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ABSTRACT Using big marine data to train deep learning models is not efficient, or sometimes even
possible, on local computers. In this paper, we show how distributed learning in the cloud can help more
efficiently process big data and train more accurate deep learning models. In addition, marine big data
is usually communicated over wired networks, which if possible to deploy in the first place, are costly
to maintain. Therefore, wireless communications dominantly conducted by acoustic waves in underwater
sensor networks, may be considered. However, wireless communication is not feasible for big marine data
due to the narrow frequency bandwidth of acoustic waves and the ambient noise. To address this problem, we
propose an optimized deep learning design for low-energy and real-time image processing at the underwater
edge. This leads to trading the need to transmit the large image data, for transmitting only the low-volume
results that can be sent over wireless sensor networks. To demonstrate the benefits of our approaches in a
real-world application, we perform fish segmentation in underwater videos and draw comparisons against
conventional techniques. We show that, when underwater captured images are processed at the collection
edge, 4 times speedup can be achieved compared to using a landside server. Furthermore, we demonstrate
that deploying a compressed DNN at the edge can save 60% of power compared to a full DNN model. These
results promise improved applications of affordable deep learning in underwater exploration, monitoring,
navigation, tracking, disaster prevention, and scientific data collection projects.

INDEX TERMS Big marine data, Deep learning, Edge computing, Fish image segmentation, Internet of
underwater things, Real-time video processing, U-Net convolutional neural networks.

I. INTRODUCTION

AS Deep Neural Network (DNN) models grow to have
billions of learning parameters, while the training data

volumes expand to petabytes, model training on local com-
puters becomes highly inefficient, if not impossible, demand-
ing the use of Distributed Computer Systems (DCS). Be-
sides, a well-designed DNN training on DCSs may achieve
higher accuracy by disentangling the weight optimization
into separated nodes [1]. On this basis, the next generation of
cloud-based distributed computer networks may enable DNN
processing on edge devices for both improved model training

and efficient model inferencing [2], ultimately leading to
enhanced decision making.

To that end, in this paper we first explore cloud-based
distributed DNN training and analyze its benefits and short-
comings in training a large-scale DNN performing fish seg-
mentation in real-world underwater videos. Next, we deploy
our trained DNN on an embedded edge processor to show
the benefits it provides for the Internet of Underwater Things
(IoUT) and its wireless communication technology.

Wireless communication plays an important role in all
branches of the Internet of Things. However, this type of
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communication faces many challenges, when it comes to
the IoUT [3]. These challenges include high attenuation,
multipath fading, frequency dispersion, and signal distortion
of electromagnetic waves, which cannot penetrate and prop-
agate deep in underwater environments.

These harsh underwater conditions led scientists toward
the Underwater Acoustic Sensor Network (UASN), which
by far is the dominant wireless technology in IoUT [3].
UASN is defined as sonic interconnection of marine objects
that enables maritime exploration and monitoring activities.
However, UASN has some limiting technical characteristics
such as low transmission bandwidth, high signal attenuation,
and high propagation delays [4].

To overcome these UASN drawbacks, the relatively new
concept of edge processing seems to provide a promising so-
lution [3]. In edge computing, endpoint devices perform parts
of the required computations on their own data. The results
of these computational processes have smaller volumes, com-
pared to the raw input data. By sending the results instead of
the initial unprocessed data, underwater network traffic will
significantly reduce. Meanwhile, the lower data transmission
rate will consequently result in lower communication latency
and efficient energy consumption [5].

To get the most out of the edge computing, efficient com-
putational processes must be employed. This is specially im-
portant when dealing with the marine high-resolution image
and real-time video data streams. To address this problem,
modern deep learning processes can be used. State-of-the-art
use cases of DNNs in underwater image/video applications
are ranging from image enhancement [6] to object detection
and classification [7], [8], and further to the vision-based
undersea navigation and tracking [9].

However, DNNs usually consist of large architectures re-
quiring large computational resources and power consump-
tion, which are not readily available at the underwater edge.
To overcome this challenge, here we propose two strategies.
The first is optimizing and compressing the DNN models de-
ployed at the edge. We show that this can result in significant
power saving and reduced processing time when compared to
remote processing on land. The second strategy we suggest
is to use practical approaches to reduce power consumption
or harvest environmental energy to power the edge device.

To summarize, in this paper we use cloud-based distributed
DNN training and edge DNN inferencing for a real-world
underwater image processing task. This area has not been
widely explored [10], and deserves further research. To fill
this gap,

• We propose, to the best of our knowledge, the first
DNN-based edge processor for real-time fish segmen-
tation in remote underwater videos, where no cable nor
underwater vehicle is involved. This is implemented on
an embedded Graphics Processing Unit (GPU) and is
benchmarked against traditional HTTP inference on a
GPU-powered computer on land.

• The fish segmentation model is trained on distributed
cloud infrastructure to make it more suitable for big

FIGURE 1. Qualitative relationship between the different parts of the
proposed edge computing system for real-time underwater video processing.

marine data training, while also slightly improving its
learning accuracy. The distributed training is bench-
marked against an on-premises standalone computer, in
terms of speed and accuracy.

• To improve the delay and energy requirement of our
system in the targeted underwater environment, we
compress our DNN model to two quantized weight reso-
lutions. We benchmark these against the full model and
show the compressed networks can result in significant
improvements. In addition, we propose an efficient en-
ergy management plan, consisting of renewable energy
resources and motion detection technologies.

We discuss how the proposed underwater edge computing
platform may improve the big data processing barrier in the
Internet of Underwater Things. To better illustrate the contri-
butions of this article, the amalgamation of its diverse com-
ponents into a state-of-the-art IoUT application is illustrated
in Fig. 1. This figure shows the logical flow from accurate
model training to low-energy model deployment, and further
to GPU-based high-speed undersea video inferencing.

The rest of this article is organized as follows. In Sec-
tion II, a modified U-Net model will be designed for fish
segmentation in real-life underwater images. This model will
be accurately trained on a cloud-based DCS in Section III.
Later in Section IV, energy reduction techniques will be
introduced, and the trained model with compressed weights
will be deployed on a GPU-enabled edge device for fast
and efficient inferencing. We will also investigate how edge
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FIGURE 2. Modified architecture of the U-NET convolutional neural network for underwater image segmentation. The weights of the encoder part are
transfer-learnt from a pretrained MobileNetV2 on the ImageNet. The decoder part employs Pix2Pix for upsampling.

computing makes underwater big data processing possible.
The paper is concluded in Section V.

II. FISH SEGMENTATION
Image segmentation is a major topic in computer vision,
which assigns a label to each pixel of the image. Pixels
with the same label belong to the same semantic object
(i.e., class). Image segmentation is applied in a number of
domains including object localization, video surveillance,
scene understanding, augmented reality, and many other im-
age processing applications. To have an accurate image seg-
mentation model, a wide verity of DNNs have been reported
in the literature, and they are comprehensively surveyed by
Minaee et al. [11].

However, the underwater environment is not image-
friendly. The suspended particles in seawater absorb,
backscatter, and forward scatter light rays towards the cam-
era, which creates hazy images with low contrast and faded
colors [6]. Besides, seawater reacts differently to different
light spectra, according to its frequency-dependent power ab-
sorption. These and many other extreme imaging limitations
make the underwater environment a nonuniform imaging
medium [12]. These nonuniform image degradation pro-
cesses make underwater image segmentation a challenging
task.

To address this problem, some authors tend to use sta-
tistical models. For example, Kannan [13] has attempted
to recognize objects in seawater images using a Gaussian
mixture model in combination with optimization methods
like the genetic algorithm. Although these traditional in-
ner distance shape matching techniques have made some
progress in certain specific situations, they usually have lower
underwater image recognition accuracy, when compared to
the most recent deep learning algorithms.

One of the most recent works in underwater image seg-
mentation combines the multi-scale Retinex image enhance-
ment algorithm and the Mask R-CNN framework to recog-
nize marine echinoderm [12]. While it is limited to echinus,

holothurian, and starfish, the work in [12] can be expanded
to incorporate more sea creatures. Besides, the trained model
is big and consumes high energy for inferencing. This makes
it suitable for deployment on land-side servers for non-real-
time applications. However, for real-time underwater video
inference, we need a lighter model with lower energy demand
that better suits our edge device.

A. MODIFIED U-NET ARCHITECTURE
To address the fish segmentation problem in underwater
images, we employed a modified version of the U-Net model
[14]. U-Net is a Convolutional Neural Network (CNN)-
based deep learning algorithm which has been applied in a
number of applications ranging from medical imaging [15],
to fish segmentation [16]. Similar to the original U-Net [15],
modified U-Net in this paper consists of two consecutive
encoder and decoder paths. While the contracting encoder
path captures contextual features, the symmetric and expand-
ing decoder path enables segment localization. However, our
modified U-Net makes use of a better upsampling block [14].

Both the encoder and decoder parts of the modified U-
Net architecture are illustrated in Fig. 2. The encoder part
follows the typical CNN architecture with five consecutive
convolution layers, each followed by a ReLU activation
function and a max-pooling operator. The 7× 7× 320 output
of the encoder part feeds to the following decoder part, which
consists of four consecutive upsampling and concatenating
blocks. Unlike the original U-Net, a Pix2Pix block [17] is
used for upsampling in the modified U-Net. Pix2Pix was
initially used in the generative adversarial networks for their
capability of generating high-quality images across a variety
of image translation tasks [17]. Since then, it is widely used
as an upsampling block in a wide range of other applications.
At the last stage of the modified U-Net model, a simple 2D
convolution layer was used to map the extracted 64 features
to the desirable two segmentation classes (i.e., fish or not
fish).

To reduce the number of trainable parameters in our modi-
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fied U-Net to improve its training speed, we used the transfer
learning technique and froze the transferred weights. To elab-
orate, the weights and biases of a pretrained MobileNetV2
model on the ImageNet dataset were reused in the encoder
part [18].

B. DEEPFISH DATASET
Supervised DNNs are data hungry models. They require
hundreds of labeled data in each class, to succeed in their
training phase. A successful training will result in accurate
predictions at the subsequent inferencing phase. To train
our modified U-Net, the open-access DeepFish dataset was
used. DeepFish is a realistic dataset of fish images in their
natural habitat [19]. The images have been accurately labeled
for classification, localization, and segmentation algorithms
evaluation.

DeepFish’s segmentation dataset contains 620 images with
accurately labeled fish segments. These images are collected
from 20 habitats in the tropical Australian marine environ-
ment with and without fish presence. To avoid overfitting,
10% of all images are separated for validation. The images
with one or more fish have been augmented by 180o rotation,
X and Y flipping, blue and green color degradation, and ran-
dom noise addition. To have a balanced dataset, the images
with no fish are not augmented. Furthermore, the DeepFish
images are originally shaped in a 1920×1080 pixel rectangle.
To feed these images into our modified U-Net model, they are
resized into a square shape of 224×224 pixels. This resizing
is done by 49 zero-padded pixels both on top and bottom of
each image.

III. DISTRIBUTED TRAINING
Not so long ago, labeled datasets for supervised machine
learning were scarce. However, the number of these expert-
labeled and open-access datasets have recently been in-
creased by the order of multiple hundreds. For example, none
of the tens of labeled underwater datasets introduced in the
GitHub repository Awesome Underwater Datasets, existed a
few years ago.

With labeled image proliferation in open-access datasets,
processing them becomes more challenging and compute-
demanding. More specifically, the pixel labeling algorithms
(like segmentation DNNs) with petabytes of remotely gath-
ered data, such as underwater fish videos, will require sig-
nificant computation and memory resources, which are not
available on a single computer. Here, Distributed Computer
Systems (DCS) with several processing nodes that share
the training, and consequently the memory and computing
workload, can be considered [20].

Training DNNs on DCSs have led to the relevant concepts
of centralized and decentralized deep learning [21], which
has attracted significant attention [22]. Centralized deep
learning can be divided into data and model parallelization
[23], while the decentralized deep learning involves federated
learning [21] and fully decentralized swarm learning [24].
Both the federated and swarm learning is privacy-preserving

data processing paradigms, which are more suitable in sen-
sitive sectors like healthcare and finance. Both solutions
conduct machine learning on edge devices, within A network
of nodal clients [22]. This makes them unsuitable for under-
water edge devices with low access to energy resources.

By contrast, the data and model parallelization technique
tends to use a simple network of land-side computers for
machine learning [23]. In data parallelization, distributed
learning is conducted by dividing big data into mini-batches.
During the training phase, an allreduce operation is em-
ployed to average the mini-batch gradients over the entire
DCS nodes [23]. However, data parallelization suffers from
multiple drawbacks, including

• The DNN model in question must be small enough to fit
in a computing device, i.e., a CPU or GPU.

• Training large image segmentation models on high-
resolution images can cause diverging gradients, be-
cause of small mini-batch sizes.

Considering the above drawbacks, one may use model
parallelization as an alternative solution, which breaks the
DNN into small partitions and distributes partitions over
DCS nodes for training [23]. Overall, model parallelization
is the chosen DCS paradigm in this work. Since the volume
of the DeepFish dataset used in our work is only 15 GB
and our modified U-Net (including ImageNet pretrained Mo-
bileNetV2 model) size is 65 MB, the data volume is not a
major concern in our chosen task.

However, our DNN can still validate the DCS training
concept and benefit from distributed learning by increasing
its accuracy. To elaborate,

• DNNs are directed-acyclic-graphs that have unknown
weights on the graph vertices. In model parallelization,
these vertices will disentangle in distributed computing,
and the weights of every vertex will be independently
trained on a dedicated computer node [25]. This weight
separation will reduce overfitting on the training dataset,
and will consequently increase the overall DNN accu-
racy.

• Each computer node in a DCS collects a random set
of images into a batch. The batch has a fixed size and
is used as a single step in model training. A larger
batch size helps the model optimizer find the global
convergence point faster [26]. In one step, if a single
computer uses N random images to form a batch, then
M computers of a DCS would use M × N random
images. As a result, more computers in the DCS will
result in a bigger batch size per step, which will con-
sequently result in better convergence towards a more
accurate model.

In addition, our work presents a proof-of-concept and intro-
duces a platform for use in training distributed deep learning
models for big marine data.
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TABLE 1. Hardware Specifications of the Utilized Local Computer, Distributed
Computers, and the Edge Device

(a)

(b)

FIGURE 3. The SCCE loss metric convergence for both (a) the augmented
train and (b) the augmented validation datasets, versus the training time. The
model is initially transfer learned on ImageNet and is shown while fine tuning
with the DeepFish dataset.

A. CLOUD-BASED DISTRIBUTED COMPUTER SYSTEMS

A DCS is a private network of separated computers, each
holding a set of software components that collaboratively
work as a single system. Despite their so many benefits,
DCSs need complex experimental and architectural design
procedures for [3] distributed operation algorithms, node
counts in the system, initial establishment, and continuous
maintenance.

To address these difficulties, commercial cloud services
like Amazon Web Services (AWS), Microsoft Azure, and
Google Cloud Platform seem to offer a promising solution.
For instance, AWS SageMaker is a cloud-based machine
learning platform for running a customer’s DNN training, as
well as inferencing jobs on a dedicated DCS.

To perform this study and to evaluate the performance of
cloud-based DCS for our proposed application, 20 identical
training computers (i.e., instances) were rented from the
AWS SageMaker. Hardware specifications of each instance
are compared in Table 1 with a GPU-powered on-premises
computer. The 61 GB capacity of the cloud-based Solid
State Drives (SSD) were enough for the requirements of this
research.

It is worth noting that AWS SageMaker offers P3 instances
with high-end GPUs in the cloud. These instances are capable
of distributed training of DNN models across hundreds of
GPUs. However, these instances are significantly more ex-
pensive than ordinary CPU-based computers. For example,
a P3.2xLarge SageMaker instance with similar specifications
to the employed M5.2xLarge in this study, but with one Tesla
GPU, will cost $3.825 per hour. This is nearly 7 times the cost
of our current setup. Therefore, to have an affordable DCS
training system, we chose to use CPU-based computers.

B. DISTRIBUTED TRAINING RESULTS
The modified U-Net model in Fig. 2 accepts a 224 × 224
RGB image at input, and returns two 224×224 integer values
for the two possible pixel classes. In other words, the DNN
assigns two integer values to every single pixel of the image.
These integer values indicate whether each pixel belongs to
the body of a fish or not. During inference, an argmax(·)
operator must be employed to produce a single 224 × 224
channel with 1 and 0 values for the fish and not-fish classes.
However, this is not the case in the training phase, where
the exact integer outputs are passed to the Adaptive Moment
(Adam) optimizer of the DCS processor.

The Adam optimizer in DCS uses the Sparse Categorical
Cross Entropy (SCCE) as its major loss metric for accu-
rate underwater fish segmentation. In addition to SCCE, the
Sparse Categorical Focal (SCF) loss values with γ = 2
is also measured. SCF is particularly useful in our study,
where the foreground fish pixels in each image is densely
located against the huge number of background pixels [27].
To elaborate, the labeled segmentation masks are mostly
zero-valued for the no-fish class, with occasional occurrences
of dense one-values for the fish class.

The convergence of the SCCE loss metric for both the
distributed computers and the local computer are compared
in Fig. 3. Here, the DCS spends a lot of time on HTTP data
transaction between its nodes. This makes the overall DCS
convergence slower than a GPU-powered local computer.

However, the trained model on DCS achieves a lower
loss compared to a single GPU training. The SCCE loss
metric, SCF loss, Sparse Categorical Crossentropy Accuracy
(SCCA) and the Intersection over Union (IoU) accuracy are
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TABLE 2. SCCE and SCF Loss Metrics, as well as SCCA and IoU Accuracy
Metrics of the Modified U-NET Model, Which has been Trained on a Local
Computer, Compared with Distributed Computer Systems with 10, 15, and 20
Computer Nodes

benchmarked in Table 2 for both the distributed- and the
locally-trained DNNs. The values in this table are calculated
for the validation dataset. This is in contrast to the plots in
Fig. 3, which are for augmented train and augmented vali-
dation datasets to artificially increase the amount of training
data, without actually collecting new data.

As explained earlier, it is expected that due to the DNN
weight separation and independent training on dedicated
computer nodes [25], as well as bigger batch sizes in DCSs
[26], the model is better trained on bigger DCSs, achieving
a lower loss and higher accuracy. This is confirmed in the
results shown in Table 2. While the SCCA remains almost the
same with only slight improvement for 20 computer nodes,
both the SCCE and SCF loss metrics and the IoU accuracy
metric show better performance for the distributed training
scheme with more computer nodes (i.e., 20).

The SCCE and SCF loss metrics in Table 2 also suggest
that the training algorithm in DCSs needs improvement, for
having trouble on achieving the optimum convergence point,
compared to a single computer. However, this drawback
can be compensated by increasing the number of nodes in
the DCS, which will consequently decrease overfitting and
increase the effective batch size, as discussed in Section III.
It is worth mentioning that the total renting price for 20 AWS
SageMaker training instances was AUD 19.1. To summarize,

• Table 2 shows that the 20-node DCS training loss
(0.053) is 18% better than a standalone computer
(0.065).

• Table 2 also shows that the IoU accuracy of 20-node
DCS (87.6%) is 15% better than a standalone computer
(74.5%).

• Due to the HTTP transactions in DCS, a GPU-powered
local computer is faster than 20 distributed computers
without GPU. This was illustrated in Fig. 3.

FIGURE 4. Conceptual comparison between wired underwater
communication and wireless communication made possible by performing
data processing at the data collection edge and only communicating the
processing results.

IV. UNDERWATER EDGE COMPUTING
Edge computing is an information technology paradigm that
brings computation closer to the data collection hardware.
In the case of IoUT, edge computing is very beneficial,
without which the processing should be performed on local
computers or centralized clouds on land. Transferring the
data to these remote land processors would require wideband
data transactions, which is not readily available or sometime
feasible in IoUT. In contrast, by processing raw data on edge,
only the low-volume results should be communicated. Com-
municating only the results consumes narrower bandwidth
(data-rate) and requires shorter transaction latency, making
it suitable for IoUT [3].

Additionally, engaging the edge devices in data process-
ing, can shift the load from a single centralized processing
point to numerous distributed nodes. In this case, the system
would not have a single point of failure. Besides, advanced
applications such as prompt decision making will be feasible
[28]. These advantages of the edge computing are better
illustrated in Fig. 4, where the traditional multi-Mbps wired
network is replaced by a multi-bps UASN using the edge pro-
cessing technology. However, edge computing in IoUT must
tackle the challenge of limited underwater energy resources,
as its main drawback.

A. ENERGY MANAGEMENT AT THE EDGE
Sustainable power cannot be readily delivered to the un-
derwater edge devices. Therefore, wired energy transferring
might be considered, which is a robust but limiting solution.
Using wired energy will limit IoUT sensor deployment to
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FIGURE 5. Underwater energy management plan with solar and tidal wave
energy harvesting, along with the energy-efficient communication, motion
detection technology, and DNN compression.

TABLE 3. Average Power Consumption of the Original Segmentation DNN
with FP32 Parameters, Compared with FP16 and Int8 Compressed DNNs

the shoreline vicinity, and will make the system vulnerable
to cable damages by gnawing animals and corrosive environ-
ments.

Due to these drawbacks, the use of wired energy in remote
IoUT applications becomes infeasible. To address this chal-
lenge, here we propose two parallel techniques to effectively
manage the energy at the edge, as shown in Fig. 5 and
described below.

TABLE 4. SCCE, SCF, SCCA, and IoU Metrics of the Original Segmentation
DNN with FP32 Resolution, Compared with FP16 and Int8 Compressed
Resolutions of the same DNN

1) Reducing power consumption at the edge
Energy management from the edge’s perspective means
lower computation demand and/or more power-efficient con-
sumption. To reduce the demand, ultrasonic motion detectors
can be used to only demand imaging and processing when
there is movement in the environment, putting the system
into low-power sleep mode at all other times. This, of course,
adds to the entire system power, the amount consumed by the
submersible echosounder transducers, which depends on the
quality of their coverage. A typical 115 kHz ping transceiver
with 50 m directional range, 0.5% resolution, and 300 m
depth rating that operates for 100 milliseconds per every
second will take no more than 50 mW.

However, both sonar-based and vision-based motion de-
tection technologies are sensitive to cavitation (bubbles),
vegetation (leaves, sticks, etc.), water depth, and current
speed. Consequently, using them in high-dynamic conditions
require artificial passageways with careful control of the
environmental parameters [29].

The fabrication and maintenance of passageways for un-
derwater motion detection will add extra cost and time to the
project, which is not desirable. Therefore, where possible,
other power reduction techniques should be considered. A
technique that we investigated in this paper is utilizing a
compressed DNN, which consumes less power, due to lighter
computations performed at the edge. In this way, the trained
weights of the initial DNN in Table 2 that have single-
precision (32-bit) floating-point resolution (FP32), can be
compressed. However, this compression may lead to a slight
decrease in the DNN accuracy.

To experiment with compressed quantized DNNs in our
performed segmentation task, we employed TensorFlow Lite
(TFLite) to conduct the following model quantizations:

• Half-precision (16-bit) floating-point (FP16): This post-
training compression reduces the floating-point size to
the IEEE standard float16.

• 8-bit integer (Int8): This dynamic range compression
quantizes the weights from floating-point to integers
with 8 bits precision.

To analyze the DNN weight quantization effect on its
energy demand, the Nvidia Jetson nano embedded GPU was
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   (To be Continued) 

FIGURE 6. Example outputs of the modified U-NET segmentation model trained on 20 cloud-based distributed computers of the AWS SageMaker, and then
deployed with Int8 paramter resolution on a Jetson Nano device.
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FIGURE 6. (Continued.) Example outputs of the modified U-NET segmentation model trained on 20 cloud-based distributed computers of the AWS SageMaker,
and then deployed with Int8 paramter resolution on a Jetson Nano device.

selected as our edge device. The average power consumption
of our segmentation DNN models with FP16 and Int8 com-
pressed network parameters are compared in Table 3, with
the original FP32 model. The System in this table refers to
the edge device internal components, except GPU (i.e., CPU,
RAM, SSD, high-speed IO, etc.).

In the rest mode with no GPU tasks, the TFLite backend
of both the FP16 and Int8 demand slightly more energy
(around 3%) than TensorFlow backend of FP32. This is
because, TFLite does not optimize model size, compared
to the FP32 case trained using TensorFlow. Therefore, the
edge device requires larger storage both on its system and
on its GPU. Besides, the mobile-friendly TFLite libraries do
not support all TensorFlow operators. Consequently, some
CUDA mounting commands might run inefficiently at the
edge.

On the other hand, in the busy mode with heavy GPU
inferencing tasks, the proposed FP16 and Int8 DNNs de-
mand significantly lower power. The results in Table 3 show
61% total power reduction compared to uncompressed FP32
model. This improvement can eliminate the need for mo-
tion detection technologies, by enabling the edge device to
continuously process underwater video frames. Alternatively,
if possible, it can be combined with the motion detection
methods for further decreased power consumption.

Despite the fact that weight compression reduces power
demand at the edge, it can also decrease the DNN accuracy.
This concern has been investigated in Table 4, where the loss
and accuracy metrics of the compressed FP16 and Int8 mod-
els are compared with the original FP32 DNN. According to
this table, the reduction in model performance (specially for
the IoU metric) is a direct consequence of model’s optimum
weight replacement, due to weight compression. Here, the

advantage of model training on DCSs is better seen. In other
words, the reduced performance of the compressed model in
Table 4 is still comparable with single GPU training scheme
in Table 2.

Despite the reduction techniques proposed above, the
power consumption of the edge processor can be still signif-
icant and in the order of a few watts, requiring a sustainable
method of power delivery to the edge device. Here, we pro-
pose combining the above-mentioned reduction techniques
with several energy harvesting approaches described below,
as shown in Fig. 5, to make IoUT edge processing feasible.

2) Energy harvesting

In undersea energy harvesting, solar panels and the marine
grade Absorbent Glass Mat (AGM) or Li-ion batteries are
well-developed for small-scale applications. For example,
today’s rechargeable Li-ion and AGM batteries can provide
superior power to support the electrical demands of start-stop
edge devices, while being affordable, impervious to seawater,
resilient to underwater vibrations, and maintenance-free [30].

Tidal stream energy harvesting systems are another source
of power in undersea environments. While multi-megawatt
tidal stream turbines can feed power grids with clean energy,
small-scale submersible generators [31] and tidal kites [32]
can provide efficient power for UASNs in our proposed appli-
cation. In addition, tidal power is almost perfectly predictable
over long timescales, which is an appealing feature for power
management systems. The output energy during neap tides is
significantly less than that during spring tides, hence, in a
realistic system with steady output power, rechargeable bat-
teries are inevitable for covering the lower energy production
periods [31].

When the abovementioned energy harvesting methods are
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combined with the proposed power reduction at the edge,
inference can happen efficiently at the edge. However, the
underwater edge inference results still need to be submitted
overwater for future records and further actions. This requires
an energy-efficient communication technique.

3) Energy-efficient underwater communications
After successful implementation of any energy harvesting
technique from Section IV-A2, the infrastructure should
undertake an energy allocation plan for every underwater
acoustic node. The main goal of this plan is to maximize the
delivered data over a given time slot [33]. However, there are
many parameters that influence this goal.

For example, both the dynamic nature of underwater
acoustic channels and the time-varying characteristics of
energy harvesting sources should be considered as stochastic
finite-state machines (a.k.a. finite-state Markov chain) [34].
One obvious consequence of this stochasticity is the fact
that the transmitter might receive channel state information
intermittently, or not receiving them at all. While the tradi-
tional solutions like stochastic dynamic programming [33]
can fairly address this uncertainty, modern energy allocation
plans with DNNs are highly desirable. One approach is to
borrow the main ideas from the well-developed Internet of
Things (IoT) and use them in the relevant sectors of Internet
of Underwater Things (IoUT) [3], [35].

However, there are many fundamental radio and acoustic
propagation differences between IoT and IoUT that must be
considered in every application. This might even require new
routing protocol development and new network management
schemes. In this regard, previous techniques such as [36] to
design a balanced routing protocol could be employed. The
DNN-based design of [36] suits the low-energy requirements
of our application, while maintaining a low propagation
latency and considering the void area issue. The communi-
cation protocol in [36] is based on the magnetic induction
technique, which has steady channel, predictable response,
and low propagation delay.

B. EDGE INFERENCING RESULTS
To further analyze the benefits of edge processing compared
with transferring the underwater video frames to land for
processing, we performed some further inference analyses.
To perform these analyses, we needed to choose a GPU-
enabled edge device to infer video frames on our proposed
modified U-NET DNN architecture. Although, a variety of
edge (embedded) GPUs exist in the market, the Nvidia Jetson
Nano from the Jetson processor family, which is the world’s
leading platform for machine learning at the edge [10] was
selected. Nano’s specifications are shown in Table 1. The
Jetson Nano module is an efficient minicomputer that runs
on Linux for Tegra (L4T). L4T is a free distribution of the
Ubuntu Linux by Nvidia for its Tegra processor series.

To utilize Jetson Nano for our application, we installed
Python, TensorFlow, and many other software packages on
L4T to enable fast and accurate DNN inferencing. Addi-

FIGURE 7. Image or video frame segmentation speed of an edge device with
multiple compression levels is compared to a local computer that has been
inquired by HTTP protocol.

tionally, we developed a Flask-based REST-API in L4T to
answer remote HTTP queries. Flask is a light-weight mi-
croframework that suits the low-power requirements of an
edge computing ecosystem.

As described earlier in Sections III and IV-A, our pro-
posed modified U-NET was initially trained on 20 cloud-
based distributed computers. Next, the trained model was
compressed to Int8 resolution for power reduction. To test
the functionality of our developed framework, we deployed it
on a Jetson Nano to perform fish segmentation on a number
of video frames from the DeepFish dataset. Fig. 6 shows a
number of sample segmentation outputs. The demonstrated
samples in Fig. 6 include some desirable true-positive and
true-negative predictions, along with two undesirable false-
positive detection. We did not encounter any false-negative
report on the images in the DeepFish dataset.

C. EDGE INFERENCING SPEED
The inferencing speed on the Jetson Nano edge device was
compared to an on-premises land server in Fig. 7. The first
frame inferencing in both the land-side server and the FP32
edge device requires much longer time than the TFLite-based
FP16 and Int8. This low initialization speed is due to the
model storage method in TensorFlow, which requires more
time to map a saved DNN model into a directed-acyclic-
graphs in GPU.

In the case of on-premises GPU-powered server in Fig. 7,
multi-MB video frames must be submitted via a wired LAN
connection first to then be processed on the GPU. The trans-
mission significantly increases the inference time as shown
in the figure. In contrast, the edge device processes video
frames in-place, producing few bytes of results that usually
do not require instant wireless transmission. These results
may include (x, y) coordinate of the detected fish, its size,
and the frame timestamp that are submitted to the land station
once in a while.

The GPU-powered landside server with better computing
resources (see the first row of Table 1) is 4 times slower
than the edge embedded Nano GPU. Meanwhile, the model
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compression to FP16 and Int8 reduces inference latency
at the edge by 18%, compared to the FP32 model. This
lower latency means that the edge processor can segment 3-4
times more frames (images). It is worth noting that, reducing
latency also reduce the overall energy consumption of the
system. Of course, if faster processing rates are required,
more powerful but also expensive devices like Jetson Xavier
can be employed.

Overall, the presented results show that the proposed
methodologies for underwater edge inferencing can signif-
icantly reduce the latency and power requirements of any
underwater DNN processing tasks, compared to transferring
the large data to land for processing. This can significantly
advance IoUT ecosystems in various applications ranging
from marine ecological studies to disaster prevention.

V. CONCLUSION
In this paper, we first proposed a modified U-NET archi-
tecture for fish segmentation in underwater videos. We then
demonstrated the use of DCS for training our fish segmenta-
tion task and discussed the benefits DCS provides for training
DNNs using big marine data. In the second part of our paper,
we utilized our DCS-trained DNN to show the benefits of
edge processing in underwater environments. It was shown
that edge processing can result in more than 4 times speedup,
compared to the conventional method of remote land process-
ing. Furthermore, we proposed an energy management plan
at the edge, which utilized well-known techniques such as
motion-detection, energy harvesting, and compressed DNNs
to make underwater edge computing feasible. We showed
that, by compressing a DNN model for fish segmentation,
61% of power saving can be achieved compared to a FP32
DNN.

The techniques proposed in this paper can be applied in
other domains, most notably, in other underwater applica-
tions, where sending large data to land for processing is
not feasible. These simple but practical techniques can sig-
nificantly advance current and future underwater processing
applications, leading to more informed decisions in remote
underwater environments, for applications such as marine
research, navigation, and tracking.

REFERENCES
[1] S. Gupta, W. Zhang, and F. Wang, “Model accuracy and runtime tradeoff in

distributed deep learning: a systematic study,” in Proc. 16th International
Conference on Data Mining (ICDM), Barcelona, Spain, Dec. 2016, pp.
171–180.

[2] M. Chen, D. Gunduz, K. Huang, W. Saad, M. Bennis, A. V. Feljan, and
H. V. Poor, “Distributed learning in wireless networks: recent progress and
future challenges,” IEEE Journal on Selected Areas in Communications,
vol. 39, no. 12, pp. 3579–3605, Dec. 2021.

[3] M. Jahanbakht, W. Xiang, L. Hanzo, and M. Rahimi Azghadi, “Internet
of Underwater Things and big marine data analytics – a comprehensive
survey,” IEEE Communications Surveys and Tutorials, vol. 23, no. 2, pp.
904–956, Jan. 2021.

[4] X. Zhong, F. Ji, F. Chen, Q. Guan, and H. Yu, “A new acoustic channel
interference model for 3-D underwater acoustic sensor networks and
throughput analysis,” IEEE Internet of Things Journal, vol. 7, no. 10, pp.
9930–9942, Apr. 2020.

[5] B. Jedari, G. Premsankar, G. Illahi, M. D. Francesco, A. Mehrabi, and
A. Ylä-Jääski, “Video caching, analytics, and delivery at the wireless
edge: a survey and future directions,” IEEE Communications Surveys and
Tutorials, vol. 23, no. 1, pp. 431–471, Jan. 2021.

[6] L. Chen, Z. Jiang, L. Tong, Z. Liu, A. Zhao, Q. Zhang, J. Dong, and
H. Zhou, “Perceptual underwater image enhancement with deep learning
and physical priors,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 31, no. 8, pp. 3078–3092, Aug. 2021.

[7] X. Qin, X. Luo, Z. Wu, and J. Shang, “Optimizing the sediment classi-
fication of small side-scan sonar images based on deep learning,” IEEE
Access, vol. 9, pp. 29 416–29 428, Jan. 2021.

[8] I. H. Laradji, A. Saleh, P. Rodriguez, D. Nowrouzezahrai, M. R. Azghadi,
and D. Vazquez, “Weakly supervised underwater fish segmentation using
affinity lcfcn,” Scientific Reports, vol. 11, no. 1, pp. 1–10, 2021.

[9] J. E. Almanza-Medina, B. Henson, and Y. V. Zakharov, “Deep learning
architectures for navigation using forward looking sonar images,” IEEE
Access, vol. 9, pp. 33 880–33 896, Feb. 2021.

[10] L. Wang, X. Ye, H. Xing, Z. Wang, and P. Li, “YOLO Nano Underwater:
a fast and compact object detector for embedded device,” in Proc. Global
Oceans, Biloxi, MS, USA, Oct. 2020, pp. 1–4.

[11] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and
D. Terzopoulos, “Image segmentation using deep learning: a survey,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, pp. 1–22, Feb.
2021.

[12] S. Song, J. Zhu, X. Li, and Q. Huang, “Integrate MSRCR and Mask R-
CNN to recognize underwater creatures on small sample datasets,” IEEE
Access, vol. 8, pp. 172 848–172 858, Sep. 2020.

[13] S. Kannan, “Intelligent object recognition in underwater images using
evolutionary-based Gaussian mixture model and shape matching,” Signal,
Image and Video Processing, vol. 14, pp. 877–885, Jul. 2020.

[14] TensorFlow Tutuorials, “Image segmentation,” www.tensorflow.org, Aug.
2021.

[15] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional networks
for biomedical image segmentation,” in Proc. Medical Image Computing
and Computer-Assisted Intervention (MICCAI), Berlin, Germany, 2015,
pp. 234–241.

[16] A. Saleh, M. Sheaves, and M. Rahimi Azghadi, “Computer vision and deep
learning for fish classification in underwater habitats: a survey,” arXiv, pp.
1–29, 2022.

[17] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proc. Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, Jul. 2017, pp. 1125–
1134.

[18] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in Proc. Computer
Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, Jun.
2018, pp. 4510–4520.

[19] A. Saleh, I. H. Laradji, D. A. Konovalov, M. Bradley, D. Vazquez, and
M. Sheaves, “A realistic fish-habitat dataset to evaluate algorithms for
underwater visual analysis,” Scientific Reports, vol. 14671, no. 10, pp. 1–
10, Sep. 2020.

[20] S. Lee, H. Kim, J. Park, J. Jang, C.-S. Jeong, and S. Yoon, “TensorLight-
ning: a traffic-efficient distributed deep learning on commodity Spark
clusters,” IEEE Access, vol. 6, pp. 27 671–27 680, May 2018.

[21] S. Abdulrahman, H. Tout, H. Ould-Slimane, A. Mourad, C. Talhi, and
M. Guizani, “A survey on federated learning: the journey from centralized
to distributed on-site learning and beyond,” IEEE Internet of Things
Journal, vol. 8, no. 7, pp. 5476–5497, Apr. 2021.

[22] Y. Sun, H. Ochiai, and H. Esaki, “Decentralized deep learning for multi-
access edge computing: a survey on communication efficiency and trust-
worthiness,” IEEE Transactions on Artificial Intelligence, pp. 1–11, Dec.
2021, early access.

[23] Amazon Web Services, “Amazon SageMaker distributed training li-
braries,” aws.amazon.com, Jun. 2022.

[24] S. Warnat-Herresthal et al., “Swarm learning for decentralized and con-
fidential clinical machine learning,” Nature, vol. 594, no. 7862, pp. 265–
270, Jun. 2021.

[25] D. Lunga, J. Gerrand, L. Yang, C. Layton, and R. Stewart, “Apache
Spark accelerated deep learning inference for large scale satellite image
analytics,” IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 13, pp. 271–283, Jan. 2020.

[26] S. L. Smith, P.-J. Kindermans, C. Ying, and Q. V. Le, “Don’t decay the
learning rate, increase the batch size,” arXiv, pp. 1–11, Feb. 2018.

VOLUME 4, 2016 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3202975

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.tensorflow.org/tutorials/images/segmentation
https://arxiv.org/abs/2203.06951
https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html
https://arxiv.org/abs/1711.00489


Jahanbakht et al.: Dist. DL in the Cloud and Proc. at the Edge for Fish Segm. in Underwater Videos

[27] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense
object detection,” in Proc. International Conference on Computer Vision
(ICCV), Venice, Italy, Oct. 2017, pp. 2980–2988.

[28] H. Ping, H. Aiping, and T. Linwei, “Deep learning-based decision-making
model for the submarine evade movement,” in Proc. OCEANS, San Diego,
CA, USA, Sep. 2021, pp. 1–6.

[29] M. Farzadkhoo, R. T. Kingsford, I. M. Suthers, P. Geelan-Small, J. H.
Harris, W. Peirson, and S. Felder, “Attracting juvenile fish into tube fish-
ways – roles of transfer chamber diameter and flow velocity,” Ecological
Engineering, vol. 176, pp. 106 544–106 559, Mar. 2022.

[30] V. B. Roman, G. A. E. Banos, C. A. Q. Solis, M. I. F. Banuelos, M. Rivero,
and M. A. E. Soberanis, “Comparative study on the cost of hybrid energy
and energy storage systems in remote rural communities near Yucatan,
Mexico,” Applied Energy, vol. 308, pp. 118 334–118 345, Feb. 2022.

[31] A. Roberts, B. Thomas, P. Sewell, Z. Khan, S. Balmain, and J. Gillman,
“Current tidal power technologies and their suitability for applications in
coastal and marine areas,” Ocean Engineering and Marine Energy, vol. 2,
pp. 227–245, Jan. 2016.

[32] E. Ackerman, “Underwater manta kites for tidal power harvesting,” spec-
trum.ieee.org, Apr. 2021.

[33] L. Jing, C. He, J. Huang, and Z. Ding, “Energy management and power
allocation for underwater acoustic sensor network,” IEEE Sensors Journal,
vol. 17, no. 19, pp. 6451–6462, Oct. 2017.

[34] E. Cui, D. Yang, H. Zhang, and M. Gidlund, “Improving power stability of
energy harvesting devices with edge computing-assisted time fair energy
allocation,” IEEE Transactions on Green Communications and Network-
ing, vol. 5, no. 1, pp. 540–551, Mar. 2021.

[35] B. Zhao and X. Zhao, “Deep reinforcement learning resource allocation in
wireless sensor networks with energy harvesting and relay,” IEEE Internet
of Things Journal, vol. 9, no. 3, pp. 2330–2345, Feb. 2022.

[36] L. Alsalman and E. Alotaibi, “A balanced routing protocol based on
machine learning for underwater sensor networks,” IEEE Access, vol. 9,
pp. 152 082–152 097, Nov. 2021.

MOHAMMAD JAHANBAKHT (S’18) received
the B.Eng. and M.Eng. degrees in telecommuni-
cation engineering, from the Islamic Azad Univer-
sity of Iran, in 2003 and 2005, respectively.

He was awarded a PhD Research Training Pro-
gram (RTP) scholarship by the Australian Govern-
ment to implement machine intelligence on marine
data at the College of Science and Engineering,
James Cook University, Australia. He is holding
a research officer position with TropWATER –

Centre for Tropical Water and Aquatic Ecosystem Research, James Cook
University, QLD, Australia. His research interests are data science, machine
learning, numerical modeling, and signal processing.

WEI XIANG (S’00–M’04–SM’10) received the
B.Eng. and M.Eng. degrees, both in electronic
engineering, from the University of Electronic Sci-
ence and Technology of China, Chengdu, China,
in 1997 and 2000, respectively, and the Ph.D. de-
gree in telecommunications engineering from the
University of South Australia, Adelaide, Australia,
in 2004.

Professor Wei Xiang is Cisco Research Chair of
AI and IoT and Director Cisco-La Trobe Centre

for AI and IoT at La Trobe University. Previously, he was Foundation Chair
and Head of Discipline of IoT Engineering at James Cook University, Cairns,
Australia. Due to his instrumental leadership in establishing Australia’s first
accredited Internet of Things Engineering degree program, he was inducted
into Pearcy Foundation’s Hall of Fame in October 2018. He is an elected
Fellow of the IET in UK and Engineers Australia. He received the TNQ
Innovation Award in 2016, and Pearcey Entrepreneurship Award in 2017,
and Engineers Australia Cairns Engineer of the Year in 2017. He was a co-
recipient of four Best Paper Awards at WiSATS’2019, WCSP’2015, IEEE
WCNC’2011, and ICWMC’2009. He has been awarded several prestigious
fellowship titles. He was named a Queensland International Fellow (2010-
2011) by the Queensland Government of Australia, an Endeavour Research
Fellow (2012-2013) by the Commonwealth Government of Australia, a
Smart Futures Fellow (2012-2015) by the Queensland Government of Aus-
tralia, and a JSPS Invitational Fellow jointly by the Australian Academy
of Science and Japanese Society for Promotion of Science (2014-2015).
He is the Vice Chair of the IEEE Northern Australia Section. He was an
Editor for IEEE Communications Letters (2015-2017), and is currently an
Associate Editor for IEEE Internet of Things Journal and IEEE Access.
He has published over 250 peer-reviewed papers including 3 books and
180 journal articles. He has severed in a large number of international
conferences in the capacity of General Co-Chair, TPC Co-Chair, Symposium
Chair, etc. His research interest includes the Internet of Things, wireless
communications, machine learning for IoT data analytics, and computer
vision.

NATHAN WALTHAM Dr. Nathan Waltham com-
pleted his PhD in Coastal Marine Science at Grif-
fith University (Australia). Since joining James
Cook University, he has continued to develop a
deep research interest on the tropical coastal and
marine environments, focusing on understanding
and solving the most important management and
conservation challenges facing humans now, and
into the future. He is a Senior Principal Research
Scientist with TropWATER - Centre for Tropical

Water and Aquatic Ecosystem Research and Senior Lecturer in Marine Sci-
ence. He is currently a Queensland Government and Smithsonian Research
Fellow, and is regularly invited to deliver lectures to government, industry
and community on coastal marine science and restoration. He is an Associate
Editor for Estuaries and Coasts, and has previous won a BHERT (Business
Higher Education Round Table) award in 2019 for a long standing research
partnership with a major port authority in Queensland (North Queensland
Bulk Ports).

12 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3202975

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://spectrum.ieee.org/underwater-manta-kites-tidal-power-harvesting
https://spectrum.ieee.org/underwater-manta-kites-tidal-power-harvesting


Jahanbakht et al.: Dist. DL in the Cloud and Proc. at the Edge for Fish Segm. in Underwater Videos

MOSTAFA RAHIMI AZGHADI (S’07–M’14–
SM’19) completed his PhD in Electrical & Elec-
tronic Engineering at The University of Adelaide,
Australia, earning the Doctoral Research Medal,
and the 2015 Adelaide University Alumni Medal.
He is currently a senior lecturer at the College of
Science and Engineering, James Cook University,
Australia, where he researches Machine Learning
software and hardware design for a variety of
applications including automation, precision agri-

culture, aquaculture, marine sciences, mining, and medical imaging. His
research has attracted over $0.7 Million in funding from national and
international resources.

Dr. Rahimi Azghadi was the recipient of several accolades including a
2015 South Australia Science Excellence award, a 2016 Endeavour Research
Fellowship, a 2017 Queensland Young Tall Poppy Science Award, a 2018
Rising Star ECR Leader Fellowship, a 2019 Fresh Science Queensland
finalist, and a 2020 Award for Excellence in Innovation and Change. He
is a Senior Member of the IEEE and serves as an Associate Editor of IEEE
ACCESS.

VOLUME 4, 2016 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3202975

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


	Introduction
	Fish Segmentation
	Modified U-Net Architecture
	DeepFish Dataset

	Distributed Training
	Cloud-based Distributed Computer Systems
	Distributed Training Results

	Underwater Edge Computing
	Energy Management at the Edge
	Reducing power consumption at the edge
	Energy harvesting
	Energy-efficient underwater communications

	Edge Inferencing Results
	Edge Inferencing Speed

	Conclusion
	REFERENCES
	Mohammad Jahanbakht
	Wei Xiang
	Nathan Waltham
	Mostafa Rahimi Azghadi


