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Abstract

A “fountain filling box” flow produced by discharging a

weak laminar plane fountain in a confined open

channel is studied numerically. Two‐dimensional

direct numerical simulations were performed for weak

plane fountains. The development of the fountain flow

experiences five stages; the initial upflow and the

subsequent downflow after the fountain penetrates to

the maximum height, followed by the outward

movement of the intrusion of the fallen fountain fluid

on the channel bottom, and then the wall fountain

formed by the impingement of the intrusion on the

vertical sidewall, which results in the reversed flow,

and finally the gradual stratification of the fluid. The

behavior of the intrusion can be approximately

described with the plane gravity current theory. The

period for the intrusion to reach the bounded side wall

increases with increasing Re or decreasing Fr. Three

regimes are found for the wall fountain behavior; “no‐
falling,” “slumping down,” and “rolling down” behav-

ior. Convection, mixing, conduction, and filling all
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contribute to the formation and development of

stratification, but their effects vary at different stages.

For the initial stages, convection and mixing play a key

role, resulting in an increasing bulk entrainment rate,

while conduction and filling are dominant after quasi‐
steady stratification is created, presenting a decreasing

bulk entrainment rate.
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1 | INTRODUCTION

A fountain is a buoyant jet with the buoyancy force acting in the opposite direction to its
momentum flux at the source, which may result from either the upward discharge of a heavier
fluid or the downward discharge of a lighter fluid into an ambient. Under the negative
buoyancy, the fountain flow slows down gradually till its front reaches the maximum
penetration height. A reversed flow is subsequently formed, falling back as a downflow around
the rising upflow in the fountain core. If the downflow remains heavier than its surrounding
ambient all the way until it reaches the bottom, it will then move outwards as an intrusion
along the bottom floor; but if the downflow has the same density as the ambient at a specific
height, it will cease the downward falling and turn its direction to move outward as an
intrusion at that height in the ambient.

Fountains are ubiquitous in nature, environmental settings, and industrial applications.
Some typical examples include lava flows in magma chambers,1 volcanic eruption,2 release of
effluent from desalination plants into the ocean,3 replenishing the cold saline water in solar
ponds,4 elimination of the damage of radiation frost in agriculture using a selective inverted
sink (SIS) device,5 and reverse cycle air‐conditioning systems in buildings,6 to name just a few.
The fundamental significance and practical importance of fountains have led to extensive
research on fountain flow since the 1950s, and Hunt and Burridge7 provided a comprehensive
review of some key studies on the topic.

A fountain can be distinguished by the form of the fountain source, with a round fountain
from a circular source and a plane fountain from a slot source. Fountains can also be classified
as very weak, weak, intermediate, forced, and highly forced,7 or laminar, transition, and
turbulent.8 Furthermore, a fountain behaves substantially differently when its ejection
direction varies (vertical or inclined) and when the type and status of the ambient fluid are
different (e.g., whether the ambient fluid is quiescent, in motion, homogeneous, stratified, and
whether it can mix with the fountain fluid).

The studies on fountains have been predominantly on free fountains in unconfined
ambient, as summarized in, for example,4,7–13 and the fountain penetration height,
entrainment, and dilution have been the main characteristic parameters studied. Nevertheless,
in many applications, fountains occur in confined environments, and thus the interaction
between the fountain flow and the confinement boundaries is inevitable, resulting in
substantially different behavior which is currently less understood.
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For a typical confined fountain flow, it is seen from Figure 1 that the fountain fluid falls
back after the fountain attains its maximum penetration height, subsequently impinges on the
base, and then moves outwards as an intrusion. Due to the relatively narrow confinement of the
ambient, the intrusion will impinge on the vertical sidewall and move subsequently upwards
along the wall to form a plane wall fountain. The wall fountain, which is usually much weaker
than the source fountain, will fall back after that due to its larger density to form a reversed
flow that moves towards the source, interacting with the intrusion and the ambient fluid on the
way. The continuous discharge of the fountain fluid from the source will gradually generate a
density stratification of fluid in the confined space. Baines et al.14,15 denoted such a confined
fountain flow as the “fountain filling box model,” which is also adopted in the present study.

The characteristics of the “fountain filling box” model share some similarities with those of
the “plume filling box” model15 with overturning, as studied by Kaye and Hunt,15 particularly
the intrusion and the wall fountain.

The “plume filling box model,” produced by a plume in a confined region, has received
considerable attention because of its fundamental and application significance (e.g., a fire
plume in buildings).16–19 The research has been focused on the behavior of turbulent plumes
and the time evolution of density stratification. It has been found that a turbulent plume in a
confined space can cause strong flows such as shear flow (i.e., intrusion) resulting from the
plume outflow and the overturning structure (i.e., wall fountain) created by the impingement of
the intrusion on side boundaries, in the early development stage.16 Kaye and Hunt16 developed
a theoretical model for an axisymmetric constant‐buoyancy‐flux turbulent plume in confined
cylinders, in which the outflow from the plume was treated as a forced gravity current with
constant buoyancy flux, whereas the flow along the sidewall after the impingement of the
gravity current is modeled as a wall fountain. Two regimes are identified in terms of the aspect
ratio H/W, where W is the cylinder radius and H is its height. For a room with a larger aspect
ratio (H/W> 1.5), the intrusion is a pure gravity current when impinging on the sidewall, and
the rise height of the wall fountain only depends on H. However, for H/W ≤ 1.5, the intrusion is
not fully developed into pure gravity before the impingement, resulting in the wall fountain
height depending on both H andW. For H/W> 4.0, Barnett20 found that the upward plume was
prevented from impinging on the ceiling due to the downflow in the ambient, and named these
“blocked” regimes. Apparently, the secondary flows can in turn affect the behavior of the
plumes. In an experimental study on the wall fountain created by a ceiling jet turning

FIGURE 1 Sketches of the “fountain filling box” flow with a confined plane fountain [Color figure can be
viewed at wileyonlinelibrary.com]
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downward at the corner of a compartment, Jaluria and Kapoor21 found the penetration depth of
the wall fountain only depends on Fr of the outflowing buoyant jet, with a fixed distance
between the jet source and the corner. Therefore, the secondary flows and the development of
stratification are significantly influenced by the source conditions and the geometry of the
confinement.

Due to the similarity to the “plume filling box” model, it is reasonable to expect that the
intrusion, wall fountain, and time‐dependent density stratification in the “fountain filling box”
flow are also influenced by the source condition (via Fr and Re) and the confinement
conditions. In their analysis of “fountain filling box” flows with turbulent confined fountains,
Baines et al.14 considered the entrainment but excluded the confinement size. There is a similar
knowledge gap for plumes impinging on a density interface. To our best knowledge, only
Shrinivas and Hunt22 took into account the confinement influence on the entrainment of the
fountain formed by the impinging plume. In their study, the confinement parameter λi is
characterized by the ratio of the interfacial turbulence length scale to the depth of the upper
layer of the two‐layer ambient. When λi is small, a weak secondary flow does not influence the
entrainment significantly, with the scaling relation Ei ∝ Fri2, where Ei and Fri represent the
dimensionless entrainment flux over the interface and the Froude number on the interface
respectively, while for large λi, Ei ∝ Fri3.

Recently, there have been some studies focusing on the behavior of fountains under
confinement. Debugne and Hunt23 investigated the impact of the spanwise confinement on
turbulent round fountains and identified four flow regimes over 0.5 ≤ Fr ≤ 96 and 2 ≤ λ ≤ 24,
where λ=W/R0 is the dimensionless confinement length, withW the dimensional confinement
width and R0 is the source radius. To account for the effects of confinement, a “confined”
Froude number Frc ≡ Frλ‐5/4 was introduced as the governing parameter for confined fountains.
Notably, the fountain is only spanwise confined, with no confinement in the lateral direction.
Xue et al.24 characterized the development of round fountains in a bounded container at the
initial stage, in terms of Re and Fr over Re< 500 and 5 ≤ Fr ≤ 35. Their results show that for a
given Fr, the fountain volume entrainment flux ratio attains a local peak at Re ≈ 200, which is
also supported by the measurement of the fountain penetration heights. Their experiments
showed that the confinement strengthens the horizontal mixing. However, only two square
tanks were tested in their experiments, which makes a systematic study on the impact of the
weak confinement impossible. Lippert and Woods25 examined theoretically and experimentally
a particle fountain in a confined environment, and identified four regimes for the flow with
different source conditions. Very recently, Dong et al.26 studied experimentally the behavior of
confined laminar and turbulent round “fountain filling box” flow over 1.0 ≤ Fr ≤ 20.0,
102 ≤ Re ≤ 1502, and 27.9 ≤ λ ≤ 48.75. We showed that the confinement significantly changes
the transient behavior of round fountains in the confined containers, particularly the intrusion,
reversed flow, and stratification. We also used three‐dimensional direct numerical simulation
(DNS) over 0.25 ≤ Fr ≤ 3.0, 5 ≤ Re ≤ 800, and 10 ≤ λ ≤ 35 to analyze the intrusion, reversed flow,
and stratification of confined weak round fountains27 and identified three development stages
of the bulk entrainment rate. In the present study, our study27 is extended to the confined weak
laminar plane fountains.

The rest of this paper is structured as follows. In Section 2, the details of the DNS runs are
provided, including a brief introduction of the physical system. The governing equations, initial
and boundary conditions, numerical solution techniques, construction of computational mesh,
and the mesh and time‐step independence testing are detailed in the accompanying Supporting
Information Materials. The snapshots of the contours of temperature obtained from the
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numerical results are presented in Section 3 to show the development of the transient flow of
typical laminar planar fountains in confined open channels when Fr, Re, and λ vary.
Additionally, the influence of these governing parameters on the confined laminar planar
fountains is then analyzed and discussed quantitatively in Section 3, including the movement of
the intrusion and wall fountain fronts, the development of stratification, as well as the
associated bulk entrainment. The conclusions are finally summarized in Section 4.

2 | NUMERICAL METHODOLOGY

The details of this numerical methodology section are presented in the accompanying
Supporting Information Materials. Here only key information is presented. The physical system
considered is a two‐dimensional (2D) rectangular box of height H and half‐width L. The vertical
sidewalls of the box are no‐slip and adiabatic, and the box top is open. On the center of the
bottom floor, a slot of half‐width X0 serves as the source for the 2D plane fountain. The
remaining floor area is rigid, no‐slip, and adiabatic. Initially, a quiescent homogeneous
Newtonian fluid at uniform temperature Ta is filled in the box. At time t= 0, a dense jet at
temperature T0 (T0 < Ta) is ejected upward into the box at a velocity W0 and this discharge is
maintained thereafter.

The flow of the 2D laminar plane fountain in a confined homogeneous environment is
governed by the 2D incompressible Navier–Stokes equations together with the temperature
equation. These governing equations together with the initial and boundary conditions are
presented in the Supporting Information Materials.

The main governing parameters are Re, Fr, and dimensionless length of the rectangular box
(λ), which are defined as follows:
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where ρ0 and ρa are the densities of the jet fluid at the source and the ambient fluid,
respectively, g is the gravitational acceleration, ρ, β, and ν are the density, volumetric expansion
coefficient, and kinematic viscosity of the fluid, respectively. For fountains resulting from the
temperature difference between the jet and ambient fluid, Fr can also be calculated with the
temperature difference using the Oberbeck–Boussinesq approximation for buoyancy, as shown
in the second expression in Equation (2), which requires (ρ0− ρa)/ρa to be significantly less
than unity.

The discretization and integration of the governing equations are described in the
Supporting Information Materials. All direct numerical simulation runs were carried out using
ANSYS Fluent 17.0.

A total of 52 DNS runs have been carried out over 0.1 ≤ Fr ≤ 3.0, 5 ≤ Re ≤ 800, and
10 ≤ λ ≤ 35, all at Pr= 7, with their main data listed in Table 1.

DONG ET AL. | 5



The meshes are nonuniform, with fine, uniform grids in the bottom region and a
relatively coarse vertically stretched mesh in the top region. Extensive grid and time‐step
independence tests were conducted to ensure accurate simulation results are produced.
Additionally, to ensure the DNS results are accurate, the simulation data for the plane
fountain of 0.1 ≤ Fr ≤ 2.5 and Re = 200 is benchmarked against the existing numerical and
experimental data summarized by Hunt and Coffey.28 These are presented in the
Supporting Inforation Materials. The meshes used for each DNS run are also presented in
Table 1 where h is the dimensionless height of the rectangular box, which is
nondimensionalized by h = H/X0.

TABLE 1 Key data of the DNS runs

Runs Fr Re λ× h Mesh

1 0.1 200 20 × 10 702 × 334

2 0.15 200 20 × 10 702 × 334

3, 4 0.25 100, 200 20 × 20 1336 × 531

5, 6, 7, 8 0.5 10, 50, 100, 200 20 × 20 1336 × 531

9, 10 0.5 500, 800 20 × 20 4000 × 1359

11,12, 13, 14, 15 1 5, 10, 15, 20, 35 20 × 20 1336 × 531

16,17, 18, 19, 20 1 50, 75, 100, 150, 200 20 × 20 1336 × 531

21, 22, 23, 24, 25 1 300, 400, 500, 600, 800 20 × 20 4000 × 1359

26, 27 1.25 100, 200 20 × 20 1336 × 531

28, 29, 30, 31 1.5 10, 50, 100, 200 20 × 20 1336 × 531

32, 33 1.5 500, 800 20 × 30 4000 × 2359

34, 35 1.75 100, 200 20 × 30 1336 × 864

36, 37 2 10, 50 20 × 20 1336 × 531

38, 39 2 100, 200 20 × 30 1336 × 864

40, 41 2 500, 800 20 × 30 4000 × 2359

42 2.25 200 20 × 30 1336 × 864

43, 44 2.5 100, 200 20 × 30 1336 × 864

45 2.75 200 20 × 30 1336 × 864

46, 47 3 100, 200 20 × 30 1336 × 864

48 1 200 10 × 30 668 × 864

49 1 200 15 × 30 1002 × 864

50 1 200 25 × 20 1668 × 531

51 1 200 30 × 20 2002 × 531

52 1 200 35 × 20 2336 × 531
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3 | RESULTS AND DISCUSSIONS

3.1 | Qualitative observation

3.1.1 | Development of a typical confined laminar plane fountain

In Figure 2, the snapshots of the numerically simulated transient temperature contours are
given for the case of Fr= 0.5, Re= 100, Pr= 7, and λ= 20, providing an overview of the
development of a typical confined weak planar fountain. Only the result on the right part of the
simulation domain is presented in the figures due to the symmetrical flow behavior of a weak
fountain. The results show that there are five development stages, as follows:

1. the initial formation of the free fountain flow and the subsequent fall back after the fountain
attains its maximum penetration height (0 ≤ τ ≤ 1.9), Figure 2A;

2. the outward movement of the intrusion of the fallen fountain fluid on the domain bottom
(1.9 < τ ≤ 11.4), Figure 2B,C;

3. the wall fountain formed by the intrusion impinging on the sidewall (16.2 ≤ τ ≤ 19.1),
Figure 2D,E;

4. the reversed flow due to negative buoyancy (τ= 21.9), Figure 2F;
5. the gradual stratification of the fluid in the domain (τ ≥ 56.2), Figure 2L.

where τ is the dimensionless time as presented in Supporting Inforation Materials.
After the inception of the fountain flow, the fountain will rise until it attains the maximum

height as illustrated in Figure 2A. Since the fountain fluid remains heavier than the ambient
fluid, it will then descend to and spread outwards along the bottom, resulting in a layer of
denser fluid (intrusion), as illustrated in Figure 2B,C. The intrusion can be treated as a gravity
current, with behavior that may be characterized by different regimes in terms of the governing
forces, further discussed in Section 3.2.1. Since the evolution of the initial fountain formation
and the intrusion was described in Lin and Armfield,29 the account of these stages is
omitted here.

The influence of the bounded sidewall on gravity intrusion becomes significant as the
intrusion flow approaches the sidewall. Figure 2D,E show that the circulation above the
intrusion head is stretched and spread upwards along the sidewall with the current impinging
on the sidewall. Notably, the density of the leaf‐like head of the upward flow is significantly
smaller than the intrusion current due to the ambient fluid entrained as the intrusion spreads
and then impinges on the sidewall. Therefore, the flow could be divided into two regions, that
is, the lighter leaf‐like region evaluated from the circulation on the top and the heavier flow
from the continuous intrusion current at the bottom, as shown in Figure 2E. Since the flow is
still heavier than the ambient fluid, the upward flow along the sidewall can be treated as a wall
fountain, which keeps moving upwards until a certain height and then slumps back due to the
negative buoyancy (Figure 2F). The wall fountain flow behavior will be further discussed in
Section 3.2.2. The fallen flow of the wall fountain interacts with the intrusion, resulting in an
increase in the thickness of the dense current close to the sidewall region. Additionally, finger‐
like structures are observed to appear and disappear, as shown in Figure 2G,H. Due to negative
buoyancy, a reversed flow is formed, moving from the sidewall to the fountain core as shown in
Figure 2G–I. The reversed flow interacts with the sidewall, the intrusion, and the fountain core.
As a result, the height of the fountain core experiences a significant increase, until it reaches a
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FIGURE 2 (See caption on next page)
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certain height, then falls down again due to gravity and creates a stronger intrusion. Figure 2J
shows the reversed flow fronts from the sidewall colliding at the center and being projected to a
higher position. Due to the negative buoyancy, the flow drops down and separates into the two
reversed flow fronts as shown in Figure 2K. This swaying back‐and‐forth process repeats
several times, behaving like a seiche with a decreasing magnitude. After a certain time, a
thermal stratification is formed in the domain with the fountain flow submerged, as can be
seen in Figure 2L, which grows gradually with time resulting from convection, mixing, thermal
conduction, and filling. Particularly, after the fountain is immersed in the stratified fluid, the
increase in the stratification height is mainly due to the continual filling of the denser fluid
from the source and thermal conduction.

3.1.2 | Influence of Fr, Re, and λ

The evolution of temperature contours for fountains with Fr= 0.25, Fr= 1.0 and Fr= 1.5, all at
Re= 100, Pr= 7, and λ= 20, is presented in Figure 3 to display the impact of Fr. The first row
presents the instant when the intrusion is created. With reference to the nondimensional time
units associated with τ, it takes a longer time for the fountain with larger Fr to form the
intrusion flow. The second and third rows show the time instants when the intrusion flows
impinge on the side wall and the wall fountains reach their maximum heights. Thicker
intrusion flows, wider jump regions, and higher wall fountain penetration heights are observed
for the fountains with larger Fr. Additionally, an eddy is observed in the region enclosed by the
upflow, the downflow, and the bottom floor for fountains with larger Fr. However, it takes
longer time for the intrusion with increasing Fr to impinge on the sidewall. The fourth and fifth
rows show the wall fountains slumping down and the quasi‐steady stratification, respectively. It
takes longer for the larger Fr fountains to form the quasi‐steady stratification. The interactions
between the intrusion flow, the reversed flow, and the ambient fluid become more significant
when Fr increases. For brevity, the results of the simulations with other Fr values, which show
similar behavior, are omitted here, due to the similar development processes.

Figure 4 shows the snapshots of temperature contours for Fr=1, Pr=7, and λ=20 with Re=20,
Re=50 and Re=200 at different time instants, providing an overview of the impact of Re on the long‐
term behavior of confined weak planar fountains. The time taken for the formation of the intrusion
decreases with the increase of Re as shown in the first row. The impingement of the intrusion on the
sidewall and the maximum penetrations of the wall fountain in the second and third rows show a
thinner intrusion flow with an earlier impingement on the sidewall for a larger Re fountain. From the
third and fourth rows of Figure 4, three regimes are identified for the behavior of the wall fountains.
With the increase of Re, the shear velocity between the intrusion flow and the ambient increases,
resulting in stronger circulation. With the intrusion front approaching and impinging on the side
wall, the stronger circulation is stretched to create a more convective upward flow along the side wall.
The width of the flow is thinner with the increase of Re, resulting in a more significant division
between the top region and the bottom region. For the Re=50 case, the division between the top
region and the bottom region is not significant, the top region front reaches the maximum height at

FIGURE 2 Temperature contours of the planar fountain with Fr= 0.5, Re= 100, and λ= 20 (DNS Run 7) at
12 time instant between τ= 1.9 and τ= 114.4. [Color figure can be viewed at wileyonlinelibrary.com]
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τ=33.52 and then slumps down at τ=37.53. For the Re=200 case, the top region and bottom region
are significantly distinguished, with the top region rolling down after reaching the maximum height
(τ=31.09), but its bottom region slumping down. The “slumping down” behavior is similar to that of
the “filling box” flow in a large aspect ratio room observed by Kaye and Hunt,19 while the “rolling
down” behavior is determined by the momentum and buoyant flux of the top region. The fountain
behavior discussed in this study is focused on the top region. No falling is present for the wall
fountain at Re=20, with the reduction in momentum balanced by the stagnation pressure, while a
reversed flow is subsequently caused by the negative buoyancy.

For all cases a reversed flow is then created and moves from the sidewall towards the
fountain source, interacting with the intrusion flow, the ambient fluid, and the fountain. The
interactions become stronger with increasing Re. The thickness (height) of the stratification

FIGURE 3 Temperature contours of the three fountains of Fr= 0.25 (left column, DNS Run 3), Fr= 1.0
(middle column, DNS Run 18) and Fr= 1.5 (right column, DNS Run 30), all with Re= 100 and λ= 20, at
different times. [Color figure can be viewed at wileyonlinelibrary.com]
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(the distance between the blue part and the red part) increases with decreasing Re, which
indicates thermal conduction plays a more significant role.

Figure 5 presents the temperature contours of the Fr=1, Pr=7, and Re=200 fountains with
λ=10, λ=20 and λ=30, to display the impact of λ on the wall fountain and filling box flow. A
higher maximum height of the wall fountain is attained for the domain with a larger λ. For the
domain with λ=10, the wall fountain slumps down after it reaches the maximum height at τ=17.34.
While for the domain with λ=20 and 30, the wall fountain rolls down after the maximum height
position as shown in the middle and right columns. The different falling behavior of the wall
fountains between the case of λ=10 and the cases of λ=20 and 30 is due to the different extents of
the associated entrainment in the top region of their wall fountains. For the case of λ=10, the
associated entrainment is smaller due to a shorter traveling distance, resulting in a more significant

FIGURE 4 Temperature contours of the three fountains of Re= 20 (left column, DNS Run 14), Re= 50
(middle column, DNS Run 16) and Re= 200 (right column, DNS Run 20), all with Fr= 1.0 and λ= 20, at
different times. [Color figure can be viewed at wileyonlinelibrary.com]
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negatively buoyant effect. For the domain with a larger λ, it takes longer for the stratified structure to
be formed. Similar behavior is observed for λ=15, 25, and 35, not shown for brevity.

3.2 | Quantitative observation

3.2.1 | Intrusion

The left column in Figure 6 presents the time series of the movement of the intrusion
front for Fr, Re, and λ over 0.1 ≤ Fr ≤ 3.0, 5 ≤ Re ≤ 800, and 10 ≤ λ ≤ 35, respectively. The
intrusion front is defined as the x‐location at which T(x) = Ta − 1%(Ta − T0) within the

FIGURE 5 Temperature contours of the three fountains of λ= 10 (left column, DNS Run 48), λ= 20
(middle column, DNS Run 20) and λ= 30 (right column, DNS Run 51), all with Fr= 1.0 and Re= 200, at
different times. [Color figure can be viewed at wileyonlinelibrary.com]
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right half of the computation domain from y = 0 to H. The kink and the endpoints of the
time series profile are the instant when the intrusion is created and the instant when the
intrusion front impinges on the sidewall, respectively. The period for the intrusion from
creation to impinge on the sidewall is denoted as Δτw, as shown in Figure 6A for the
Fr = 1.0 result. The results in Figure 6A,B show that it takes a longer time for the
intrusion front with larger Fr or smaller Re to impinge on the sidewall. However, the Re
dependency reduces with increasing Re, with the Re = 200 to Re = 800 overlappings,
indicating a minimal dependency for Re ≥ 200. Figure 6C presents the intrusion profiles

(A)

(B)

(C)

(D)

(E)

(F)

FIGURE 6 (A) The time series of the movement of the intrusion front and (D) Δτw versus Fr for different Fr
values over 0.1 ≤ Fr ≤ 3.0, all with Re= 200 and λ= 20; (B) the time series of the movement of the intrusion front
and (E) Δτw versus Re for different Re values over 5 ≤ Re ≤ 800, all with Fr= 1.0 and λ= 20; and (C) the time
series of the movement of the intrusion front and (F) Δτw versus λ for different λ values over 10 ≤ λ ≤ 35, all with
Fr= 1.0 and Re= 200. [Color figure can be viewed at wileyonlinelibrary.com]
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for the cases with various confinement sizes λ. It is seen that the effect of the confinement
size becomes noticeable only when the intrusion approaches the sidewall.

The impacts of Fr, Re, and λ on Δτw are shown in the right column in Figure 6. From
Figure 6D, three ranges can be distinguished with two critical numbers at Fr = 1.0 and Fr =
2.25. Three corresponding correlations are obtained as follows:

≤ ≤

≤ ≤

≤ ≤







τ
Fr Fr

Fr Fr

Fr Fr

Δ =
22.63 − 0.09, 0.1 1.0,

13.58 + 9.47, 1.0 2.25,

22.31 − 10.11, 2.25 3.0.
w

0.61

(4)

The regression constants for the three correlations are R2 = 1, 0.998 and 0.974, respectively.
Similarly, the influence of Re on Δτw is presented in Figure 6E. Re= 150 is found to distinguish
the range into two parts, that is, for 5 ≤ Re ≤ 150, Δτw is well approximated by a power law
relation, while for Re ≥ 200, the influence of Re on Δτw is negligible. The corresponding
correlations are determined with the numerical results as follows:

≤ ≤

≤ ≤




τ
Re Re

Re
Δ =

46.64 − 0.7, 5 150,

21.82, 200 800.
w

−0.14

(5)

with a regression constant of R2 = 0.991 for the power relation. Figure 6F shows that Δτw has a
linear relation with the confinement size of the channel as shown below

≤ ≤τ λ λΔ = 1.14 , 10 35,w (6)

where the regression constant is R2 = 0.999.
During the development of a pure gravity current, the flow may experience three

regimes, that is, the wall jet regime (W‐J), the buoyancy‐inertial regime (B‐I), and the
buoyancy‐viscosity regime (B‐V), which are determined by the dominating forces.30 For
the initial stage, the flow is dominated by momentum as a plane wall jet, so a scaling
relation X(t) ~M1/3t2/3 is expected, where M is the momentum flux. After that, the driving
force of the current becomes buoyancy (gravity) which is balanced by the inertial force,
thus the current is in a B‐I regime. The balance between the gravity and the inertial force
is maintained until the inertial force is small compared to the total viscous drag
force resulting from the interfacial shear stress between the current and the ambient fluid
and the bottom shear stress, leading to the third regime where the buoyancy force
is balanced by the viscous drag force.30 Two corresponding scaling relations, that is,
X(t) ~ B1/3t and X(t) ~ (BQ2/ν)1/5t4/5, were obtained for the gravity current in the B‐I and B‐V
regimes, respectively,30 where Q = X0W0, B = g(ρ0 − ρa)/ρaQ are volume and buoyancy
fluxes, respectively. The correlations above may be written in dimensionless form as
follows:

x τ~ ,2/3 (7)

for the W‐J regime,

x Fr τ~ ,−2/3 (8)
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for the B‐I regime, and

x Fr Re τ~ ,−2/5 1/5 4/5 (9)

for the B‐V regime.
For a free gravity current, Equation (7) indicates that the intrusion front location of the W‐J

regime is dependent on time, but independent of both Fr and Re. While for the B‐I regime
described by Equation (8), the intrusion front presents a linear correlation with time, and only
depends on the parameter of Fr. In the B‐V regime, the correlation follows a power law with
time again and is dependent on both Fr and Re, as shown in Equation (9).

For the fountains with 10 ≤ λ ≤ 35, Δτw follows a correlation of Δτw ~ λ as shown in Equation
(6). Equation (8) can be transformed into τ ~Fr2/3x. For the fountain with the same Fr, the formula
can be further written as τ ~ x, which is consistent with Δτw ~ λ. This indicates that for the cases of
10≤ λ ≤ 35 with Fr=1.0 and Re=200, the intrusion flows all fall into the B‐I regimes.

3.2.2 | Wall fountain

As noted above, the bulk behavior of the wall fountain can be characterized as “No‐falling”
(i.e., No overturning), “Slumping down,” and “Rolling down,” as summarized in Figure 7.
From this figure, it is found that the overturning behavior of the wall fountain is mainly under
the influence of Re; for small Re values (5 ≤ Re ≤ 20), no overturning is observed; for
35 ≤ Re ≤ 100, the wall fountain slumps down after reaching the maximum height; and the
fountain rolls down for higher Re values (Re ≥ 150). Notably, it is found that the wall fountain
for Fr= 1.0, Re= 200, and Pr= 7.0 slumps down when the confinement size reduces to λ= 10,
in contrast to the rolling down behavior for its counterpart of λ ≥ 15. The influence of Fr on the
overturning behavior is minimal.

To further investigate the influence of these parameters on the wall fountain, the time series
of the wall fountain front along the sidewall are presented in Figure 8 (top row). Again, a part
of the time series is omitted for clarity. The wall fountain front is defined as the y‐location

FIGURE 7 Behaviors of the wall fountain for 0.1≤ Fr ≤ 3.0, 5 ≤ Re ≤ 800 at Pr= 7 and λ= 20: “No falling,”
“Slumping down,” and “Rolling down.” [Color figure can be viewed at wileyonlinelibrary.com]
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where T(y) = Ta− 1%(Ta− T0) on the sidewall. As shown in Figure 8A, the maximum height of
the wall fountain on the sidewall, ym, is the maximum value of y in the time series and the
corresponding, Δτm, is the period taken for the wall fountain to attain ym from the creation of
the intrusion flow. It is found that ym increases with Fr and λ but decreases with Re. Similarly,
Δτm is larger when Fr or λ increases, but becomes smaller when Re increases.

The impact of Fr, Re, and λ on Δτm is shown in Figure 8 (middle row). Similar to Δτw, the
impact of Fr on Δτm can be divided into three ranges as identified in Figure 8D, with Fr= 1.0
and 2.25 as the critical values, and the following correlations are found

≤ ≤

≤ ≤

≤ ≤







τ
Fr Fr

Fr Fr

Fr Fr

Δ =
32.04 + 0.07, 0.1 1.0,

18.07 + 14.16, 1.0 2.25,

32.02 + 16.47, 2.25 3.0.
m

0.69

(10)

with R2 = 1, 0.995 and 0.993, respectively.

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

FIGURE 8 The time series of the wall fountain front (top row), Δτw (middle row), and ym (bottom row) for
fountains with (A), (D), (G) Re= 200, Pr= 7, λ= 20 and 0.1 ≤ Fr ≤ 3.0; (B), (E), (H) Fr= 1.0, Pr= 7, λ= 20 and
5 ≤ Re ≤ 800; (C), (F), (I) Fr= 1.0, Re= 200, Pr= 7, and 10 ≤ λ ≤ 35. [Color figure can be viewed at
wileyonlinelibrary.com]
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As there is no falling down process for Re ≤ 20, no Δτm exists for these cases. As shown in
Figure 8E, it is seen that the impact of Re on Δτm can be divided into two different ranges, with
Re= 150 as the critical value, although the effects of Re on Δτm are not significant.

A linear relation is found for the influence of λ on Δτm, as shown in Figure 8F, which can be
approximated by,

≤ ≤τ λ λΔ = 1.6 + 0.03, 10 35,m (11)

with the regression constant of R2 = 0.996.
Figure 8G demonstrates that similar to the impact of Fr on Δτw and Δτm, Fr= 1.0 and

Fr= 2.25 distinguish the impact of Fr on ym into three different ranges. The corresponding
correlations for the three individual ranges are obtained as follows:

≤ ≤

≤ ≤

≤ ≤







y
Fr Fr

Fr Fr

Fr Fr

=
5.45 − 0.05, 0.1 1.0,

1.78 + 3.7, 1.0 2.25,

2.73 + 1.56, 2.25 3.0.
m

0.42

(12)

with R2 = 0.999, 0.995 and 0.978, respectively.
From Figure 8H, it is shown that before and after Re= 150 Re has different influences on ym,

which is most likely caused by the different overturning behaviors, that is, slumping down for
50 ≤ Re ≤ 100 and rolling down for 150 ≤ Re ≤ 800.

The influence of λ on ym can be approximated by,

≤ ≤y λ λ= 0.11 + 3.06, 10 35,m (13)

with R2 = 0.984, which is similar to the impact of λ on Δτm.

3.2.3 | Stratification

The height of the thermally stratified fluid within the domain is defined as the vertical location
where T(y) = Ta− 1%(Ta− T0), which is the height of the interface between the stratified fluid
produced by the filling of cold fluid through the fountain flow and the ambient fluid. The time
series of the maximum, minimum, and average heights of the thermally stratified fluid after the
intrusion reaching the sidewall and the establishment of reversed flow are depicted in Figure 9
(left column) for various Fr, Re, and λ. The magnitudes of the differences among these heights
are initially significant, due to the key roles played by convection and mixing. After that, over a
relatively long time, the differences decrease and the time series of these heights follow
essentially the same trend when the filling becomes dominant in the subsequent stratification
formation. From this figure, it is seen that the development rate of the quasi‐steady
stratification can be approximately described by the rate of the averaged stratification height
profile.

As shown in Figure 9A, when Fr increases, the magnitudes of the differences among the
maximum, average and minimum height profiles increase and a longer time is required for the
confined fountain to reach a quasi‐steady stratification. Similarly, the differences among these
heights increase when Re becomes larger, however, the time to reach a quasi‐steady
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stratification is decreased. Additionally, the development rate of the stratification decreases
with the increase of Re.

For a pure filling box without shear flow, convection, mixing, and heat conduction between
the filled fluid and the ambient fluid, the velocity of the stratification height, vs, is the reciprocal
of λ (vs= 1/λ), based on the conservation of mass. The velocity of the averaged stratification
height profile and the corresponding pure filling rate is plotted in Figure 9 (right column) to
illustrate the impact of Fr, Re, and λ on vs for the fountains filling box. Figure 9D indicates that
the impact of Fr on vs, again, can be divided into three ranges by Fr= 1.0 and 2.25 as the critical
values, although no suitable correlations are obtained.

(A) (D)

(B) (E)

(C) (F)

FIGURE 9 The time series of the maximum, minimum and average stratification heights (left column) and
vs (right column) for fountains with (A), (D) Re= 200, Pr= 7, λ= 20 and Fr= 0.25, 1.5, 2.5; (B), (E) Fr= 1.0,
Pr= 7, λ= 20 and Re= 20, 50, 200; (C), (F) Fr=1.0, Re= 200, Pr= 7 and λ= 10, 20, 30. [Color figure can be
viewed at wileyonlinelibrary.com]
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The influence of Re on vs, as shown in Figure 9E, can be divided into two different regimes,
with Re= 200 as the critical value. The results show that,

≤ ≤

≤ ≤




v
Re Re

Re
=

0.051 + 0.049, 5 150,

0.052, 200 800.
s

−0.5

(14)

As it can be seen, vs becomes almost independent of Re for Re larger than 150.
The relation between vs and λ is shown in Figure 9F, and can be approximated by the

following correlation:

≤ ≤v λ λ= 0.99 , 10 35,s
−0.98 (15)

with the regression constant of R2 = 1.0.

3.2.4 | Bulk entrainment or dilution

Since no assumptions are required for the interactions between the upflow and downflow, or
the entrainment process between fountains and surroundings, the bulk entrainment is selected
to estimate the mean dilution of the buoyancy scalar over the fountain as a whole instead of
resolving the local entrainment rate. The bulk entrainment rate is defined as η=QE/Q0, where
QE is the bulk entrainment and Q0 is the source volume flux. In this study, QE is calculated by
QE=Qs−Q0, where Qs represents the volume flux of the stratified fluid. Qs could be obtained
by integrating the area under the thermal stratified surface where the temperature is at T
(y) = Ta− 1%(Ta− T0) as defined in Section 3.2.3. However, processing the integration for
hundreds of thousands of time steps is an excessive workload. Hence, Qs here is approximated
by the product of the x‐location and the average thermal stratification height, although a
certain error exists for the initial formation of the fountain.

The values of η are calculated for fountains over 0.1 ≤ Fr ≤ 3.0, 5 ≤ Re ≤ 800, and 10 ≤ λ ≤ 35,
from the intrusion stage to the filling stage. The time series of η, as shown in Figure 10 (top
row), can be approximately divided into three stages. First, η increases monotonically until it
attains the first peak point which is denoted as η1. Similarly, the period from the formation of
intrusion flow to the instant to attain η1 is denoted as Δτe. This stage corresponds to the
intrusion development and the evolution of the wall fountain. During the intrusion moving
towards the sidewall, the ambient fluid is entrained mainly by the eddy over the intrusion head,
resulting in the monotonic increase of η.

After that, η shows a fluctuating decrease with a series of subpeak points. The increases of
Fr, Re, and λ strengthen the fluctuations as well as the subpeak points. For most of the cases in
this study, η1 is also the maximum value of η. However, the first peak point decreases with
increasing Fr, leading to the role reversal between the first peak and the subpeaks, that is, the
“subpeak” point exceeding the first peak point to become the maximum value of η for the case
of Fr= 3.0, as shown in Figure 10A. Additionally, no obvious fluctuation is observed after the
first peak point for the cases of 5 ≤ Re ≤ 100 with Fr= 1.0 and λ= 20, as shown in Figure 10B.
However, for the counterpart stage of the cases of 150 ≤ Re ≤ 800, the interactions among the
intrusion, the reversed flow, and the ambient fluid induce a fluctuation into the time series
until a quasi‐steady stratification is established.
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With the formation of the quasi‐steady stratification, the time series of η finally enters a
smooth decline stage. In this stage, entrainment is mainly by thermal conduction, resulting in a
decrease of η with the increase of Re and the decreases of Fr and λ. Thermal conduction keeps
influencing the dilution process at all stages. The impact of Fr, Re, and λ on η is found to be
consistent with the results presented in Section 3.2.3 for the stratification rate.

The influence of Fr, Re, and λ on Δτe and η1 is presented in Figure 10D–F, respectively.
Notably, for all the cases except for the one of Fr= 3.0 in this study, η1 could be treated as the
maximum value of η, therefore the corresponding Δτe can be also determined as the time‐scale
for the filling flow to reach its maximum entrainment rate. Similarly, Fr= 1.0 and Fr= 2.25 are
determined as the approximate critical values to separate the impact of Fr into three different
ranges, with the following correlations obtained,

≤ ≤

≤ ≤

≤ ≤





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τ
Fr Fr

Fr Fr

Fr Fr

Δ =
28.11 − 0.12, 0.25 1.0,

27.61 − 1.17, 1.0 2.25,

14.89 + 26.09, 2.25 3.0.
e

0.65

(16)

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

FIGURE 10 The time series of the entrainment rate η (top row), Δτe (middle row), and ηm (bottom row) for
fountains with (A), (D), (G) Re= 200, Pr= 7, λ= 20, and 0.25 ≤ Fr ≤ 3.0; (B), (E), (H) Fr= 1.0, Pr= 7, λ= 20, and
5 ≤ Re ≤ 800; (C), (F), (I) Fr= 1.0, Re= 200, Pr= 7, and 10 ≤ λ ≤ 35. [Color figure can be viewed at
wileyonlinelibrary.com]
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with R2 = 1.0, 0.985 and 0.985, respectively. From Figure 10E, Re= 150 is determined as the
approximately critical value to divide the impact of Re into two ranges, with a power‐law
correlation obtained for 5 ≤ Re ≤ 100 as follows:

≤ ≤τ Re ReΔ = 33.39 + 35.09, 5 100,e
−0.83 (17)

with R2 = 0.987. Δτe meets a significant drop for Re increase from Re= 100 to Re= 150, after
which Δτe remains approximately constant at an average value Δτe ≈ 28.18, for the cases of
Fr= 1.0, λ= 20 with 150 ≤ Re ≤ 800. With the results presented in Figure 10F, the following
linear correlation is obtained,

≤ ≤τ λ λΔ = 1.59 − 3.26, 10 35,e (18)

with R2 = 0.987.
η1 is plotted against Fr, Re, and λ in Figure 10G–I, respectively to depict the impact of these

parameters on η1. The value of η1 presents a fluctuant decreasing trend with the increase of Fr
as shown in Figure 10G. Again, Re= 150 is determined as the approximate critical value to
divide the impact of Re into two ranges, as shown in Figure 10H. For 5 ≤ Re ≤ 100, η1 decreases
with the increase of Re. However, a fluctuant increasing η1 is observed for 150 ≤ Re ≤ 800. The
influence of λ on η1 presented in Figure 10I can be quantified by,

≤ ≤η λ λ= 0.029 + 0.087, 10 35,1 (19)

with R2 = 0.987.

4 | CONCLUSIONS

The “fountain filling box” flow with a confined weak laminar plane fountain in a confined open
channel with a homogeneous ambient fluid is studied using 2D DNS over the ranges
0.1 ≤ Fr ≤ 3.0, 5 ≤ Re ≤ 800, and 10 ≤ λ ≤ 35 at Pr= 7. The conclusions from the detailed
qualitative and quantitative analysis of the behavior of these confined weak laminar plane
fountains can be summarized as follows:

• An intrusion current results from the downflow of the fountain impinging on the channel
bottom. The behavior of the intrusion flow can be approximately described as a gravity
current.30 The decrease of Fr or the increase of Re can decrease τw, that is, the time scales for
the intrusion front to impinge on the sidewall.

• Three mechanisms are observed for the behavior of the wall fountain, that is, no‐falling (no
overturning), slumping down, and rolling down. The maximum penetration height ym of the
wall fountain increases with the increase of Fr and λ, due to the reduction of buoyancy flux.

• For the fountains with 0.1 ≤ Fr ≤ 1.0, Δτw ~ Fr0.61 and Δτm ~ Fr0.69 are obtained, where Δτm is
the period for the wall fountain front to reach its maximum penetration height from the
creation of the intrusion flow. For the space with the same dimension, only the buoyancy
flux keeps constant, and the time‐scale will follow a 2/3 power law with Fr. For Fr ≤ 1.0, the
intrusion current spreads fast and remains laminar.
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• Convection, filling and conduction all contribute to the formation of thermal stratification. In
the initial stage, convection and mixing play a key role. After a quasi‐steady stratification is
formed, filling and thermal conduction become dominant. The behavior of intrusion and the
wall fountain for the fountain at 5 ≤ Re ≤ 100, due to its conduction‐dominant nature, is
significantly different from that at larger Re values considered (150 ≤ Re ≤ 800), where
convection plays a more significant role. Additionally, Fr= 1.0 and Fr= 2.25 are found to
distinguish the influence of Fr into three ranges. With a smaller Re, the influence of thermal
conduction becomes more significant.

• Compared with the previous DNS results of confined weak round fountains,27 it is found that
it takes a shorter time for the plane fountain than the round one to fill the box of the same
dimension, that is, the stratification rate of the plane fountain is larger than that of the round
fountain with the same Fr and Re. Significant instability is observed for the confined weak
round fountains during the filling process, however, there is no bobbing or flapping
instability observed for the corresponding confined plane fountain.
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