. The seroconversions at the Beatrice Hill Farm (29 March) correlated with MVEV
being detected on cards in traps set on D3 (April-May). Sentinel chicken seroconversion
to MVEV at the Beatrice Hill Farm on 29 March was also coincident with MVEV-positive
FTATM cards detected in traps set at the nearby D3 farm (March–April). In the same
locations, chicken seroconversion and positive FTATM cards correlated in April–May.

3.2. Virus Isolation

In 2018, 4380 mosquitoes were collected with the catches consisting mainly of Cx.
annulirostris (62%) but also several other species, such as Mansonia uniformis, Anopheles
bancroftii, Cx. palpalis, Cx. pullus, Cq. xanthogaster, and Cx. quinquefasciatus. When these
mosquitoes were pooled and processed for virus isolation, no vertebrate-infecting fla-
viviruses such as MVE or WNVKUN were detected. However, several insect-specific viruses
were isolated and will be reported elsewhere (Colmant et al. unpublished data).

In 2019, 6206 non-blood fed and identifiable mosquitoes from 17 EVS traps were
tested for the presence of viruses, including 2620 Cx. annulirostris, 79 Cx. pullus, 42 Cx.
quinquefasciatus, and 35 Cx. gelidus (Table 3). Other mosquito species tested, totalling 3430,
are listed in Table 3. While no WNVKUN or MVEV was isolated, a flavivirus-like isolate
was detected in one pool of Cx. annulirostris mosquitoes (A2019-0110) trapped at D3 on
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28 March 2019 (Table 4). When culture supernatants from the cells inoculated with this
sample were further passaged onto C6/36 cells and tested with a panel of mAbs specific for
medically important flaviviruses, only the KOKV-specific mAb 1C1 was reactive to the fixed
inoculated cells. The identity of this virus was confirmed as Kokobera by a KOKV-specific
RT-PCR and whole genome sequencing. BLAST analysis of the genome contig derived
from sequencing data showed a high degree of similarity with the prototype KOKV virus
(accession number NC_009029 [48]). Sequence alignment of the complete ORF of the new
isolate further confirmed its identity as a new strain of KOKV (Figure 3).

Table 3. Mosquito species collected at Darwin crocodile farms in 2019.

Mosquito Species Number Sub-Totals

Known/potential
WNVKUN vectors Culex annulirostris 2620

Cx. pullus 79
Cx. quinquefasciatus 42

Cx. gelidus 35 2776

Other species Mansonia uniformis 1707
Cx. species 620

Anopheles bancroftii 597
Coquillettidia
xanthogaster 413

Cx. squamosus 67
Cx. bitaeniorhynchus 9

Cx. hilli 6
Cx. vishnui group 3

Aedes kochi 2
Ae. vigilax 1
An. powelli 1
Cx. vishnui 1

Uranotaenia albescens 1
Ur. lateralis 1
Ur. nivipes 1 3430

Total 6206

Table 4. Virus isolation attempts from Cx. annulirostris mosquitoes collected in EVS traps set on
Darwin crocodile farms in 2019.

Location Date Traps Set
No. Cx. annulirostris

Processed
Mosquitoes/Pools

Virus Isolation
Positive Pool ID;

Virus

D1 5 March 2019 698/16 None
20 March 2019 93/5 None

D3 28 March 2019 951/21 A2019-0110; KOKV
12 April 2019 878/19 None

Total 2620/61 1
D1 and D3 are crocodile farms in rural Darwin, NT; KOKV Kokobera virus.



Viruses 2022, 14, 1342 10 of 14
Viruses 2022, 14, x FOR PEER REVIEW 10 of 14 
 

 

 

Figure 3. Dendrogram showing phylogenetic relationship between the prototype KOKV, KOKV 

A2019-0110, and other flaviviruses using a maximum-likelihood model and complete amino acid 

sequences. Sequences were derived using the following GenBank accession numbers: AEFV 

AB488408, ALFV AY898809, Bainyik virus KM225264, BgV KU308380, BinJV MG587038, BJV 

KC496020, CFAV KJ741267, CHAOV JQ308185, CxFV AB262759, DENV-1 U88536, DENV-2 U87411, 

DENV-3 AY099336, DENV-4 AF326825, DONV NC_016997, EHV DQ859060, FRV KM361634, 

GGYV DQ235145, HANKV NC_030401, HVV MN954647, ILOV KC734549, JEV NC_001437, KOKV 

AY632541, KOUV MN057643, KRV AY149905, LAMV KC692068, MMV MF139576, MODV 

AJ242984, MVEV AF161266, NAKV NC_030400, NANV MF139575, NHUV KJ210048, NIEV 

JQ957875, NMV KC788512, NOUV EU159426, OHFV AY193805, PaRV KT192549, PCV KC505248, 

POWV L06436, QBV FJ644291, SEPV DQ837642, SREV DQ235150, STRV KM225263, Torres virus 

KM225265, UGSV DQ859065, WNV KY229074, WSLV JN226796, YFV X03700, and ZIKV AY632535. 

4. Discussion 

In this study, we successfully established the FTATM card surveillance system on 

crocodile farms in the Northern Territory and north Queensland and detected WNVKUN 

and/or MVEV transmission on each farm except for north Queensland. As expected, 

transmission was most prevalent between January to May which is generally considered 

the period of peak arbovirus activity. We and others have previously validated FTATM 

cards as an effective arbovirus surveillance system for several mosquito-borne viruses in 

a range of environments and locations [27,30,32,49-52]. However, this was the first report 

of its use to monitor virus transmission in the context of farmed crocodilians and to guide 

the frequency and timing of mosquito control strategies (e.g., spraying). Indeed, when 

compared to a nearby concurrently run program based on the seroconversion of sentinel 

chickens, transmission was detected more frequently by FTATM cards on crocodile farms 

than by sentinel chicken surveillance conducted in the same timeframe. Discrepancies 

between the two surveillance systems may be attributed to random differences in the 

Figure 3. Dendrogram showing phylogenetic relationship between the prototype KOKV, KOKV
A2019-0110, and other flaviviruses using a maximum-likelihood model and complete amino acid se-
quences. Sequences were derived using the following GenBank accession numbers: AEFV AB488408,
ALFV AY898809, Bainyik virus KM225264, BgV KU308380, BinJV MG587038, BJV KC496020, CFAV
KJ741267, CHAOV JQ308185, CxFV AB262759, DENV-1 U88536, DENV-2 U87411, DENV-3 AY099336,
DENV-4 AF326825, DONV NC_016997, EHV DQ859060, FRV KM361634, GGYV DQ235145, HANKV
NC_030401, HVV MN954647, ILOV KC734549, JEV NC_001437, KOKV AY632541, KOUV MN057643,
KRV AY149905, LAMV KC692068, MMV MF139576, MODV AJ242984, MVEV AF161266, NAKV
NC_030400, NANV MF139575, NHUV KJ210048, NIEV JQ957875, NMV KC788512, NOUV EU159426,
OHFV AY193805, PaRV KT192549, PCV KC505248, POWV L06436, QBV FJ644291, SEPV DQ837642,
SREV DQ235150, STRV KM225263, Torres virus KM225265, UGSV DQ859065, WNV KY229074, WSLV
JN226796, YFV X03700, and ZIKV AY632535.

4. Discussion

In this study, we successfully established the FTATM card surveillance system on
crocodile farms in the Northern Territory and north Queensland and detected WNVKUN
and/or MVEV transmission on each farm except for north Queensland. As expected,
transmission was most prevalent between January to May which is generally considered
the period of peak arbovirus activity. We and others have previously validated FTATM

cards as an effective arbovirus surveillance system for several mosquito-borne viruses in a
range of environments and locations [27,30,32,49–52]. However, this was the first report of
its use to monitor virus transmission in the context of farmed crocodilians and to guide
the frequency and timing of mosquito control strategies (e.g., spraying). Indeed, when
compared to a nearby concurrently run program based on the seroconversion of sentinel
chickens, transmission was detected more frequently by FTATM cards on crocodile farms
than by sentinel chicken surveillance conducted in the same timeframe. Discrepancies
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between the two surveillance systems may be attributed to random differences in the
transmission frequency between the different locations of the sentinel chicken flocks relative
to the crocodile farms within the Darwin region, or to a difference in sensitivity between
the two systems. The increased detection of viral transmission on crocodile farms may
also reflect the unique transmission dynamic of WNVKUN that can occur directly between
farmed crocodilian species, thus providing additional sources of mosquito infection and
transmission [2]. However, to date, this has only been demonstrated for alligators. Thus,
regular testing of crocodile pen water for viral RNA should also be considered to monitor
other avenues of WNVKUN transmission on farms.

Despite evidence of their presence on FTATM cards on the farms, we failed to isolate
WNVKUN or MVEV from mosquitoes trapped in close proximity and within the same time
frame of positive FTATM card detections. This suggested that there was a low prevalence
of virus in the mosquito population, consistent with only one of four FTATM cards usually
yielding a positive result on each farm at each transmission event and is further supported
by the relatively high Ct scores (>35) that were generally observed. However, while EVS
traps were set immediately after the FTATM cards were reported to be positive for WNVKUN
or MVEV RNA, we cannot rule out the possibility that we had already missed a narrow
window of transmission by the time the mosquitoes were collected. Reduced overall
mosquito numbers from routine mosquito control measures (spraying) may also have
reduced our ability to isolate these viruses.

Interestingly, no human cases due to WNVKUN infection were reported during our
trapping period and only one case of MVEV infection occurred in early May 2018 (a resident
of a remote area of Arnamland in NT, approximately >200 kms East of the Darwin region
who was not associated with crocodile farms).

The isolation of Kokobera virus from a trap set at D3 in 2019 is worthy of further
investigation. It is feasible that this flavivirus could infect and cause disease in crocodiles,
even though it is considered a relatively benign virus and has only ever been associated
with rare cases of a mild febrile illness in humans manifesting as polyarthralgia, headache,
and skin lesions [15]. Furthermore, the detection of MVEV RNA on FTATM cards collected
on the farms indicates that, in addition to WNVKUN, this virus could also be transmitted
to crocodiles and cause disease. Future studies should be directed at sampling farmed
crocodiles and testing for the presence of MVEV- and KOKV- specific antibodies in serum
as evidence that these viruses can productively infect these animals.

While WNVKUN and/or MVEV activity was detected in all the investigated years by
FTATM card surveillance on the crocodile farms in the Darwin region, the same surveillance
program on farms in Cairns did not detect RNA from WNVKUN on any of the cards collected
over the entire study period (cards were not tested for MVEV RNA). This is consistent
with our understanding of the epidemiology of WNVKUN and MVEV, which are regularly
detected in the region around Darwin in the Northern Territory and the northern and
western regions of Cape York Peninsula in Queensland, but rarely detected on the eastern
side of Cape York where Cairns is situated [25,29,30].

5. Conclusions

In conclusion, we have successfully established the FTATM card surveillance system
on crocodile farms and have shown that it is a reliable indicator of the transmission of
WNVKUN and MVEV on farms during times of peak activity around Darwin. This can
provide a timely warning to implement control measures to reduce WNVKUN disease in
crocodiles by vector control. The early detection of the transmission of these viruses on
crocodile farms near Darwin also has important “One Health” implications, allowing more
timely intervention of vector control measures to protect residents of the Darwin region
from arboviral infections.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v14061342/s1, Table S1: Summary of FTA results and sentinel chicken data collected from
Darwin region over the course of the study (2018–2019, sentinel chicken program run January–June).
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