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Abstract: Masked issues can emerge when dealing with competing risk data. Such issues are
exemplified by the cause of a particular failure not being directly exhibited for all units to observe
but only proven to be a subset of possible causes of failure. For assessing the impact of explanatory
variables (covariates) on the cumulative incidence function (CIF), a process of Bayesian analysis is
discussed in this paper. The symmetry assumption is not imposed on the masking probabilities and
independent Dirichlet priors assigned to them. The Markov Chain Monte Carlo (MCMC) technique
is utilized to implement the Bayesian analysis. The effectiveness of the developed model is tested via
numerical studies, including simulated and real data sets.
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1. Introduction

In the presence of competing risks data, inferences based on cause-specific hazard
function (CHF) and cumulative incidence function (CIF) are common. Several researchers
pointed out that the impact of explanatory variables on CHF of certain failure types may be
quite dissimilar from the impact of the corresponding explanatory variables of the CIF [1].
The approaches to cause-specific hazard under proportional hazard formulation do not
allow a direct assessment of the impact of explanatory variables on CIF. However, Fine and
Gray [1] show that the transformation of cause-specific regression formulation into a re-
gression model for CIF can be achieved by using a complementary log–log transformation.

Previous studies on CIF explored cases where the cause of failure was always observed.
For example, Jeong and Fine [2] parameterized CIF directly based on the Gompertz distribu-
tion. In addition to that, it can be more natural to model CIF directly rather than indirectly
via the cause-specific hazard function when CIF is of primary interest. Shayan et al. [3]
extended a two-parameter log-logistic model based on a new four-parameter distribution.
They found that their models based on CIF were efficient. Furthermore, Hudgens et al. [4]
extended the Jeong and Fine [2] models by using parametric competing risk estimation of
the CIF for interval censoring.

On the other hand, some researchers focused on developing regression models that
involved CIF, including that of Fine and Gray [1]. They also studied the Cox model
and developed some estimating equation-based inference procedures. Fine [5] used a
semiparametric regression model based on the CIF and adopted a class of models, including
the Cox and proportional odds models. Klein and Andersen [6] developed a method to
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model CIF directly in a generalized linear model that allows for various link functions.
Moreover, Jeong and Fine [7] proposed a parametric regression analysis of the CIF involving
the maximum likelihood inferences that were derived to simultaneously fit the parametric
models of the CIFs for all causes. Scheike and Zhang [8] introduced a simple and flexible
class of regression models containing special case elements of the Fine and Gray model.
Their model allows for non-proportional hazards and time-varying covariates.

In engineering experiments, it is often difficult to identify the cause of the failure of a
unit; instead, the expert can only identify a set of possible causes. Earlier, Miyakawa [9]
discussed this type of data by considering parametric and non-parametric approaches to
reliability estimation. Previously, we developed a Bayesian approach to estimate the effect
of explanatory variables motivated by incomplete data with masked causes of failure [10,11].
We discussed the effect of covariates on CIF in the presence of a moderate masking level,
and preliminary results were introduced [11]. However, this paper considered different
levels of masking for the simulated data in addition to an application on a real data set.
This paper is organized as follows: Sections 2 and 3 introduce the model construction and
the Bayesian computation techniques. We present in Section 4 the results of our evaluation
of the model performance where we used simulated data, and Section 5 illustrates our
approach, which utilizes an actual data set. Section 6 concludes this paper.

2. Model Structure

In this study, since the covariates’ impact is of interest, the proportional hazard model
of Fine and Gray [1] is the most common choice for estimating the regression parameters
and is given by the following.

λj(T, X) = λ0j(T)e
β′jX (1)

In this equation, j is the cause of interest, and λ0j and β j are, respectively, the baseline
hazard and the vector of the regression coefficients specific to the jth cause of failure. The
vector of the covariates is represented by X. The corresponding (CIF) is as follows:

Fj(t, X) = P(T ≤ t, C = j|X) = 1− e−Λ0j(t)e
β′jX

, (2)

where Λ0j =
∫ t

0λ0j(s)ds is the cumulative baseline hazard.
Suppose we have N units under observation, which are subject to K competing risks.

Let Ti represents the time of failure of the ith unit, which failed due to one of the K causes,
and Xi the corresponding vector of covariates (i = 1, 2, . . . , N). Since, in the presence
of masking, the unit’s failure can only be specified up to a Minimum Random Subset
(MRS)S ⊆ {1, . . . , K}, the observed data includes the quantities (T, S, and X). Consequently,
the likelihood of the ith unit from the data (Ti, Si, Xi) is represented as p(Ti, Si|Xi) [12], and
can be expressed as follows:

p(Ti, Si|Xi) = ∑ K
j=1 p(Ti, Ci = j|Xi)p(Si|Ti, Ci = j, Xi),j = 1, . . . , K; i = 1, . . . , N,

where Ci represents the actual cause of the failure of the ith unit. Obviously, term
p(Ti, Ci = j|Xi) is equivalent to f j(Ti|Xi).

p(Ti, Si|Xi) =
K

∑
j=1

f j(Ti|Xi)p(Si|Ti, Ci = j, Xi).

Following this, the full likelihood for the observed right-censored data can then be
written as follows.

L =
n1

∏
i=1

∑
j∈Si

p(Si|Ti, Ci = j, Xi) f j(Ti|Xi)
n2

∏
i=n1+1

S(Ti|Xi).
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Here, n1, n2(n1 + n2 = N) denote the numbers of failed and right-censored units,
respectively. The former likelihood function can be rewritten in terms of subdistribution
hazard and (CIF) as follows.

L =
n1

∏
i=1

∑ j∈Si p(Si|Ti, Ci = j, Xi)λj(Ti|Xi)(1− Fj(Ti|Xi))×
n2

∏
i=n1+1

[1−∑ K
j=1Fj(Ti|Xi)].

To obtain the final likelihood function, the hazard and cumulative incidence functions
can then be substituted by Equations (1) and (2), respectively.

To estimate the actual cause of failure for the ith unit, the diagnostic probability
equation can be used, which is as follows.

p(Ci = j|Si, Ti, Xi) =
p(Si|Ti, Ci = j, Xi)λj(Ti|Xi)(1− Fj(Ti|Xi))

∑l∈Si
p(Si|Ti, Ci = l, Xi)λl(Ti|Xi)(1− Fl(Ti|Xi))

; j ∈ Si. (3)

3. Bayesian Analysis

In this study, WinBUGS software version 1.4.3 (which is a robust and flexible tool
for Bayesian survival analysis) is utilized to derive the desired inferences. To apply the
Bayesian approach, prior distributions for unknown parameters in addition to the likeli-
hood function of the observed data need to be specified. Hence, the parametric forms for
the likelihood function and prior distributions are required. In this study, the likelihood
function was constructed based on the proportional hazard model for the subdistribution
(i.e., a semiparametric model where the baseline hazard function is unknown). Thus, the
proportional hazard model for the subdistribution is rewritten in terms of the counting
process, which is the following:

Ii(t) = Yi(t)λ0(t)eβ′Xi

where Yi(t) represents the at-risk indicator. Here, the risk set at the time of failure for unit i is
defined as {r : (Tr ≥ Ti) ∪ (Tr ≤ Ti ∩ Cr 6= j)}, with j representing the cause of interest.

Utilizing the Clayton [13] formula, suppose the observed data is D =
{

Nij(t), Yij(t), X
}

where Nij(t) represents the counting process of failures due to cause j, occurring up to time
t and Yij(t) being the at risk indicator for cause j. Note that the same formulation was used
in Yousif et al. [10]; however, the definition of Yij(t) is quite different. Let dNij(t) be a
small increment of Nij(t) over interval [t, t + dt). Then, Nij(t) and dNij(t) will be equal
to one if the event occurs in [0, t) and [t, t + dt), respectively, and zero otherwise. Under
non-informative censoring, the likelihood (specific to the jth cause of failure) of the data is
proportional to the following.

N

∏
i=1

[
∏
t≥0

Iij(t)
dNij(t)

]
e−Iij(t)dt

This is basically as if the counting process increments dNij(t) over the time interval
[t, t + dt) are independent Poisson random variables with means Iij(t)dt:

dNij(t) ∼ Poisson
(

Iij(t)dt
)
.

and
Iij(t)dt = Yi(t)e

β j
′Xi dΛ0j(t),

where dΛ0j(t) = λ0j(t)dt is the instantaneous probability that the unit at risk at the time t
has the event j in the next time interval [t, t + dt).

The most popular priors in the literature have been assigned to unknown parameters
for prior distributions, namely, regression coefficients, baseline hazards, and masking
probabilities. The conjugate prior for Poisson mean is a gamma distribution; thus, it would
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be convenient if Λ0j were a process in which increments dΛ0j(t) were distributed according
to gamma distributions, as proposed by Kalbfleisch [14]. They comprise the following form:

dΛ0j(t) v Gamma
(
cΛ∗0j(t), c

)
, j = 1, . . . , K,

where Λ∗0j(t) can be thought of as a prior guess at the unknown baseline hazard function,
with c representing the degree of confidence in this guess. Small values of c correspond to
high levels of uncertainty concerning the prior beliefs.

The regression coefficients are assumed to be, as common, independently normally
distributed.

β j v N(θj, σ2
j ), j = 1, . . . , K.

For masking probabilities, we assign independent Dirichlet priors. Let J = 2j−1 be
the number of subsets that contains cause j, and let Sj =

{
Sj1, . . . , Sj2

}
be the collection of

potential minimum random sets that contain cause j. Then, the random Dirichlet variables
can be defined as follows: (

µij
(
Sj1
)
, . . . , µij

(
SjJ
))

v DirJ
(
αj
)
,

i = 1, . . . , N; j = 1, . . . , K; J = 2j−1,

where µij = P(Si|Ti, Ci = j, Xi) and αj =
(
αj1, . . . , αjJ

)
are the Dirichlet parameters.

All unknown parameters mentioned above are assumed to be stochastically inde-
pendent. Thus, the joint posterior distribution of the model’s parameters can be defined
as follows:

P(β, Λ0, µ|D) ∝ L(D|β, Λ0, µ)∏(β)∏(Λ0)∏(µ),

where D represents observed data.
WinBUGS software version 1.4.3, internally and automatically, identifies and then

constructs an efficient simulation approach for each of the related full conditional posterior
distributions (i.e., P(β|D, Λ0, µ), P(Λ0|D, β, µ), and P(µ|D, β, Λ0)).

4. Simulations

Since we work under a CIF framework, the competing risks data should be simulated
in such a way that the subdistribution hazard of the CIF of interest follows the model (1).
Then, the simulation introduced by Fine and Gray [1], will be applied to generate the failure
times. Let us suppose that there are two events, 1 and 2; Fine and Gray assumed that CIF
followed the following model.

P(T ≤ t, C = 1|X) = 1−
(
1− p

(
1− e−t))eβ′1X

The competing cumulative incidence function was computed from the following:

P(T ≤ t, C = 2|X) = P(C = 2|X)P(T ≤ t|C = 2, X),

where P(C = 2|X) = 1− P(C = 1|X) and P(T ≤ t|C = 2, X) are assumed to be an expo-
nential distribution with hazard function eβ′2X .

In this simulation, we use R software to run the simulations (see Appendix A). It is
assumed that there is one covariate X, which takes on values 0.5 or −0.5, whereas the true
parameter values are assumed to be (p, β1, β2) = (0.7, −0.9, 1.9). The censored times are
generated from the uniform distribution U[1,7]. The simulations achieved the following
data sets: 55% of units failed due to cause 1, 45% failed due to cause 2, and 24% were
right-censored units. The cause of failure is masked randomly with equal chances for all
units. Furthermore, different data sets with different masking percentages were generated.

Four MCMC chains, each of 4000 iterations with a burn-in of 1000, were run, and the
convergence was achieved by monitoring the time series plots, auto-correlation function
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plots, and Gelman and Rubin multiple sequences diagnostics. Generally, the results demon-
strate that the developed model performs very well compared to the Fine and Gray model,
which has no masked causes of failure. However, the high levels of masking can affect its
performance. Table 1 shows the posterior estimations of the regression coefficients, such
as the estimated coefficient (β), standard deviation (SD), and Monte Carlo error (MCE).
The values of MCE suggest that the posterior estimates of all regression parameters are
accurate. It can be seen that the estimators of the current model are close to those from the
Fine and Gray model; however, the proposed model exhibits some evidence of sensitivity
to the level of masking.

Table 1. Estimated Regression Coefficients.

Masked Units (%) Model
Cause 1 Cause 2

β SD MCE β SD MCE

FG * −0.887 0.344 1.915 0.422
(26%) Current −0.795 0.313 0.003 1.737 0.472 0.006
(49%) Current −0.679 0.329 0.003 1.291 0.380 0.004

* FG: Fine and Gray. (p, β1, β2) = (0.7, −0.9, 1.9); sample size = 100.

Moreover, Figure 1 compares the estimated CIF between Fine & Gray model and the
developed model with 26% masked units. Figure 2 shows another comparison where there
is a 49% masked units [11]. Obviously, the CIF curves are comparable and show a sub-
stantial consistency with Fine & Gray CIF curves. This indicates that the developed model
performs very well compared to the Fine & Gray model, which has no masked observations.
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5. An Application

The developed approach is applied to the data set reported in Klein and Basu [15]. The
failure times of insulation systems for electric motors were recorded with their correspond-
ing causes of failure. These systems have three possible types of failures: Turn, Phase, and
Ground. The systems were subject to different stress levels (Z1 = 190, Z2 = 220, Z3 = 240)
where 20 units are tested at each level.

The data were manipulated as masked and partly interval-censored data to meet the
requirements of the developed method. The results were obtained with 50,000 iterations,
burn-in of 20,000 and thinning to every 10th iteration for each of the five (5) chains.

The MCMC chains showed that a good mix and convergence was obtained. Table 2
introduces the posterior estimates: the mean, median, standard error, 95% credible interval
(CI), and p-value of the regression coefficients. The p-values indicate that the regression
coefficients are insignificant for the three causes of failure; the different stress levels do not
significantly influence the CIF. The posterior means of the masking probabilities for the
full masked units computed using Equation (3) are shown in Table 3. It can be noted that
50% of the masked units are failed due to cause Turn (i.e., units 5, 37, 39, 40, and 58), 25%
due to Phase, and 25% due to Ground. Furthermore, Figure 3A–C compare the CIF of the
three causes for each stress level. Noticeably, the CIF curves from both models are nearly
identical at the first stress level. However, for the two other stress levels, the CIF curves
of cause Turn show a gradual increase as the stress level increases, unlike causes Phase
and Ground, which are relatively stable. Figure 3D–F compare the cumulative incidence
functions by examining the different stress levels for each cause of failure. It is clear that
changing the stress levels does not influence causes Phase and Ground, while in the case of
cause Turn, there is a slight and steady increase. However, since this increase is meaningless
according to the p-value from Table 2 and may be caused by unknown factors, it can be
deduced that the stress used in the experiment is not a factor that affects the probability of
failure for the three causes.

Table 2. Posterior Summaries of the Regression Coefficients (20% masked observations).

Parameter Mean Median SE
95% CI

p-Value
2.5% 97.5%

β0T −16.77 −16.65 5.292 −27.49 −6.7250 0.0015
β0P −7.715 −7.615 6.925 −21.74 5.6760 0.2670
β0G −13.82 −13.60 7.016 −28.19 −0.5025 0.0488
β1T 17.81 17.62 10.68 −2.546 39.470 0.0949
β1P −2.121 −2.177 14.14 −29.60 26.230 0.8808
β1G 10.50 10.170 14.21 −16.74 39.420 0.4593

Table 3. Masking Probabilities for the Full Masked Units.

Probability
Causes of Failure

Turn Phase Ground

P3 0.182 0.661 0.157
P5 0.78 0.119 0.101
P11 0.553 0.241 0.206
P16 0.19 0.190 0.620
P17 0.164 0.162 0.674
P37 0.964 0.016 0.020
P38 0.037 0.028 0.936
P39 0.808 0.093 0.099
P40 0.712 0.141 0.148
P42 0.173 0.704 0.124
P54 0.118 0.792 0.090
P58 0.887 0.050 0.063



Mathematics 2022, 10, 3045 7 of 9

Mathematics 2022, 10, x FOR PEER REVIEW 7 of 9 
 

 

Table 3. Masking Probabilities for the Full Masked Units. 

Probability  
Causes of Failure 

Turn Phase Ground 
P3 0.182 0.661 0.157 
P5 0.78 0.119 0.101 
P11 0.553 0.241 0.206 
P16 0.19 0.190 0.620 
P17 0.164 0.162 0.674 
P37 0.964 0.016 0.020 
P38 0.037 0.028 0.936 
P39 0.808 0.093 0.099 
P40 0.712 0.141 0.148 
P42 0.173 0.704 0.124 
P54 0.118 0.792 0.090 
P58 0.887 0.050 0.063 

 
Figure 3. Comparisons of cumulative incidence functions (CIF) from: (A) three causes for stress level 
1, (B) three causes for stress level 2, (C) three causes for stress level 3, (D) three levels of stress for 
cause turn, (E) three levels of stress for cause phase, and (F) three levels of stress for cause ground. 

6. Conclusions 
In this paper, Bayesian analysis for competing-risk data under a cumulative inci-

dence function framework was derived for cases where the cause of failure was masked 
for some units. The developed method provides an assessment of covariates’ effect on the 

Figure 3. Comparisons of cumulative incidence functions (CIF) from: (A) three causes for stress level
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6. Conclusions

In this paper, Bayesian analysis for competing-risk data under a cumulative incidence
function framework was derived for cases where the cause of failure was masked for
some units. The developed method provides an assessment of covariates’ effect on the
CIF without imposing the common assumptions utilized in the literature (i.e., symmetry
assumption and independence of the competing risks). The introduced method is feasible
according to the results obtained from simulated data sets. However, one drawback of
this model is its sensitivity toward high levels of masking. Moreover, instead of a semi-
parametric analysis, one can also develop a parallel full parametric Bayesian analysis,
which might be more suitable in some situations.
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Appendix A

R code for generating the failure times
generate.my.times1 <- function(N1,p)
{
temp1 <- function(x,y)
{
#return(-1*log(1-((1-((1-y*(1-(1-p)ˆexp(x*beta)))ˆexp(-1*x*beta)))/p)))
a <- y*(1-(1-p)ˆexp(x*beta))
b <- 1-((1-a)ˆexp(-1*x*beta))
c <- 1- (b/p)
return(-1*log(c))
}
stime1 <- NULL
i<-1
while(length(stime1) < N1)
{
u <- runif(1,0.9,1)
z<- ifelse(i<=N1/2,0.5,-0.5)
stime1[i] <- temp1(z,u)
i <- i + 1
}
return(stime1)
}
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