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Abstract 

Background: Aedes albopictus is a highly invasive species and an important vector of dengue and chikungunya 
viruses. Indigenous to Southeast Asia, Ae. albopictus has successfully invaded every inhabited continent, except 
Antarctica, in the past 80 years. Vector surveillance and control at points of entry (PoE) is the most critical front line of 
defence against the introduction of Ae. albopictus to new areas. Identifying the pathways by which Ae. albopictus are 
introduced is the key to implementing effective vector surveillance to rapidly detect introductions and to eliminate 
them.

Methods: A literature review was conducted to identify studies and data sources reporting the known and sus-
pected dispersal pathways of human-mediated Ae. albopictus dispersal between 1940–2020. Studies and data sources 
reporting the first introduction of Ae. albopictus in a new country were selected for data extraction and analyses.

Results: Between 1940–2020, Ae. albopictus was reported via various dispersal pathways into 86 new countries. Two 
main dispersal pathways were identified: (1) at global and continental spatial scales, maritime sea transport was the 
main dispersal pathway for Ae. albopictus into new countries in the middle to late 20th Century, with ships carrying 
used tyres of particular importance during the 1980s and 1990s, and (2) at continental and national spatial scales, the 
passive transportation of Ae. albopictus in ground vehicles and to a lesser extent the trade of used tyres and maritime 
sea transport appear to be the major drivers of Ae. albopictus dispersal into new countries, especially in Europe. Finally, 
the dispersal pathways for the introduction and spread of Ae. albopictus in numerous countries remains unknown, 
especially from the 1990s onwards.

Conclusions: This review identified the main known and suspected dispersal pathways of human-mediated Ae. 
albopictus dispersal leading to the first introduction of Ae. albopictus into new countries and highlighted gaps in our 
understanding of Ae. albopictus dispersal pathways. Relevant advances in vector surveillance and genomic tracking 
techniques are presented and discussed in the context of improving vector surveillance.
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Background
Aedes albopictus is a highly invasive species [1]. Indig-
enous to Southeast Asia, Ae. albopictus has successfully 
invaded every inhabited continent, except Antarctica, in 
the past 80 years [2, 3] (Fig. 1). The invasion of new terri-
tories by Ae. albopictus, being dispersal occuring at broad 
spatial scales such as between continents (global), within 
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continents (continental) and large distances within coun-
tries (national), usually occurs via passive dispersal. This 
form of dispersal is almost exclusively human-mediated 
and is believed to be driven by various dispersal path-
ways such as maritime transport, ground vehicles and the 
trade of both used tyres and lucky bamboo [4–6]. Range 
expansion in newly invaded areas may be facilitated 
by either passive or active dispersal. Active dispersal is 
defined as movement by mosquito flight and is generally 
highly localised with dispersal events usually limited to < 
400 m [7–10].

Genetic evidence suggests that the Ae. albopictus 
worldwide invasion is strongly associated with human-
mediated transportation (passive dispersal) [11]. As such, 
vector surveillance and control at points of entry (PoE) is 
the most critical front line of defence against the intro-
duction of Ae. albopictus to new areas [12, 13]. Identify-
ing the pathways by which Ae. albopictus are introduced 
is the key to implementing effective vector surveillance to 
rapidly detect introductions and to eliminate them [14]. 
Such knowledge could increase surveillance of common 
dispersal pathways including at PoE where Ae. albopictus 
are regularly intercepted [12, 15].

The main objective of this review is to examine the 
known and suspected human-mediated dispersal path-
ways of Ae. albopictus from 1940 to 2020. Second, tech-
niques to determine Ae. albopictus dispersal across 
different spatial scales will be discussed and the implica-
tions for vector surveillance highlighted.

Review methods
Literature search and eligibility criteria
To investigate the dispersal pathways of Ae. albopictus 
into a country, published studies, reports, conference 
proceedings, grey literature and data sources investi-
gating the human-mediated passive dispersal of Aedes 
albopictus were searched in Scopus, Web of Science and 
Google Scholar databases between November 2020–
February 2021, using the following search terms “Aedes 
albopictus” OR “Asian Tiger Mosquito” AND “dispersal” 
OR “detection” OR “invasion” OR “Coloni*” OR “differ-
entiation” OR “genetics” OR “surveillance” OR “move-
ment” OR “long-range dispersal” OR “incurs*” OR 
“citizen*”. Reviews found in the initial search were also 
used to locate other papers relevant to the review ques-
tion. In addition, the reference list of published studies 
of screened articles was searched for additional articles 
which were not included in the databases and of rele-
vance to the review question. Search results from these 
databases were downloaded and Mendeley Desktop (v. 
1.19.8) was used to remove duplicates. Inclusion crite-
rion was publications reporting the first introduction of 
Ae. albopictus in a new country, with these publications 
selected for data extraction and analyses. Exclusion crite-
ria were limited to non-English publications.

Data collection process
To reduce selection bias, a standard data collection pro-
tocol was established to extract all relevant information 
for analysis. Authors, recorded dispersal pathway (if 
known), spatial scale (if known), time period of detection, 

Fig. 1 Aedes albopictus distribution range. Map indicates the year of first detections (interceptions and vector surveillance of Ae. albopictus) by 
country and whether established populations were formed (full colour). ‘Before 1940’ was based on published literature documenting the presence 
of Ae. albopictus populations in these countries before 1940. Establishment status was defined as persistent spatial and temporal published records. 
‘Not established’ was defined as Ae. albopictus populations recorded sporadically after an incursion. In Australia, populations are only recorded in the 
Torres Strait, with no established populations on the Australian mainland. ’Unknown establishment’ was defined as no published records regarding 
its establishment after detections were made. ‘Not recorded’ was defined as no records of Ae. albopictus have been recorded for this country
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year of first detection, recipient country (if known), 
donor country (if known), lifestage detected, trap used 
for detection (if reported), whether Ae. albopictus was 
detected at the PoE and the establishment status (deter-
mined in 2020 from information derived from agencies, 
organisations, reports and published scientific articles; 
Additional File 1: Table S1).

Results
Introduction of Ae. albopictus to new countries
For the period 1940–2020, Ae. albopictus was reported 
in 86 countries for the first time (Fig.  1, Additional File 
1: Table  S1). Maritime sea transport is the oldest docu-
mented dispersal pathway and remains an important 
pathway for the introduction of Ae. albopictus into new 
countries over time [2] (Figs.  2, 3). The transportation 
of used tyres is the second oldest dispersal pathway and 
between 1980–1999 presented one of the greatest risks 
for importation of Ae. albopictus worldwide (Figs. 2, 3). 
However, introductions of Ae. albopictus to new coun-
tries from this pathway has decreased with time, and 
in the last 2 decades, transportation of Ae. albopictus 
in ground vehicles was the main dispersal pathway for 
Ae. albopictus into new countries in Europe [6, 16–21] 
(Figs.  2, 3). The trade of lucky bamboo (Dracaena spe-
cies) containing Ae. albopictus eggs has been recorded 
occasionally [22–24], but presents a lesser risk compared 
with the other known dispersal pathways (Figs. 2, 3). The 
passive transportation of Ae. albopictus by river boat 
has been recorded once [25] and like the trade of lucky 
bamboo presents a lesser risk compared with the other 
known dispersal pathways. This next section will discuss 
each documented dispersal pathway for the first intro-
duction of Ae. albopictus in a new country, worldwide.

Passive transportation by maritime sea transport
This dispersal pathway is typically characterised by 
the unintentional transportation of container habitats 
with eggs or immatures and the passive dispersal of Ae. 
albopictus adults on maritime sea vessels. This dispersal 
pathway functions over various spatial scales and is con-
sidered a major driver of Ae. albopictus dispersal to new 
countries with seaports.

In Australasia and countries in the Pacific, Ae. albop-
ictus was discovered in Guam in 1944 [26]; its dispersal 
was most likely linked to the human movement of goods 
by ships to Guam during World War II. By the early 1970s 
Ae. albopictus was detected in northern Papua New 
Guinea (PNG) [27], Solomon Islands in 1979 [28] and Fiji 
in 1989 [29] with establishment of populations in the Sol-
omon Islands and Fiji likely from PNG via shipping [30]. 
In 2005, Aedes albopictus was first detected in the Torres 
Strait Islands, Australia [31], introduced most likely from 
Indonesian fishing vessels [32]. Vector surveillance and 
control has prevented Ae. albopictus from establishing 
onto the Australian mainland [33, 34], despite detections 
at PoE throughout Australia [35–38].

In Europe, passive transportation of eggs, immatures 
and adult Ae. albopictus by maritime sea transport is 
considered a major driving contributor to Ae. albopic-
tus introduction and establishment in the Mediterra-
nean islands. Using this dispersal pathway, Ae. albopictus 
became established in Corsica in 2002 [39], the Greek 
Islands in 2003 [40], Malta in 2009 [41], Ibiza in 2014 [42] 
and the Tyrrhenian islands in 2016 [43].

Trade of used tyres
The extensive global trade of used tyres, containing des-
iccation-resistant mosquito eggs, is historically one of 

Fig. 2 Number of first detections (interceptions and vector 
surveillance) of Ae. albopictus in a country by known and suspected 
dispersal pathways for the period 1940–2020. Publications reporting 
the first detection of Ae. albopictus in a new country were selected 
(Additional File 1: Table S1). "Unknown" dispersal pathway is defined 
from published scientific articles with insufficient evidence to prove 
or suspect otherwise

Fig. 3 Percent of first detections (interceptions and vector 
surveillance) of Ae. albopictus in a country by known and suspected 
dispersal pathways for the period 1940–2020. Publications reporting 
the first detection of Ae. albopictus in a new country were selected 
(Additional File 1: Table S1). "Unknown" dispersal pathway is defined 
from published scientific articles with insufficient evidence to prove 
or suspect otherwise
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the greatest risks for importation and dispersal of Ae. 
albopictus worldwide [2, 44] (Additional File 1: Table S1). 
Like maritime sea transport, dispersal via the used tyre 
trade operates over various spatial scales, has been linked 
with the initial Ae. albopictus invasion into various coun-
tries and is also likely a major driver for range expansion 
within countries.

In North America, Ae. albopictus immatures and 
adults were first detected in 1946 [45] in shipments of 
used aerial and military vehicle tyres returning to the 
port of Los Angeles via cargo ships from the Pacific fol-
lowing World War II. One shipment recorded larvae 
and adults of Ae. albopictus transported from Batan-
gas, Philippines. To prevent the dispersal of Ae. albop-
ictus from the port, infested tyres were sprayed with 5% 
DDT in kerosene and aerosol insecticides were applied 
to ship holds and rail cars [45]. No established popula-
tions of Ae. albopictus were recorded at this time and 
it was not until 1985 that populations of Ae. albopic-
tus became established in Texas, probably transported 
from Japan to Texas in used tyres in 1985 [46, 47]. 
Dispersal from Texas is considered the origin for the 
rapid and widespread dispersal of this species in North 
America by various dispersal pathways across both 
continental and national spatial scales. In the USA, fol-
lowing the detection of Ae. albopictus in Texas in 1985, 
subsequent dispersal of tyres via vehicles on the inter-
state highway system was suggested as contributing to 
the rapid spread of this species throughout the country 
[48–50]. Given the preference of Ae. albopictus to use 
tyres for oviposition [1] and the widespread movement 
of tyres for retreading, recycling or other purposes in 
the USA [50], it has been suggested that humans greatly 
aided the dispersal of this species in this way [1]. As of 
2017, Ae. albopictus was reported from 1368 counties 
in 40 states in the USA [51].

Aedes albopictus was first detected in Europe in Alba-
nia in 1979, when Ae. albopictus immatures were dis-
covered in used tyres at a number of widely separated 
locations throughout the country [52]. Aedes albopictus 
were found in used tyres at the port city of Durres, sug-
gesting that the China to Albania used tyre trade route 
transported via cargo ship was the likely source of infes-
tations seen across the country [52]. Further infesta-
tions in Europe were not detected until Ae. albopictus 
immatures were found in imported used tyres in Italy in 
1990 and later in France in 1999, with used tyres trans-
ported via cargo ships from the USA suggested as the 
origin of the mosquitoes [53–55]. The used tyre trade is 
considered the greatest risk of importation of Ae. albop-
ictus at global and continental spatial scales into Europe 
[6]. Aedes albopictus is now widely spread throughout 

Europe and established in over 15 European countries 
(Fig. 1) [18, 56–58].

In Central and South America, Ae. albopictus was 
contemporaneously detected in the southeastern states 
of Rio de Janeiro and Minas Gerais, Brazil, in 1986 [59, 
60], with dispersal throughout most of Brazil in succeed-
ing decades [61]. The importation of used tyres via cargo 
ship containing Ae. albopictus immatures, of unknown 
origin, seems to have introduced Ae. albopictus into Bra-
zil [39]. Following the invasion of Ae. albopictus in Bra-
zil, Ae. albopictus surveillance programmes commenced 
in surrounding countries in Central and South America 
[39]. In succeeding years, widespread infestations of this 
species were detected in numerous countries across the 
region  (Fig.  1). Nowadays, Aedes albopictus is recorded 
in 13 countries in Central and South America and in 7 
countries in the Caribbean  (Fig. 1). Insufficient data are 
present documenting the invasion across this region to 
document the dispersal pathways at both global and con-
tinental spatial scales.

In Africa, as in Albania, Italy, France and Brazil, 
Ae. albopictus immatures were first detected inside 
used tyres in Cape Town, South Africa, in 1989 [62]. 
Imported tyres were transported via cargo ship from 
Tokyo, Japan, but established populations at that time 
or during the present day are not recorded in South 
Africa [62]. Following this detection in South Africa, 
Ae. albopictus was recorded in nine African countries, 
with the mode of dispersal into each country unknown 
at both global and continental spatial scales (Figs.  1, 
2,  Additional File 1: Table  S1). Limited entomologi-
cal records from Africa [63] suggest that the distribu-
tion of Ae. albopictus (and other mosquitoes) may be 
underestimated.

Passive transportation by ground vehicles
This dispersal pathway is typically characterised by 
the unintentional transportation of container habitats 
with eggs or immatures and the passive dispersal of 
Ae. albopictus adults inside ground vehicles. This dis-
persal pathway is considered primarily to occur across 
national spatial scales, or across continental spatial 
scales in the case of countries with contiguous geog-
raphy (such as in Europe) [6]. In the last two decades, 
this dispersal pathway has been recorded as a major 
contributor to first detections of Ae. albopictus into 
new countries in Europe (Fig. 3).

The used tyre trade transported via cargo ships was 
the main dispersal pathway at global and continental 
spatial scales for the introduction of Ae. albopictus 
into Europe [6] but ground vehicles are currently con-
sidered a major driving contributor to the rapid spread 
and dispersal of Ae. albopictus throughout Europe [5, 
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39, 64, 65]. Dispersal of adult Ae. albopictus by ground 
vehicles (e.g. trucks and private vehicles) from Italy is 
believed to have resulted in the dispersal of this spe-
cies into Switzerland, Slovenia, San Marino, the Czech 
Republic, Croatia and Germany [16–21]. In Spain, dis-
persal of adult Ae. albopictus inside private vehicles 
across the country was directly observed in multiple 
instances [5], likely contributing to the rapid spread of 
Ae. albopictus throughout Spain since its first detec-
tion in 2004. Likewise, in France, this dispersal path-
way was considered a key factor for Ae. albopictus 
range expansion throughout the country [66].

Trade of lucky bamboo (Dracaena species)
The transportation of Ae. albopictus eggs on either 
plant stems or on gel or water used to transport lucky 
bamboo (Dracaena species) has been intercepted occa-
sionally, with Ae. albopictus detected at lucky bamboo 
greenhouses in The Netherlands in 2005, 2010–2016 
and in cargo shipments in Belgium in 2013, but popu-
lations did not become established in either country 
[22–24]. In California, USA, since 2000, multiple cargo 
shipments of lucky bamboo (Dracaena species) from 
Southeast Asia containing Ae. albopictus immatures 
were detected, with evidence of populations overwin-
tering despite vector control efforts [67–69].

Passive transportation by river boat
In Mali, Ae. albopictus immatures were found inside 
water-holding goods on small boats along the Niger 
River [70]. Given the affinity for Ae. albopictus disper-
sal via maritime transport, it is likely that transporta-
tion by river boat frequently occurs but is probably 
insufficiently surveyed.

Infrequently recorded dispersal pathways
Dispersal pathways under this category are infre-
quently recorded in the published literature and have 
not been associated with the first introduction of Ae. 
albopictus to a new country. However, as these path-
ways have potential to introduce Ae. albopictus to new 
countries, it is worth documenting.

Passive transportation by aircraft
The passive dispersal of Ae. albopictus aboard aircrafts 
has been confirmed infrequently in the published lit-
erature. Published records exist from The Netherlands 
[71], Australia [38] and New Zealand [72, 73]. The low 
incidence of Ae. albopictus records from this dispersal 
pathway may relate to aircraft disinsection, whereby 
aircrafts undergo spraying with pyrethroids, killing 
insects on board [74].

Trade of plants or plant material (other than Lucky 
bamboo)
In The Netherlands, a single adult Ae. albopictus was cap-
tured at one of the largest flower auctions in Europe in 
2017 [75]. Suppousedly, Lucky bamboo was absent from 
this auction, suggesting that Ae. albopictus was intro-
duced via the trade of plants or plant material [6].

Summary of dispersal pathways
Considering all known and suspected dispersal pathways 
for the introduction of Ae. albopictus in a new country, 
two main conclusions can be drawn: (i) at global and 
continental spatial scales, maritime sea transport was 
the main dispersal pathway for Ae. albopictus into new 
countries in the middle to late twentieth century, with 
ships carrying used tyres of particular importance dur-
ing the 1980s and 1990s (Additional File 1: Table S1) and 
(ii) at continental and national spatial scales, the passive 
transportation of Ae. albopictus in ground vehicles and to 
a lesser extent the trade of used tyres and maritime sea 
transport appear to be the major drivers of Ae. albopictus 
dispersal into new countries, especially in Europe (Addi-
tional File 1: Table S1). Finally, it is worth noting that the 
dispersal pathways for the introduction and spread of 
Ae. albopictus in numerous countries remain unknown, 
especially from the 1990s onwards (Figs. 2, 3), where lim-
ited published information exists (i.e. countries in Cen-
tral and South America, Africa, Australasia and Pacific 
Island nations).

A greater understanding of the dispersal pathways for 
Ae. albopictus introduction into countries is critical to 
vector surveillance strategies to detect and control future 
introductions. This next section will discuss techniques 
used to determine Ae. albopictus dispersal pathways 
focusing on their implications for vector surveillance 
programmes.

Techniques for determining dispersal across different 
spatial scales
Vector surveillance
Understanding the dispersal pathways by which Ae. 
albopictus could invade new geographic areas allows for 
the development of more targeted vector surveillance 
and control programmes. Vector surveillance in select 
areas typically falls under the jurisdiction of local and 
regional governments, usually involving mosquito-con-
trol personnel from the health, quarantine and inspection 
sectors. Vector surveillance at PoE, usually managed by 
national government, is the front line of defence against 
the introduction of Ae. albopictus to new areas [12, 76]. 
Vector surveillance at PoE most commonly targets dis-
persal pathways at global and continental spatial scales. 
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There are many different strategies and technologies 
required for successful vector surveillance programmes.

Entomological traps should be routinely deployed at 
high-risk PoE to monitor for potential Ae. albopictus 
incursions. Examples of traps that will sample for adult 
Ae. albopictus include: the BG-Sentinel (BGS) trap, 
 CO2-baited mosquito light traps, the autocidal gravid 
ovitrap and the Gravid-Aedes Trap [13, 77]. Examples of 
traps that will sample adult larvae/eggs of Ae. albopictus 
include: oviposition traps and WHO standard tyre traps 
[13, 77]. Both the adult and larvae/egg traps listed can 
effectively detect Ae. albopictus [86–87]. However, nota-
ble limitations of these traps include overheads for equip-
ment, large costs and time involved in servicing traps, 
and constraints of traps and technology to deliver infor-
mation on the desired spatial scale required to inform 
officials about species invasions [79, 80].

Because there is no single effective tool for Ae. albopic-
tus surveillance, the development of highly targeted tools 
for the detection of Ae. albopictus, is critical to determine 
their presence in new areas [15, 81]. The Male Aedes 
Sound Trap [82], a trap which exploits the female Aedes 
wing beat frequency to capture male Aedes, could also be 
appropriate for male Ae. albopictus surveillance [83, 84]. 
Additionally the use of adhesive tape for removing Aedes 
eggs from inside imported used tyres at PoE for rapid 
PCR-based identification holds promise as a low-cost 
method for sampling Aedes eggs directly from this high-
risk cargo type [81].

Another recent development to improve the capacity to 
detect and monitor the spread of Ae. albopictus within a 
country is citizen science, where members of the public 
actively contribute to surveillance. Citizen science has 
the potential to be highly scalable with multiple collectors 
and the capacity to operate as ‘post-border’ (i.e. beyond 
the PoE) mosquito surveillance [85–87]. This could aid 
the objectives of vector surveillance, with multiple citizen 
science projects undertaken to collect Ae. albopictus data 
(Table  1). Citizen science projects and other communi-
cations from the public about nuisance mosquito biting 
resulted in the first detections of Aedes species in some 
countries. Citizen science first detected Ae. albopictus 
on the Spanish island of Ibiza [42], Ae. japonicus on the 
Spanish mainland [88], Ae. camptorhynchus in New Zea-
land [89] and Ae. aegypti and Ae. koreicus in Germany as 
well as monitoring the spread of Ae. albopictus and Ae. 
japonicus throughout this country [90, 91]. In response 
to the detection of these invasive Aedes species, tradi-
tional Aedes vector control techniques (e.g. widespread 
insecticide application and the deployment of mosquito 
traps) have been utilised for targeted vector control [89, 
92]. However, citizen science for vector surveillance has 
notable limitations, including: sampling biases (citizens 

opt-in, possibly resulting in patchy geographic coverage), 
data quality (photos, need to be of high-quality for spe-
cies identification by professionals) and the reliability of 
citizen scientists to make observations and collections 
has not been scientifically validated [87]. As such, citizen 
science may best serve as a complementary tool to exist-
ing entomological surveillance [93]. For example, when 
both citizen science and entomological surveillance were 
used in Spain, citizen science failed to detect Ae. albopic-
tus in some areas which recorded positive collections in 
oviposition traps and vice versa [85].

Genomic techniques
Capturing and monitoring Ae. albopictus specimens with 
vector surveillance, citizen science or other methods are 
increasingly being followed by the use of genomic tech-
niques to trace the source of incursions at higher resolu-
tion [99]. Genotyping can be undertaken to identify the 
origin of insects by comparing the genotype of incursion 
samples to reference samples of known origin. Assign-
ment of incursion samples to reference populations can 
then be initiated to identify the likely source population 
or location [99].

Knowledge about the source location and the disper-
sal pathways of invading Ae. albopictus is valuable in the 
strategic deployment of vector surveillance resources at 
source locations and PoE [100, 101]. Furthermore, new 
genomic techniques as used in population genomics [i.e. 
high resolution genetic markers, single nucleotide poly-
morphisms (SNPs)] allow mosquito dispersal pathways 
to be analysed more precisely [102, 103]. For example, 
to investigate the origin of Ae. albopictus invasions into 
Europe, at global and continental spatial scales, Sherpa 
et  al. [104] sequenced individual Ae. albopictus col-
lected in Europe and worldwide locations and showed 
that North and Central Italy were the major source of 
Ae. albopictus invasions throughout Europe. This finding 
corroborates the identified source countries of Ae. albop-
ictus reported in the literature for Europe (Additional File 
1: Table S1).

On the Australian mainland, genomic investigations 
examined the dispersal pathways of some Ae. albopictus 
detected at PoE (PoE in Brisbane, Darwin, Melbourne 
and Sydney) and traced the source locations to countries 
in East Asia, largely linked to maritime sea transport [38]. 
This information supports increased efforts in entomo-
logical surveillance in Australia and other countries for 
detecting this mosquito from these known source loca-
tions and likely dispersal pathways.

Where established populations of Ae. albopictus are 
detected beyond the PoE, genomics can investigate dis-
persal events which occur over more than one genera-
tion to estimate relatedness between kin [105–107]. Such 
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approaches are scarce for Ae. albopictus [106] but their 
implementation could improve our understanding of dis-
persal to inform the spatial scale that vector surveillance 
and control efforts need to be deployed following incur-
sions [108, 109]. In Australia, genomic techniques have 
been used to discover human-mediated dispersal of Ae. 
albopictus close kin tens of kilometres apart in the Torres 
Strait Islands [110], highlighting the difficulty of control-
ling this species in this region.

The use of genomic techniques relies on successfully 
capturing intact mosquito specimens (for high-quality 
DNA extraction), specialist laboratory facilities, molecu-
lar and bioinformatics expertise and funds to sequence 
samples. These factors alone may preclude some coun-
tries from embarking on using genomic techniques. 
However, the ever-decreasing costs of sequencing, avail-
ability of a hand-held portable sequencer [111] and a 
DNA sequence analysis mobile phone application [112] 
hold promise that in the future genomic techniques may 
be more accessible to a broader audience for improving 
vector surveillance.

Conclusions
Over the past 80 years the global expansion of Ae. albop-
ictus has been striking. Passive transportation by both 
maritime sea transport and ground vehicles has been the 
main dispersal pathways for Ae. albopictus, with ships 
and vehicles transporting used tyres of extremely high 
risk.

Preventing the establishment of Ae. albopictus requires 
significant ongoing investment in vector surveillance 
coupled with ongoing vector control at high-risk PoE 
and rapid responses to detections. This is likely to be 
exacerbated in the future with changes in global factors 
(e.g. land use, socioeconomic and climate change), which 
are likely to increase the rate of invasions and associated 
virus outbreaks vectored by Ae. albopictus [48, 113, 114].

For countries with contiguous geography, the likeli-
hood of Ae. albopictus dispersal appears heightened, evi-
denced by the rapid spread and dispersal of Ae. albopictus 
throughout Europe via ground vehicles [5, 39, 64, 65]. 
For countries with non-contiguous geography, particular 
focus of surveillance efforts should be directed to high-
risk dispersal pathways, such as the trade of used tyres 
and the passive transportation by maritime sea transport. 
Modelling estimates that Ae. albopictus will be reported 
in 197 countries by 2080 [48], a rapid increase from the 
86 countries where Ae. albopictus was reported between 
1940–2020. Focus for countries where Ae. albopictus is 
not yet established should be directed to improving the 
capacity to detect this species at and beyond the PoE by 
integrating relevant advances in vector surveillance and 
genomic techniques.

Successful strategies require improvements in highly 
specific traps for capturing Ae. albopictus. Deploy-
ment of low-power, cost-effective traps could greatly 
expand vector surveillance around the globe. Integra-
tion with existing citizen science systems holds prom-
ise in providing platforms for upscaling and improving 
vector surveillance, potentially at lower cost than gov-
ernments deploying entomological traps [85, 87]. How-
ever, gaps in our understanding of dispersal pathways 
of Ae. albopictus still exist including the origins of 
invading individuals utilising these pathways. Genomic 
techniques can answer these questions and uptake in 
the future should increase as sequencing costs decrease 
and the tools to interpret the results become more 
user-friendly.

Finally, global collaboration is required to seamlessly 
share data between countries (i.e. cloud-based online 
systems) about Ae. albopictus detections in new areas. 
Such data-sharing alone has great potential to enhance 
global Ae. albopictus surveillance and control.
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