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    CURRENT
OPINION Which patients with CKD will benefit from genomic

sequencing? Synthesizing progress to illuminate
the future
1062-4821 Copyright © 2022 The A
a,b,c,d
Andrew J. Mallett
Purpose of review

This review will summarize and synthesize recent findings in regard to monogenic kidney disorders,
including how that evidence is being translated into practice. It will add to existing key knowledge to
provide context for clinicians in consolidating existing practice and approaches.

Recent findings

Whilst there are long established factors, which indicate increased likelihood of identifying a monogenic cause
for kidney disease, these can now be framed in terms of the identification of new genes, new indications for
genomic testing and new evidence for clinical utility of genomic testing in nephrology. Further, inherent in the use
of genomics in nephrology are key concepts including robust informed consent, variant interpretation and return
of results. Recent findings of variants in genes related to complex or broader kidney phenotypes are emerging in
addition to understanding of de novo variants. Phenocopy phenomena are indicating a more pragmatic use of
broader gene panels whilst evidence is emerging of a role in unexplained kidney disease. Clinical utility is
evolving but is being successfully demonstrated across multiple domains of outcome and practice.

Summary

We provide an updated framework of evidence to guide application of genomic testing in chronic kidney
disease (CKD), building upon existing principles and knowledge to indicate how the practice and
implementation of this can be applied today. There are clearly established roles for genomic testing for
some patients with CKD, largely those with suspected heritable forms, with these continuing to expand as
new evidence emerges.
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INTRODUCTION

The role of diagnostic genomics in mainstream
nephrology practice continues to rapidly evolve.
Building upon a base of substantial research discov-
ery and technological development, we have now
collectively arrived at a point where a healthy ten-
sion exists not between whether there is or is not a
role for genomics in nephrology but rather whether
this role should rest predominantly with subspecial-
ists, be instead primarily integrated into general
nephrology, or indeed a combination of these. This
is an opportune time to reflect on recent progress
and evidence in order to better inform both research
and clinical pathways broadly across the space of
monogenic kidney disease. Building upon a pre-
vious and complementary review focused upon
the diagnosis of monogenic forms of chronic kidney
disease (CKD) [1], this review will explore recent
progress illuminating, which patients might benefit
uthor(s). Published by Wolters Kluwe
from genomic sequencing through the lenses of the
identification of new causative genes, new indica-
tions for genomic testing, new insights into the
clinical utility of such genomic testing amongst
r Health, Inc. www.co-nephrolhypertens.com
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KEY POINTS

� Diagnostic genomic testing is being actively
implemented into contemporary nephrology practice.

� Key practices and factors indicating greater likelihood
of identifying a causative genetic diagnosis are
reaffirmed by new evidence.

� New genes continue to be elucidated whilst new
indications for genomic testing in CKD are
also emerging.

� Understanding of the clinical utility in addition to
diagnostic utility of genomic testing in CKD is driving
implementation into practice whilst also providing
clarity around which patients with CKD benefit from
diagnostic genomic testing.

Diagnostics and techniques
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those with CKD, and emerging pathways towards
implementation in nephrology practice (Fig. 1).
NEW GENES
Underpinning the ability to undertake genomic test-
ing for patients with CKD is our understanding of
which genes have a relationship to kidney disease or
CKD phenotypes. This has both grown and
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deepened in recent years even as it has been thought
that the rate of new gene discovery might plateau or
slow. It is generally anticipated that whilst each
newly identified gene is likely to account for a
diminishing number of affected patients or families,
collectively, this is successfully working towards
being able to identify a diagnosable monogenic
cause for the majority of instances of suspected
heritable kidney disease or CKD.

In tubulopathy and electrolyte disorders, there
are several key findings of note. The reporting of
pathogenic variants in mtDNA causing a Gitelman-
like syndrome [2

&

] brings together several logical
lines of understanding in terms of renal tubular
physiology and mitochondrial biology, whilst the
identification of biallelic variants in KCNJ16 related
to a hypokalaemic syndrome fortifies tubular potas-
sium channel understanding whilst further linking
to extrarenal phenotypes including sensorineural
hearing impairment [3]. Even though inherited syn-
dromes linking the kidney and sensorineural hear-
ing impairment are not unknown to nephrologists,
it is interesting to note that the discovery of de novo
heterozygous RRAGD variants brings together both a
hypokalaemic and hypomagnesaemic kidney syn-
drome with dilated cardiomyopathy owing to a
shared cardiorenal mTOR-signalling pathways [4].
�ons for 
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Moving to heritable structural kidney disorders,
iterative progress continues despite previous think-
ing that the proportion of cases of Congenital
Anomalies of the Kidney andUrinary Tract (CAKUT)
with an identifiable monogenic cause was likely to
remain modest. As cohort sizes have expanded, this
has enabled new ways to explore for heterozygous
de novo pathogenic variants in genes and thus
revealed ZMYM2 [5], which has further eluded to
potential additional genes within its broader inter-
actome. Careful phenotyping and research investi-
gation clarified that pathogenic biallelic ROBO1
variants relate to a variety of CAKUT phenotypes,
further confirming and extending the phenotypic
spectrum of this gene past established cardiac and
neurological phenotypes.

Whilst there aremanygenes that areconsidered to
be candidate genes owing to understanding of their
role inhumandevelopment and physiology, there are
not infrequently challenges in clarifying if genetic
variation in these genes indeed relates to anticipated
or expected heritable phenotypes. In regard to the
kidney, this was the case for ROBO1 but has also been
the case for LAMA5, owing to its role with basement
membranes.Morecompellingevidencehasnowestab-
lished that biallelic pathogenic variants in LAMA5
have a causative relationship across a spectrum of
glomerular phenotypes from nonsyndromic neph-
rotic syndromes [6] to syndromic complex kidney
phenotypes [7]. Other genes in which pathogenic
variants have been associatedwith proteinuric kidney
disorders are biallelic variants in DAAM2 associated
with steroid-resistant nephrotic syndrome [8] and de
novo heterozygous variants in TRIM8 with focal seg-
mental glomerulosclerosis with extrarenal epilepsy
and neurodevelopmental disease [9]. Many of these
newly identified genes associated with proteinuric
kidney disorders have emerged from large cohorts,
existing knowledge of gene interaction networks
and improved exploration of de novo heterozygous
pathogenic variants.

Additional genes linked to the primary cilium are
also exhibiting broader intrarenal and extrarenal phe-
notype spectra. Biallelic variants inTTC21Bhavebeen
shown to result in a mixed glomerular and tubuloin-
terstitial kidney disease [10], whilst biallelic TULP3
variants linked together disease entities with hepatic,
kidney and cardiac components all of which include
fibrotic and/or fibrocystic disorders [11]. The identi-
ficationofgenes suchas these is sheddingnew lighton
kidney ciliopathies, not only in terms of which neph-
roncomponentsmightbeaffected,butalso intermsof
syndromic forms and underlying disease pathways
such as DNA damage, repair and fibrosis.

An area of intense renewed interest in recent
years for gene discovery has been cystic kidney
1062-4821 Copyright © 2022 The Author(s). Published by Wolters Kluwe
disease. The relatively recent identification of
GANAB, DNAJB11 and ALG9 as genes in which
pathogenic heterozygous variants are associated
with cystic kidney phenotypes has driven hope that
an increasing proportion of patients with cystic
kidney disorders such as autosomal dominant poly-
cystic kidney disease (ADPKD) or atypical ADPKD
may be able to attain a genetic diagnosis. Most
recently, ALG5 has been reported and appears to
exhibit a condition spanning ADPKD and autoso-
mal dominant tubulointerstitial kidney disease
(ADTKD) [12], not dissimilar to what has become
apparent with DNAJB11 [13

&

]. This further delinea-
tion of mixed phenotypes is further challenging
ontology to extend past what has been previously
dogmatically held to be truewithmonogenic kidney
disorders aligning clearly within relatively neat and
clean groupings exhibiting overlap by exception.

It is into this setting that perhaps amost interest-
ing finding has been reported. Where previously
biallelic pathogenic variants in IFT140 were known
to associate with autosomal recessive syndromic kid-
ney ciliopathies, specifically Mainzer–Saldino syn-
drome [14] and Jeune asphyxiating thoracic
dystrophy [15], it has now been reported that hetero-
zygous pathogenic variants in IFT140 are associated
with ADPKD [16

&&

]. Where initially this may seem
incongruent as the obligate carrier parents of affected
patientswith IFT140-related autosomal recessive cili-
opathy have not otherwise been reported to harbour
kidney cystic or ADPKD phenotypes. The subtlety,
however, is in the nature of the pathogenic variants
involved, with the recessive ciliopathy appearing to
relate to missense variants whereas in dominant
ADPKD, this related to truncating loss-of-function
variants. There is some further chance and indeed
opportunity that additional gene–phenotype rela-
tionships will emerge as understanding of variant
type and de novo variants are explored at scale
[17

&

] with disentanglement of traditional concepts
of inheritance, penetrance and variant effects.
NEW INDICATIONS FOR GENOMIC
TESTING

Just as new monogenic causes are being uncovered,
the potential clinical indications for genomic testing
inCKDis alsobeing further revealed. Specifically, this
most recently has pertained to potential indications
around prognostication, diagnostic utility in instan-
ces of unexplained CKD or kidney failure and iden-
tification of unappreciated phenocopy disorders.

In a cohort of ADTKD families, 29 of 45 achieved
a genetic diagnosis in genes known to be associated
with that condition. However a further 9 of 45
harboured diagnostic variants in other monogenic
r Health, Inc. www.co-nephrolhypertens.com 543
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kidney disease genes not traditionally associated
with ADTKD [18]. Whether these represent pheno-
copy phenomena, instances of incomplete pheno-
typing or atypical presentations is not clear but this
may be clarified in coming years as large ADTKD
cohorts are now being reported [19,20], which are
already proposing new clinical, genetic and score-
based prognostications for relevant outcomes like
age at incident kidney failure.

A key feature in this space is the aggregation and
analysis of large and well characterized cohorts of
specific monogenic kidney disorders to illuminate
prognostication factors. Just as prognostication
approaches incorporating genetic factors have been
identified and validated in ADPKD [21–23], these
are now gaining more context [24

&

] and being fur-
ther added to for atypical ADPKD [13

&

] whilst also
emerging for ADTKD [19,20,25]. Whilst a modest
minority of cases have a monogenic cause, similar
cohort findings have been reported for C3 glomer-
ulopathy [26], which aids in a pragmatic genetic
approach for such conditions with mixed or com-
plex aetiological underpinnings. Together, this
emerging evidence is increasingly indicating that
a genetic or genomic result for an individual can
have prognostic applications, and this may be a
relative or potentially absolute indication for
genomic testing in some instances of CKD.

One area of substantial interest is whether or not
broad genomic testing might have a diagnostic role
in instances of otherwise unexplained CKD or kid-
ney failure. At least two prospective studies are
currently underway examining this question
[27,28]. Whilst awaiting those prospective studies
to report, new information from retrospective stud-
ies is adding evidence to this space. In a kidney
transplant cohort with kidney failure before 50years
of age, exome analysis with a broad kidney gene
panel unveiled new genetic diagnoses and indicated
that genomic testing may have a role as a first-tier
diagnostic approach [29

&&

]. Others identified that
diagnosable phenocopy disorders may be more
common, representing up to one in five genetic
diagnoses in suspected hereditary kidney disease
and that an approach rigidly applying very strictly
targeted gene panels rather than broader or cascade
panels does not identify such instances [30

&

]. For
complex phenotypes such as urinary stone disease,
the evidence for broadened gene panels is further
reflecting this concept that application of a very
targeted gene panel approach will fail to identify a
genetic diagnosis that is present and directly related
to the patient phenotype in 10–20% of instances
[31].

Moving from broad to more specific, new evi-
dence is also emerging around including the
544 www.co-nephrolhypertens.com
potential screening of CKD patients for very rare
monogenic kidney diseases such as Fabry disease.
Whilst overall prevalence has been confirmed to be
very low (<0.5%) amongst those with CKD [32–35],
there are still cases who appear to only have been
identified via cohort-screening approaches. This is
all the more pointed as targeted therapies for Fabry
disease are available and in clinical use.Whilst Fabry
disease specifically is able to be screened for using
nongenomic blood testing, this often has degraded
diagnostic performance amongst women as it is an
X-linked disorder. Application of gene panels that
are potentially of a broader nature, may identify
opportunity for very tangible clinical utility from
application of broader gene panels and their appli-
cation in otherwise unexplained CKD or kidney
failure.
NEW INSIGHTS INTO UTILITY OF
GENOMIC SEQUENCING IN CHRONIC
KIDNEY DISEASE

Now that diagnostic utility is well established for
genomics in suspected heritable forms of CKD,
greater focus is now turning to better understanding
clinical utility. Testing at scale has indicated that
less than 10 genes account for themajority of overall
diagnoses made [36

&

] even though there is variabil-
ity in terms of genetic diagnosis rates between phe-
notypes or panels [37–39]. Utility in disentangling
atypical or complex phenotypes is also being dem-
onstrated [40

&

]. The large cohort studies such as
these come from multiple jurisdictions or countries
and yet affirm each other’s findings is important, as
this heightens confidence in broad applicability
and translation.

One especial point of clinical utility that has
been proposed for genomic testing in CKD is the
potential to replace or act synergistically with kid-
ney biopsy in some situations. Analyses of genomic
testing concurrently [41] and after [42

&

] kidney
biopsy for CKD has been revealing. It appears that
there may be some instances where kidney biopsy
can be deferred or even avoided, but this is largely
restricted to scenarios of a particular or suspected
heritable monogenic kidney disorder. In the major-
ity of instances, benefit is instead derived from add-
ing information to a histopathological diagnosis,
which adds new understanding or depth for approx-
imately half of those attaining a genetic diagnosis
after kidney biopsy. Of even greater interest is that
genomic testing in conjunction with or after kidney
biopsy translates to changed treatment for one in
four patients attaining a genetic diagnosis.

The role of diagnostic genomics in living related
kidney donor assessment has also been long
Volume 31 � Number 6 � November 2022
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proposed as an area for measurable clinical utility.
New evidence is demonstrating that this benefit is
realizable [43

&

] and moreover that the proposed
approach of commencing the diagnostic genomic
testing cascade with a phenotypically affected rela-
tive, usually the proposed kidney transplant recip-
ient [44,45], is appropriate and effective.

Another area of potential clinical utility is in
reproductive planning, particularly preimplantation
genetic testing. Recent reported experience and evi-
dence [46

&&

] is strongly encouraging in terms of out-
comes and indicated that patient interest is growing
as evidenced by increasing referrals. In practical
terms, discussions around family and reproductive
planning should be actively considered and under-
taken as part of the nephrological care of patients
affected by suspected or proven heritable CKD, with
consideration of genomic testing if or where indi-
cated, to facilitate informed decision-making or
advanced reproductive technologies.

Reaffirmation of proposed key factors indicating
higher likelihood of an identifiable monogenic
cause in CKD and thus a diagnostic outcome from
genomic testing is clarifying clinical utility. Such
factors include the presence of a family history of
kidney disease [47], younger age of onset [48], extra-
renal features, and phenotype-specific factors [49].
This is critical to frame clinical utility and to guide
future implementation and education.
TOWARDS IMPLEMENTATION

The frontier currently being traversed is to translate
evidence into practice with genomic testing being
integrated into contemporary nephrology practice.
At a whole-of-system level, the transformative
nature of clinical genomics is being realized
[50

&&

,51,52]. Concurrently, these benefits are being
realized at a grass root level in terms of establish-
ment of kidney genetic clinics andmultidisciplinary
services in new jurisdictions [53–57] complement-
ing and building upon learnings from earlier efforts
[58,59]. For more common heritable kidney disor-
ders such as ADPKD, alternate genomic testing
mainstreaming models, which are more integrated
into existing nephrology models of care [60] are
showing great promise for a future second wave of
genomic mainstreaming in nephrology supported
by novel pathways to return genetic results [61

&

].
Two examples highlighting intuitive and effec-

tive implementation of genomics in CKD have been
in the space of Alport syndrome and the COL4A3-
COL4A5 spectrum of kidney disorders, and the
national approach espoused in Australia. Firstly,
regular international condition-focused workshops
[62] have brought together clinicians, researchers,
1062-4821 Copyright © 2022 The Author(s). Published by Wolters Kluwe
scientists and consumers whilst population preva-
lence estimates have been refined [63] and rarer sub-
types characterized [64] resulting in revised and
condition-specific variant diagnostic standards
[65

&

] and broader guidelines around genetic testing
through to management [66]. Secondly, Australia
has progressed from a first multidisciplinary kidney
genetics clinic in 2013 [58] to a nationwide network
of 18 such clinics underpinned by understanding of
nephrologist attitudes and practices around
genomic testing in CKD [67], local clinical impact
[68] and health economic impact [69

&

] of such
implementation such that nationwide reimburse-
ment for genomic testing in suspected heritable
CKD was implemented on 1 July 2022 via the Aus-
tralian Government’s Medicare Benefits Schedule
within a universal healthcare model of healthcare.
These two examples showboth fromdisease-focused
and country-focused perspectives that advancement
and implementation of genomics in CKD is possible
and effective with patients and families as ultimate
beneficiaries.

It is alsoanopportune time to look towards future
potential diagnostic genomic pathways and innova-
tions that show promise for clinical implementation
in the medium term. These include digital health
approaches to case identification [70], transcriptomic
or RNA sequencing [71,72], which can reclassify var-
iants otherwise not considered as being disease-
related [73], and globally calibrated and verified
gene–phenotype curation formonogenic CKD, such
as ClinGen [74] and PanelApp [75] within the Gene
Curation Coalition [76

&

]. Already key global consen-
sus policy recommendations including from the
EuropeanRenalAssociation (ERA) andEuropeanRare
KidneyDiseaseReferenceNetwork(ERKNet) [77

&

] and
Kidney Diseases: Improving Global Outcomes
(KDIGO) [78

&

] are helping to consolidate and bring
together experiences and learnings across countries
and regions to guide ongoing implementation of
genomics in CKD.
CONCLUSION

In conclusion, those patients with CKD who will
benefit from genomic testing are becoming clearer
and thus aremore likely to benefit today than at any
time previously. The discovery of new causative
genes in companywith new indications for genomic
testing and new evidence for clinical utility are
adding depth and a frame of action for established
factors for both delivering diagnostic genomics in a
contemporary nephrology context as well as iden-
tifying those CKD patients with greater likelihood of
harbouring a genetic cause for CKD. The learnings
from future and further implementation over the
r Health, Inc. www.co-nephrolhypertens.com 545
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coming years will likely refine this further whilst
adding further depth and breadth to our under-
standing of which patients in which circumstances
and with which genomic technologies we can
deliver a patient-centric model of precision neph-
rology.
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