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application in conservation planning by comparison 
to an alternative approach that used individual disper-
sal data.
Results CSC correlated significantly with total 
patch occupancy across the entire landscape in our 
metapopulation simulation, while being much faster 
and easier to calculate. Standard conservation plan-
ning software (Marxan) using dispersal data was 
weaker than CSC at capturing locations with high 
cross-scale connectivity.
Conclusions Metrics that measure pattern across 
multiple scales are much faster and more efficient 
than full simulation models and more rigorous and 
interpretable than ad hoc incorporation of connectiv-
ity into conservation plans. In reality, connectivity 
matters for many different organisms across many 
different scales. Metrics like CSC that quantify land-
scape pattern across multiple different scales can 
make a valuable contribution to multi-scale landscape 
measurement, planning, and management.

Keywords Dispersal · Configuration · Network · 
Scale · Metapopulation · Conservation planning

Introduction

One of the most challenging problems for land-
scape ecology, and its applications in conservation, 
has been to find reliable ways of quantifying spa-
tially structured ecological processes (Calabrese and 

Abstract 
Context Connectivity between habitat patches is 
vital for ecological processes at multiple scales. Tra-
ditional metrics do not measure the scales at which 
individual habitat patches contribute to the overall 
ecological connectivity of the landscape. Connectiv-
ity has previously been evaluated at several different 
scales based on the dispersal capabilities of particular 
organisms, but these approaches are data-heavy and 
conditioned on just a few species.
Objectives Our objective was to improve cross-
scale measurement of connectivity by developing and 
testing a new landscape metric, cross-scale centrality.
Methods Cross-scale centrality (CSC) integrates 
over measurements of patch centrality at different 
scales (hypothetical dispersal distances) to quantify 
the cross-scale contribution of each individual habitat 
patch to overall landscape or seascape connectivity. 
We tested CSC against an independent metapopula-
tion simulation model and demonstrated its potential 
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Fagan 2004; Minor and Urban 2007; Moilanen 2011; 
Magris et  al. 2016; Kininmonth et  al. 2019; Daigle 
et al. 2020). Some ecological processes, such as pho-
tosynthesis or nitrogen fixation, happen at relatively 
small scales and can be easily included in models and 
conservation approaches by the inclusion of appropri-
ate habitat types (e.g., forests or wetlands). Others, 
however, occur across many different scales and are 
heavily influenced over long time periods by spatial 
structure (including both the composition and the 
configuration of the land- or seascape at any given 
scale; Turner et  al. (2001)). Examples of spatially 
structured ecosystem processes include dispersal, pre-
dation, nutrient subsidies, gene flow, and contagious 
perturbations such as fire and disease transmission. 
Although these processes are generally described and 
analysed under the banner of connectivity problems, 
available data and ecological understandings of how 
they occur are often inadequate for multi-scale quan-
tification and conservation planning. For instance, 
telemetry studies often focus on a small number of 
larger species (e.g., Gredzens et  al. 2014; Lea et  al. 
2016; Mazor et al. 2016). Habitat preferences during 
dispersal, and the relevance of matrix properties for 
dispersal, are poorly understood for most terrestrial 
organisms (and unknown for many marine organisms; 
Pittman et  al. (2021)) and in addition to their long-
standing interest in landscape ecology (Cowen et al. 
2006; Prugh et  al. 2008; Foster et  al. 2012), remain 
active areas of research (Reis-Filho et al. 2019; San-
José et al. 2019; Sanches et al. 2022), making it chal-
lenging to transfer results from in-depth analyses 
between different locations.

Most applications of connectivity analysis are 
developed at a single scale (grain and extent) of 
analysis (Lagabrielle et al. 2009; Tognelli et al. 2009; 
Grantham et  al. 2011; Malcolm et  al. 2011; Magris 
et  al. 2017). In conservation planning, for example, 
the choice of planning scale is often determined by 
available data (Guerrero et al. 2013), such as satellite 
imagery or oceanographic modelling, that have con-
straints on grain size, extent, or both. Once a planning 
unit resolution and plan extent have been selected 
and implemented, re-extraction of the data and re-
estimation of the results at a different scale require a 
considerable amount of additional GIS or modelling 
processing and time. Planning exercises thus become 
rapidly locked in to particular scales of analysis that 

are appropriate for some but not all relevant ecosys-
tem processes.

Patches that are critical for connectivity may be 
of at least two different types. One, the traditional 
highly connected patch, will be frequently colonized 
by virtue of being near to many other suitable habitat 
patches (Saura and Pascual-Hortal 2007). The other, 
a stepping stone patch, may show lower individual 
occupancy but is critical for overall landscape con-
nectivity because it connects two clusters of patches 
that would otherwise be separated (Saura et al. 2014). 
These two different connectivity contributions them-
selves occur at two different scales in both space and 
time, with highly connected patches being more likely 
to be occupied at any point in time (and supporting 
higher population densities) while stepping-stone 
patches make their main contributions to the overall 
occupancy of the entire landscape (Lindenmayer and 
Fischer 2006). Classical patch-specific nearest neigh-
bour and clumpiness metrics measure the first type of 
connectivity but not the second.

Other existing metrics provide information about 
the relative contribution of each patch to the overall 
connectivity of the landscape (Calabrese and Fagan 
2004). They include such measures as the probabil-
ity of propagule or larval self-retention for each patch 
(White et  al. 2014), the contribution of each patch 
to metapopulation growth rates (Jacobi and Jonsson 
2011), and network-level metrics such as eigenvec-
tor centrality (Watson et  al. 2011) or betweenness 
centrality (Magris et  al. 2016). Centrality metrics 
derived from spatial network analysis (Borgatti et al. 
2009; Cumming et al. 2010) have been gaining trac-
tion in the conservation literature (Treml et al. 2008; 
Galpern et al. 2011; Saura et al. 2014; Magris et al. 
2016; Engelhard et al. 2017). For example, between-
ness centrality, which is measured as the number of 
times a patch occurs on the shortest path between 
any other two patches in the network (Minor and 
Urban 2007), has been shown to be a reliable proxy 
for long-term persistence in marine systems (Magris 
et al. 2018). However, even these network-based met-
rics are usually calculated at only one or a few scales 
based on telemetry or mark-recapture data (Fletcher 
et al. 2011; Finn et al. 2014) that dictate the degree to 
which a given array of habitat patches is considered 
interconnected.

Since a continuous distance (rather than a bimodal 
variable, patches connected or not connected) can be 
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used to estimate connectivity in network analysis, 
scale can be incorporated in geographic network anal-
ysis as a continuous variable by changing the thresh-
old distance beyond which a dispersal event is consid-
ered possible or likely. For example, if an animal has 
been shown to disperse up to 10 km away from suit-
able habitat, distances from 0 to 10 km can be used 
to define a colonisation probability; patches further 
than 10  km apart can only be connected via a third 
patch which falls within 10  km of each. If another 
animal using the same habitat network is capable of 
dispersing up to 30 km away from suitable habitat, it 
will perceive the network as being more connected. 
Ideally, measures of connectivity that are intended to 
support community-level analyses or outcomes (such 
as habitat conservation by a network of protected 
areas, or maintenance of ecological functions that are 
underpinned by animals with a range of body sizes 
and dispersal capabilities) should incorporate a range 
of different perspectives on what constitutes connec-
tivity rather than focusing on connectivity for a single 
species (Maciejewski and Cumming 2015).

Estimates of patch contributions to landscape con-
nectivity have important real-world implications for 
conservation. Connectivity measures derived from 
network analysis have already been included via some 
conservation planning support tools, such as Marxan, 
prior to generating spatial conservation plans (e.g., 
Jacobi and Jonsson 2011; Watson et al. 2011; White 
et al. 2014; Magris et al. 2018; Friesen et al. 2019). 
This approach has the potential benefit of including 
connectivity as one of several alternative conserva-
tion priorities in an optimization algorithm. Doing so 
enables connectivity to be treated as another goal and 
traded off against other objectives (e.g., high local 
biodiversity or inclusion of endangered species) in 
conservation plans (Magris et  al. 2017). The inclu-
sion of connectivity via Marxan has not, however, 
been tested across multiple scales or compared to 
results from network analysis.

In this paper we propose that rather than seeking 
to identify locations that contribute optimally to net-
work connectivity at a single scale, the patch that is 
most important for the integrity of a network will be 
the one that offers the greatest overall contribution to 
network connectivity over a full range of biologically 
meaningful scales. The relative multi-scale contribu-
tions of different patches can therefore be measured 
by calculating network centrality across a range of 

different scales and summing the outcome. The vari-
ance in these values provides an index of the varia-
tion in the contributions of the patch across scales. To 
explore the validity and a potential application of this 
approach we undertook a validation exercise using (1) 
a metapopulation simulation model and (2) a com-
parison to the most promising alternative approach, 
using Marxan. In both cases the application and value 
of cross-scale centrality (CSC) measures was strongly 
supported, suggesting that they can offer a useful and 
relatively simple, efficient approach to measuring 
and incorporating connectivity in landscape ecology 
research and applications, such as analyses of metap-
opulation dynamics or conservation planning.

Methods

We combined simulation models and conservation 
planning software (Fig.  1) to (1) determine whether 
CSC correlates significantly with overall patch occu-
pancy; and (2) explore how CSC metrics relate to 
alternative approaches, specifically the use of Marxan 
conservation planning software.

Simulation model

We used the Metalandsim package (Mestre et  al. 
2016) in R software (R Core Team 2020) to simulate 
metapopulation growth through different hypotheti-
cal landscapes and igraph (Csardi and Nepusz 2006) 
to measure patch (node) centrality for each habitat 
patch. Metalandsim provides a relatively easy trans-
lation between network and spatially explicit render-
ings of landscapes, making it easy to both calculate 
network metrics and simulate population growth 
and persistence in the same modelling environment. 
The package creates simulated landscapes using a 
set of parameters that define various aspects of land-
scape structure. To test the value of cross-scale net-
work measurements under different conditions, we 
kept the total area and number of patches constant 
(respectively, 5000  m × 5000  m and 200 patches) 
across the 100 different simulated landscapes used 
for the study. Other parameters were either fixed or 
varied as described in Table 1, based on starting val-
ues suggested in the Metalandsim documentation. In 
particular, different organisms living within and using 
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the same landscape at different scales were simulated 
using different dispersal parameters. To maintain 
transparency and interpretability, we did not attempt 
to modify colonisation, extinction, or patch size-
dependent properties.

Metalandsim functions were applied using two 
slightly different sequences of operations. First, we 
defined a simulated landscape as a network using 
Rland.graph (Fig.  2). We altered dispersal distances 

within the network using convert.graph to redefine 
linkages between habitat patches. Each resulting 
graph was converted to an igraph network for meas-
urement of the different patch centrality properties.

Second, to determine the role of each habitat patch 
in metapopulation viability, the network from the 
first step was used in span.graph and simulate.graph 
to simulate the metapopulation processes of increase 
and dispersal. The simulate.graph function was run 

Fig. 1  Summary of our approach. The analysis included two 
phases: first, establishing whether cross-scale centrality meas-
ures for individual patches offer a reasonable surrogate for 
metapopulation persistence, based on proportional patch occu-
pancy across each landscape; and second, comparing results 
from cross-scale betweenness centrality to those from an alter-

native approach to identifying ecologically critical patches, 
using Marxan conservation planning software. Red and blue 
arrow indicated nested loops. We first obtained patch occu-
pancy estimates across a range of dispersal distances, then 
repeated the analysis at the same distances on a different (ran-
domly generated) landscape
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twenty times per individual landscape, covering each 
of the same dispersal distances for which network 
measures were calculated. The occupancy of each 
patch across all twenty of these runs was summed. 
Values are summed across different scales, not within 
a single scale, and so the sum reflects the full range 
of dispersal distances contingent on each individual 
dispersal distance. This can be viewed as a process 
of integrating across the uncertainty in the dispersal 
and colonisation parameters for dispersal distance; 
we effectively consider all possible distances, and the 
uncertainty is higher for longer distances. The sum is 
therefore the appropriate metric for integration.

To test the ability of CSC measures to capture 
highly connected patches, we then compared the pro-
portional occupancy of each patch (i.e., proportion of 
model runs in which the patch was occupied) to its 
nodal centrality (summed across all hypothetical dis-
persal distances) within the network. We did this by 
calculating both parametric and non-parametric cor-
relation coefficients and p values for the relationship 
between proportional occupancy and a selection of 
four nodal centrality measures (closeness, degree, 
eigenvector, and betweenness centrality respectively) 
for each patch across each of the 100 simulated 
landscapes.

Table 1  Parameter settings used in Metalandsim to create hypothetical landscapes to determine whether cross-scale network metrics 
can predict patch occupancy, as generated by a standard metapopulation simulation model

Since the objective of this exercise was to test the validity of cross-scale centrality measures for a community composed of organ-
isms with differing dispersal capabilities, most parameters were kept constant across runs to facilitate comparison and interpret-
ability. The code could easily be tailored to fit specific systems or to explore additional questions beyond the scope of this particular 
manuscript (e.g., the relevance of patch size variation or lower extinction rates for longer-dispersing organisms)

Metalandsim function Metalandsim parameter Explanation: what the parameter defines Value(s) used

Rland.graph mapsize Length of one side (area) 5000 m
Rland.graph Dist_m Minimum distance between patches 20 m
Rland.graph AreaM Mean patch area 0.8Ha
Rland.graph AreaSD Desired SD of patch area 0.2Ha
Rland.graph Npatch Number of habitat patches 200
Rland.graph disp Initial distance between patches at which to 

consider them ‘connected’; later adjusted using 
alpha parameter in simulate.graph

300 m

Species.graph Method = ’number’ Method by which landscape is seeded with indi-
viduals at start of simulation

10 occupied patches for all runs

Span.graph Span (all other param-
eters in this function 
set to ‘none’ or 
NULL)

Number of time steps over which metapopulation 
dynamics were simulated

200 years for all runs

Simulate.graph alpha Dispersal distance for a given species, applied 
in the landscape created using Rland.graph 
(captured in code as 1/dispersal.dist)

Varied from 100 to 1050 m in 
steps of 50 m across 20 runs

Simulate.graph x Extinction likelihood relative to patch area 
(extinction is less likely in larger patches)

0.5

Simulate.graph y Colonization probability 2
Simulate.graph e Extinction 0.4
Simulate.graph kern = "op1", 

conn = "op1", 
colnz = "op1", 
ext = "op1"

Various parameters describing incidence func-
tion. ‘Op1’ (Option 1, a simple negative expo-
nential kernel function) was used in all cases

Convert.graph disp Used to estimate cross-scale shifts in connectiv-
ity of graph by rebuilding existing graph links 
based on disp. Restructures metapopulation 
graph by allowing dispersal between patches 
based on the specified incidence function

Varied 50–1000 m in steps of 50
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To further clarify, because confusion is possible 
here, we aggregated individual nodal centrality meas-
ures across dispersal distances for each individual 
landscape but we did not aggregate patch central-
ity measures between different landscapes. Instead, 
we compared centrality to patch occupancy for each 
landscape and aggregated results across landscapes 
using correlation coefficients. The mean and devia-
tion of the correlation coefficient and p value across 
all 100 model runs were used as a measure of how 
well each cross-scale centrality measure predicted 
patch occupancy.

In interpreting the simulation results, it is impor-
tant to note that we have simulated only a simple, 
classical random patch distribution. The relative value 
of different nodal centrality measures will depend to 
some extent on the properties of the landscape being 
analysed. Comparisons of occupancy individually by 
patch do not test directly for stepping stone connec-
tivity. Theory suggests that stepping stone patches 
should exhibit high betweenness centrality (i.e., the 
patch should appear on the shortest path between two 
other patches more frequently than expected). Distin-
guishing between high direct connectivity and step-
ping stone connectivity influences on metapopulation 
simulation results (in the real world, where stepping 
stones are often islands in a sea of cleared land, indi-
vidual patches are unlikely to have high scores in both 

metrics) is challenging without the use of patch cen-
trality measures that have been explicitly designed 
for this purpose. Thus, we have presented both 
degree centrality and betweenness centrality in our 
worked example even though the simulation results 
favour degree centrality, trusting in a body of widely 
accepted theory that indicates that betweenness cen-
trality is a superior measure of stepping stone con-
nectivity (Bodin and Norberg 2007; Zetterberg et al. 
2010; Boulanger et al. 2020). We would continue to 
recommend the usage of betweenness centrality as a 
CSC metric in  situations where stepping stone con-
nectivity is important; we did not simulate highly 
non-random networks, in which stepping stones are 
important.

Real-world data and connectivity metrics

To compare the uses of CSC in conservation planning 
to the strongest alternative, we used a real-world data 
set derived from Brazilian coral reefs. These reefs 
are among the highest conservation priority areas in 
the Atlantic Ocean, due to their high levels of end-
emism and unique geomorphologic formation, which 
are significantly different from the well-known coral 
reef ecosystems of the Caribbean and Indo-Pacific 
regions (Leão and Dominguez 2000). We used spatial 
data about demographically significant dispersal links 

Fig. 2  Example of a simu-
lated 5 × 5 km landscape 
showing 200 habitat patches 
of different sizes. Patches 
that are interconnected by 
a hypothetical organism 
with a maximum dispersal 
distance of 500 m are joined 
by links. X and Y axes (in 
km) indicate the coordi-
nates of each patch
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(i.e., those that maintain populations) between coral 
reefs to represent connectivity in Marxan (Magris 
et al. 2016) and for this scale of analysis, treated each 
coral reef as a single habitat patch. Connectivity is 
defined as the likelihood that, for each modelled spe-
cies, larvae from a natal reef are able to reach a neigh-
bouring or nonadjacent reef. Connectivity was mod-
elled using daily data on ocean currents from 2008 
to 2012 (Atlantic RTOFS) and reproductive strategy 
information (timing of reproduction and pelagic lar-
val duration) for four model species that captured a 
range of species dispersal potential (a brooder coral, 
a broadcast spawning coral, a roving herbivorous fish, 
and a large carnivorous fish). The yearly connectiv-
ity matrices were averaged to produce an asymmetric 
connectivity matrix for each modelled species. These 
reef-based connectivity matrices were summarised 
at the patch (reef) level by considering all individual 
reef polygons adjacent to each other. The network of 
potential habitat for the four modelled species com-
prised 42 patches; their adjacency was measured in 
GIS from the centres of polygons overlaid on each 
reef. Further details of the parameterization of larval 
simulations can be found in Magris et al. (2016).

Three metrics were calculated from the connec-
tivity matrix for each modelled species: (i) outflux, 
which is related to the source strength of a patch 
and its ability to sustain the populations of sur-
rounding units through its outgoing connections; (ii) 
local retention, which is associated with the degree 
to which a patch is self-sustaining in isolation and, 
hence, should be protected; and (iii) betweenness cen-
trality, which is related to the ability of stepping-stone 
patches to control fluxes, and help spread risk against 
disturbances. The approach assumes that simultane-
ously representing all these connectivity surrogates 
will promote persistence in a proposed spatial config-
uration of reserves; specifically, patches where indi-
viduals replace themselves as closed populations and 
sites that are critical for the movement of individuals 
in a network.

Connectivity matrices from all four model species 
were used to calculate larval fluxes, adapting the for-
mula of Urban and Keitt (2001):

where, fij is the expected dispersal flux from patch i 
to patch j , pij is the probability of settling on patch 

(1)fij =
si

stot
× pij

j from i, si is relativized as the proportion of total 
habitat area stot . We then summed all fluxes for all 
outgoing links to determine out-flux for each particu-
lar patch. We measured local retention for each patch 
as the diagonal elements of connectivity matrices. 
Betweenness centrality was measured as indicated 
above (i.e., the number of times an area occurs on the 
shortest path between any other two areas in the net-
work (Minor and Urban 2008)).

Marxan analysis

Our connectivity metrics were related to replenish-
ment of larvae, increased potential recovery, and the 
capacity of reefs to be self-sustaining. We computed 
a cumulative distribution curve for the values of each 
conservation feature and used the top third of reef 
patches for each of the three connectivity metrics to 
derive the minimum amounts to be targeted in the 
prioritisation (i.e., targets or objectives). The prior-
itisation objectives were defined by calculating the 
percentage that top-ranked reef patches contributed to 
the total values of each metric.

We ran Marxan under two different sets of assump-
tions (Table  2) to explore whether different under-
standings about what needs to be protected would 
influence the patches identified by Marxan as criti-
cal for connectivity. The program uses a simulated 
annealing algorithm to find the most parsimonious 
combination of sites (usually specified as planning 
units of a regular size and shape) defined in a plan-
ning exercise. It bases its site selection on both accu-
mulating desired proportions of individual features 
(e.g., conserving 40% of known occurrences of par-
ticular species or habitats) and avoiding costs (e.g., 
minimizing land price or opportunity cost). In finding 
solutions it incrementally solves a multivariate opti-
mization problem, starting with a random selection of 
planning units and gradually improving on its start-
ing point by including or excluding planning units. 
Simulated annealing includes a level of stochastic-
ity in its incremental approach to help the program 
to avoid becoming stuck at a locally optimal solu-
tion and instead, to identify a global optimum. Since 
Marxan does not necessarily identify the same opti-
mal solution every time it is run, we followed stand-
ard practice of running Marxan 100 times under each 
set of assumptions and counting the number of times 
each patch was selected for inclusion in the reserve 
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network as a measure of that patch’s contribution to 
ecological processes. These values were used to eval-
uate differences in the spatial distribution of priority 
areas by comparing the spatial distribution of areas 
identified through the betweenness centrality scenario 
against the scenario targeting all metrics. Patches 
with selection frequencies > 75 were identified as 
high priorities.

Network analysis for real-world data

To quantify changes in connectivity with scale, we 
used the geographic distance between individual reef 
patches to generate networks at different scales rang-
ing from 20 to 1800 km in steps of 20 km (i.e., at the 
20 km scale a link was assigned to every pair of reef 
patches located within 0–20 km from one another; at 
40 km, 0–40 km; and so on). This generated 90 dif-
ferent networks. The mean distance between all pairs 
of individual patches was 627 km; by 1800 km, each 
patch was directly connected to all other patches.

We defined ecological scale as the potential for 
a dispersal event beyond a given distance. In geo-
graphic analyses, centrality usually changes with 
scale because changing the distance over which 
patches are considered to be connected alters the 
pattern of connections. We therefore calculated cen-
trality measures for each of our different patches 
for each individual scale. The selection of a range 
of sampling distances is based on the properties 
of individual landscapes. Typically, a plot of the 
value of a network centrality measure against the 
distance at which patches are considered connected 
will increase gradually with increasing dispersal 
distance and then reach an asymptote. We see little 
value in including measures at distances beyond this 

asymptotic value, which sets a natural upper limit 
on the range of dispersal distances to include in a 
given analysis.

As a single, multi-scale measure of each patch’s 
contribution to network connectivity, we summed 
all centrality measures for that patch across all net-
works, and hence across all ecological scales. This 
provided a single Cross-Scale Centrality (CSC) 
value for each of the 42 patches (individual reefs) in 
the analysis.

Comparing results

To contrast CSC and the results from Marxan, we 
compared the number of times each patch (reef) was 
selected for inclusion into the reserve network by 
Marxan (from 100 runs) against its CSC value. The 
Marxan results for our coral reef data set were mostly 
binary (i.e., individual patches were either selected 
in 100% of runs or 0% of runs, although not in every 
case). We thus used boxplots and a standard ANOVA, 
rather than correlations, to compare the means and 
deviations of CSC between included and excluded 
patches. If Marxan were actively selecting patches 
with higher connectivity across multiple scales, we 
would expect that included patches had significantly 
greater CSC values than excluded patches.

Lastly, we calculated the Spearman’s correlation 
between the centrality metric at a certain disper-
sal threshold and the proportion of times the patch 
was included in the reserve network by Marxan. We 
plotted these correlation values against all disper-
sal thresholds. If Marxan genuinely captured net-
work connectivity across multiple scales, we would 
expect this line to be high and flat, indicating a strong 

Table 2  Different assumptions underpinning the two different Marxan runs

Marxan run Conservation features Cost Logic

1 Betweenness or degree centrality for four modelled spe-
cies (brooder coral, broadcast coral, snapper, surgeon-
fish)

Coral reef area Plan focused on betweenness centrality; if 
Marxan deals effectively with scale for 
different species, this should correspond 
closely to our cross-scale betweenness 
centrality

2 Outflux, betweenness or degree centrality and local 
retention for four modelled species (brooder coral, 
broadcast coral, snapper, surgeonfish)

Coral reef area Plan based on selecting areas with high 
local retention (self-sustaining strength), 
high exporting capacity (source 
strength), and centrality with respect to 
the entire network (“corridor” strength)
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correlation with centrality at all potential dispersal 
distances.

Results

Simulation analyses

The simulation analyses suggested that simple 
cross-scale degree centrality (i.e., the number of 
links incident on a patch) was the strongest corre-
late of the frequency of individual patch occupancy 

(Fig.  3 and Table  3). An ANOVA by groups indi-
cated that there were significant differences in the 
correlations of different CSC metrics to patch occu-
pancy (F = 81.7, Df = 3, p < 0.0001). A Tukey’s 
multiple comparison of means test showed that all 
groups were significantly different from each other 
(p < 0.000) except for eigenvector and betweenness 
centrality, which were not significantly different 
(p < 0.12).

This result provides clear support for the hypoth-
esis that patches that are highly connected across a 
range of different scales will also contribute the most 

Fig. 3  Boxplot showing 
the mean and deviation of 
Spearman’s correlations 
between different patch cen-
trality measures and propor-
tional patch occupancy in a 
metapopulation model. The 
width of each small hori-
zontal bar is proportional 
to the number of points it 
contains. All metrics cor-
related significantly with 
metapopulation occupancy 
(Table 3); letters above 
bars indicate similarities or 
differences between metrics 
based on an ANOVA and 
Tukey’s HSD Test, as 
explained in the text 0.0
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Table 3  Statistical details for the Pearson’s and Spearman’s correlations between each of the four cross-scale patch centrality meas-
ures and patch occupancy for each of 20 different dispersal distances summed across 100 different landscapes

We report both metrics here because data were not normally distributed, but there were many ties (making rank-order correlations 
less nuanced)

Cross-scale centrality measure Pearson’s corre-
lation coefficient

Pearson 
probability 
(p <)

Spearman’s 
correlation coef-
ficient

Spearman 
probability 
(p <)

Closeness (reciprocal of sum of the length of the shortest paths 
between focal patch and all other patches)

0.38 0.003 0.48 0.000

Betweenness (number of shortest paths across network that pass 
through the patch)

0.23 0.041 0.4 0.000

Eigenvector (Patch influence based on connections to high-scor-
ing patches)

0.26 0.038 0.54 0.000

Degree (number of links incident on a patch) 0.44 0.0001 0.63 0.000
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to the persistence of a diversity of metapopulations, 
meeting typical conservation objectives. Keeping 
in mind that our simulation networks did not delib-
erately include critically important stepping stone 
patches, the weaker performance of betweenness cen-
trality here is presumably due to its focus on overall 
network flow and the higher weighting that it will 
give to stepping stone patches relative to those that 
are in the centres of clumps of patches.

Marxan analysis of reef data

The Marxan analysis showed that targeting either 
betweenness centrality or all metrics simultane-
ously resulted in a large number of patches being 
selected for conservation (Fig.  4). About 73% 
of areas identified as high-priority overlapped 
between the two Marxan scenarios. When we 

included all connectivity metrics in Marxan, 80% 
of the study region was identified as having prior-
ity for conservation.

Network analysis of reef data

The connectivity of the network changed substan-
tially with scale (Fig.  5). As would be expected, 
cross-scale betweenness centrality within the net-
work was unevenly distributed, showing network-
specific idiosyncrasies.

Comparing results for reef data

The Marxan and CSC results showed relatively lit-
tle correspondence, with Marxan excluding several 
patches (e.g., patch numbers 8, 32, 31) with high 

Fig. 4  Spatial distribution of high priority coral reefs for each 
scenario using Marxan. In A, patches coloured in red repre-
sent priorities (selection frequency > 75) when maximizing 
betweenness centrality metric only. In B, patches coloured 

in black represent priorities (selection frequency > 75) when 
maximizing all connectivity metrics. Unfilled patches were not 
selected as priorities by Marxan. Inset map shows the location 
of our study region in the southwestern Atlantic Ocean
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CSC values. Our results show a largely bimodal pat-
tern of conservation importance when using Marxan 
in the prioritisation: with a few exceptions, patches 
were mostly either selected or excluded from the spa-
tial solutions (Fig.  6). Reefs selected for inclusion 
by Marxan did not differ significantly in their CSC 
from those that were excluded (Fig.  7). The lowest 

p value, for degree centrality in scenario 1, was still 
an unconvincing 0.28 (F = 1.22, df = 40). Across all 
different measures the mean F-statistic and p value 
were respectively F = 0.63, p = 0.50 (Scenario 1) and 
F = 0.26, p = 0.66 (Scenario 2). Marxan thus did not 
preferentially select patches with higher CSC and 
hence, based on the independent validation provided 

Fig. 5  Network graph generated using the geographic dis-
tance matrix at four different scales: a 100  km, b 500  km, c 
1000  km, and d 1500  km. This figure shows how both over-
all network connectivity and the contributions of individual 

patches to network connectivity depend on assumptions about 
the scale of dispersal. Our approach integrates over the ‘nui-
sance variable’ of scale by summing contributions to connec-
tivity over a range of scales
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Fig. 6  Comparisons of a the average of 100 Marxan runs 
focusing on betweenness centrality and the CSC metric, cal-
culated independently using network analysis; and b the aver-
age of 100 Marxan runs focusing on optimizing all different 
criteria and the CSC metric. Marxan produces nearly identical 

results in both scenarios. Similar outcomes also occur when 
Marxan results are compared to other centrality metrics, here 
using Marxan optimization across all criteria: c degree central-
ity, d closeness centrality, and e eigenvector centrality



2267Landsc Ecol (2022) 37:2255–2272 

1 3
Vol.: (0123456789)

by our simulation results, did not reliably capture 
multi-scale metapopulation patch occupancy.

Finally, consideration of the Spearman’s correla-
tion between centrality and Marxan runs (using all 
criteria, but assuming that dispersal was limited to 
particular distances), showed that Marxan provided 
good inclusion of connectivity at a few scales but 
performed poorly at other scales (Fig.  8). There 
was reasonable inclusion of connectivity at coarser 
scales (over 1700  km) but considerable variation 
in between, and in relation to different centrality 
measures.

Discussion

Overall, our results show that measures of cross-
scale connectivity derived from network analysis 
can identify the habitat patches that are most criti-
cal for the persistence of an entire community of 
organisms with differing dispersal capabilities. 
Individual patches with higher cross-scale central-
ity (CSC) metrics were proportionally more occu-
pied in metapopulation simulations covering a full 
range of different dispersal capabilities. The distinc-
tions between different kinds of network measures 
and their ability to capture different kinds of con-
nectivity are important to recognize and understand, 
and we propose that the choice of metric should be 

(a) (b)

(c) (d)

Fig. 7  Boxplots comparing CSC values (y axis) for different 
reefs and centrality measures against the number of times they 
were selected by Marxan (x axis) for inclusion in the reserve 
network. Data are shown for Scenario 1: a betweenness cen-
trality; b degree centrality; c closeness centrality; and d eigen-

vector centrality. For Scenario 2: e betweenness centrality; f 
degree centrality; g closeness centrality; and h eigenvector 
centrality. As reported in the text, ANOVA tests indicated that 
none of the means of CSC values for the different groups were 
significantly different
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based primarily on theory and the specific details of 
the kind of connectivity that is of greatest interest in 
a given study. Cross-scale degree centrality emerged 
here as the most promising centrality measure, sug-
gesting that the ability of a patch to form individual 
linkages at multiple scales is more important for 
its individual metapopulation occupancy than its 
overall contribution to landscape connectivity. It is 
likely, however, that degree centrality is less effec-
tive than other measures in non-random landscapes, 
particularly where several larger clusters of patches 
have just a few critically important ‘stepping stone’ 
connections. Testing how our findings apply under 
different levels of patch dispersion and randomness 
would be an obvious next step in determining the 
optimal measure(s) of CSC to apply in real-world 
studies.

Although progress has been made in improving 
connectivity modelling in the last decade (Bodin 
and Saura 2010; Kool et  al. 2013), many regions 
lack spatially explicit connectivity information and 
the required skill set involved is often daunting. The 
results of our simulation models demonstrate that 
CSC measures provide a reasonable surrogate for 
metapopulation occupancy in realistic situations 
where metapopulations of many species, with differ-
ent dispersal capabilities, co-occur within a single 
landscape. Although it would be possible to apply 
our approach to a specific landscape and repeat the 
simulations under the specific geographic configu-
ration of a given location, our analysis suggests that 
this is unnecessary; the vast majority of simulations 
indicated a significant correlation between CSC and 
metapopulation occupancy over time.

(e) (f)

(g) (h)

Fig. 7  (continued)
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The second section of our analysis, the real-world 
case study application, suggested that including small 
amounts of dispersal data in conservation planning 
tools does not provide an adequate solution to includ-
ing multiple scales of ecological connectivity in con-
servation planning exercises. The value of including 
dispersal data from telemetry or other sources may be 
higher when landscape structure is complex and dis-
persal pathways are convoluted. Conservation plans 
are often developed at a single grain and extent of 
analysis (Leslie 2005; Guerrero et al. 2013; Álvarez-
Romero et al. 2018). Methods to design protected area 
networks using connectivity information have prolif-
erated in the literature (Luque et al. 2012; Kool et al. 
2013; Burgess et al. 2014; Magris et al. 2014; Balbar 
and Metaxas 2019). Although this body of literature 
has dealt with challenging practical problems of man-
aging ecological processes in a regional setting, there 
has been little evidence for how patterns of conser-
vation importance vary across multiple scales. In our 
analysis, seeking to protect ecological processes that 
are important for coral reefs without capturing mul-
tiple-scale variability did not appear to consistently 
achieve good outcomes. A more robust prioritization 
approach for coral reef conservation that has no limit 
on how many scales can be addressed in the same pri-
oritization problem is more likely to provide protec-
tion for species over different spatial scales.

Multi-scale approaches to landscape connectivity 
measurement and conservation planning are neces-
sary for conservation to maintain ecologically func-
tional landscapes that protect species with different 
habitat needs and dispersal abilities (Poiani et  al. 
2000) as well as to understand multi-scale impacts 
arising from land-use change and global warming 
(Dilts et al. 2016). Although this need has been rec-
ognized conceptually for more than 20  years (Keitt 
et al. 1997; Poiani et al. 2000; Sanderson et al. 2002), 
rigorous multi-scale measures of habitat connectivity 
have proven elusive. Cross-scale centrality measures 
can quantify consistent connections over time (Treml 
et  al. 2008), including both classical and stepping 
stone connections, and help identify critical pathways 
for maintaining functionally connected local popula-
tions even of long-distance dispersers (Saura et  al. 
2014; Magris et  al. 2016). Our approach could be 
further extended to evaluate how the relative impor-
tance of each patch would change with temporal 
variability in connectivity in response to disturbances 
(Bodin and Saura 2010); further research is needed 
to determine whether CSC, or a time series of CSC 
based on fluctuations in landscape permeability, can 
offer a robust tool to inform conservation across tem-
poral scales. Additional metrics, such as nestedness 
and modularity, may also be necessary to capture 
other aspects of habitat morphology (Cumming 2002; 
Moore et  al. 2016). Lastly, replacing a geographic 

Fig. 8  Comparison of the 
correlation between differ-
ent centrality metrics and 
the results from Marxan 
Scenario 2 for different 
assumed dispersal dis-
tances. This figure shows 
how the Marxan approach 
captured connectivity 
unevenly across scales 
as well as demonstrating 
some of the differences 
between different centrality 
measures. Line colours are 
red, betweenness centrality; 
dark blue, closeness central-
ity; pale blue, eigenvector 
centrality; and gold, degree 
centrality
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straight line with an estimate of habitat resistance or 
permeability can allow the approach to be tailored to 
situations in which the properties of the matrix may 
be a key element of system dynamics (Calder et  al. 
2015; Peterman et al. 2019).

For landscape measurement and conservation 
planning we therefore derive two clear recommen-
dations. First, estimating CSC for each patch offers 
a useful guideline to the multi-scale contributions of 
each individual patch to connectivity and metapopu-
lation persistence within the system. Second, unless 
the scales of connectivity between patches are very 
well known and clearly defined, including connec-
tivity estimates via Marxan (or other conservation-
planning tools) is insufficient. Our approach can eas-
ily be used with Marxan in a complementary manner, 
with the analyst including CSC metrics transparently 
in the development of a plan by adding or excluding 
locations that respectively make important or trivial 
contributions to connectivity. CSC measures are fast 
to estimate and intuitive to understand; and since 
they are not strongly tied to a single grain of analy-
sis, they can be easily recalculated at different grains 
and under different assumptions. CSC thus meets the 
main criteria required for a useful landscape metric: 
it is easily measured, efficient to calculate, interpret-
able, and can be genuinely related to a mechanism. 
Transparency and interpretability in conservation 
planning, and its ability to easily consider a range of 
alternative solutions, will be particularly important in 
trying to balance different planning objectives (e.g., 
the tradeoffs between financial and ecological con-
siderations). As the discipline of landscape ecology 
advances, we anticipate that measures that consider 
the multi-scale nature of the real world and seek to 
quantify landscape properties across a range of differ-
ent scales will be increasingly important.
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