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Abstract 

 

There is a global epidemic of non-healing wounds. Chronic inflammation, overexpression of 

pro-inflammatory cytokines, oxidative stress and bacterial infection are implicated in delayed 

wound healing. Natural extracts are a rich source of bioactive molecules called plant secondary 

metabolites (PSMs) that include terpenes and phenols. These molecules may facilitate wound 

healing through their antioxidant, anti-inflammatory, and antibacterial activity. After briefly 

outlining the process of wound healing and how it is compromised in chronic wounds, this 

review focuses on investigating how PSMs-derived polymers may improve wound healing. 

Best methods for incorporating PSMs into wound dressings are reviewed and critically 

compared. The exiting body of literature strongly suggests that PSMs-derived polymers 

incorporated into wound dressings could have clinical value in aiding wound healing. 
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Statement of significance 

 

Chronic wounds are developed by the persistence of inflammation, oxidative stress and 

infection. Chronic wounds affect the worldwide population, by reducing quality of life of 

patients with significant cost to healthcare systems. To help chronic wounds to heal and 

overcome this burden, materials with anti-inflammatory, antioxidant and antibacterial 

properties are required. Plant secondary metabolites (PSMs) are volatile materials that have all 

these properties. PSMs-derived polymers can be fabricated by the appropriate polymerization 

techniques. The present review provides an overview of the state-of-the-art of the wound 

healing mechanisms of PSMs. Current developments in the field of PSMs-derived polymers are 

reviewed and their potential use as wound dressings is also covered.  

 

1. Introduction 

 

Dressings have been applied to wounds since ancient times and their evolution has been 

constant [1]. Wound dressings have many functions such as absorbing exudate, retaining 

moisture, decreasing microbial contamination, and potentially delivering wound healing agents 

to the wound milieu. A large range of different types of wound dressings has been developed, 

including films, hydrogels, foams, hydrocolloids, alginates, gauzes, hydro-fibers and tissue-

engineered skin, among others [2-5]. Gauzes, for example, are the most common wound 

dressings used to protect the wound from external contamination and maintain appropriate 

levels of moisture. Tissue-engineered skin has been proposed to support cell proliferation, 

migration and differentiation, and to reduce the risk of infection to accelerate wound healing 

[6]. 

Chronic wounds reduce the quality of life of patients and represent a burden to healthcare 

systems worldwide [7]. Chronic wounds affect the quality of life of approximately 2% of the 

global population [8]. In developed countries like the USA, the total Medicare expenses for all 

types of wounds range from 3.8% to 13.3% of the total budget [9]. In Wales wounds account 

for 5.5% of the National Health System (NHS) spending [10]. Developing countries, too, spend 

~3% of their total healthcare expenditure on chronic wounds [11]. Therefore, there is an urgent 

need to develop novel wound dressings that not only promote wound healing but also help 

reduce healthcare costs associated with delayed wound healing. 

The incorporation of plant secondary metabolites (PSMs) in wound dressings is an emerging 

topic of research that is driven by their wound healing properties. PSMs have been proposed to 
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inhibit inflammation, promote cell proliferation and wound remodeling [12]. PSMs have been 

included in wound dressings through topical application or by polymerization techniques, such 

as plasma polymerization [13], electrospinning [14], solution casting [15], and encapsulation 

[16]. Nevertheless, the incorporation of PSMs into wound dressings remains a relatively novel 

approach to promoting wound healing and limiting wound infection that has strong potential to 

address some of the persisting challenging of wound management. 

In this review, we briefly discuss the mechanisms involved in wound healing, biofilm formation, 

antibiotic resistance and their impact on wound healing. We summarize the properties by which 

PSMs have been proposed to promote wound healing, with a focus on their antioxidant and 

anti-inflammatory properties. The review also describes methods by which PSMs have been or 

may be incorporated in wound dressings. 

 

2. Wound healing 

 

Normal wound healing is usually described by three overlapping stages, namely 

hemostasis/inflammation, proliferation, and remodeling/maturation. These stages are regulated 

by a cascade of different factors and mediators [17, 18]. In the first stage, hemostasis is triggered 

by constriction of blood vessels to stop blood loss. Platelets aggregate to form a fibrin network 

or clot. Different types of cells such as neutrophils, monocytes, keratinocytes and fibroblasts 

migrate to the wound site. Neutrophils kill bacteria and degrade damaged cells. Monocytes 

transform into macrophages and engulf debris, bacteria and remaining neutrophils. 

Macrophages stimulate fibroblasts to form granulation tissue. They also stimulate endothelial 

cells to promote re-epithelialization and angiogenesis. In the proliferation/reconstruction phase, 

fibroblasts continue to form granulation tissue over the wound site and transform into 

myofibroblasts to promote contraction of the wound edges. The last stage, remodeling and 

maturation start with apoptosis and the removal of dead cells. Collagen deposition starts to build 

up leading to contraction of the wound edges until the scar and epidermis mature and the wound 

finally heals (Fig. 1 A)) [19]. 

Wound healing is an overlapping process of various stages, during the first stage, hemostasis 

and inflammation occur, activating vasoconstriction, aggregating platelets, promoting pro-

inflammatory signals and free radicals. In the second stage of proliferation, cells start to 

proliferate promoting angiogenesis and the formation of collagen. In the last stage, 

remodeling/maturation, the epidermis, and scar matures and wound contracts. (Fig. 1 B)) A 

comparison between cell composition within the normal and impaired wounds. In acute wounds, 
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the wound healing process occurs without any interruption, whereas in impaired wounds, the 

wound healing process is delayed by different factors such as persistent inflammation, oxidation, 

and/or infection. 

If any of the above elements fail, the wound can become chronic. A chronic wound is essentially 

a non-healing wound. Chronic inflammation, oxidative stress, bacterial infection and a deficit 

of cell proliferation have been implicated in impaired wound healing (Fig. 1 B)) [20]. Chronic 

inflammation contributes to the formation of excess reactive oxygen species (ROS), causing 

further molecular damage and tissue injury [21]. ROS promote inflammation and the formation 

of free radicals (e.g., nitride oxide (NO), superoxide (SO), anion (O2*-), hydrogen peroxide 

(H2O2) and hydroxyl (OH*)) and the release of pro-inflammatory cytokines such as interleukin 

(IL)-1, IL-6, tumor necrosis (TNF)-α and interferon (IFN)-γ. Antioxidant and free radical 

scavengers attenuate inflammation by downregulating pro-inflammatory cytokines through the 

inhibition of ROS [22].  
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Fig. 1. A) Wound healing is an overlapping process of various stages, during the first stage, 

haemostasis and inflammation occur, activating vasoconstriction, aggregating platelets, 

promoting pro-inflammatory signals and free radicals. In the second stage of proliferation, cells 

start to proliferate promoting angiogenesis and the formation of collagen. In the last stage, 

remodeling/maturation, the epidermis, and scar matures and wound contracts. B) A comparison 

between cell composition within the normal and impaired wounds. In acute wounds, the wound 

healing process occurs without any interruption, whereas in impaired wounds, the wound 

healing process is delayed by different factors such as persistent inflammation, oxidation, 

and/or infection. 

 
Wound infection occurs when bacteria, viruses or other microorganisms evade the immune 

system of the host and colonize the wound, leading to pain, wound contamination, slow re-

epithelization and bad odor [21]. An infected wound compromises the general health of the 

patient. The overgrowth of bacteria within the wound may evolve into a structure community, 

i.e. the biofilm, which is held together by extracellular polymeric substances and is attached to 

a wound bed [23].  

 

3. Antibiotic resistance and biofilms  

 

Even though the discovery of antibiotics has changed medicine and immeasurable human lives 

have been saved, the effectiveness of antibiotics has been diminished due to bacterial survival 

ability. Bacteria can ensure its survival through a variety of genetic mutations and its ability to 

form highly resistant communities namely biofilms. 

Antibiotic resistance (AR) and biofilms play a major role in chronic wounds, approximately 

60% of chronic wounds are associated with AR and biofilms. In the United States alone, AR 

affects nearly 3 million people and more than 35,000 people die as a consequence of developing 

antibiotic resistant infections [24]. AR can be developed by the repeatedly administration of 

antibiotics whereas biofilm infection is more likely to be developed in diabetic patients due to 

metabolic dysfunction, dysregulation of inflammatory and immune responses. Therefore, to 

overcome AR and biofilms-infected wounds is important to know what they are and how to 

treat them.  

AR arise when a bacterium evolves through chromosomal mutation, or by the acquisition of 

mobile genetic element (free-floating RNA). AR bacteria also eliminate antibiotics through free 

efflux pumps. Additionally, plasmid and bacteriophages transfer genes to the bacterial 
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population through horizontal gene transfer (HGT). HGT has two main mechanisms, 

conjugation and transduction. In conjugation, AR genes are transferred allowing bacteria to 

evolve resistance whereas during transduction, bacteriophages transfer AR genes to bacteria 

(Fig. 2, A)) [25]. Other mechanism of bacterial survival is the development of biofilms. 

Biofilms are microbial congregations generally formed by single or multispecies of 

microorganisms including bacteria, fungi and protists enclosed within a matrix of extracellular 

polymeric substances (EPS) adherent to an abiotic or biotic surface [26, 27]. EPS has a major 

role in biofilm formation, develop and survival. EPS protects microorganisms by providing a 

barrier against different factors, such as hostile environments, antibiotic resistance and host’s 

immune response. It sustains intracellular interactions through a process called quorum sensing 

(QS). QS benefits microorganisms within the biofilm by enhancing access to nutrients and 

increasing resistance to antibiotics. Biofilm formation is often described in four steps, namely 

surface attachment, microcolony formation, biofilm maturation, dispersal and detachment [27]. 

In Caulobacter crescentus, a model microorganism widely used to study biofilm formation, 

mechano-sensing of the surface is induced by its flagellar motor that acts as a sensor for 

stimulating polysaccharide adhesin and surface adherence [28, 29]. Bacterial cells aggregate 

and proliferate in the wound. Subsequently, biofilms mature with ongoing bacterial 

proliferation (Fig. 2, B)) [30], when biofilms enter to this stage it became more difficult to 

eradicate and the potential to develop a chronic wound increase.  

Many strategies have been implemented to fight biofilms, from aggressive and intensive 

antibiotic administration to cold plasmas, ultrasounds, electromagnetic currents and 

photothermal techniques. However, the administration of antibiotics is generally ineffective 

producing antibiotic-resistance (AR) and the mentioned techniques are difficult to implement 

in vivo and require expensive equipment [31]. There is wide evidence on the use of PSMs 

against AR bacteria and biofilms [32]. The mechanisms of how PSMs can contribute to wound 

healing including antibacterial mechanisms are discussed in the following sections. 
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Fig. 2. A) Representation of antibiotic resistance mechanisms in a gram-negative bacterium: 1. 

Cell wall modification, 2. Antibiotic inactivation by enzymes, 3. Drug target modification, 4. 

Chromosomal mutation by a) Bacteriophage AR gene transduction and b) conjugation by pilus 

tube, 5. Free-floating RNA and 6. Efflux pumps. B) Biofilm cycle: Planktonic bacteria move 

freely around the surface, then bacteria attach to the surface, and a micro colony formation of 

biofilm starts, biofilm grows and maturates d), then bacteria detach and disperse along the 

surface. 

 

4. Mechanisms by which PSMs may promote wound healing 

 
PSMs, such as those found in essential oils and herb extracts, are bioactive molecules with 

strong wound healing potential. Terpenes and phenols in particular display biological activity 

that is highly relevant to wound healing [33], namely anti-oxidant, anti-bacterial, anti-fungal 

and anti-inflammatory properties [33-39]. 
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4.1 Antioxidant and anti-inflammatory effects of PSMs 

 
Antioxidants act as physical barriers that prevent ROS generation or ROS access to important 

biological sites. The inhibition of ROS reduces inflammation by preventing the activation of 

pro-inflammatory cytokines (e.g., TNF-α, IL-1β, IL-6) and pro-inflammatory pathways (e.g., 

NF-kb, MAPK), see (Fig. 3 A), B)). The antioxidant and anti-inflammatory properties of PSMs 

are listed in Table 1.  

In a study by Cheng et al. [40], the monocyte/macrophage-like cells (RAW264.7 cells) were 

pre-treated with oregano essential oil (OEO) for 12h and subsequently incubated with 

lipopolysaccharide (LPS) for 12h. It was shown that LPS increased mRNA levels of pro-

inflammatory cytokines such as TNF-α, IL-1β, and IL-6 (Fig. 3 C)), whereas OEO inhibited the 

mRNA expression of the pro-inflammatory cytokines. Furthermore, OEO-treated cells showed 

decreased production of inflammatory mediators in the AKT, MAPKs and NF-κβ pathways. 

Additionally, oxidative stress activator Nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase 2 was inhibited in OEO treated cells [41]. In other studies, essential oils 

from Origanum vulgare collected at different locations of Tunisia were reported to scavenge 

2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. These effects were correlated with the 

percentage of phenolic compounds present in the oils collected from the different regions [42]. 

Different extracts of oregano with high content of carvacrol showed inhibition of ROS and NO 

production in an LPS activated macrophage cell line (RAW 264.7 cells) [43-45]. Additionally, 

oregano extract promoted downregulation of cyclooxygenases activity (COX-1 and COX-2) 

and reduced mitochondrial dehydrogenase activity [43-45]. Kivrak et al. [46], recently 

published a detailed report of the antioxidant activity of different types of lavender and lavandin 

extracts with high content of linalyl acetate and linalool. It was shown that the extracts rich in 

linalyl acetate and linalool were more effective in scavenging of DPPH, ABTS and β-carotene. 

This result suggests the potential antioxidant properties of Lavandula angustifolia and its 

extracts. 

Table 1. Examples of anti-inflammatory effects of PSMs.  
PSMs Inflammatory agent Model Mechanism of action Reference 

 

Oregano oil 

Carvacrol 

Thymol 

Fe2+ SH-SY5Y cells ↓ TNF-αa), IL-1βb), IL-6 

↓MAPKc)/JNKd)-NF-κβe) 

[47] 

LPSf) RAW 264.7 cells ↓ TNF-α, IL-1β, IL-6 

↓ MAPK, NF-κβ, AKTg) 

↓ NOX2h), ROSi) 

[40] 

 

 

LPS Monocytes THP-

Cells 

↓ Phosphor- NF-κβ 

↓TLR4j) 

[48] 
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Lavender oil 

Linalool 

Croton oil Mice, edema model ↓Edema formation 

↓MPOk) 

↓Nitric oxide  

[49] 

 

 

Tea Tree oil 

Terpinen-4-ol 

LPS, TLR/4, TLR2/4 Human monocytes ↓ IL-1β, IL-6, IL-10 

 

↓ NF-κβ, MAPK 

 

[50] 

 

Abbreviations: a) Tumor necrosis factor-alpha, b) interleukin, c) mitogen-activated protein 

kinase, d) c-Jun N-terminal Kinase, e) nuclear factor kappa light chain enhancer of activated B 

cells, f) lipopolysaccharide, g) protein kinase b (Akt), h) nicotinamide adenine dinucleotide 

phosphate oxidase isoform 2, i) reactive oxygen species, j) toll-like receptor, k) 

myeloperoxidase.  

 

In a study by Huang et al. [48], human monocyte (THP) cells were first activated with LPS and 

subsequently treated with lavender essential oil (LEO). Protein levels of phosphor-NF-κβ and 

membrane toll-like receptor 4 (TLR4) were increased by LPS stimuli and decreased after 

treatment with LEO. Linalool and linalyl acetate are the major components of LEO. The authors 

also reported an increase in the expression of the cytoprotective heat shock protein (HSP)-70 

after LEO and LPS treatment, however, there were no changes in HSP70 expressions between 

the treatment groups. The authors speculated that this result could be associated with the 

contribution of signaling molecules produced by both treatments. However, this pathway is not 

well elucidated yet [48]. The influence of tea tree oil (TTO) and terpinen-4-ol was evaluated on 

human monocytes cell line [50]. Monocytes were treated with LPS, TLR/4, and TLR2/4 

activators. Terpinen-4ol showed major activity on the reduction of pro-inflammatory cytokines, 

specifically on levels of TNF-α, IL-1β, IL-6, and IL-10 by the inhibition of NF-κβ, p38, and 

ERK MAPK pathways. These pro-inflammatory markers were not inhibited by pure TTO, 

suggesting the anti-inflammatory potential of terpinen-4ol.  
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Fig. 3. A) Schematic representation of inflammatory and oxidant mechanisms induced by LPS. 

B) Anti-inflammatory and antioxidant mechanisms promoted by PSMs. C) Oregano essential 

oil (OEO) inhibits LPS induced mRNA levels of pro-inflammatory cytokines expression in 

murine macrophage cells (RAW264.7 cells). (a–c) Cells were pretreated with OEO for 12 h, 

then incubated with 1 μg/mL LPS for 12 h. (d–f) Cells were pretreated with OEO for 12 h, then 

incubated with 1 μg/mL LPS for 1 h. Reproduced under terms of the CC-BY license [40]. 

Copywrite 2018. Chuanshang Cheng, Yi Zou, and Jian Peng, published by MDPI. 
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4.2 Antibacterial effects of PSMs 

 
The antibacterial properties of PSMs are attributed to their wide variety of phenolic 

monoterpenes [51]. PSMs cause damage to the bacteria cell membrane, interrupt quorum 

sensing, thus inhibiting biofilm formation. PSMs also inhibit ATP generation, disturb ion 

transport and kill bacteria. Studies assessing the antibacterial properties of PSMs include 

comparisons of the effects of different types of PSMs against different bacteria strains (Table 

2). PSMs have also been reported to have antifungal properties against Candida albicans, 

Candida tropicalis and Candida parapsilosis [52-58]. PSMs have been reported to inhibit 

proliferation of multidrug resistance pathogens [59, 60]. Monoterpenes derived from oregano, 

tea tree, and clove oils (carvacrol and thymol, terpinen-4-ol, and eugenol, respectively) act as 

antibacterial agents against a wide variety of pathogenic bacteria. These monoterpenes attack 

the cell membrane causing leakage of various substances, such as ions, ATP, nucleic acids and 

amino acids. The mechanism of OEO against bacterial infection of different pathogens, 

including Methicillin-resistant Staphylococcus aureus (MRSA), proposes that OEO destroys 

bacterial cell membrane causing leaking of Na+, K+ and irreparable damage to bacteria.  

Additionally, recent studies have shown that when carvacrol reaches bacterial DNA alters its 

genetic composition preventing it from replication, transcription and translation [61-64]. 

Terpinen-4-ol induced leakage of K+ ions from E. coli and inhibition of respiration in 

exponential and stationary phase cell suspensions of E. coli [65]. Eugenol increased 

permeability in the cytoplasmic membrane of Salmonella typhi, affecting membrane-embedded 

proteins and inducing the inhibition of the respiratory system and alteration of ion transport 

activities of bacterial cells (Fig. 4 A)) [66]. The antibacterial mechanism of PSMs is highly 

effective against bacterial colonization, biofilm formation and AR bacteria (Fig. 4 B)) [67].  

Polo et al. reported the synthesis of calcium phosphate microparticles grafted with vanillin 

essential oil (VEO) at different concentrations [68]. (Fig. 4 C)) shows healthy E. coli on 

uncoated commercially available bone regenerator material, Surgibone ®, (Fig. 4 D)-F)) shows 

antibacterial properties of this material enhanced with VEO against E. coli. Moreover, 

thymol/carvacrol was loaded into polythioether nanoparticles via thiol alkene 

photopolymerization in miniemulsion [69]. (Fig. 4, G)) represents the loading of 

thymol/carvacrol H) shows the multifunctional monomers used to generate the nanoparticles 

and SEM images of them, and I) shows the antibacterial properties of the material at different 

concentrations of carvacrol/thymol against various bacterial strains. Overall, these results 

suggest the enhancement of antibacterial properties when including PSMs in different materials. 
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Among wound healing properties of PSMs, antibacterial properties have been the most studied. 

While most of the studies are on the wound healing applications of PSMs as essential oils, our 

interest is focused on the potential use of PSMs in medical devices as a polymer film for wound 

healing purposes.  

 
Fig. 4. Mechanisms of PSMs against bacteria and biofilms. A) PSMs disturb ions exchange and 

ATP process, induce membrane permeability, DNA damage, and leakage of ions. B) PSMs 

reduces biofilms by interrupting bacterial signaling and quorum sensing. C)-F) Field emission 

scanning electronic microscopy (FESEM) images show the antibacterial properties of 

commercially available bone regenerator material (Surgibone ®) uncoated C) and coated with 

different concentrations D)-F) of vanillin essential oil. Reproduced with permission [68]. 

Copywrite 2018. Elsevier. G) Antimicrobial thymol/carvacrol-loaded polythioether 

nanoparticles H) various multifunctional monomers used to generate polythioether 
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nanoparticles via thiol alkene photopolymerization in miniemulsion I) Antimicrobial activity 

of nanoparticles loaded with different ratios of carvacrol and thymol. Reproduced with 

permission [69]. Copywrite 2016, Wiley. 

 

Table 2. Plant secondary metabolites and their activity against different types of bacteria 
Plant secondary metabolites Pathogens Reference 

Eugenol Candida albicans 

Escherichia coli 

Enterobacter aerogenes 

Proteus vulgaris 

Salmonella typhi 

Staphylococcus aureus ATCC25923 

Enterococcus faecalis ATC29212 

Escherichia coli ATCC25922 

Candida albicans ATCC90028 

[53-57, 66] 

 

Oregano oil (carvacrol and thymol) Candida albicans 

Candida krusei  

Candida tropicalis  

Candida dubinensis  

Pseudomonas aeruginosa  

Bacillus cereus 

Escherichia coli  

Salmonella thypi  

Yersinia enterocolitica  

Staphylococcus aureus  

Listeria monocytogenes  

Enterococcus faecalis 

 

[63, 64, 70, 71] 

Thyme oil Candida albicans 

Staphylococcus aureus 

Enterococcus faecalis 

Escherichia coli 

Pseudomonas aeruginosa  

Salmonella typhi 

Yersinia enterocolitica  

Staphylococcus aureus  

Listeria monocytogenes  

Enterococcus faecalis 

 

[56, 57, 63, 71] 

Lavender oil (linalyl acetate) Staphylococcus aureus ATCC25923 

Enterococcus faecalis ATC29212 

Escherichia coli ATCC25922 

Candida albicans ATCC90028 

Candida albicans 

Staphylococcus aureus 

Enterococcus faecalis 

Escherichia coli 

Pseudomonas aeruginosa  

[57, 62, 71] 
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Salmonella typhi 

Yersinia enterocolitica  

Staphylococcus aureus  

Listeria monocytogenes  

Enterococcus faecalis 

 

Tea tree oil Staphylococcus aureus ATCC25923 

Enterococcus faecalis ATC29212 

Escherichia coli ATCC25922 

Candida albicans ATCC90028 

Escherichia coli 

Candida glabrata 

Herpes simplex virus type 1 (HSV-1) 

Methicillin-resistant Staphylococcus aureus 

(MRSA) 

Pseudomonas aeruginosa 

[65, 72, 73] 

 

5. Incorporation of PSMs in wound dressings 

 
Wound dressings technology involves the incorporation of novel materials by different 

techniques, including plasma treatments, electrospinning, dip coating and sputtering into the 

dressings to accelerate the healing process. These dressings can act as drugs carriers, scaffolds 

and tissue regenerators. Radiofrequency plasma-enhanced chemical vapor deposition (RF-

PECVD) is a polymerization technique that can easily integrate PSMs vapors into wound 

dressings. The retention of PSMs properties along with a low temperature of deposition and its 

relatively easy control are the main features of RF-PECVD polymerization. A previous study 

utilized the RF-PECVD plasma thin film preparation method from terpinen-4-ol and found that 

the antibacterial properties of terpinen-4-ol were successfully retained and were effective 

against Staphylococcus aureus [74]. In similar studies, antibacterial terpinen-4-ol thin films 

were fabricated with pulsed plasma polymerization and the resulting films were effective 

against Pseudomonas aeruginosa (ATCC-589), as seen in (Fig. 5) [13, 75].Like carvacrol, the 

antibacterial properties of terpinen-4-ol are related to their lipophilicity. It works by penetrating 

bacteria cell wall and cytoplasmic membrane, causing structural damage and intracellular loss. 

Lipophilicity of essential oils permeates cytoplasmic membrane causing bacterial cell damage 

and death [76]. The retention of antibacterial activity of pristine 1,8-cineole was achieved by 

plasma polymerization. 1, 8-cineole thin films were effective against S. aureus and E. coli [77]. 

Thus, the above studies suggest that plasma polymerization is a robust method to incorporate 

PSMs in wound dressings. However, more studies of the wound healing properties of these 

polymers are needed.  
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Figure 5. A) Scheme of plasma polymerization of PSMs, B) Shows bacterial inhibition of T4 

PSM and ZnO nanoparticles. Reproduced under terms of the CC-BY license [75]. Copywrite, 

2020. Avishek Kumar, Ahmed Al-Jumaili, Kateryna Bazaka, Peter Mulvey, Jeffrey Warner, 

and Mohan V. Jacob, published by MDPI. 

 
On the other hand, electrospinning techniques have been widely used to fabricate micro and 

nanofibers from different natural sources, such as chitosan, alginate, collagen, cellulose, keratin 

and soy protein. Electrospinning can include synthetic and natural materials along the fibers; in 

encapsulated form or as nanoparticles [78]. Electrospun collagen hydrolysate nanofibers loaded 

with thyme or oregano presented antibacterial properties with potential use in wound dressings 

or cosmetics [79]. Wound dressings mats from polycaprolactone and polylactic acid 

(PCL/PLA) fibers were fabricated by electrospinning. Thymol was incorporated in the 

synthesis process and their anti-inflammatory and antibacterial properties were retained [80]. 

The antibacterial assays showed inhibition to Staphylococcus aureus and Escherichia coli. The 

results in the wound-closure assay (using male Wistar rat model) were significant for the 

samples containing thymol compared to the control (commercial gauze and Comfeel Plus® 

samples). Electrospun PCL/PLA with thymol accelerated wound closure more than 92% in 14 

days, whereas gauze and Comfeel Plus® showed wound closure of 68% and 87%, respectively. 

Consequently, the promotion of cell growth and fibroblast cell formation occurred in an easier 

way than compared to the dry wound environment using gauze. The downregulation of pro-

inflammatory cytokines is a key factor to prevent inflammation and stimulate healing 

progression. One example is the incorporation of thymol and tyrosol to electrospun PCL fibers. 

This study evaluated the anti-inflammatory properties on LPS-activated macrophages as is 

represented in (Fig. 6). The results shown expression of the pro-inflammatory mediators IL-1β 

and iNos. In addition, PCL/thymol reduced size of inflammed cells suggesting alleviation of 

the inflammatory response. These results suggest the use of these anti-inflammatory 

electrospun mats as wound healing dressings [81].  
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Figure 6. PSMs incorporated to electrospun for anti-inflammatory wound dressings. A) Shows 

a scheme of the PCL/Thymol electrospun mats that alleviate inflammation of LPS-activated 

macrophages through activation of NF-κβ pathway. Reproduced with permission [81]. 

Copyright 2021, Elsevier.  

 
Other examples are polymeric dressings from N-carboxybutyl chitosan, collagen/cellulose, and 

hyaluronic acid were loaded with Jucá fruit extract. The combination of Jucá fruit extract with 

the mentioned dressings downregulated proinflammatory cytokines TNF-α and IL-1 in LPS-

stimulated macrophages [82]. Ajwain essential oil was incorporated in core-shell electrospun 

nanofibers resultin in antibacterial and wound healing potential. This nanofibers were tested in 

rat wound model infected with S. aureus bacteria. The results showed the wound healing 

potential to diminish bacterial infection and enhance wound closure. In addition, the histologial 

outcomes shown no inflammation and incresing collagen deposition as shown in (Fig. 7) [83]. 

Anti-inflammatory curcumin-loaded nanofibers have been developed. The remarkable 

contribution of this novel material is the reduction of inflammation through the partial inhibition 

of IL-6 in streptozotocin-induced diabetes mouse model. These results are promising for the 

future use of nanofibers in chronic wounds in patients with diabetes [84]. In other studies, 

peppermint essential oil (PEO) was loaded into nanostructured lipid carriers (PEO-NLC) and 

tested In-vivo using a mice model with an infected wound. The results have shown a significant 

reduction of bacteria and faster wound closure when compared to control [85]. Moreover, 

electrospun zein/clove essential oil membranes were deposited in situ and tested as a potential 

wound dressing in a Kunming mice model. These membranes exhibited good antibacterial 

properties and promote wound closure when compared to a control [86]. Antibacterial 

properties of TTO were retained in the chitosan nanofibers after electrospinning. The 

mechanical properties, permeability and breathability of the TTO-chitosan nanofibers were 
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enhanced with the addition of TTO, positively contributing to the overall performance of the 

dressing. This combination was also effective against different bacteria (Staphylococcus aureus, 

Escherichia coli and Candida albicans) suggesting the potential application of these fibers as 

nonwoven dressings with prolonged antimicrobial properties [87]. In other studies, antibacterial 

chitosan nanoparticles containing Homalomena pineodora essential oil, a Malaysian plant 

extract, were synthesized using ion gelation method. The polymer encapsulates the essential oil, 

controlling its diffusion from the core across its matrix. Homalomena pineodora oil/chitosan 

nanoparticles were efficient against bacteria (both gram-positive and gram-negative) and yeast. 

The release of the Homalomena pineodora oil medicinal effect lasted up to 3 days, suggesting 

the possible use of these nanoparticles as prolonged effect antibacterial wound dressings [88]. 

 
Fig. 7. Ajwain essential oils incorporated to nanofibers by electrospinning to accelerate healing 

in infected wounds in a rat model. A) Shows the scheme graphical abstract of the study. B) 

shows the antibacterial effect against S. aureus after 14 days. C) shows accelerated wound 

healing on infected wound in a rat model. Reproduced with permission [83]. Copyright 2021, 

Elsevier.  
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Conclusion 

 
Delayed wound healing is promoted by chronic inflammation (upregulation of pro-

inflammatory cytokines), oxidative stress (ROS generation) and bacterial infection (biofilm 

formation, antibiotic resistance). Downregulation of pro-inflammatory cytokines and ROS, as 

well as protection against bacterial infection and biofilms formation, are targets to achieve 

effective wound healing. It has been demonstrated that the main active compounds of PSMs 

have antioxidant, anti-inflammatory and antibacterial properties. The medicinal properties of 

PSMs can be retained by different methods such as electrospinning, micro and nano-

encapsulation, plasma polymerization and laser evaporation. Despite the efforts to successfully 

integrate PSMs in wound healing materials, more clinical studies are needed to rigorously test 

these dressings’ compounds. There is a need to study the efficacy of PSMs-derived polymers 

after a long storage period as these tend to auto-oxidase and may evaporate. The study of the 

toxicity of chronic use in human cells would be helpful to know the appropriate time of use in 

wound dressings. It also is important to consider the use of multicomponent oils e.g., tea tree 

oil or its major component, e.g., terpinen-4-ol. The use of multicomponent oils may prevent the 

development of resistance in bacteria, as multiple systems in the cell are targeted. On the other 

hand, the use of pure monomer ensures consistency and addresses seasonal and regional 

variability as it can occur with the multicomponent tea tree oil. The promising properties of 

PSMs plus the available processing techniques to incorporate them into polymers suggest their 

potential application in wound dressings. 
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