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Abstract: The advent of unoccupied aerial vehicles (UAVs) has enhanced our capacity to survey
wildlife abundance, yet new protocols are still required for collecting, processing, and analysing
image-type observations. This paper presents a methodological approach to produce informative
priors on species misidentification probabilities based on independent experiments. We performed
focal follows of known dolphin species and distributed our imagery amongst 13 trained observers.
Then, we investigated the effects of reviewer-related variables and image attributes on the accuracy
of species identification and level of certainty in observations. In addition, we assessed the number of
reviewers required to produce reliable identification using an agreement-based framework compared
with the majority rule approach. Among-reviewer variation was an important predictor of identi-
fication accuracy, regardless of previous experience. Image resolution and sea state exhibited the
most pronounced effects on the proportion of correct identifications and the reviewers’ mean level of
confidence. Agreement-based identification resulted in substantial data losses but retained a broader
range of image resolutions and sea states than the majority rule approach and produced considerably
higher accuracy. Our findings suggest a strong dependency on reviewer-related variables and image
attributes, which, unless considered, may compromise identification accuracy and produce unreliable
estimators of abundance.

Keywords: aerial surveys; cetaceans; dolphins; drones; false positive detections; marine mammals;
misclassification; trial experiments

1. Introduction

Aerial surveys are recognised as a standard technique for estimating wildlife abun-
dance across large spatial scales. They typically employ light aircraft from which trained
observers record animal sightings along pre-designed search paths; if complying with
the critical assumptions of line-transect sampling [1], the densities of species within the
covered area can then be scaled up to the broader study region. Although applicable to
various terrestrial and marine species, aerial surveys may prove hazardous, costly, and
logistically challenging to implement [2]. Thus, it is essential to explore the potential use of
new techniques for abundance estimation at a wide variety of scales.

In the past decade, unoccupied aerial vehicles (UAVs, or drones) have been increas-
ingly employed for numerous civilian applications and touted as a revolutionary tool
for wildlife conservation, e.g., [3]. These versatile platforms offer high data quality and
accessibility to remote environments [4–6]. In addition, their utility for abundance estima-
tion has been demonstrated for various taxa, including elephants, marine mammals, sea
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turtles, sharks, jellyfish, and birds [7–13], yet most studies have relied on either raw counts
or corrected indices without accounting for detection errors in the new type of data, i.e.,
digital imagery in place of direct human observations [14]. Nonetheless, evaluating the
factors that influence animal detectability is a prerequisite for solid ecological inference and
environmental conservation [15,16].

The probability of detection incorporates two classes of errors: false negative and
false positive sightings. False negatives are observations that are missed due to the
proportion of time an animal is present along the transect but unexposed for detection,
i.e., availability bias. Contributing factors may include diving episodes or visual obstruc-
tions from the aerial perspective. Alternatively, sightings may be missed due to the acuity
of observers, i.e., perception bias [17]. For instance, fatigue, experience, or competency in the
sampling methodology could potentially affect the rate of missed detections; in UAV-based
surveys, the ground sample distance (GSD), which results from the flight altitude and
resolution of the camera, may also influence perception probability [14]. False negatives
are commonly addressed in the literature, and the solutions available in the conventional
approach are generally applicable to UAV-based studies [10,14]. For example, satellite
telemetry may provide auxiliary data on diving behaviour in marine taxa and, thus, on the
magnitude of availability bias, i.e., regardless of the survey platform, e.g., [18]. Similarly,
comparing the detections from two or more observers situated on the same side of the
aircraft or, instead, image reviewers, may inform perception probabilities [19].

The second class of errors, namely false positives, are records of animals at locations
where they are not truly present, typically due to double counting or species misidentification.
The former refers to the repeated sampling of individuals moving between transects or
appearing in consecutive images due to spatial overlap. The latter relates to the erroneous
classification of other objects, including animals and background features, as the survey’s
focal species. In UAV-based surveys, avoiding those errors may depend upon knowledge
of the minimum GSD required to identify target taxa to species, particularly where those are
morphologically similar or occur in mixed groups. Nevertheless, although false positives have
been shown to induce substantial bias in estimates, even in small probabilities e.g., [20,21],
they are commonly assumed insignificant, and only a few studies have addressed them
compared to false negatives [14,22]. Published efforts have primarily been devoted to
accommodating those errors in occupancy models [20,23–28], and only a small body of
literature has focused on developing equivalent frameworks for abundance estimators,
e.g., [21,29,30]. The utility of statistical models for aerial transect data may depend on their
specific analytical requirements and the capacity of the sampling platform employed.

For example, an important limitation of the modelling approach in occupancy studies
is the difficulty of distinguishing the heterogeneity in true positive probabilities from false
positive probabilities [20]. Nevertheless, estimators that incorporate unambiguous records
for a subset of the survey data, e.g., based on the distinction between multiple degrees
of certainty in an observation or by using several detection methods, may overcome this
limitation [20,31,32]. In aerial transect surveys, which typically use a single detection
technique and, therefore, no verification scheme concerning false positives (but see [10]
regarding double counting), the requirement for unambiguous records may be met us-
ing multiple-observer protocols. Here, identification certainty is based on the degree of
concordance between observers or their integrated level of confidence, and highly-ranked
observations are assumed to be correct, e.g., [21,30]. However, the capacity of such records
to produce accurate species identification has yet to be explored. Moreover, recent work has
highlighted the potential of identification- and confidence-mismatches to result in various
abundance estimates under different data-filtering scenarios [33]. Arguably, this finding
highlights an important caveat of the conventional methodology; we are unaware of any
previous attempts to determine whether reviewing images in consultation with multiple
experts may increase identification accuracy.

An alternative approach to inform statistical models on the misidentification process is
to conduct trial experiments whereby the true abundance and species are known and error



Remote Sens. 2022, 14, 4118 3 of 17

probabilities are assessed as a function of covariates. For example, McClintock et al. [27]
demonstrated the effects of distance, time, ambient noise, and observer abilities on false
positive detections using simulated anuran calls; Miller et al. [34] used the same recordings
to establish practical predictors of among-observer and among-species variation in error
rates. An additional advantage of this approach is the utility of prior information to
optimise data collection procedures ([35] and references therein) and, hence, the potential
to reduce misidentification probabilities during survey implementation. However, this
has yet to be attempted for false positives in aerial survey data, presumably due to the
difficulty of simulating observations made in passing mode. In this regard, rotary-wing
UAVs, capable of vertical flights and focal follow missions, may present a solution.

In the current study, we combined shipboard and UAV-based surveys to produce
imagery of unambiguous species identifications. We investigated the effects of reviewer-
related variables and image attributes on identification accuracy and the degree of certainty
in observations to produce informative priors for future applications. Furthermore, we com-
pared the capacity of multiple-reviewer frameworks, i.e., agreement- and majority-based
identification, to produce accurate records during post-survey image processing. Finally,
we evaluated the potential of agreement-based identifications to produce unambiguous
data for the modelling approach. We focused our investigation on Mediterranean and
Black Sea dolphins, which are characterised by small body size (<3.5 m), morphological
resemblance, and occurrence in potentially large, mixed groups, which we considered the
most challenging conditions for multi-species surveys. This study presents the first attempt
to conduct trial experiments for species identification errors in aerial surveys.

2. Materials and Methods
2.1. Data Collection

We utilised rotary-wing UAVs (Supplementary S1, Table S1) to obtain aerial im-
agery of Stenella coeruleoalba (striped dolphin), Delphinus delphis (short-beaked common
dolphin), and Tursiops truncatus (common bottlenose dolphin) during designated ship-
board surveys. The imagery of S. coeruleoalba was obtained in July and August 2017 in
the northern Ligurian Sea, using a modified DJI Phantom 1 quadcopter (DJI Co., Shen-
zhen, China) mounted with a GoPro Hero3+ Black edition camera (GoPro Inc., San
Mateo, CA, USA; Supplementary S1, Figure S1). Surveys of D. delphis and T. truncatus
were conducted between February 2019 and May 2020 in the eastern Levantine Sea, us-
ing four quadcopter models (DJI Co., Shenzhen, China): DJI Mavic Pro, DJI Phantom
3 Advanced, DJI Phantom 4 Advanced, and DJI Phantom 4 Pro. Flights were carried
out across various sea conditions and included focal follows in video and still modes.
Ground truth species identifications and sea states according to the Beaufort scale were
documented per encounter by the shipboard surveyors and added into the metadata;
image resolution was calculated based on flight altitude and camera sensor dimensions
(Supplementary S1, Equations (S1)–(S5) and Table S2). In total, 15 dolphin encounters were
documented in this study (S. coeruleoalba, n = 4; D. delphis, n = 5; T. truncatus, n = 6;
Supplementary S1, Table S3). We were not required to obtain an ethics permit for conduct-
ing observational surveys of marine mammals; further details on the fieldwork are reported
in Supplementary S1 according to the standardised protocol by Barnas et al. [36].

2.2. Data Curation

We arranged the still imagery from each encounter via three binning levels (Table 1):
true species identity (ID; S. coeruleoalba, D. delphis and T. truncatus), Beaufort sea state
(BSS; 0, 1, 2), and ground sample distance (GSD), i.e., image resolution (cm/pixel; <1, 1–2,
2–3). From each bin, a maximum of three images with at least one dolphin at the surface
was selected per encounter. Images that were not captured at nadir were only used if the
animals appeared in the bottom third of the frame.
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Table 1. Number of images by ground sample distance (GSD), Beaufort sea state (BSS) and true
species identity (ID; Dd = Delphinus delphis; Sc = Stenella coeruleoalba; Tt = Tursiops truncatus).

ID BSS GSD 0–1 cm/pixel GSD 1–2 cm/pixel GSD 2–3 cm/pixel Total

Dd
0 0 0 0 0
1 9 9 2 20
2 9 7 6 22

Sc
0 0 3 3 6
1 0 3 2 5
2 0 0 0 0

Tt
0 3 2 0 5
1 7 8 7 22
2 6 5 3 14

Total - 34 37 23 94

In the next step, we uploaded the selected images (n = 94) to an online survey platform
(https://surveylegend.com/, accessed on 20 May 2020). Then, we distributed the survey
amongst an international team of aerial observers (henceforth, ‘reviewers’), all of whom had
been trained at a data collection workshop in France, May 2018, held by the Agreement for
the Conservation of Cetaceans of the Black Sea, Mediterranean Sea, and contiguous Atlantic
Area (ACCOBAMS). Initially, participating reviewers (total, n = 13; Slovenia, n = 1; Spain,
n = 4; Great Britain, n = 1; Romania, n = 2; Turkey, n = 1; France, n = 1; Italy, n = 2; Bulgaria,
n = 1) were requested to specify their level of experience in conventional aerial surveys as
‘training only’ (zero surveys), ‘novice’ (1–10 surveys), or ‘expert’ (10+ surveys). Then, they
were required to ascribe a single species to each image from a list of all small cetaceans
occurring in the ACCOBAMS Agreement Area—S. coeruleoalba; D. delphis; T. truncatus;
Grampus griseus (Risso’s dolphin); Steno bredanensis (rough-toothed dolphin); and Phocoena
phocoena (harbour porpoise). Alternatively, images could be classed as ‘unidentifiable.’
Finally, for each selection, they were requested to choose between two confidence levels:
‘guess’ or ‘definite.’ To prevent species identification based on feature resemblance between
images from the same encounter, e.g., luminosity or water clarity, the options of revisiting
previous selections and resubmitting the survey were disabled. Full-size viewing and
zooming were possible in all images. In each survey answer, we considered the assigned
species identity as a correct or incorrect selection, i.e., regardless of the associated level
of confidence, and treated all unidentified images as incorrect. In addition, each survey
answer included the metadata of the subject image, i.e., encounter number, true species
identity, sea state, image resolution, and dolphin count (Figure 1), as well as the reviewer’s
number and level of experience in conventional surveys.

2.3. Data Analysis

We performed a series of analytical procedures to explore the factors affecting identifi-
cation accuracy in the manual review of images and produce practical recommendations
for UAV-based surveys. First, we aimed to determine the importance of reviewer training
and the conditions in which UAV-based surveys are conducted. Therefore, we assessed the
relative significance of reviewer-related variables and image attributes as predictors of iden-
tification accuracy. Here, we employed a linear modelling approach whereby each species
identification by a reviewer constituted a standalone data point (n = 1222; Section 2.3.1).
Next, we assessed the hierarchy of variables affecting identification accuracy and the re-
viewers’ mean level of confidence through a series of random forest models. This analysis
considered a single identification per image based on the majority rule approach (n = 94;
Section 2.3.2). Furthermore, we generated confusion matrices to determine whether some
species were more likely to be mistaken for others present in the data or listed on the survey
legend (Section 2.3.3). We repeated Sections 2.3.2 and 2.3.3 for high-confidence selections,
i.e., identifications classed by the reviewers as definite, to determine whether these images

https://surveylegend.com/
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yielded more accurate results than the dataset in its entirety. Finally, we performed a
Monte Carlo simulation to assess the effect of the number of reviewers on identification
accuracy via the agreement- and majority-based frameworks (Section 2.3.4). We performed
the analysis within the R statistical environment [37], version 4.3.1 (R Core Team, Vienna,
Austria; Supplementary Materials, Data S1).

Figure 1. Example effects of image attributes on species identifiability. Each row represents a different
variable (top to bottom: Ground sample distance, GSD; Beaufort sea state, BSS; true species identity,
ID; number of individual dolphins, NID) where all other attributes are constant. The columns
represent three different levels of each variable: (a–c) 0–1 cm/pixel, 1–2 cm/pixel, 2–3 cm/pixel;
(d–f) BSS-0, BSS-1, BSS-2; (g–i) Delphinus delphis, Stenella coeruleoalba, Tursiops truncatus; (j–l) Single
animal, small group, large group. All images were resized and cropped for illustration purposes.
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2.3.1. Reviewer and Image Attributes Effects

We implemented a series of generalised linear mixed models (GLMMs) to assess
the relative importance of reviewer-related variables and image attributes as predictors
of identification accuracy. This analysis treated each survey answer by a reviewer as a
binomial response variable, i.e., correct or incorrect selection (Rev_ans; n = 1222). Initially,
we constructed two linear models (Table 2) with image identifying number as a random
variable (Img_ID). Model 1 did not incorporate any explanatory variables; in model 2,
we included reviewer experience as a pseudo-numerical variable (EXP; 0–2, training only,
novice, or expert). Then, we evaluated the relative performance of those models based on
Akaike’s Information Criterion (AIC) and a one-way analysis of variance (ANOVA).

Table 2. Description of statistical models used to predict the accuracy and certainty of species
identification in the manual review of images. Abbreviations: REV_ans, reviewer answer; PCS_img,
proportion of correct selections per image; CNF_img, mean level of confidence per image; EXP,
experience level; GSD, ground sample distance; BSS, Beaufort sea state; ID, true species identity; NID,
number of individual dolphins; IMG_ID, image identifying number; REV, reviewer number; ENC,
encounter number.

Model Effect of Interest Response Variable Explanatory Variables Random
Variables

1 Null Rev_ans None Img_ID
2 Previous experience Rev_ans EXP Img_ID
3 Image attributes Rev_ans GSD, BSS, ID, NID, EXP None
4 Among-reviewer variation Rev_ans GSD, BSS, ID, NID, EXP REV
5 Encounter Rev_ans GSD, BSS, ID, NID, EXP REV, ENC

6 Image attributes as predictors of
accuracy (all data) PCS_img GSD, BSS, ID, NID None

7 Image attributes as predictors of accuracy
(high-confidence selections) PCS_img GSD, BSS, ID, NID None

8 Image attributes as predictors of certainty CNF_img GSD, BSS, ID, NID None

Next, we constructed models which, in addition to previous experience, incorporated
image attributes as predictors of identification accuracy: ground sample distance (GSD; or
image resolution), Beaufort sea state (BSS), true species identity (ID), and the number of
individual dolphins (NID). First, we assessed the effects of those variables on identification
accuracy without considering among-reviewer variation (model 3). Then, we incorporated
generic differences among survey participants by using reviewer number as a random
effect (REV; model 4), which allowed for variability in the intercept term of the model.
Similarly, to assess the level of dependency between images, we added encounter number
as a second random variable (ENC; model 5). Again, model selection was based on AIC
scores. In order to determine the relative importance of random and fixed effects, we
computed the selected model’s difference between the marginal R squared value (R2M)
and conditional R squared (R2C) value, providing the variance explained by the random
effects and both random and fixed effects combined. The analysis employed the ‘glmer’
function of the lme4 library [38].

2.3.2. Majority-Based Identification

In the following analyses, we calculated for each image the proportion of correct
selections (PCS_img) from a total of 13 answers by the reviewers. To assess the relative
importance of image attributes affecting this proportion, we employed the random forest
modelling approach, which represented two key advantages. First, it allowed for the
assessment of non-linear effects; we hypothesised that image resolution, for instance, would
only facilitate accurate identification at low GSD levels and that a drop in the proportion
of correct selections would be observed for higher levels. Second, it enabled inference of
hierarchy of significant effects while incorporating numerical and categorical variables [39].
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The first analysis (model 6) included GSD, BSS, ID, and NID as explanatory variables and
PCS_img as the response variable. We then reimplemented this model for the subset of
high-confidence selections (model 7) to establish the conditions in which identification
certainty enabled reliable prediction of accuracy. Finally, to determine whether higher
identification certainty could be achieved through specific survey conditions, we explored
the effects of the above attributes on the mean level of confidence per image (CNF_img,
model 8) as a pseudo-numerical response variable (0–2; unidentifiable, guess, and definite).
To implement the models, we employed the ‘randomForest’ function of the randomForest
library [40]; we visualised the results using the ‘rpart’ function of the rpart library [41].
To assess the relative importance of predictors, we employed the percent increase in the
mean squared error index (% IncMSE), using the ‘measure_importance’ function of the
randomForestExplainer library [42].

2.3.3. Confusion Matrix

As mentioned above, the reviewers were requested to select one out of six cetacean
species for every survey image. In the following analysis, we were interested in determining
if some species were more likely to be mistaken for others listed on the legend and whether
misidentification rates were symmetric, i.e., the probability of confusing one species for
another was the same for the opposite scenario. Therefore, we constructed a confusion
matrix with three rows and six columns for the species occurring in the survey images and
legend, respectively, and with PCS_img as the response variable in the cells.

2.3.4. Multiple-Reviewer Frameworks

Finally, in the current study, we assessed the effects of covariates on species identifica-
tion by the reviewers. Therefore, it was necessary to consider the entire dataset, inclusive
of image qualities. However, given enough observations, researchers may choose to retain
only the identifications agreed upon by all reviewers. To determine if this framework
could be used to produce smaller error probabilities than the majority rule approach, we
performed a series of Monte Carlo simulations, configuring all reviewer combinations of
1–13 individuals (n = 8191). For each combination, we calculated the proportion of images
agreed upon by all members and the proportion of images identified correctly. Then, we
generated the mean of each proportion across all groups comprising the same number of re-
viewers. Similarly, we used the majority rule approach to calculate the proportion of correct
selections for all images and combinations and plotted the relationship between accuracy
and group size in each of the alternative frameworks. Moreover, given that researchers
will usually perform surveys in one predefined GSD, we generated a separate plot for each
level of that variable. Finally, to determine the degree to which identification accuracy in
each of those frameworks was also affected by sea state, we generated a different plot for
every BSS category in each of the GSD levels examined.

3. Results
3.1. Reviewer-Related Variables and Image Attributes

Initially, we assessed the proportion of correct selections per reviewer (n = 13) and
plotted the results by experience (Figure 2). None of the survey participants reported
an experience level of training only; the novice reviewers had a higher rate of accurate
identifications (77.05 ± 19.91, mean ± SD; n = 7; Supplementary S1, Figure S1) compared to
the expert reviewers (76.06 ± 4.7, mean ± SD; n = 6). In line with this finding, including the
reviewers’ experience level as a predictor (EXP) did not significantly improve performance
compared to the null model (AIC: 1084.37 and 1086.13, respectively; ANOVA, p = 0.095;
Table 3). Finally, model 5, which included both reviewer and encounter as nested factors
(REV and ENC, respectively), had a lower prediction error than models 3 and 4, i.e., the
non-nested model and the one including reviewer as the only random effect (AIC: 1002.44,
1140.24, and 1028.6, respectively; Table 3). However, the R2M and R2C values of that model
were 0.29 and 0.53, respectively. Hence, the proportion of variance explained by the fixed



Remote Sens. 2022, 14, 4118 8 of 17

effects, i.e., image attributes and experience, was larger than that of the random effects, i.e.,
among-reviewer variation and encounter (29% and 24%, respectively).

Figure 2. Proportion of correct selections per reviewer. Columns and colours represent the different
levels of previous experience in conventional aerial surveys: (1, left) novice, 1–10 surveys; (2, right)
expert, 10+ surveys.

Table 3. Akaike’s information criterion (AIC) values of the general linear mixed models (GLMMS)
assessing identification accuracy based on all reviewer answers (n = 1222).

Model Effect of Interest AIC

1 Null 1086.13
2 Previous experience 1084.37
3 Image attributes 1140.24
4 Among-reviewer variation 1028.6
5 Among-reviewer variation 1140.24

Notably, although the low AIC score associated with model 5 indicated a certain
degree of dependence between images from the same encounter, incorporating this source
of variance did not result in a substantial loss of significance to the predictors identified by
model 4, namely GSD, BSS, and ID. Therefore, we focused the following analyses on the
relative importance of their effects, i.e., regardless of the random variables.

3.2. Majority-Based Identification

When assessing the proportion of correct selections per image (PCS_img; model 6),
we found that resolution was the most important predictor. The highest % IncMSE value
was assigned to GSD, followed by BSS, ID, and, finally, NID (22.02%, 8.29%, 0.05%, −0.68%,
respectively; Varex = 12.92%). The random forest decision tree (Figure 3) predicted an
identification accuracy of 50% when including all images. However, considering only the
GSD level of 0–1 cm/pixel improved identification accuracy to 67%, though this subset
represented only 36% of the data. Additionally, the model predicted the same proportion
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of correct selections for images in the BSS-0 category, i.e., regardless of resolution, and for
all BSS-1 images with a pixel size below 2 cm (67% and 53%, respectively). In line with this
observation, the variable interaction plot (Figure 4) indicated that the highest accuracy was
obtained when both image resolution and sea state were optimal, i.e., GSD ≤ 0.5 cm/pixel
and BSS-0, with a stronger effect associated with the former. Finally, the composition of
high-resolution images by NID corresponded to a further increase of the PCS_img value,
though this variable was assigned the lowest % IncMSE value.

Figure 3. Hierarchy of image attributes affecting identification accuracy across all data. Each node shows
the predicted proportion of correct selections (PCS_img) and percentage of observations in that dataset.
Colour intensity is proportional to the predicted value. Other model trees, for the high-confidence
selections and the reviewers’ mean level of confidence, are available in Supplementary S2.

Figure 4. Interaction of ground sample distance (GSD) and Beaufort sea state (BSS) as predictors of
the proportion of correct selections per image (PCS_img).
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In the analysis of identification accuracy restricted to high-confidence selections (model 8),
the highest relative importance was assigned to NID, followed by GSD, ID, and, lastly, BSS
(2.36%, −0.42%, −3.10, −6.9%, respectively; Varex = −11.76%). This model predicted 70% ac-
curacy when considering all images in that subset and, again, the tree displayed a primary split
point at a GSD of 1 cm/pixel, with a PCS_img value of 78% (Supplementary S2, Figure S15).
Finally, within this subset, the PCS_img value was markedly higher for images displaying
three dolphins or more, with 89% of correct identifications.

Finally, we observed similar results in our analysis of the reviewers’ mean level of con-
fidence (CNF_img) as a pseudo-numerical variable (0–2; unidentifiable, guess, and definite).
The relative importance of predictors in this model followed the same hierarchy observed
for identification accuracy across all data: GSD, BSS, ID, and NID (24.7%, 17.53%, 9.5%,
3.14%, respectively; Varex = 29.54%). The model predicted a mean CNF_img of 1.4 for im-
ages captured at a GSD below 1 cm/pixel (Figure 5), compared to 1.1 across all data. Addi-
tionally, images captured in a GSD below 2 cm/pixel and a sea state below BSS-1 had a mean
CNF_img of 1.2 (Supplementary S2, Figure S10). Other subsets of the data producing an in-
crease in the level of confidence relative to the entire dataset (mean CNF_img = 1.1) included
images of S. coeruleoalba captured at a GSD of 1 cm/pixel or higher (mean CNF_img = 1.5).
Again, we observed a split point at a NID value of 3 within the high-resolution category;
the level of confidence in images displaying three dolphins or more was 1.6 compared to
1.2 in images of fewer animals. All model outputs of the random forest analyses, including
the decision trees, interaction, and violin plots (e.g., Figures 3–5, respectively), are available
in the Supplementary Materials (Supplementary S2, Figures S2–S10 and S15).

Figure 5. Effect of image resolution on the reviewers’ mean level of confidence (CNF_img). Columns
and colours represent ground sample distances (GSD; cm/pixel). Column widths indicate the kernel
probability density at the corresponding Y axis values. The boxes contained within columns represent
interquartile ranges with markers for median values.

3.3. Confusion Matrix

None of the survey species exhibited symmetric misidentification probabilities. Stenella
coeruleoalba had a slightly lower proportion of correct selections than D. delphis and
T. truncatus (0.5, 0.66, and 0.65, respectively; Table 4). This species was most confused
with D. delphis and T. truncatus (0.19 ± 0.01, mean ± SD) and to a considerably lower
extent with G. griseus, P. phocoena, and S. bredanensis (0.04 ± 0.04, mean ± SD). Delphi-
nus delphis showed similar misidentification rates for S. bredanensis, S. coeruleoalba, and
T. truncatus (0.11 ± 0.03, mean ± SD) but lower proportions for G. griseus and P. phocoena
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(0.01 ± 0.01, mean ± SD). Images of T. truncatus produced relatively even distributions of
misidentification rates across all other species (0.07 ± 0.02, mean ± SD).

Table 4. Confusion matrix for all images (top) and the high-confidence selections (bottom).

Observed Species Dd Gg Pp Sb Sc Tt

Dd 0.66 0 0.02 0.12 0.07 0.13
Sc 0.2 0.02 0.02 0.09 0.5 0.18
Tt 0.04 0.07 0.07 0.08 0.08 0.65

Observed Species Dd Gg Pp Sb Sc Tt

Dd 0.83 0 0 0.06 0.06 0.06
Sc 0.14 0 0 0.05 0.78 0.04
Tt 0.01 0.07 0.03 0.04 0.09 0.77

In the subset of high-confidence selections, the PCS_img values of D. delphis, S. coeruleoalba,
and T. truncatus increased by 0.17, 0.28, and 0.12 (0.83, 0.78, and 0.77, respectively; Table 4).
Here, too, S. coeruleoalba was most confused with D. delphis (0.14, mean), and less so with
G. griseus, P. phocoena, S. bredanensis, or T. truncatus (0.02 ± 0.02, mean ± SD). Delphinus
delphis was mistaken for S. bredanensis, S. coeruleoalba, and T. truncatus (0.06 ± 0, mean ± SD)
but not for G. griseus or P. phocoena. Finally, the misidentification rates of T. truncatus were
similar across all other species (0.05 ± 0.03, mean ± SD).

3.4. Multiple-Reviewer Frameworks

The agreement-based identification framework resulted in substantial data losses
but utilised a broader range of image resolutions and sea states than the majority rule
approach (Figure 6). When filtering the data by GSD only, we found that both frameworks
displayed lower accuracies with decreasing image resolutions (a–c). In 0–1 cm/pixel-
images (a), maximal accuracy was obtained in the agreement-based approach by all groups
of more than four reviewers. However, this framework retained only 45% of the data, at
best, whereas the majority-based identifications produced 65–75% accuracy and retained
all images. In the GSD level of 1–2 cm/pixel (b), we observed a slight decrease in the
proportion of images retained and the proportion of correct selections as more reviewers
were consulted, indicating that agreement did not necessarily imply accuracy in this
scenario. In contrast, the accuracy of majority-based identifications within that subset
was below 0.5 in all group sizes. Finally, in low-resolution images, i.e., 2–3 cm/pixel (c),
identification accuracy increased linearly with group size, whereas data retention remained
between 25% in small groups and 10% in large groups. The majority-based identification
accuracy was below 0.25 for all reviewer numbers in that GSD category.

To determine whether identification accuracy within each resolution level could be
improved by further filtering the data to sea states, we generated a separate plot for each
GSD and BSS combination (d–l). Images captured with a pixel size of 0–1 cm produced
maximal accuracy in the agreement-based approach across all BSS levels (d–e), regardless
of the number of reviewers. In contrast, the majority rule approach only produced maximal
accuracy in the BSS-0-images (d) but remained 0.63–0.75 and 0.55–0.7 in the BSS-1 and
BSS-2 categories (e–f), respectively. In GSDs of 1–2 cm/pixel (g–i), maximal accuracy in
the agreement-based approach was achieved in low winds only, i.e., BSS-0 and BSS-1 (g,h),
and depended on a group size of seven reviewers or more, yet data retention in those
GSD and BSS scenarios remained below 30%. In contrast, the majority-based framework
produced a proportion above 0.5 in the BSS-0 level only (g); none of the two frameworks
produced reliable identifications in images of GSD 1–2 cm/pixel and BSS-2 (i). Finally,
both frameworks performed well in 2–3 cm/pixel and BSS-0 (j), with maximal accuracy
and a proportion of data retention above 0.3 in the agreement-based approach and over
60% accuracy in the majority-based identifications. In the image resolution and sea state
combination of 2–3 cm/pixel and BSS-1 (k), the accuracy of identification in the agreement-
based approach displayed a dramatic improvement with the increase in group size, which
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corresponded to the linear trend observed in that resolution level when including all sea
states (c). However, the proportion of data retention observed for the corresponding group
size was approximately 10%, which, based on Table 1, represented two images only. Finally,
identification accuracy in both frameworks was below 0.35 in images of 2–3 cm/pixel and
BSS-2 (l). Available in Supplementary S2 are the above simulation outputs for all images,
arranged by GSD levels (Figures S11–S13 and S16).

Figure 6. Effect of reviewer group size on the proportion of correct selections (triangles) and the
proportion of retained data (rectangles) in the agreement-based framework (red) and the majority-rule
approach (blue). Panel 1 displays the above relationship for each of the three ground sample distance
(GSD) levels: (a) 0–1 cm/pixel; (b) 1–2 cm/pixel; (c) 2–3 cm/pixel. Panels 2, 3, and 4 depict the same
relationship for each of the three Beaufort sea state (BSS) categories in the GSD levels of 0–1 cm/pixel,
1–2 cm/pixel, and 2–3 cm/pixel, respectively: (d,g,j) BSS-0; (e,h,k) BSS-1; (f,i,l) BSS-2.
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4. Discussion

We conducted trial experiments to establish practical recommendations for reducing
species misidentification probabilities when collecting, processing, and analysing UAV
images during surveys of marine wildlife abundance. In the following sections, we discuss
the results and limitations of our approach concerning each of those three survey phases and
highlight relevant research directions for future applications of the proposed methodology.

4.1. Data Collection

We assessed the effects of image attributes, including resolution, sea state, true species
identity, and the number of individual dolphins, on the accuracy of identifications by
13 trained reviewers and their mean level of confidence. We found that a GSD < 1 cm/pixel
or BSS-0 was required to correctly identify 67% of the images (Figure 3). This finding
suggests that if the aim of a UAV-based survey is to identify dolphins to species while also
maintaining sufficient spatial coverage, researchers will require high-resolution cameras.
Alternatively, reliable species identification in UAV images may be limited to surveys in
low wind. We also found that identification accuracy was substantially higher if only
considering the observations classed as ‘definite’ (PCS_img = 0.7), suggesting that certainty
may serve as a useful indicator of accuracy. However, to facilitate a large proportion of high-
confidence answers, a substantial amount of data might need to be collected, processed,
and discarded, which may prove fiscally unviable. Conversely, given that even small
probabilities of false positive errors may propagate into biased parameter estimates of
population abundance [27,29], retaining the entire set of images would limit the survey’s
utility for ecological inference and conservation efforts. Our results further indicated larger
PCS_img values for the subset of high-confidence selections obtained at a GSD < 1 cm/pixel
(0.78). Again, the requirement for high-resolution images might come at the expense of
a large area coverage. Therefore, decisions on flight parameters will ultimately depend
on the proportion of sightings that need to be classed as confident for understanding the
abundance of target species.

Concerning the effect of the true species identity, S. coeruleoalba-images with a
GSD > 1 cm/pixel produced a higher level of confidence but did not improve accuracy.
Similarly, images of D. delphis or T. truncatus captured at a GSD of 1–2 cm/pixel and a sea
state of BSS-0 or BSS-1 produced a high level of confidence relative to the entire dataset (1.2
and 1.1, respectively) and were not associated with improved identification accuracy. How-
ever, we attribute the effect of NID to the absence of S. coeruleoalba from the 0–1 cm/pixel
and BSS-2 categories (Table 1). Therefore, a high level of confidence could not be used as an
indicator of identification accuracy when composing the images by species. Moreover, the
results of our confusion matrices indicated similar proportions of correct identifications for
all three species when considering the entire dataset or only the high-confidence selections.
In line with our expectations, D. delphis, S. coeruleoalba, and T. truncatus were primarily
mistaken for each other and not for the other optional species, which we considered of
lower resemblance. However, we did not investigate the morphological traits, e.g., colour,
shape, or size, affecting misidentification as demonstrated by previous authors, e.g., [30].
A design-based approach to dealing with species resemblance in large-scale abundance
surveys would be to stratify the study area based on prior knowledge or expectations
concerning spatial variation in underlying species densities. In order to maximise accuracy
in areas of overlapping ranges, researchers may need to consider higher misidentification
probabilities for similar species and plan a greater sampling effort to increase the proportion
of accurate identifications.

Finally, the highest identification accuracy across all data and in the high-confidence
selections belonged to the images displaying three dolphins or more, with PCS_img values
of 0.79 and 0.89, respectively. An intuitive explanation is that comparing multiple animals
could facilitate identification based on a broader range of viewing angles, swimming depths,
or sizes. However, the NID variable was assigned the lowest relative importance as a predictor
of identification certainty, suggesting that another mechanism was in effect. An alternative
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explanation is that images displaying a small number of individuals may be more prone to
misidentification. For example, in the case of partial availability in the frame, e.g., due to
asynchronistic diving or swimming in a loose formation, a reviewer may falsely consider more
candidate species that occur in smaller clusters. Thus, further research is warranted on how
previous knowledge of species-specific group sizes is employed in the observation process.

4.2. Data Processing

Concerning the manual review of images, we first analysed the effect of previous
experience and generic differences among participants on identification accuracy. Multiple
authors have recognised experience as an essential variable that might explain the rates
of false positive detections, e.g., [21,30]; we included it in our work to determine whether
training schemes for marine wildlife identification in aerial images could be used to improve
accuracy. Consistent with previous studies in the literature of occurrence sampling methods,
e.g., [23,30], we did not find significant evidence that this variable impacted the proportion
of correct identifications. However, our analysis referred to the reviewers’ background in
conventional aerial surveys rather than image-based identification. To better understand
the potential of reducing error rates through training, future studies may do well to employ
individuals trained for the manual review of images. However, eligible candidates may
be difficult to find. That said, we showed that among-reviewer variation was a significant
predictor of accuracy, suggesting that previous experience in conventional aerial surveys
was not necessarily an inadequate predictor, but possibly the index we used to express it,
i.e., the number of past surveys. Other predictors of ability may include self-assessment by
reviewers or independent testing of their skills [34].

Finally, our analysis of multiple-reviewer frameworks indicated that the overall ac-
curacy of agreement- and majority-based identifications depended primarily on image
resolution and sea state, and to a lesser extent, on the number of reviewers consulted.
However, the composition of images by sea state facilitated an understanding of specific
subsets where a larger number of reviewers did improve the proportion of correct selec-
tions in the agreement-based approach. For example, for the GSD level of 1–2 cm/pixel,
retaining only the images captured at a sea state of BSS-0 or BSS-1 improved identifica-
tion accuracy from less than 70% across all group sizes (Figure 6b) to over 80% in small
groups (g,h) and 100% in large ones (g,h). Additionally, the agreement-based framework
retained a broader range of image resolutions and sea states compared to the majority rule
approach. Hence, employing this framework may facilitate considerably higher accuracies
in surveys conducted across various sea conditions. Moreover, given the potential of false
positive errors to induce substantial bias in estimates, the data losses associated with the
agreement-based approach may prove inevitable and should be considered when planning
the sampling effort. Contrastingly, in surveys expected to produce a low number of images
or high-confidence identifications, or in flights where either GSD or sea state is optimal
throughout, the majority rule approach may prove feasible.

4.3. Data Analysis

Finally, we investigated the suitability of UAV-based data for statistical models accom-
modating false positives in post-survey analyses. More specifically, we were interested
in the capacity of multiple-reviewer frameworks that rely on the degree of certainty or
agreement to produce unambiguous records, which are essential for the model-based
approach [29]. We found that, if only considering identifications classed as ‘definite,’
the highest proportion of correct selections in the majority rule framework was 0.78 for
high-resolution images, i.e., GSD < 1 cm/pixel. Thus, the reliability of high-confidence
identifications was insufficient to provide unambiguous records for modelling frameworks
based on confidence matches. Furthermore, the pervasiveness of misidentification probabil-
ities in this dataset raises concerns about the reliability of previous inferences of abundance
in conventional and UAV-based surveys based on the above indices, e.g., [30]. Conversely,
as discussed in the previous section, the analysis of multiple-reviewer frameworks revealed
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maximal proportions of correct identifications in the agreement-based approach for a wide
range of resolutions, i.e., 0–3 cm/pixel, depending on sea state. Our results suggest that, to
accommodate false positive errors through post-survey data analysis, only the subset of
identifications agreed upon by a sufficient number of reviewers, depending on the filtering
scenario, should be considered unambiguous records.

Additionally, our study demonstrates the production of prior information that may
optimise survey design, as discussed above, and aid in selecting one analytical approach
over another in certain data circumstances. For example, Conn et al. [21] demonstrated
the potential to produce reliable inferences using the double-observer framework when
experimental data are not available, but a symmetry constraint is imposed; we showed that,
for the species investigated in our study, misidentification probabilities were asymmetric
and, therefore, an alternative framework might have been preferable for studies focused
on those dolphins. Finally, the type of data we produced may explain the variation in
misidentification rates in response to technical parameters and environmental conditions.
This advantage becomes particularly relevant for surveys conducted across large temporal
or spatial scales, where error probabilities may change during data collection, despite the
researchers’ attempts to avoid unfavourable field conditions.

5. Conclusions

This study presents a methodological approach to assess the probabilities of species iden-
tification errors in UAV-based surveys of marine wildlife abundance based on independent
experiments. Our results indicate a limited integration potential for UAVs with conven-
tional surveys across large areas where species are morphologically similar. We showed
that the correct identification of Stenella coeruleoalba (striped dolphin), Delphinus delphis (short-
beaked common dolphin), and Tursiops truncatus (common bottlenose dolphin) will depend
on high-resolution cameras or the implementation of surveys in optimal sea conditions,
i.e., GSD < 2 cm/pixel or BSS-0, respectively. Image reviewing should employ the agreement-
based approach whereby only unanimous records are used, despite the substantial data losses
associated with this framework. In identifications performed in the majority rule approach,
using the subset of observations that are classed by the reviewers as ‘definite’ is likely to
produce higher accuracies but not unambiguous records. Thus, statistical models relying on
their availability should only employ the agreement-based approach and, specifically, images
captured with a low GSD or processed by relatively large groups. The technique described
above may be applied to other taxonomic groups of morphologically similar species with
overlapping ranges. As UAVs evolve towards larger spatial scales and longer flight durations,
trial experiments may become essential for reducing species identification errors in wildlife
abundance surveys.
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