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ABSTRACT

Context. Although increases in macroalgal cover on coral reefs are often reported alongside
declines in coral, the composition of algal assemblages and their spatial dynamics are not
commonly investigated. Aims. To quantify changes in macroalgal assemblage composition over
two spatial environmental gradients, depth and distance from shore, within a nearshore reef
system in Kimbe Bay, Papua New Guinea, where coral cover has declined. Methods. Benthic
cover was quantified at three depths (reef flat, 10 and 15 m) on the windward reef slopes of six
reefs located three distances from shore (fringing reefs, and platform reefs 100–200 m and
0.7−1 km offshore). Key results. Macroalgal cover was highest on the reef flat, and assemblage
composition varied among depths and distances from shore. Macroalgal cover was not correlated
with coral cover except where macroalgal cover was greater than 20%, where a negative correlation
occurred. There was no correlation between macroalgal cover and turf algal cover. All three
benthic groups were negatively correlated with the combined total cover of sand and gravel.
Conclusions. These results indicated a fine-scale spatial structure of macroalgal assemblages on
coral reefs over a narrow depth range and short distance from shore and highlighted the
importance of a solid substratum. Implications. It is likely that the ecological interactions
between corals and macroalgae vary considerably over narrow spatial gradients.

Keywords: benthic community, depth distribution, macroalgal diversity, marine ecology, Padina,
Sargassum, terrestrial runoff, Turbinaria.

Introduction

Coral reef ecosystems are faced with a host of anthropogenic threats that are on the rise, 
including climate change and associated thermal bleaching events (Hoegh-Guldberg 
1999; Hughes et al. 2018; Babcock et al. 2021) and the severity of storms (Bender et al. 
2010), as well as more local impacts such as terrestrial runoff (Rogers 1990; Fabricius 
2005) and overharvesting (Hughes 1994; Hughes et al. 2007). As a consequence, there 
is evidence of declining coral cover and increasing cover of algae, often their primary 
competitors, on coral reefs around the globe (e.g. Hughes 1994; Graham et al. 2015; 
Souter et al. 2021). In extreme cases, coral reef ecosystems have undergone phase-shifts 
from coral dominant reefs to reefs dominated by macroalgae (Hughes 1994; Mumby 
2009) or non-scleractinian invertebrates (Norström et al. 2009). These alternative stable 
states can be reinforced through feedback mechanisms, such as reductions in coral 
recruitment, that make returning to coral dominance unlikely (Mumby 2009; Dell et al. 
2016; Johns et al. 2018). The switch from a coral-dominated to a macroalgal state can 
have adverse effects on reef ecosystems, including reductions in reef stability (Done 
1992) and shelter availability (Pratchett et al. 2008), declines in the abundance of coral-
dependent species (Jones et al. 2004; Munday 2004; Baker et al. 2008), changes in fish 
community structure (Bellwood et al. 2006, 2012) and declines in fish diversity (Jones 
et al. 2004; Chong-Seng et al. 2012). 

The community structure of organisms on coral reefs typically varies along spatial 
gradients, such as depth, reef zone and distance from shore. This is due to a number of 
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physical and biological variables that also vary along 
these gradients, including light intensity, water quality, 
wave action, and herbivory, each of which can affect 
macroalgal abundance and composition. Light penetration 
rapidly decreases with depth, with this gradient being more 
pronounced on high-turbidity, poor water-quality reefs 
(Morgan et al. 2020) or reefs close to mainland shores 
(Fabricius 2005; De’ath and Fabricius 2010). Wave energy 
also decreases with depth (Gourlay 1994), and because 
coral reefs are effective dissipators of wave energy (Ferrario 
et al. 2014), reef habitats closer to shore or behind the 
reef crest tend to be more protected than are their more 
exposed offshore counterparts. Wave energy can also interact 
with water quality, as sheltered conditions may exacerbate 
the deposition of suspended sediments and the concentra-
tion of nutrients (Wolanski et al. 2005; Ceccarelli et al. 
2020). Herbivorous fish feeding activity also varies spatially 
in reef systems and is typically highest in shallow habitats on 
offshore reefs (Russ 1984; Brokovich et al. 2010; Cheal et al. 
2013). The influence of each of these variables on macroalgae 
depends on morphological and taxonomic differences in 
requirements for light (Markager and Sand-Jensen 1992; 
Leukart and Lüning 1994; Gómez and Huovinen 2011) and 
water quality (McCook et al. 1997; Schaffelke and Klumpp 
1998; Umar et al. 1998), as well as susceptibility to wave 
dislodgement (Dudgeon and Johnson 1992; Starko et al. 
2015) and herbivory (Hay 1981a; Marques et al. 2006; 
Mantyka and Bellwood 2007). 

Few studies have quantified patterns in the abundance 
and assemblage composition of macroalgae across spatial 
gradients on coral reefs. On the Great Barrier Reef (GBR), 
the brown alga Sargassum is most abundant on inner shelf 
reefs, whereas it is absent on outer shelf reefs, where 
macroalgae are less abundant in general and dominated by 
red and green algae (Done 1982; McCook 1996; McCook 
et al. 1997). Increasing dominance of red algae with 
increasing distance from the coast has also been observed 
in the Pilbara Coast, Western Australia (Olsen et al. 2018). 
In Panama, during the 1980s, the shallow feeding activity 
of herbivorous fishes was inferred to be responsible for the 
restriction of some macroalgal taxa to the sand plain below 
the reef slope, despite it otherwise being a suboptimal 
environment owing to a lack of stable substratum for 
holdfast attachment (Hay 1981a). Both depth and coastline 
distance were found to be important drivers of macroalgal 
assemblage composition in French Polynesia (Adjeroud 
1997). Such spatial patterns in macroalgal composition and 
abundance are important to consider, because they influence 
the likelihood, magnitude and ecological effects of macroalgal 
overgrowth on degrading reef communities. 

Given the high spatial variability and taxonomic specificity 
of macroalgal abundance, it is clear that the prevalence of 
macroalga–coral interactions will also be spatially variable 
(Brown et al. 2018). In addition, macroalgae may compete 
for space with other forms of algae, such as algal turfs 

(Haas et al. 2010; Khalil et al. 2017), mixed assemblages 
of small, filamentous and fleshy algae, and early stages of 
macroalgae (Scott and Russ 1987). It is important to 
examine the inter-relationships among macroalgal, coral and 
turf cover, so as to assess whether and where these organisms 
are interacting (Barott et al. 2009; Haas et al. 2010; O’Brien 
and Scheibling 2018). Macroalgae, corals and turf algae 
may also respond in different ways to physical gradients in 
turbidity and sediment deposition (Airoldi 1998; Fabricius 
2005; McCook 2001); however, these relationships have 
not commonly been quantified. 

In the past three decades, the coastal reefs of Kimbe Bay, 
Papua New Guinea, have experienced multiple disturbances, 
including coral bleaching, increasing sedimentation from 
terrestrial runoff and crown of thorns starfish outbreaks, 
which have led to declines in coral cover (Brodie and Turak 
2004; Jones et al. 2004; Chin et al. 2008; Souter et al. 2021). 
Effects appear to be worse in the coastal fringing reefs where 
land use is high (Brodie and Turak 2004). Despite recent 
increases in macroalgal cover in Kimbe Bay (G. P. Jones, 
pers. obs.), research into the algal assemblages present has 
been scarce, and has largely focused on fish–algae interactions 
within small, shallow areas defended by territorial dam-
selfishes (e.g. Ceccarelli et al. 2005; Ceccarelli 2007; Eurich 
et al. 2018). In this study, we examined spatial patterns in 
the cover and assemblage composition of macroalgae on 
inshore reefs in Kimbe Bay. Across these spatial gradients, 
we also examined whether macroalgal cover was related to 
the cover of other benthic organisms, such as corals and turf 
algae, or sediments (such as sand or gravel), which may limit 
the availability of stable substratum for attachment (Hay 
1981a). The following specific questions were addressed: 
(1) how does the cover and assemblage structure of 
macroalgae vary by depth, reef zone and distance from 
shore; and (2) are the spatial patterns in macroalgal cover 
related to those of corals, turf algae and sand–gravel? 

Materials and methods

Study site and field methods

This research was conducted in Kimbe Bay, on the northern 
coast of West New Britain, Papua New Guinea, during 
November 2019. The sheltered inner bay consists of a 
dense network of platform and fringing reefs. The reefs 
investigated in this study are situated adjacent to the 
Mahonia Na Dari Research Centre on the western boundary 
of the bay (5°26 0S, 150°5 0E). Of these, two reefs were 
selected randomly from each of three distances from shore: 
fringing reefs, platform reefs between 0.1–0.2 km from 
shore (termed ‘mid’) and platform reefs 0.7–1 km from shore 
(termed ‘outer’; Fig. 1). Although the furthest distance is just 
~1 km from shore, we know from a sediment-monitoring 
project conducted in the area that there is a substantial 
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Fig. 1. Location of study sites in Kimbe Bay, West New Britain, Papua New Guinea. Coordinates
of sites are as follows: Walindi Fringing Reef, 5°26 07″S, 150°5 016″E; Mahonia Fringing Reef,
5°26 022″S, 150°5 025″E; Gava Gava, 5°26 017″S, 150°5 032″E; Matane Huva, 5°26 039″S, 150°5 044″E;
Luba Luba, 5°25 050″S, 150°5 049″E; Limuka, 5°26 015″S, 150°5 051″E.

reduction in suspended sediments over this distance (G. P. 
Jones, unpubl. data). 

Macroalgae were surveyed at three depth isoclines at each 
reef, namely, the reef flat (~5 m behind the crest), and depths 
of 10 and 15 m on the windward reef slope. These depths were 
chosen because preliminary observations showed that 
macroalgae would be detected at all three depths, but 
would be only very seldomly encountered on shallower 
parts of the reef slope. At each depth, five replicate 20-m 
transects were surveyed, each transect being separated by 
at least 5 m, with the starting position of the initial transect 
and the direction of swimming chosen haphazardly. Ten 
photo-quadrats of ~1 m2 were taken at 2-m intervals along 
each transect, with a 50-cm ruler placed on the benthos in 
the centre of each photograph for scale. In total, 900 
photographs were captured using a GoPro Hero 2018 
camera by using the ‘wide’ frame setting. 

Image analysis

Photo-quadrats were analysed to determine the percentage 
cover of macroalgae and other benthic groups. Cover was 
calculated by overlaying each photograph with 25 random 
points and identifying the benthic organism or substratum 
directly beneath each point. Macroalgae were identified to 
the lowest taxonomic level possible. All live hard corals 
were pooled together, as were algal turfs (identified in photos 
as small filamentous and fleshy algae with no observable 

plant-like structure) and unconsolidated substrates (sand 
and gravel). 

Data analysis

Mixed-effects, nested ANOVAs with three factors, namely 
depth, distance from shore (both fixed factors), and site 
nested within distance (random factor), were performed 
to examine spatial effects on the percentage cover of 
macroalgae, hard corals, algal turf and sand–gravel, by 
using the mean percentage cover per transect as input data. 
According to Quinn and Keough (2002), the following 
method was used to improve power because of the low sample 
sizes used: where P-values greater than 0.25 indicated that the 
random factor site or its interaction with depth did not differ 
from the residual, a ‘pooled error’ term was used to test 
the fixed factors depth and distance. This pooled error term 
was calculated by summing the sum of squares of the 
residual with the sum of squares of the random factors or 
interactions that did not differ from it. The same was 
performed for the degrees of freedom, which allowed 
calculation of a pooled mean square, which could be used 
in F- and P-value calculations (Quinn and Keough 2002). 
For macroalgal species that were absent from the reef flat, 
the reef-flat data were excluded from the ANOVA. For 
macroalgal species found only on the reef flat, the depth 
factor was dropped from the ANOVA and only reef-flat data 
were included. If a species was completely absent from a 
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particular distance from shore, data from that distance were 
excluded from the ANOVA. Where the assumptions of 
normality and homogeneity of variance were not met, 
square-root or log(x + 1) transformations were made. 
Where assumptions were still not met after transformation, 
ANOVAs were performed using the transformation that 
achieved the highest Shapiro–Wilk’s test P-value, given that 
ANOVA is usually robust when the sampling design is 
balanced (Quinn and Keough 2002; Underwood 1997). The 
potential associations between coral cover, macroalgal cover, 
turf algal cover and their combined total, as well as those 
among these living substrata and sand–gravel cover were 
tested using Pearson’s product–moment correlations. Data 
were square-root or log(x + 1) transformed if necessary. 
Spatial patterns in macroalgal assemblage composition 
were examined using non-metric multi-dimensional scaling 
(NMDS) using a Bray–Curtis dissimilarity matrix of the 
Wisconsin double-standardised percentage cover of each 
depth within each site for all macroalgal taxa. Overplotting 
was avoided by rounding the NMDS scores to two decimal 
places and applying random horizontal and vertical variation, 
with a maximum of 15% of the resolution of the rounded data. 

All analyses were performed using the software R (ver. 3.6.1, 
R Foundation for Statistical Computing, Vienna, Austria, 
see https://www.r-project.org/) and the ‘vegan’ package 
(ver. 2.4-1, Oksanen et al., see https://CRAN.R-project.org/ 
package=vegan, accessed 19 May 2021) was used to 
conduct NMDS analysis. 

Ethical approval

This work was conducted in compliance with the James Cook 
University Animal Ethics Committee regulations (ethics 
approval number A2659). 

Results

Cover of all macroalgae, algal turf, live coral and
sand–gravel

The percentage cover of all macroalgae combined varied 
significantly among depth strata (Table 1), with cover on 
the reef flat being ~2.5 times higher, on average, than on 

Table 1. Results of mixed effects, nested ANOVAs (three factors: distance, site and depth, with site nestedwithin distance and treated as a random
factor) on benthic substrata.

Benthic substratum Distance Site Depth Distance × depth Site × depth Residual

Total macroalgae

d.f. 2 3 2 4 6 72

MS 25.94 4.10 33.26 7.61 5.23 1.46

F 6.33 2.81 6.36 1.45 3.59

P 0.084 0.045 0.033 0.324 0.004

Algal turfA

d.f. 2 3 2 4 6 72, 81

MS 1763.76 16.24 1229.46 1178.83 59.69 128.03

F 108.58, 14.84 0.13 20.60, 10.35 19.75, 9.92 0.47

P 0.002, <0.001 0.944 0.002, <0.001 0.001, <0.001 0.831

Hard coral

d.f. 2 3 2 4 6 72

MS 18.50 9.56 7.03 8.08 8.62 1.41

F 1.94 4.89 0.82 0.94 6.29

P 0.288 0.004 0.486 0.502 <0.001

Sand–gravelA,B,C

d.f. 2 3 2 4 6 72, 78

MS 41.32 1.34 0.39 3.41 0.63 0.68

F 30.78 1.97 0.63, 0.58 5.04 0.92

P 0.010 0.126 0.565, 0.561 0.034, <0.001 0.486

Bold P-values indicate significance at α = 0.05 for fixed terms, α = 0.25 for random terms.
ATwo values are given because random terms tested at P> 0.25 and were pooled with the residual as denominators for F-tests. The first value is the original, the second
the result after pooling.
BFailed inspection for homogeneity of variance using Tukey–Anscombe and scale-location plots, cautionary results.
CFailed visual inspection for normality of residuals using QQ plot despite transformation, cautionary results.
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the reef slope. Distance from shore did not have a significant 
effect on the cover of all macroalgae and there was no 
significant interaction between depth and distance from 
shore. There were significant site effects: the site with the 
lowest macroalgal cover was Walindi fringing reef and the 
site with the highest cover was Gava Gava, one of the ‘mid’ 
reefs (Fig. 2). There was a 4.5-fold difference in macroalgal 
cover between the reef flats of these two reefs. There was a 
significant interaction between site and depth (Table 1), 
with depth-related patterns in macroalgal cover clearly not 
consistent among sites. For instance, macroalgal cover was 
generally highest on the reef flat and declined with an 
increasing depth, but this was not seen at the ‘outer’ reef 
Luba Luba (Fig. 2). 

The percentage cover of algal turf was generally higher 
than both coral and macroalgal cover. Turf cover differed 
significantly among distances from shore and among depths, 
and there was a significant interaction between distance from 
shore and depth, but there were no significant differences 
among sites and no interaction between site and depth 
(Table 1). The percentage cover of algal turf was highest on 
the ‘outer’ reef flats, with 62% cover, and lowest at 15 m 
on the fringing reefs, with 18% cover (Fig. 2). Elsewhere, 
turf cover was consistently high, ranging between 40 and 
50% (Fig. 2). 

Live coral cover did not differ significantly among 
depths or distances from shore, but there were significant 
differences among sites and a significant interaction between 
site and depth (Table 1). Coral cover was highly variable 
among sites and site-related patterns were not consistent 

among depths. On the reef flat, coral cover ranged from 
almost complete absence at the Mahonia fringing reef to 
30% at the Walindi fringing reef (Fig. 2). At 10 m, whereas 
Gava Gava had 28% coral cover, the other sites had 
between 15 and 22%, and, at 15 m, the coral cover ranged 
from 3 to 4% at the two fringing reefs to 34% at Matane 
Huva. Coral cover was higher than macroalgal cover at 
most sites and depths, except for the reef flats of Mahonia, 
Gava Gava and Matane Huva, and the reef slope at 15 m at 
Luba Luba. 

Sand–gravel cover differed significantly among distances 
from shore, but not among depths, and there was a 
significant interaction between distance from shore and 
depth (Table 1). The ‘mid’ and ‘outer’ reefs had similar 
sand–gravel cover across all depths, whereas on the fringing 
reefs, sand–gravel cover was greater at 15 m than it was in the 
shallower depths (Fig. 2). Sand–gravel cover was also higher, 
on average, at the fringing reefs (Table 1, Fig. 2). 

Correlations among macroalgae, turf algae, coral
and sand–gravel

When all data were included, there were no significant 
correlations between macroalgal cover and coral cover 
(r = −0.04, P = 0.712, d.f. = 88), turf cover and macroalgal 
cover (r = 0.09, P = 0.394, d.f. = 88), and turf cover and 
coral cover (r = 0.07, P = 0.543, d.f. = 88). The cover of 
macroalgae and turf algae combined was also not correlated 
with coral cover (r = −0.05, P = 0.662, d.f. = 88). However, on 
transects where macroalgae was above 20% (n = 17), there 

Fig. 2. Mean percentage cover (±s.e.) of (a) all macroalgal taxa combined, (b) turf algae, coral (c) and (d) sand–gravel, at each site
and depth.
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was a significant negative correlation between macroalgal 
and coral cover (r = −0.53, P = 0.027, d.f. = 15). 

Macroalgal cover, coral cover and turf cover were each 
negatively correlated with the cover of sand–gravel 
(macroalgae: r = −0.38, P < 0.001, d.f. = 88, coral: 
r = −0.57, P < 0.001, d.f. = 88, turf: r = −0.40, P < 0.001, 
d.f. = 88; Fig. 3). 

Fig. 4. Mean percentage cover (±s.e.) of macroalgal taxa at each of
the three depths.
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Species-specific patterns in macroalgal cover

Most of the of the commonly encountered macroalgal taxa 
were not present at one or two depths and at some 
distances from shore. A Dictyota species, a Padina species 
and a galaxaurid species (Family Galaxauraceae) were 
found only at 10 and 15 m (Fig. 4) and were not found on 
the fringing reefs. For these three species, there were no 
significant differences in percentage cover between 10- and 
15-m depths and between ‘mid’ and ‘outer’ distances 
from shore, but there were significant differences among 
sites (Table 2). Two species of Turbinaria (T. ornata and 
T. decurrens), two species of Sargassum (S. siliquosum and 

Fig. 3. Correlations between the percentage cover of (a) coral,
(b) macroalgae and (c) algal turf, and the percentage cover of sand–
gravel. Each point represents a transect (n = 90).

morphologically distinct from Padina on the reef slope, 
were found only on the reef flat (Fig. 4). Two of these 
species, namely T. decurrens and S. cristaefolium, were not 
found on the fringing reefs, and one of them, S. siliquosum, 
was absent from the ‘outer’ reefs. Aside from these 
complete absences, there were no significant differences in 
cover among distances from shore for any macroalgal 
species (Table 2). There were significant differences among 
sites for all species except S. siliquosum (Table 2). 

Macroalgal assemblage structure

The separation in macroalgal assemblage composition 
between the reef flat and the slope was strong, whereas the 
two reef-slope depths were comparatively similar (Fig. 5a). 
Reef-flat assemblages were loosely grouped by distance from 
shore, with similarities in reef-flat macroalgal assemblages 
between the two ‘mid’ reefs and between the two ‘outer’ 
reefs. However, the two fringing reef flats did not group 
together (Fig. 5b), owing to Padina having high cover at 
the Mahonia fringing reef flat, and low cover at the Walindi 
fringing reef flat. On the reef slope, the fringing reefs 
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Table 2. Results of mixed-effects, nested ANOVAs (three factors: distance, site and depth, with site nested within distance and treated as a
random factor) on macroalgal taxa.

Macroalgal taxon Distance Site Depth Distance × depth Site × depth Residual

Padina-SA,B,C,D

d.f. 1 2 1 1 2 32

MS 0.24 5.66 3.69 0.38 1.14 0.74

F 0.04 7.66 3.23 0.33 1.55

P 0.856 0.002 0.214 0.622 0.228
A,B,C,DDictyota

d.f. 1 2 1 1 2 32

MS 0.01 3.48 0.19 0.05 1.37 0.52

F 0.00 6.74 0.14 0.03 2.64

P 0.957 0.004 0.747 0.872 0.087

GalaxauridA,C,D

d.f. 1 2 1 1 2 32

MS 8.57 3.96 1.09 0.48 0.65 0.40

F 2.16 9.85 1.67 0.74 1.62

P 0.279 <0.000 0.325 0.480 0.214

Turbinaria decurrensB,C

d.f. 1 2 NA NA NA 16

MS 0.09 7.43 NA NA NA 0.56

F 0.01 13.21 NA NA NA

P 0.922 <0.001 NA NA NA

T. ornata

d.f. 2 3 NA NA NA 24

MS 17.20 33.10 NA NA NA 9.42

F 0.52 3.51 NA NA NA

P 0.640 0.031 NA NA NA

Padina-FC,D

d.f. 2 3 NA NA NA 24

MS 5.14 9.41 NA NA NA 0.81

F 0.55 11.65 NA NA NA

P 0.628 <0.001 NA NA NA

Sargassum cristaefoliumB,C,D

d.f. 1 2 NA NA NA 16

MS 1.36 1.93 NA NA NA 0.24

F 0.70 7.92 NA NA NA

P 0.490 0.004 NA NA NA

S. siliquosumC,D,E,F

d.f. 1 2 NA NA NA 16, 18

MS 0.24 0.84 NA NA NA 0.64, 0.66

F 0.29, 0.37 1.31 NA NA NA

P 0.643, 0.551 0.298 NA NA NA

Other macroalgae

d.f. 2 3 2 4 6 72

MS 5.19 1.92 7.73 2.00 1.27 0.39

(Continued on next page)
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Table 2. (Continued).

Macroalgal taxon Distance Site Depth Distance × depth Site × depth Residual

F 2.69 4.94 6.07 1.57 3.27

P 0.214 0.004 0.036 0.295 0.007

Padina-S, Padina species found only on the reef slope. Padina-F, Padina species found only on the reef flat. Bold values indicate significance at α = 0.05 for fixed terms,
α = 0.25 for random terms. NA, not applicable, because the species was found only on the reef flat and depth was not included in analysis.
ADepths included in analysis were 10 m and 15 m only.
BFringing reefs excluded from analysis.
CFailed visual inspection for normality of residuals using QQ plot, cautionary results.
DFailed inspection for homogeneity of variance using Tukey–Anscombe and scale-location plots, cautionary results.
EOffshore reefs excluded from analysis.
FTwo values are given because random term tested at P> 0.25 andwas pooled with the residual as a denominator for the F-test. The first value is the original, the second
the result after pooling.

grouped together (Fig. 5), because of their macroalgal 
assemblages being predominantly composed of macroalgae 
that were not able to be identified (included in ‘other 
macroalgae’). 

Discussion

Macroalgae were a prominent feature of the substratum 
on the inshore reefs of Kimbe Bay, with cover exceeding 
that of coral at some sites and depths. Overall cover of 
macroalgae was comparable to levels found on inshore 
fringing reefs of the GBR (Ceccarelli et al. 2020). Macroalgal 
cover varied among depths, being consistent with findings 
from other studies conducted in the Indo-Pacific (e.g. 
Adjeroud 1997; Fabricius 2005), with highest cover being 
on reef flats, reaching a maximum of 60% on some transects. 
Unlike studies conducted over broader spatial scales (e.g. 
Adjeroud 1997; Schaffelke et al. 2005; Olsen et al. 2018), 
overall macroalgal cover did not vary with distance from 
shore, although there was considerable variation among 
sites at this spatial scale. Macroalgal assemblage composition 
differed both among depths and with distance from shore, 
which is similar to the findings of several other studies (e.g. 
Done 1982; Adjeroud 1997), with a unique assemblage 
being dominated by Turbinaria, Sargassum and occasional 
large stands of Padina on the reef flat. Several species were 
completely absent from the fringing reefs and one species 
was absent at the furthest distance from shore. Contrary to 
other studies (e.g. Ceccarelli et al. 2020), negative correla-
tions between macroalgal cover and coral cover, turf cover 
and coral cover, or macroalgal cover and turf cover were not 
observed when all data were included. However, macroalgal 
and coral cover were negatively correlated where macroalgal 
cover exceeded 20%, a threshold observed by Ceccarelli et al. 
(2020), above which such correlations were strong on the 
inshore GBR. In addition, all three benthic categories were 
negatively correlated with the cover of sand–gravel, 
suggesting, as others have (e.g. Hay 1981a; Brown et al. 
2018), that the availability of consolidated substratum may 

be an important driver of spatial patterns of algae and other 
coral reef organisms attached to hard substrate. 

Macroalgal depth distribution

Depth played an important role in determining spatial 
patterns in macroalgal cover and structuring macroalgal 
assemblages on inner reefs in Kimbe Bay. Depth often plays 
a strong role in structuring tropical benthic assemblages 
because of factors such as decreasing light and turbulence 
with increasing depth (Veron 2000; Jacobucci et al. 2011), 
as well as changes in herbivory (Costa et al. 2002). The reef 
flat, an environment of high light intensity and wave 
action, typically had the highest macroalgal cover, 
with the brown algal family Sargassaceae, particularly two 
species of Turbinaria, consistently being found there and 
sometimes reaching high densities. 

Macroalgal species of the reef flat were typically strongly 
attached by holdfast, whereas the three dominant macroalgae 
on the reef slope were loosely attached and more delicate. 
Whereas the majority of macroalgae found on the reef flat 
were non-calcifying, calcifying taxa occurred at greater 
proportions on deeper transects. These included a galaxaurid 
and a lightly calcifying Padina species, both found at some 
platform reef sites in large, loose mats, which were 
completely absent on the reef flat. Benthic communities at 
isolated coral reefs in the Pacific, despite having much 
lower overall macroalgal cover than those in Kimbe Bay, 
have also demonstrated decreasing fleshy macroalgal cover 
and increasing calcified macroalgae, particularly Halimeda, 
with depth (Williams et al. 2013). Vulnerability to dislodge-
ment by waves may be the shared characteristic between 
Halimeda in that study (Williams et al. 2013) and the 
Padina and galaxaurid species observed in this study, which 
explains their preference for deeper environments. In 
contrast, the flexible yet strongly attached nature of the 
species found on the reef flat (e.g. Turbinaria spp.) allows 
them to withstand moderate wave action (Stewart 2008). 
In addition, their exposure to waves and the high buoyancy 
of their blades and stipes allow transportation to and 
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grazing at the crest, and declines both towards the back 
reef and with increasing depth (Fox and Bellwood 2007), 
although habitat preferences for grazing differ somewhat 
among herbivore families (Russ 1984). Although light is
potentially limiting for algal species living in deeper 
environments, there is likely to be some depth at which 
macroalgae are afforded a refuge from predation (Hay 
1981a). This may be the reason that reef-slope macroalgal 
patches were present at depths of 10 m and greater but
were largely absent from the shallower parts of the reef 
slope. Quantitative assessments of herbivory on these reefs 
are required, to determine whether this process has played 
a role in shaping the depth distributions of macroalgae. 

Macroalgae and distance from shore

Overall, macroalgal cover did not vary with distance from 
shore. Macroalgae in other regions, such as the GBR, have 
been shown to increase in cover with proximity to nutrient-
rich, high-turbidity coastal areas (e.g. Done 1982; Schaffelke 
et al. 2005; McClure et al. 2019), and also to increase in 
species richness (De’ath and Fabricius 2010). This is likely 
to be related to the large differences in scale between the

Fig. 5. Macroalgal assemblage structure of the three depths and the
six sites, colour-coded by depth (a) and distance from shore (b). Points
represent non-metric multidimensional scaling (NMDS) based on Bray–
Curtis dissimilarity index ofWisconsin double-standardised percentage
cover, averaged within depth strata within each site (n = 5). Random
noise added in horizontal and vertical directions at 15% of resolution
when NMDS scores were rounded to two decimal places. k = 2,
stress = 0.091.

present study and previous work. For example, cross-shelf 
gradients on the GBR occur at scales of tens to hundreds of 
kilometres (e.g. Schaffelke et al. 2005), which is multiple 
orders of magnitude greater than in the present study. 
Even so, there were assemblage-composition changes along 
this gradient, driven mainly by the complete absences of 
several macroalgal taxa on the fringing reefs. Additionally, 
Sargassum siliquosum was absent from outer reefs 0.7–1 km  
from shore. Macroalgae such as Sargassum can undergo 
substantial temporal changes to their biomass (Martin-Smith 
1993; Fulton et al. 2014) and may have been detected more 
readily with a longer sampling period. However, as Kimbe
Bay is equatorial, there is very little variation in temperature, 
and the major seasonal changes are in rainfall (Brodie and
Turak 2004). The temporal dynamics of macroalgae have

colonisation of new shallow areas after intense wave action 
(Stiger and Payri 1999; Stewart 2008). 

The drivers of these depth distributions require further 
investigation. Herbivore biomass and grazing rates often 
vary among different habitats and depths within coral reefs 
(e.g. Russ 1984; Lewis and Wainwright 1985; Fox and 
Bellwood 2007), and experimental studies have shown that 
this may have important consequences on the distribution 
of macroalgae (Hay 1981a; Lewis 1986). Some researchers 
have documented a peak in grazing below the first 1–2 m,  
where wave motion ceases to interfere with feeding by 
fishes, and a decline with depth (Hay 1981b; Vergés et al. 
2009; Brokovich et al. 2010). Others have found a peak in 

yet to be examined in this area; however, they are likely to 
differ, for example, from those on the nearby GBR, given 
the mild seasonality and non-dominance of Sargassum 
observed here. 

Correlations among major substratum types

Our study found no significant overall correlation between 
macroalgal cover and coral cover, but the presence of such 
a correlation in other studies has been shown to depend on 
the level of macroalgae involved. For instance, Ceccarelli 
et al. (2020) found significant negative correlations between 
macroalgae and coral at several, but not all, sites on the GBR, 
and that the correlations were strongest where macroalgal 
cover was higher than 20%. In Kimbe Bay, in the present 
study, macroalgal cover was typically lower than this value 
(site averages ranged from 5.8 to 20.1%, overall average 
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was 11.5%). However, where macroalgal cover did exceed 
20% cover, a negative correlation between macroalgal and 
coral cover was observed. Beyond certain thresholds of 
macroalgal cover, coral cover and herbivory, effects by 
macroalgae on corals such as shading, abrasion (McCook 
et al. 2001), allelopathy and inhibition of recruitment 
(Johns et al. 2018; Evensen et al. 2019), and on fishes such 
as suppression of herbivory (Dell et al. 2016), may reach 
levels where feedback loops are strong enough to prevent 
coral recovery and maintain macroalgal dominance (Mumby 
2009). On the basis of the correlation between coral and 
macroalgal cover where macroalgal cover was higher than 
20%, such a threshold may be exceeded in some areas of 
Kimbe Bay. However, further investigation into coral–algal 
dynamics in the Bay is required before the cause of this 
relationship can be identified. 

As in this study, algal turfs are often a major component 
of reef benthic assemblages, in both tropical and temperate 
regions (Connell et al. 2014), occupying more space than 
does coral even on many isolated Pacific reefs with no 
direct human impact (Vroom et al. 2005, 2006). Turfs were 
found in almost all surveys in an examination of algal 
distributions across the GBR (McCook et al. 1997). Like other 
benthic organisms, algal turfs may be heavily influenced by 
water-quality gradients and may increase in inshore environ-
ments with higher levels of nutrients and sediments (Fabricius 
2005). However, a cross-shelf comparison of epilithic algal 
assemblages on the GBR showed that algal tissue production 
may be higher at offshore v. inshore sites (Russ and McCook 
1999). In this case, cover, rather than production, followed a 
similar pattern, albeit on a much smaller spatial scale; the 
highest cover of turf algae occurred on the reef flat of outer 
reef sites, and the lowest cover occurred at 15 m on the 
fringing reefs. This may indicate that terrestrial 
influences, such as sediments, are above turf tolerance 
thresholds (Tebbett et al. 2018) at the innermost sites 
surveyed. 

The cover of turf algae was not found to be correlated with 
that of macroalgae in this study, and in contrast to several 
previous studies, turf algal cover was also not correlated 
with coral cover (Fabricius 2005; Teichberg et al. 2018). 
Algal and coral interactions do not always favour algae 
(McCook et al. 2001; Swierts and Vermeij 2016), even on 
reefs with high terrestrial influence (McCook 2001). It 
appears in this case that effects of algae on coral and vice 
versa are relatively weak compared with other drivers of 
their abundance. 

The role of sediment

Limited availability of stable substrata may be responsible for 
some of the benthic distribution patterns observed with 
distance, because there were significant negative correlations 
between macroalgal, turf algal and coral cover and sand– 
gravel cover. Cover of benthic organisms was highly 

variable at low sand–gravel cover, but macroalgal, turf, and 
coral cover were always low where sand–gravel cover was 
at its highest. Sand–gravel cover on the fringing reef slopes 
was very high relative to that on the platform reefs and the 
macroalgal taxa that characterised the reef slopes elsewhere 
were absent. This was especially true at 15 m, where sand 
cover reached very high levels on the fringing reefs, and 
macroalgae, coral and turf were minimal in cover. Unlike 
seagrasses, which have true root systems, algae are generally 
unable to anchor in soft sediments (Diaz-Pulido and McCook 
2008). Even the loosely attached algal mats of Padina, the 
galaxaurid and Dictyota found on the slopes of some 
platform reefs were found only on harder, more complex 
substrates, which may prevent them from drifting away in 
currents (Alfaro et al. 2009). Additionally, it is likely that 
the higher level of turbidity found on the fringing reefs 
(K. Webber, pers. obs.) caused light availability to decrease 
more rapidly with depth (Fabricius 2005; Morgan et al. 
2020) and contributed to the declines in macroalgae, turf 
and coral on the fringing reef slopes. Therefore, examining 
these organisms at the spatial scale of the present study 
highlighted patterns of terrestrial influence that contrasted 
with those observed at larger spatial scales. Namely, limited 
availability of solid substrata and reduced light limited the 
abundance of each of these groups at the innermost reefs of 
this study. Turbidity and the deposition of sediments are 
likely to vary greatly with seasonal rainfall cycles at this 
location (Brodie and Turak 2004), and further investiga-
tion into the temporal dynamics of sediments and their 
relationship with benthic organisms may be necessary for 
Kimbe Bay. 

Conclusions

These results highlighted that macroalgae on coral reefs 
can be highly spatially dynamic. This dynamism can occur 
on fine scales with depth, distance from shore, and with 
the availability of suitable substrata. Furthermore, both 
abundance and assemblage composition of macroalgae can 
change dramatically along these gradients, indicating that 
assessing this diverse group purely with metrics such as 
‘total macroalgal cover’ may ignore potentially important 
patterns. Finally, despite higher levels of macroalgae in 
Kimbe Bay than in the recent past (G. P. Jones, pers. obs.), 
a lack of an overall correlation between macroalgal and 
coral cover appears to indicate that macroalgae are not 
directly jeopardising coral reef development at most sites 
within this location. However, at some sites, macroalgal 
cover did exceed a level where a negative correlation with 
coral cover became apparent. This implies that, in Kimbe 
Bay, adverse effects on corals by macroalgae are likely to 
be small in comparison to the effects of global and local 
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anthropogenic stressors, although macroalgae may add 
further stress at some, high macroalgae sites. 
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