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Enhancing whole-of-river conservation 
Richard G. PearsonA,B,* , Aaron M. DavisB and R. Alastair BirtlesA   

ABSTRACT 

We argue for improved conservation of freshwater ecosystems at catchment or eco-regional 
scales by explicit assignment of values to all river sections and wetlands, recognising current 
disturbance, and aiming for ‘no further harm’ to the commons. The need is indicated by the global 
deterioration of biodiversity and ecosystem services of rivers and wetlands, increasing demands on 
water and land resources, and climate change. Regional pressures include multiple jurisdictions, 
competing demands, piecemeal management, pollution and habitat impacts. Effective resource and 
conservation management needs to integrate multiple uses via governance of activities of stake-
holders, recognising hydrogeomorphic, water quality and ecological properties of ecosystems. 
Complete ecological protection is impractical amidst water-resource and land-use development, 
but we suggest that all river reaches and wetlands be given a conservation rating based on habitat, 
biodiversity and connectivity values. We present a straightforward approach to spatial conserva-
tion rating of freshwaters, using hydrogeomorphic typology and assignment of conservation values 
on the basis of available information and expert elicitation. We illustrate the approach by using the 
large Burdekin River catchment in north-eastern Australia. This approach is complementary to 
more spatially focused conservation prioritisation and could greatly improve management for 
sustainability, reduce further decline in conservation values, and facilitate rehabilitation.  

Keywords: Burdekin River, catchment scale, development, prioritisation, stream, tropic, 
typology, water resources, wetland. 

Introduction 

Effective management of freshwater resources and ecosystems is regarded as one of 
humanity’s highest priorities because of increasing demands on water resources 
(Dudgeon et al. 2006; Vörösmarty et al. 2010; Elliott et al. 2019; Albert et al. 2021) and 
the disproportionate loss of biodiversity in these habitats (Williams-Subiza and Epele 2021). 
These demands impair the ecological status of waterways as a result of changes to natural 
hydrology, morphology and water quality (Lemm et al. 2021). The need for improved 
stewardship of the common asset is urgent; for example, the ‘Brisbane Declaration’ calls for 
action to restore flows and ecosystems for their values and services as an integral compo-
nent of water resource management and sustainable development (Arthington et al. 2018a,  
2018b). The recent ‘second warning to humanity’ highlighted the need to address ‘the loss 
and degradation of wetlands, the declining availability of freshwater, and the likely conse-
quences of climate change’ (Finlayson et al. 2019). Although it is generally recognised that 
freshwaters and estuaries provide vital ecosystem services as a commons (e.g. Capon and 
Bunn 2015; Maynard et al. 2015; Pearson et al. 2021), explicit whole-of-river, or even 
subcatchment, conservation is very rare. Conservation of freshwater ecosystems is challeng-
ing because of extensive catchment and instream connectivity. However, environmental 
management at the catchment scale has advanced greatly in some jurisdictions; for exam-
ple, in Australia, natural resource management (NRM) organisations partner with govern-
ment, funding agencies, landowners, scientists and other stakeholders, aiming for positive 
environmental outcomes (e.g. Bohnet et al. 2013; Curtis et al. 2014; NRM Regions Australia 
2021). Nevertheless, these entities have inconsistent governance mandates among states 
and their activities are constrained by competing priorities, including agricultural and water 
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resource developments, which frequently prevail over 
resource and biodiversity conservation (e.g. Beasley 2021). 
Informed management may also be constrained by limited 
research on the links among biogeography, climate change, 
ecosystem processes and biodiversity (Barmuta 2003). 

A strong theoretical base for conservation management 
has developed, mostly focused on areal terrestrial and 
marine management. In the past decade, interest has 
grown in rivers and riparian zones as important habitats 
and, particularly, as agents of instream and catchment con-
nectivity (Kingsford et al. 2005; Hermoso et al. 2011; Linke 
et al. 2011, 2012). The emphasis has been mainly on prior-
itising high-value species and ecosystems, but the need to 
accommodate both biodiversity and human utility in con-
servation (Barmuta et al. 2011) is recognised, for example, 
via ‘multiple protection tiers’, which indicate different levels 
of conservation action to accommodate human use (Linke 
et al. 2019). Modelling approaches for conservation prior-
itisation require substantial data input (e.g. Kennard 2011;  
Turak et al. 2011) but in data-poor areas more coarse strat-
egies are necessary – for example, classification according to 
landscape and hydrogeomorphic characteristics for conser-
vation planning (van Deventer et al. 2016). 

Protected areas provide inadequate conservation of fresh-
waters globally because they typically do not capture the 
full range of aquatic habitats (Hermoso et al. 2016). For 
example, in Australia, ~8% of streams are in protected areas 
(Stein and Nevill 2011), compared with ~15% globally 
(Bastin et al. 2019). Even in the Australian Wet Tropics 
World Heritage Area, in which nearly 50% of the land is 
in protected areas (Great Barrier Reef Marine Park Authority 
2012), only headwater streams are well represented, and 
~80% of freshwater habitat is excluded (Januchowski- 
Hartley et al. 2011). Although there are promising signs of 
greater acknowledgement of environmental issues in water 
management (e.g. Productivity Commission 2021) and 
environmental assessment (e.g. Queensland Government 
2017b), proactive catchment-wide conservation manage-
ment is limited. Management of the Murray–Darling system 
via legislation and planning was promising, but has not been 
entirely successful (Chen et al. 2021). 

Given the need for improved conservation management, 
we advocate whole-of-river conservation categorisation by 
using a straightforward approach, especially for systems 
with limited availability of ecological data. Most advanced 
approaches to conservation relate to prioritisation of the 
areas of highest value. Although such prioritisation is valu-
able, a whole-of-river approach is required (Kingsford et al. 
2005) because limiting explicit protection to river sections 
of greatest conservation value precludes capture of the 
entirety of habitat types, biodiversity and vital connectivity. 
We propose a prior and complementary step based on geo-
morphological typology and simple conservation value 
assignment, applied comprehensively across whole systems 
as a basis for their protection and management, within the 

context of current and possible future land and water use 
(cf. Connolly et al. 2011). Our approach has the ultimate 
aim of broad adoption. We illustrate this approach through a 
case study of the Burdekin River (Fig. 1), a major system 
draining into the Great Barrier Reef (GBR) lagoon, which 
reflects many of the management issues that apply to fresh-
water systems worldwide. Before outlining our methodol-
ogy, we summarise the ecological values of the Burdekin 
River, its current and proposed development status, current 
management regimes and the need for its explicit conserva-
tion within the development context. 

Burdekin catchment: landscape, ecology, 
development 

Background 

We focus on the Burdekin system because of its large size, its 
economic importance and associated environmental pressures 
(NQ Dry Tropics 2016a), its ecosystem values and services, 
including the diversity of its environments and biota (Brizga 
et al. 2006; NQ Dry Tropics 2016a), its Indigenous values 
(Davis et al. 2014), the importance of its discharge and associ-
ated contaminants to the GBR (McCloskey et al. 2021), the 
moderate (although patchy) scientific knowledge of the system 
(Connolly et al. 2011), important management activities in the 
landscape (e.g. Landsberg et al. 1998; O’Reagain et al. 
2005; McIvor 2012; NQ Dry Tropics 2016b), and because 
the region is reportedly uniquely positioned for agricultural 
expansion (Australian Government 2015). Despite extensive 
development, important conservation criteria (e.g. naturalness, 
representativeness, diversity, rarity, linked habitats, migratory 
species and dispersal of terrestrial species; Dunn 2004) are 
relevant to the Burdekin River (Brizga et al. 2006), and all 
47 subcatchments have been rated positively for their aquatic 
ecosystem and cultural values (Kerr 2013). However, only 6% 
of the Burdekin catchment area is in protected areas (NQ Dry 
Tropics 2016b), including some perennial streams and many 
wetlands, and does not capture intermittent streams or the 
larger rivers. Environmental research on the Burdekin and 
other rivers of the GBR catchment has focused on delivery of 
land-based pollutants to the GBR (e.g. Brodie et al. 2012,  
2017). Although the need for enhanced holistic planning and 
management of linked land- and seascapes has been recog-
nised (Productivity Commission 2021), particularly in the GBR 
region, (Brodie and Pearson 2016; Waterhouse et al. 2016), 
publications concerning the ecology and values of rivers them-
selves are limited (see below). 

Landscape and ecology 

Broad biophysical descriptions of the Burdekin River and 
basin are summarised in Table 1. The flow regime is domi-
nated by the seasonal wet and dry cycle, and while the 
seasonality is predictable, flow volumes are not (Fig. 2). 
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The catchment has received much attention because of its 
major inputs of freshwater discharge, fine sediments and 
nutrients into GBR waters (McCloskey et al. 2021), but 
less attention is being given to its freshwater systems. 
Here we outline the patchy ecological knowledge of the 
river and wetlands (Table 2). 

Headwaters include springs and rocky or sandy streams 
(orders 1–3), descending to broad plains with low gradient 
and mostly sandy substrata, eventually converging on the 
main tributaries. Substantial research has been undertaken 
on Birthday Creek, a perennial Wet Tropics stream, focusing 
on drivers of invertebrate diversity and dynamics, and 
trophic relationships, but this represents only a very small 
part of the Burdekin catchment. For much of the catchment, 

headwater streams are intermittent and have received little 
attention. 

Mid-sized streams and rivers (orders 4, 5) may be peren-
nial in basaltic areas but mostly flow seasonally, with dis-
connected waterholes sustained by the water table. They 
have moderate invertebrate and fish diversity and food 
webs are driven by multiple basal sources and omnivory. 
The larger tributaries and main Burdekin River (orders 6, 7) 
have high banks, well vegetated flats alongside the main 
channel, with the wetted area meandering within the chan-
nel over a sandy substratum and occasional rocky outcrops. 
Invertebrates are abundant but appear not to be diverse, 
whereas fish diversity is comparable with that of other 
rivers of similar size. 
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Fig. 1. Map of the Burdekin Basin, including the 
coastal Haughton River, which delineates the west-
ern edge of the floodplain. Locations, rivers and dams 
referred to in the text are indicated; proposed 
impoundments include Hells Gates Dam (2110 GL) 
on the Burdekin River, Urannah Dam (970 GL) on 
the Broken River, raising the current Burdekin Falls 
Dam (from current 1860 to 2446 GL) and Big Rocks 
Weir (10 GL) near Charters Towers ( SMEC 2018;   
Queensland Government 2021a,  2021b,  2021c). 
Inset shows the location of the basin in Australia.    
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The Burdekin Falls (site of the major dam site) delineates 
middle- and lower-river sections. Many invertebrates and 
fish occur in the lower river, including many opportunistic 
marine or estuarine species and some that depend on con-
nectivity between freshwater and marine environments for 
spawning (Pearson et al. 2021). However, there is very 
limited ecological information. The Burdekin estuary com-
prises the 1.0-km-wide main river channel and ancillary 
distributaries, within Australia’s largest delta. There is little 
published information on the estuary but it is expected to be 
productive and provide extensive habitat, like other estu-
aries in the region. 

Lentic waters comprise lakes and swamps, both perennial 
and intermittent, as well as the riverine waterholes. In the 
upper catchment, groundwater sustains perennial wetlands, 
especially in basaltic parts of the north. The floodplain has a 
great expanse of freshwater and brackish wetlands that are 

of international importance and Ramsar-listed. They are fed 
by local rainfall, occasional flooding of the Burdekin River 
and high groundwater levels, as well as by irrigation supply 
and tailwater. 

Groundwater sustains the river and wetlands through most 
of the year, in the absence of surface run-off and irrigation 
tailwater (e.g. Davis et al. 2017). It is used for irrigation on 
the delta, requiring control of recharge and use (Great Barrier 
Reef Marine Park Authority 2013). There is very little 
ecological information on groundwater in the catchment. 

Development impacts 

Little of the Burdekin system has escaped the impact of 
development over the past 150 years, including changes in 
land use, water quality and habitat, water flow, and climate, 
many of which co-occur and probably interact (Pearson 
et al. 2021). The major land use in the catchment by areal 
extent is cattle grazing across the wooded and cleared range-
lands. Resultant impacts have been weed invasion, erosion, 
salinity and elevated sediment and nutrient loads in the 
river (Table 3). Cropping is dominated by irrigated sugar-
cane (~80 000 ha) on the delta and coastal floodplain. 
Irrigation has caused issues of water management (greatly 
raising some water tables and lowering others), loss of 
riparian vegetation, weed invasion and water quality for 
the extensive wetlands (Great Barrier Reef Marine Park 
Authority 2013; NQ Dry Tropics 2016b). The huge 
Burdekin Falls Dam has reduced floods and coarse sediment 
transport, while supplementing dry-season flow in the river 
and across the floodplain, with impact on invasive weeds 
and water quality. Climate change is predicted to affect 
various attributes of coastal wetlands and to reduce bio-
diversity. The catchment is not subject to concentrated 

Table 1. Burdekin catchment landscape.    

Category Characteristics   

Location Centrally in GBR catchment; 6° of latitude 

Size 134 000 km2; river ~1000 km long (Belyando–Burdekin) 

Climate Wet–dry tropical. Rainfall mean: e.g. Charters Towers 642 mm, Paluma (Wet Tropics) 2627 mm 

Discharge Highly seasonal; greatest maximum, but not median, in Australia; perennial in parts 

River characteristics Some perennial, many intermittent; permanent waterholes 

Wetland characteristics Intermittent and permanent wetlands in catchment and on floodplain 

Vegetation Woodland and grassland; rainforest on mountains; woodland, open forest and wetlands on floodplain 

Land use Mainly grazing, some dryland cropping; irrigated cropping on floodplain; some mining; infrastructure 

Protected areas ~6% of the catchment, plus Defence Department land (~4%) 

25 sites listed in Directory of Important Wetlands including Ramsar-listed Bowling Green Bay wetlands 

Human population 33 600; density 0.25 km−2 

Water resource development Dams: Burdekin Falls, 1860 GL; Eungella, 131 GL; Paluma, 12 GL; several large weirs 

Based on  Brizga et al. (2006),  NQ Dry Tropics (2016a),  Australian Government (2019) and  Pearson et al. (2022).  
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Fig. 2. Typical patterns of monthly and annual flow variability in the 
lower Burdekin River, 2010–2015, showing years of moderate and 
low flow. Over the period 1975–2020, mean discharge = 696 GL and 
median = 66 GL per month. Queensland Government data (https:// 
water-monitoring.information.qld.gov.au/).   
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heavy industry or intense urbanisation. Mining occurs to a 
limited extent. 

Future development 

The Australian Government’s (2015) White Paper on devel-
oping the north highlighted the unique ecological values of 
the rangelands (‘the largest intact tropical savanna in the 
world’) and identified the key threats as fire, climate 
change, coastal development, feral animals, overgrazing, 
fishing, weeds, land clearing and water quality. An addi-
tional threat is loss of Indigenous values and cultural heri-
tage. All are relevant to proposed impoundments in the 

Burdekin catchment (Fig. 1). These proposals, associated 
with agricultural expansion and within the framework of 
the Burdekin Basin Water Plan (Queensland Government 
2007), have long been mooted, with substantial public fund-
ing to investigate proposals. Raising of the Burdekin Falls 
Dam is the most cost-effective development in the whole of 
northern Australia (Petheram et al. 2018), although it may 
exacerbate current environmental issues (Brizga et al. 
2006). Nevertheless, the other proposals are being strongly 
promoted. All proposals present high risk of substantial 
degradation of habitats, connectivity and ecological pro-
cesses, including migrations by freshwater fish (Burrows 
1999; Brizga et al. 2006), coastal fishery production, 

Table 2. Examples of published information on aquatic ecology in the Burdekin system.     

River section Information available Example references   

Whole system Outline of vegetation, fish, 
invertebrates, etc.  

Brizga et al. (2006);  Pearson et al. (2022) 

Perennial headwater stream Invertebrate dynamics  Benson and Pearson (2020) 

High diversity of riparian vegetation  Bastian et al. (2007) 

High diversity of invertebrates  Pearson et al. (2015) 

Assemblage drivers  Pearson et al. (2017) 

Mobile fauna  Connolly and Pearson (2018) 

Resilient fauna  Connolly and Pearson (2007);  Rosser and Pearson (2018) 

Disturbance refugia  Wulf and Pearson (2017) 

Waterfall fauna  Clayton and Pearson (2016) 

Food webs  Cheshire et al. (2005);  Coughlan et al. (2010);  Schmidt et al. (2017) 

Litter dynamics  Wootton et al. (2019);  Benson and Pearson (2020);  Boyero et al. (2021) 

Intermittent headwater 
streams 

Diversity and dynamics (nearby 
catchments only)  

Orr and Milward (1984);  Smith and Pearson (1987);  Dell et al. (2014);  Stitz 
et al. (2017a,  2017b) 

Riparian vegetation refugia  Williams (1994);  Bengsen and Pearson (2006) 

Mid-sized streams – permanent 
waterholes 

Water quality, phytoplankton dynamics  Preite and Pearson (2017,  2021) 

Invertebrate diversity dynamics  Blanchette and Pearson (2012,  2013) 

Fish dynamics; food webs – multiple 
basal resources  

Pusey et al. (2010);  Davis et al. (2011,  2012,  2018);  Blanchette et al. (2014) 

Main river and tributaries Invertebrate diversity and dynamics  Davis et al. (2015) 

Fish dynamics, translocations etc.  Pusey et al. (2006);  Burrows et al. (2009);  Davis et al. (2012,  2015,  2018) 

Lower river Limited information  Brizga et al. (2006);  Davis et al. (2015) 

Estuary Little information; regional estuaries 
described  

Sheaves (2009,  2015);  Sheaves and Johnston (2009) 

Swamps and lakes In upper catchment, permanent 
wetlands support fish and birds  

Brizga et al. (2006);  Maughan et al. (2006);  Pusey et al. (2006) 

Coastal floodplain has extensive 
vegetated wetlands  

Sheaves and Johnston (2008);  Connolly et al. (2012);  Great Barrier Reef 
Marine Park Authority (2013);  Davis et al. (2014);  Waltham et al. (2019) 

Bowling Green Bay Ramsar wetlands  Lankester et al. (2007);  Commonwealth of Australia (2020,  2021);  Weller 
et al. (2020);  Tarte and Yorkston (2020) 

Groundwater Sustains rivers and wetlands, but little 
ecological information  

Brizga et al. (2006)   
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sediment transport and possibly floodplain wetlands 
(Burrows 1999; Wolanski and Hopper 2022). 

Management and research for mitigation and 
conservation 

Typically, governance and management of a catchment is 
within the auspices of several government departments and 
agencies, the goals of which may differ and compete. For 
example, for the Burdekin River, there is a complex of 
regulations and plans relevant to water management, envir-
onmental protection and native title (Queensland 
Government 2007, 2017a, 2021c; NQ Dry Tropics 2016b). 
Improvements in land management are promoted and facil-
itated by the NRM board, which has a whole-of-system 
approach to land and water management, in partnership 
with funding bodies, stakeholders and researchers, in keep-
ing with the Reef Water Quality Protection Plan and Reef 
2050 Plan targets (NQ Dry Tropics 2016a, 2016b, 2021). 
However, adoption by industry of best-practice guidelines 
has been slow (Great Barrier Reef Marine Park Authority 
2019), with mixed success in restoration of wetlands 
(Waltham et al. 2019). 

The current environmental impact statement (EIS) pro-
cess in Queensland, required for new projects, is illustrated 
by the terms of reference for the Urannah Dam proposal 
(Queensland Government 2021a). The objectives include 
assessment of environmental, social and economic impacts 
of the project, within the regional and local infrastructure 

context, and refer specifically to environmental-flow objec-
tives, terrestrial impacts, crops to be irrigated and resultant 
water quality, and long-term protection of aquatic bio-
diversity and connectivity. The context includes possible 
cumulative impacts and the need for holistic appraisal, 
which were not addressed in the development of the 
Burdekin Falls Dam (Day 1989; Moon 1998); however, 
anecdotal information suggests that holistic assessment 
may not be achieved because of the involvement of different 
practitioners on the various projects. 

Current conservation status 

Conservation approaches and associated legislation vary 
among jurisdictions. In Queensland, the government 
increasingly recognises the importance of freshwaters 
(Queensland Government 2017b), but protected-area man-
agement is mainly focused on terrestrial systems, with lim-
ited explicit conservation of river sections, as elsewhere 
(Stein and Nevill 2011; Nogueira et al. 2021). Incidental 
protection may occur in land-based reserves, such as in the 
Wet Tropics, a large proportion of which is in the Wet 
Tropics World Heritage Area; however, even there, protec-
tion of the bioregion’s freshwater habitats is limited 
(Januchowski-Hartley et al. 2011). Although the Wet 
Tropics World Heritage Area, the Bowling Green Bay 
Ramsar wetlands and declared fish habitat afford some 
protection in the Burdekin catchment (Connolly et al. 
2011), these areas fail to capture the full diversity of fresh-
water/estuarine environments. Implicit protection may 

Table 3. Major development impacts in the Burdekin system.     

Major pressure Deleterious effects Example references   

Grazing in the rangelands Riparian weeds and fire  Valentine 2006;  Valentine et al. (2007) 

Erosion and salinity  Williams et al. (1997);  Wilkinson et al. (2018) 

Increased suspended sediments and nutrients  Lewis et al. (2021);  Bartley et al. (2014) 

Perpetually turbid water in lower river  Burrows (1999);  Burrows and Butler (2007) 

Sugarcane growing and 
irrigation 

Altered water regime and quality, loss of riparian 
vegetation, weed invasions  

Burrows (2004);  Burrows and Butler (2007);  Great Barrier Reef Marine 
Park Authority (2013);  Davis et al. (2014,  2017);  Petheram et al. (2014);   
NQ Dry Tropics (2016b) 

Weed invasion and fish diversity  Perna et al. (2012);  Davis et al. (2014);  Waltham et al. (2020a,  2020b) 

Impoundments and flow 
management 

Reduced flooding, increased dry-season flow; 
disconnection of river sections; flooding of turtle 
nesting habitat  

Burrows (1999);  Brizga et al. (2006) 

Perpetually turbid water in lower river  Burrows (1999);  Burrows and Butler (2007) 

Changing water regimes on floodplain  Connolly et al. (2012);  Waltham et al. (2019,  2020a);  Tait (2021) 

Proposed impoundments Alterations to flow and connectivity  Burrows (1999);  Brizga et al. (2006);  SMEC (2018);  Queensland 
Government (2021a,  2021b,  2021c ) 

Climate change Predicted extirpation of crayfish, fish and turtles  James et al. (2017);  Barbarossa et al. (2021) 

Predicted sea-level, temperature and hydrology 
changes in coastal wetlands  

Grieger et al. (2020)   
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apply through regulations on water quality or species pro-
tection, but may be ineffective, for example, for nesting 
turtles downstream of the Burdekin Falls Dam (Brizga 
et al. 2006). More explicit conservation, especially of rivers, 
is warranted (Pearson et al. 2021) and, recognising the 
current development status, could be applied to different 
extents to specified sections (Linke et al. 2019). For exam-
ple, the upper-middle Burdekin River is largely in good 
condition and warrants special protection, whereas down-
stream of the Burdekin Falls Dam, which has been greatly 
modified, urgent protection of remaining habitat, connectiv-
ity and biodiversity values is warranted. A conservation 
management plan for the whole river and floodplain is 
required (Great Barrier Reef Marine Park Authority 2013) 
to provide stewardship, protecting against further damage 
(Reside et al. 2017), mitigating predicted species losses 
(James et al. 2017) and rehabilitating damaged systems 
(Burrows and Butler 2007) from catchment to coast 
(Waterhouse et al. 2016). 

Towards more explicit conservation in 
holistic management 

A first step towards broad-scale conservation management is 
an understanding of the characteristics and values of the 
‘riverscape’ (Fausch et al. 2002), including consideration of 
scale, patchiness and connectivity (Poole 2002), and holistic 
flow management (Tonkin et al. 2021). A hydrogeomorphic 
typology of waterways is a useful starting point (Rinaldi et al. 
2016), because it can be a good predictor of the biota 
(Lathouri et al. 2021) and could define management require-
ments of a practicable number of management units. In 
Australia, methodologies have been proposed for New South 
Wales (Brierley et al. 2011; Fryirs et al. 2021) and tropical 
rivers (Erskine et al. 2005). Butler et al. (2009) introduced a 
bottom-up typology for assessment of site-based water quality 
and ecological processes in the Burdekin River. However, in 
the absence of comprehensive data, a top-down approach is 
more tractable for broad conservation zoning. This can 
involve statistical classification of management units (e.g.  
Olden et al. 2021) but, again, this approach requires substan-
tial data input. Alternatively, generic typologies (e.g. Parsons 
et al. 2004; The Aquatic Ecosystems Task Group 2012) can be 
adapted as required. In the Burdekin system, a typology 
would include riverine, estuarine and floodplain habitats, 
enhanced by land-use and ecological information (Table 4; 
see also example in Supplementary material online). 

Parallel to developing this biophysical framework, identi-
fication of environmental values is required. The Queensland 
Government (2019) assesses environmental values of wet-
lands and river sections by equating conservation value 
with the level of disturbance, with the following four catego-
ries: High Conservation Value, Slightly and Moderately 
Disturbed (sometimes used collectively), and Highly 

Disturbed, which include implicit targets for improvement 
(e.g. Connolly et al. 2011; Godfrey and Pearson 2012). We 
propose to use the same system for consistency. A separate 
process identifies water-quality objectives and guidelines 
(NQ Dry Tropics 2016b; Newham et al. 2017). Both 
approaches recognise that even with the lowest rating, sys-
tems may retain some ecological values; that is, disturbance 
and conservation value are not mutually exclusive. We sug-
gest that ascribing conservation value by means of expert 
elicitation (e.g. Hemming et al. 2018), especially when eco-
logical information is patchy, is the simplest way forward. It 
should be strongly guided by the precautionary principle, to 
avoid further deterioration of any river section or wetland or 
the vital connectivity between them. Combination of this 
with the typology to delineate conservation zones (Fig. 3) 
would provide clarity on the needs for river and wetland 
conservation and would facilitate the subsequent stage, 
which is developing enhanced conservation targets and reha-
bilitation programs (Linke et al. 2012, 2019; Cattarino et al. 
2015; Reis et al. 2019). It would involve such criteria as 
distinctiveness and representativeness of hydrological, geo-
morphological and ecological assets and services (bio-
diversity and processes; see example in Supplementary 
material). It would highlight potential constraints on land- 
use change and water management, and would inform catch-
ment planning processes. 

Conclusions 

We advocate holistic conservation categorisation of systems 
to protect remaining values while balancing competing 
demands (Pusey et al. 2020), with the major goal of ecolog-
ical sustainability. This process is set in the context of 
current and future infrastructure and land-use development, 
and requires an appropriate plan adopted before further 
development (Productivity Commission 2021). We suggest 
that all river sections or wetland sites should be given 
protection levels commensurate with their explicit values, 
coordinated appropriately to alleviate future negative 
change (Finlayson et al. 2019). We argue, therefore, not 
via special pleading for our case study catchment, but to 
present it as a model for river stewardship generally. 

In Australia, there is opportunity to protect against fur-
ther impact on rivers and wetlands and avoid the mistakes 
of the past, which have caused loss of ecological values and 
continuing expensive mitigation. We support the principles 
of integrated catchment management, adopted in 
Queensland in 1990, including explicit policy for ecosystem 
sustainability (Thoms and Sheldon 2000; Davis et al. 2014). 
To be effective, such a framework requires whole-of- 
catchment consideration of development, as evident in con-
temporary EIS requirements (e.g. Queensland Government 
2021a). It also needs more systematic information gathering 
and adaptive management to enhance our suggested 
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approach, ideally under the auspices of a governing body. 
We agree with the Productivity Commission (2021) that 
water planning processes need to be upgraded to best prac-
tice and involve trade-offs between environmental, eco-
nomic and social outcomes, recognising the needs of 
Indigenous peoples, and including a specific focus on cli-
mate change. Additionally, river conservation policies need 
to be made more explicit, as is the case in some jurisdictions 
(Perry et al. 2021). Management by a body with jurisdic-
tional authority is required, especially because of the wide 
range of relevant regulations and stakeholders (Queensland 
Government 2007, 2017a; NQ Dry Tropics 2016b). This 
might be achieved by providing NRM bodies with stronger 
legislative and regulatory frameworks for sustainable man-
agement or creation of independent management 

authorities with appropriate powers. Such an approach 
was embodied in the establishment of the Murray–Darling 
Management Authority and associated legislation, but its 
progress has been beset by substantial failures, partly 
owing to interstate disagreement and vested interests 
(Beasley 2021; Chen et al. 2021; Ryan et al. 2021). 
Catchments within states should not have transboundary 
problems. Australia, as a developed country, is in a position 
to take a lead in this issue by providing a robust model for 
sustainable conservation and management of rivers and wet-
lands. To ensure ‘wise use’ (following the Ramsar 
Convention; Kumar et al. 2021), it is important that sustain-
ing environmental values, including ecosystem services of 
direct value to communities, provides the basis for sustain-
able development. 

Table 4. Simple typology for delineating management zones and associated biota in the Burdekin River.      

Biotope Major characteristics and 
modifiers 

Conservation management zones Further modifiers and responders   

Riverine Stream size: headwater, upper river, 
middle river, lower river, estuary 

1. Headwater steep perennial Modifiers 

2. Headwater steep intermittent  • Catchment use: natural, grazing, agriculture etc. 

3. Headwater low gradient  • Erosion/sedimentation 

Perennial  • Water quality: suspended sediment, N, P, dissolved 
oxygen, pesticides; point-source pollution 

4. Headwater low gradient  • Riparian integrity 

Intermittent  • Protection status (national parks, etc.) 

5. Upper river perennial  • Invasive species: weeds; exotic/translocated animals 

Gradient: steep or low gradient 6. Upper river intermittent Responders 

Lithology: basalt, granite or alluvium 7. Middle river perennial  • Ecological processes: productivity, food webs, 
dispersal/migration 

Substrate: rock, cobble, sand or silt 8. Middle river intermittent  • Representativeness 

Flow regime: perennial, intermittent or 
interrupted; supplemented or 
impounded; connectivity/barriers 

9. Lower river  • Phytoplankton 

Fresh or brackish: conductivity/salinity 10. Estuary  • Macrophytes 

Vegetation: catchment, riparian & 
aquatic   

• Invertebrates 

Lentic Water regime: permanent or 
intermittent 

1. Fresh small permanent  • Vertebrates, especially fish 

2. Fresh small intermittent  • Endemic species 

3. Fresh large permanent  

4. Fresh large intermittent  

Area 5. Brackish small permanent  

Depth 6. Brackish small intermittent  

Connectivity: occasional or permanent 7. Brackish large permanent  

Conductivity/salinity 8. Brackish large intermittent  

Vegetation: floating, emergent, 
submerged   

‘Lentic’ division includes floodplain wetlands. Modifiers and responders may apply to conservation categories (see text).  
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