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A B S T R A C T   

Giant grouper (Epinephelus lanceolatus) is an emerging aquaculture species in Southeast Asia and Australia with 
limited knowledge of its nutrient requirements and effects of supplements on its physiology. The present study 
investigated the effects of astaxanthin, vitamin E, and combinations on growth performance, body coloration, 
and the antioxidant status of juvenile giant grouper. Nine isonitrogenous (crude protein = 65 % ± 0.7 %) and 
isolipidic (crude lipid = 10 % ± 0.3 %) diets were formulated using a 3 × 3 factorial design, including three 
levels astaxanthin (0, 75, and 150 mg/kg) and vitamin E (0, 250, and 500 mg/kg), respectively. Each of the nine 
diets was fed to triplicate groups of 15 giant grouper (18.04 ± 0.92 g) for 30 days. Giant grouper fed the different 
diets exhibited no significant differences (p > 0.05) in specific growth rate (4.87 %/day - 5.21 %/day). However, 
dietary astaxanthin supplementation significantly enhanced the redness (a*), yellowness (b*b*), chroma, and hue 
values of the fin, regardless of the dose supplemented. Giant grouper fed astaxanthin at 75 and 150 mg/kg diet 
were more yellow and had three times higher b* values than fish fed non-supplemented diets. Further, total 
antioxidant capacity (TAC; mmol Trolox equivalent) in liver tissues was significantly increased in fish fed any of 
the astaxanthin-supplemented diets (p ≤ 0.05). In contrast, TAC levels were not affected by vitamin E supple-
mentation. Malondialdehyde (MDA) levels were not significantly (p > 0.05) affected by astaxanthin or vitamin E. 
Findings from this study will contribute toward a better understanding of the dietary effects of antioxidant and 
pigment in juvenile giant grouper. We present that dietary treatment can modulate giant grouper pigmentation 
and may be used in the live fish trade. Further, this study contributes to narrowing the knowledge gap in 
formulating appropriate diets for giant grouper, which to date is fed diets formulated for other species.   

1. Introduction 

Giant grouper, Epinephelus lanceolatus (Bloch, 1790; hereafter 
referred to as ’GG’), has become a candidate for aquaculture due to its 
fast growth rates, robustness, and attractive market price (Sung et al., 
2019, Dennis et al., 2020). Despite its high market demand and suit-
ability for aquaculture, the specific nutritional requirements of GG 
remain largely unknown (Nocillado et al., 2021). To date, research on 
species of the genus Epinephelus spp. has focused primarily on the 
orange-spotted grouper (Epinephelus coioides) and the hybrid of giant 
grouper and tiger grouper (Epinephelus fuscoguttatus x E. lanceolatus) 
(Nankervis et al., 2021; Rimmer and Glamuzina, 2019). GG has a 
characteristic yellow and black coloration that often fades to shades of 
gray in farmed fish. Color fading is common in many other pigmented 

aquaculture species due to low levels of carotenoids in their diet, 
resulting in reduced market appeal (Wade et al., 2017; Yi et al., 2014; 
Asche et al., 2001). Aquatic animals are unable to synthesize carotenoids 
de novo (Fang et al., 2019). Some fish species, including salmon, are able 
to deposit various pigments in their muscle tissue when supplied or 
acquired through the diet (Nakano et al., 1995; Lorenz and Cysewski, 
2000; Viera et al., 2018) and others, such as marine ornamental fish, 
deposit carotenoids in their skin, modulating the skin surface color and 
changing the fish appearance (Kalinowski et al., 2007; Yi et al., 2014). In 
fish, body coloration are used for camouflage, behavioral signaling, and 
mating (De Carvalho and Caramujo, 2017). Further, an enhanced body 
coloration correlates with fitness measures, higher social status, and 
lower parasite load (reviewed in Sefc et al., 2014). 

Astaxanthin (3,30′-dihydroxy-β, β′-carotene-4,4′-dione) is a 
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carotenoid pigment of red coloration and is soluble in lipid (Ambati 
et al., 2014). Astaxanthin is widely used as a functional feed ingredient 
in aquaculture, providing pink-red coloration to the integumentary 
system (e.g., skin and flesh) of finfish (e.g., in salmonids) and the 
exoskeleton of crustaceans (Bell et al., 2000). Supplementation of 
astaxanthin to aquafeed is primarily aimed at modulating color; how-
ever, research has shown that astaxanthin can also improve growth, 
survival, and feed conversion ratio, not only in fish whose coloration is 
modulated, but also in fish where it has no color-modulating effect (Lim 
et al., 2019). Further, astaxanthin serves as a metabolic precursor 
(provitamin) of vitamin A in salmonid fish (Christiansen and Torrissen, 
1995), a potent antioxidant (Bell et al., 2000), and a means of improving 
resistance to stress and disease in fish (Christiansen et al., 1995a, 1995b; 
Galindo-Villegas et al., 2006). 

Vitamin E is a standard antioxidant added to commercial aquafeed as 
α-tocopherol (α-TOH), whose bioactivity exceeds that of other vitamin E 
homologs (Hamre, 2011). Similar to astaxanthin, adequate levels of 
vitamin E in feeds are found to promote growth (Peng et al., 2009; 
Abdel-Hameid et al., 2012) in fish and increase resistance to stress and 
diseases (Sahoo and Mukherjee, 2002; Puangkaew et al., 2004; Li et al., 
2013). In Epinephelus malabaricus vitamin E improved growth (Lin and 
Shiau, 2005), and in salmonoids, it had synergetic effects with astax-
anthin as an antioxidant tested both in vitro and in vivo (Christiansen 
et al., 1995a, 1995b; Bell et al., 2000). 

Understanding the effects of dietary inclusion levels and interactions 
of these two supplements is critical to further optimize the growth, feed 
utilization, and welfare of GG. This information may be used for the 
efficient formulation of antioxidants in GG aquafeed. Although the 
supplementation of astaxanthin and vitamin E to the diet is reported to 
exert many benefits, to our best knowledge, neither the individual ef-
fects nor their combination has been investigated in GG. 

The aim of this study is to measure the individual and synergistic 
effects of dietary astaxanthin and vitamin E supplementation on the 
growth, coloration, and antioxidant status on juvenile GG. 

2. Materials and methods 

2.1. Ethics statements 

All handling of fish was conducted following the "Australian Code for 
the care and use of animals for the scientific purposes". James Cook 
University Animal Ethics Committee approval number is A2708. 

2.2. Experimental design 

This study applied a 3 × 3 factorial design to evaluate the effects of 
different dietary supplementation levels of astaxanthin (AX), vitamin E 
(VE), and their combination (AX+VE) on the performance of giant 
grouper. Nine isonitrogenous and isolipidic diets were formulated to be 
identical except for three levels of AX supplementation (0, 75, and 150 
mg/kg) and three levels of VE supplementation (0, 250, and 500 mg/kg) 
where the supplemented nutrient was added at the expense of wheat 
flour (Table 1 and Table 2). 

2.3. Diet manufacture and nutrient composition 

Astaxanthin and vitamin E were individually premixed with wheat 
flour to ensure consistent distribution (Hobart A200N Planetary Mixer, 
Hobart, UK). Then, all other dry ingredients were added and mixed 
again before adding oil and sufficient water for pelleting. The semi-wet 
dough was pelleted through a 3 mm die (Hobart A120 Planetary Mixer 
with mincer attachment, Hobart, Australia) and then steamed at 100 ◦C 
for 10 min and dried at 50 ◦C for 12 h. Dried pellets were sieved to 
remove fines and stored at − 18 ◦C. 

Crude lipid and vitamin E contents (tocopherol) were analyzed by 
Symbio Laboratories (QLD, Australia) using ether extraction (Soxhlet) 

and high-performance liquid chromatography (HPLC) methods, 
respectively. Moisture contents were determined by oven-drying the 
samples at 105 ◦C to constant weight. The nitrogen content was deter-
mined using a Costech elemental analyzer fitted with a zero-blank auto- 
sampler and multiplied by 6.25 to calculate crude protein content. 

2.4. Feeding trial 

2.4.1. Experimental setup 
Each diet was randomly assigned to triplicate rectangular poly-

ethylene tanks (48 × 37 × 26 cm3; water volume = 45 L). All tanks were 
supplied with a seawater recirculation system at a flow rate of 7.5 L/ 
min. The temperature was maintained at 28 ± 0.5 ◦C, salinity 32–35 g/L 
and dissolved oxygen at 95–110 % saturation with the addition of 
technical oxygen. Photoperiod was controlled by automatic lights at 12 
h L: 12 h D. Total ammonia nitrogen (TAN; NH4

+-N/NH3-N), nitrite 
(NO2

- -N), and nitrate (NO3
- -N) were maintained below 3, 5, and 250 mg/ 

L, respectively. 

2.4.2. Fish husbandry and growth measurement 
Juvenile GG were sourced from a commercial hatchery (The Com-

pany One, Cairns, Australia). The animals were subjected to 250 ppm 
formalin bath for 45 min upon arrival before being introduced to the 
recirculating aquaculture system (RAS) facility as a standard disease 
control procedure. Fish were acclimated in the experimental tanks and 
were hand-fed to apparent satiation with a commercial diet (Marine 
Float, Ridley Aquafeed, Australia; CP = 45 %, CL = 20 %) twice daily at 
09:00 and 16:30 for four weeks before the feeding experiment. 

Before undertaking any measurement procedures, all fish were fasted 
for approximately 24 h. The animals were gently hand-caught using 
scoop nets and were anaesthetized using iso-eugenol (AQUI-S, New 
Zealand Ltd) at a concentration of 25 mg/L. Juveniles GG of uniform 
initial size were individually weighed to the nearest 0.01 g and total 
length measured to the nearest mm before being allocated to each of the 
27 experimental tanks (fish number = 405; 16.42 ± 2.7 g; 91 ± 8 mm). 
Fish were hand-fed with corresponding experimental diets to apparent 
satiation twice daily at 08:30 and 16:00 for 30 days. Uneaten feed after 
each feeding event was collected, oven-dried, and weighed to allow the 
correction of feed intake. Fish survival and feeding behavior in each tank 
were monitored daily. Any dead fish were removed immediately and not 
replaced. All individuals were again measured for body weight and total 
length at the end of the feeding trial. 

2.5. Image collection 

In order to determine the whole body and fin coloration, all 404 
survived individuals were photographed under identical lighting con-
dition, angle, and object orientation. The fish were photographed using 

Table 1 
Experimental design and supplementation levels of astaxanthin (AX) and 
vitamin E (VE) applied in this study.  

AX (mg/kg)1,3 VE (mg/kg)2 

0 250 500  

0 control VE250 VE500  
75 AX75 AX75 + VE250 AX75 + VE500  
150 AX150 AX150 + VE250 AX150 + VE500 

1added as CAROPHYLL® Pink 10 %–CWS containing a minimum 11.1 g/kg 
(DSM Certificate of Analysis) of unesterified chemically synthesized astaxanthin 
in a corn starch-coated matrix of lignosulfonate and corn oil (DSM Nutritional 
Products Ltd, France). 
2added as ROVIMIX® E-50 Adsorbate, a free-flowing powder of stabilized 
vitamin E consisting a minimum of 50.5 g/kg (DSM Certificate of Analysis) of 
DL-α-tocopheryl acetate adsorbed on silicic acid (DSM Nutritional Products Ltd, 
China). 

F. Fernando et al.                                                                                                                                                                                                                               



Aquaculture Reports 26 (2022) 101266

3

a digital camera (Sony A5000 ILCE-5000, Japan) inside a light-proof 
aluminum box (670 mm length × 600 mm width × 800 mm height) 
with standardized illumination provided by LED strip lights placed 
along the upper wall of the box. The light traveled through a diffusion 
plate before illuminating the bottom plate where the fish were placed. 
This design prevents the specular light reflection from the base plate and 
the fish objects. This diffusion plate also shielded the camera’s field of 
view, preventing stray light from the light source from entering the 
camera lens directly. Light entering the camera lens was entirely re-
flected from the bottom plate, color chart and fish. All openings were 
sealable to prevent external light contamination. An opening at the top 
of the box was filled with the camera lens (focal length = 16 mm) facing 
perpendicularly downwards, focusing on the objects. The camera 
exposure setting was set as follows: ISO = 100, aperture = F/10, expo-
sure time = 1/60 s, and a camera max resolution of 19.8 megapixels. The 
fish were photographed in groups of five. A patch containing stan-
dardized colors (X-Rite Pantone, USA) was included in each photograph 
for calibration in downstream analyses. 

2.6. Antioxidant status measurements 

The liver tissues samples were collected from three randomly 
selected fish per tank (81 individuals in total) at the end of the feeding 
trial. The fish were ethically euthanized using iso-eugenol at 175 mg/L 
for 20 min. Afterwards, the whole liver was excised, weighed, homog-
enized on ice, and immediately snap-frozen in liquid nitrogen. The 
samples were stored at − 80 until analyzed. 

The total antioxidant capacity (TAC) and malondialdehyde (MDA) 
levels in the liver tissue were quantified using commercial kits (CS0790, 
Sigma-Aldrich, USA) and (MAK085, Sigma-Aldrich, USA), respectively, 
according to the manufacturer’s instructions. Tissue homogenization 

using silica beads was performed within a pre-chilled stainless-steel 
block at 20 ◦C and shaken in a tissue disruptor/bead beater (BioSpec 
Products Inc., USA). Each liver sample (81 livers) for each parameter of 
antioxidant status was assayed in duplicate. 

2.6.1. Total antioxidant capacity (TAC) assay 
Tissue samples (~100 mg) were prepared following the manufac-

turer’s instructions. Tissue were homogenized in the assay buffer and 
centrifuged at 12,000 × g for 15 min at 4 ◦C. The supernatant (10 µL) 
was collected and kept on ice until assayed in a 96-well microplate ac-
cording to the kit instructions. In brief, the assay is based on the for-
mation of ferryl myoglobin radical from metmyoglobin and hydrogen 
peroxide, which then oxidizes ABTS (2,2′-azino-bis(3-ethyl-
benzothiazoline-6-sulfonic acid)) to produce a radical cation (ABTS•+). 
This radical cation is a green soluble chromogen causing green colora-
tion in the test sample, inversely proportional to antioxidant level, and 
can be read in a microplate spectrophotometer at 405 nm (EnSpire® 
model 2300, PerkinElmer, USA). Trolox™, a water-soluble vitamin E 
analog, was used as a standard or control antioxidant. The values of total 
antioxidant capacity were calculated from the standard curve of known 
concentrations and expressed as mM relative to the concentration of the 
Trolox standard. 

2.6.2. Malondialdehyde (MDA) assay 
Tissue samples (~10 mg) were prepared following the manufac-

turer’s instructions. Samples were homogenized in the lysis buffer and 
centrifuged at 13,000 × g for 10 min to remove insoluble material. The 
supernatant (200 µL) was transferred into a microcentrifuge tube and 
assayed according to the kit instruction. In brief, the MDA in the sample 
is quantified through their reaction with thiobarbituric acid (TBA) at 
95 ◦C for 1 h to form a colorimetric product proportional to the MDA 

Table 2 
Formulation and composition of the experimental diets.  

Ingredients (g/kg feed) Experimental diets 

control 
(basal diet) 

AX75 AX150 VE250 VE500 AX75 
VE250 

AX75 
VE500 

AX150 
VE250 

AX150 
VE500 

Fish meal1  525  525  525  525  525  525  525  525  525 
Soy protein isolate2  118.8  118.8  118.8  118.8  118.8  118.8  118.8  118.8  118.8 
Soybean meal3  95  95  95  95  95  95  95  95  95 
Lupin seed meal4  62  62  62  62  62  62  62  62  62 
Fish (anchovy) oil5  41  41  41  41  41  41  41  41  41 
Wheat flour6  100  99.25  98.5  99.5  99  98.75  98.25  98  97.5 
Gelatine  30  30  30  30  30  30  30  30  30 
Soy lecithin7  10  10  10  10  10  10  10  10  10 
L-lysine HCl8  7.5  7.5  7.5  7.5  7.5  7.5  7.5  7.5  7.5 
DL-methionine9  4.2  4.2  4.2  4.2  4.2  4.2  4.2  4.2  4.2 
Vitamin mix10  1  1  1  1  1  1  1  1  1 
Mineral mix11  5  5  5  5  5  5  5  5  5 
Choline chloride 70 %  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
CAROPHYLL® Pink 10 %–CWS12  0  0.75  1.5  0  0  0.75  0.75  1.5  1.5 
ROVIMIX® E-50 Adsorbate13  0  0  0  0.5  1  0.5  1  0.5  1 
Total  1000  1000  1000  1000  1000  1000  1000  1000  1000 
Proximate composition (g/kg DM) 
Crude protein  65.06  65.56  64.19  64.38  66.06  65.19  64.38  64.56  65.44 
Crude lipid  10.2  9.7  10.0  10.2  10.1  10.3  10.3  9.7  9.7 
Astaxanthin (mg/kg)14  0  75  150  0  0  0  75  150  150 
Vitamin E (mg/kg)15  3.4  7.0  9.0  208.7  443.6  208.6  463.3  227.5  457.5 

1,5Ridley Aquafeeds, Australia. 2Riverina, Australia. 3,8Bulk Nutrients, Australia. 4The Source Bulk Foods, Australia. 6Coles, Australia. 7Dancourt Trading, Australia. 
9Create Your Own Supplements (CYOS), Australia. 
10RABAR Animal Nutrition, Australia. Vitamin profile (per kg diet): A 3000 IU; D 24 IU; K 10 mg; B1 (Thiamine) 10 mg; B2 (Riboflavin) 20 mg; B3 (Nicotinic acid) 45 
mg; B5 (Pantothenic acid) 10 mg; B6 (Pyridoxine) 10 mg; B12 (Cyanocobalamin) 0.05 mg; C 150 mg; Biotin 1 mg; Inositol 250 mg; Folic acid 5 mg; Antioxidant 15 mg; 
and dextrose was used as a carrier. 
11Mineral profile (per kg diet): Mg 297 mg; Zn 100 mg; Fe 40 mg; Mg 25 mg; Cu 5 mg; I 4 mg; Co 0.5 mg; Se 0.1 mg. 
12contain a minimum of 10 % of unesterified synthetic astaxanthin in a corn starch-coated matrix of lignosulfonate and corn oil (DSM Nutritional Products Ltd, France). 
13sprayed-dried powder consisting of minimal 50 % of DL-α-tocopheryl acetate finely dispersed in a matrix of lignosulfonate and coated with small amounts of silicon 
dioxide (DSM Nutritional Products Ltd, China). 
14as added astaxanthin. 
15as analyzed tocopherol. 
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present. This colorimetric product was detected using a microplate 
spectrophotometer at 532 nm (EnSpire® model 2300, PerkinElmer, 
USA). The MDA concentration in the samples was calculated from the 
standard curve of known concentrations and expressed as nmole/mg 
tissue. The MDA level indicates the lipid peroxidation activity in the 
sample. 

2.7. Image analysis 

2.7.1. Whole-body coloration 
The method to analyze body coloration was adapted from Weller and 

Westneat (2019) and Van Belleghem et al. (2018). The raw images 
(5456 × 3632 pixels; ~20 megabytes each) were calibrated for any 
variation in illuminance using Adobe Lightroom CC (Adobe Inc., USA). 
Images of individual fish were obtained by cropping out the fish from the 
group using CorelDRAW X-7 (Corel, Canada) before the background was 
removed using Remove.bg (Kaleido, Germany). All pixels of each image 
were binned into 27 regions in the red, blue, green (RGB) color space 
using the histogram method as described in Weller and Westneat (2019). 
The color intensity and relative proportion of these color bins were 
statistically compared using the color distance metric in a pairwise 
manner among all individuals. The color distance between two in-

dividuals is defined as the formula below calculated using the R package 
colordistance (Weller and Westneat, 2019). 

color distance =
∑y

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Ra
i − Rb

i )
2
+ (Ga

i − Gb
i )

2
+ (Ba

i − Bb
i )

2
√

Where, y = number of bins, R = red value, G = green value, B = blue 
value. 

The color distance value indicates the color similarity or dissimilarity 
between two individuals, where a high value indicates a high color 
dissimilarity. Color distance values were further analyzed using prin-
cipal coordinate analysis (PCoA) to determine whether body coloration 

was affected by experimental treatments. All quantitative color profiling 
of each individual fish, and the comparison between them, were per-
formed in RStudio v.4.0. 

2.7.2. Caudal fin coloration 
Following CIE Lab color space (CIE, 1977), colouration in the caudal 

fin is described using five parameters: L*(lightness), a*(red-
ness/greenness), b*(yellowness/blueness), chroma (Ca*b; intensity and 
clarity of color), and hue (Ha*b; the relationship between redness and 
yellowness). Considering color may vary across caudal fin, all parame-
ters for each individual (404 fish) were quantified in five sampling areas 
with the obvious dark spots avoided (Fig. 1). The L*, a*, and b* were 
quantified using an image analysis software, Image Pro Premier 9 
(Media Cybernetics Inc., USA); while the chroma (Ca*b) and hue (Ha*b) 

were calculated using the obtained a* and b* value according to the 
following formulas (Hunt, 1977). 

Ca∗b =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(a∗)
2
+ (b∗)

2
√

Ha∗b = tan-1
(

b∗

a∗

)

The average value for each parameter across five areas was calcu-
lated to represent the individual fish value; subsequently, the mean 
value of all individual fish within the same tank was calculated to 
represent the tank value. 

2.8. Data analyses 

2.8.1. Growth performance calculations 
The raw data of growth performance were recorded in Microsoft 

Excel, and the below formulas were used to calculate each growth 
parameter: 

WG (weight gain, %) =
final weight (g) – initial weight (g)

initial weight (g)
× 100%     

CF (condition factor; g/cm3) =
body weight (g)

total length (cm)
3 × 100     

HSI (hepatosomatic index; %) =
liver weight (g)
body weight (g)

× 100  

Survival (%) =
final fish number
initial fish number

× 100  

2.8.2. Statistical analyses 
Tanks are the experimental unit (replicate) and also the unit of sta-

tistical assessment. The results are reported as a treatment mean of the 
triplicate tanks ± standard deviation (SD). The normality and homo-
geneity of variance of the response variable (the growth performance, 
coloration, and antioxidant status) for each combination of independent 
variables (the supplementation level of astaxanthin, vitamin E, and their 
combination) were assessed using Shapiro Wilk and Levene’s test, 

SGR (specific growth rate; %/day) =
ln final weight (g) – ln initial weight (g)

number of feeding days
× 100   

FI (daily feed intake; %BW/day) =
dry feed intake (g) × number of feeding days (days)

[initial biomass (g) + final biomass (g) + dead biomass (g)] ÷ 2
× 100  

FCR (feed conversion ratio) =
dry feed intake (g)

final biomass (g) + dead biomass (g) – initial biomass (g)
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respectively. Outliers were identified using boxplot method, the boxplot 
(x) function, in R and appropriately removed. 

A two-way analysis of variance (ANOVA) was used to investigate 
whether mean differences in response variables existed between treat-
ments. Where two-way ANOVA revealed a single factor was responsible 
for differences between treatments, with no interaction terms, values 
were pooled accordingly to allow detection of differences by one-way 
ANOVA followed with pairwise comparison using Tukey post-hoc test 
or pairwise t-test. Differences between treatment means were consid-
ered significant at p ≤ 0.05. All statistical analyses were performed in 

RStudio v.4.0 (RStudio Team, 2019). 

3. Results 

3.1. Effects of experimental diets on the body and caudal fin coloration 

The color distance between each individual in a pairwise manner 
(404 × 404) across the treatment group is presented by the heatmap 
plot (Fig. 2A). These color distance scores ranged between 0 and 2.56 
(Fig. 2A). The clustering shown in the heatmap is elucidated in the 
principal coordinate analysis (PCoA) plot (Fig. 2B). The PCoA plot 
revealed that the two clusters are formed, associated to the presence or 
absence of astaxanthin supplementation in the diet (Fig. 2B). Further-
more, not a single member from each of these two groups overlapped the 
region of the other group at a 95 % confidence level, and no other diet- 
related differences were detected by this color analysis (Fig. 2B). The 
visual inspection of juvenile giant grouper at the end of the feeding trial 
clearly indicates that fish fed with the AX supplemented diet had a more 
pronounced yellow coloration in the fin than the control group (Fig. 3). 

The coloration of the caudal fin of juvenile GG fed with different 
experimental diets is presented in Table 3. No interaction effects of AX 
with VE were detected (p > 0.05; Table 3). The a* (redness/greenness), 
b* (yellowness/blueness), chroma (intensity and clarity) and hue (the 

Fig. 2. (A) Heatmap of color distance score resulted from comparing whole-body coloration among 404 individual fish in a pairwise manner (404 × 404). The color 
of each cell indicates the color distance score between two corresponding individuals; the name of individual fish is not displayed for the purpose of plot visibility. (B) 
Principal coordinate analysis of the heatmap of color distance score. Each dot represents individual fish, and the distances between dots indicate their color similarity 
calculated according to the color distance metric. Representative fish from each group is displayed. The confidence ellipses (dash circles) indicate the true population 
distribution in the bivariate distribution calculated at 95 % confidence level. 

Fig. 3. Photographs showing representative fin coloration of juvenile giant grouper fed with a diet supplemented with (A) 150 mg/kg of AX (AX150), and (B) control 
(without astaxanthin). 

Fig. 1. Five areas of the caudal fin (as indicated by the white rectangles) 
sampled for the coloration analysis. 
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relationship between redness and yellowness) values were significantly 
affected by the dietary supplementation of astaxanthin (Table 3), all 
values progressively increasing with AX supplementation in the diet 
(Table 4). The increment was most pronounced in the b* and chroma 
value, almost three times higher compared to the non-astaxanthin group 
(AX0) (Table 4). The increment of b* value from the AX75 group to the 
AX150 group was not statistically significant, in term of absolute value, 
it differed only by + 3.06 points (Table 4). 

3.2. Effects of experimental diets on antioxidant status 

The two-way ANOVA results indicated that the total antioxidant 
capacity (TAC) level in the liver tissue was significantly affected only by 
the dietary supplementation of astaxanthin (Table 5). In particular, the 
liver samples of the fish group fed with astaxanthin supplemented at 
150 mg/kg diet has a slightly higher TAC level (1.61 mM) compared to 
the control group (1.57 mM) (Table 6). Meanwhile, the malondialde-
hyde (MDA) levels were not significantly affected by any dietary treat-
ments (Table 5). 

3.3. Effects of experimental diet on growth performance, survival, and 
feed utilization 

The proportional weight gain (WG %) of juvenile GG after 30 day- 
feeding trial ranged between 332 % and 378 % or equal to 3.32 and 3.78 
times of initial fish weight, whereas the specific growth rate (SGR) 
ranged between 4.87 %/day and 5.21 %/day with no significant dif-
ferences between treatments (Table 7). The survival rates were 100 % in 
all tanks, except one fish died in the tank within the VE500 group. 
Similarly, both supplements and their combination did not affect the 
hepatosomatic index or feed intake of fish (p > 0.05; Table 7). 

The feed conversion ratio (FCR) ranged from 0.69 to 0.71 and was 
significantly affected by astaxanthin supplementation (p ≤ 0.05;  
Table 8). Compared to the mean of FCR in the group without astaxanthin 
supplementation (0.69), a slight increase in FCR was recorded in the 
group fed with astaxanthin supplemented at 75 mg/kg (0.71) and 
150 mg/kg (0.71) (p ≤ 0.05; Table 8). The final condition factor (CF) 
ranged from 2.10 to 2.23 and was significantly affected by astaxanthin 
supplementation (p ≤ 0.05; Table 8). However, no particular trend in 

Table 3 
Caudal fin coloration of juvenile giant grouper fed with diets supplemented with different levels of astaxanthin, vitamin E, and their combination after a 30-day feeding 
trial.  

Para- 
metersa,b 

Experimental diets Two-way ANOVA 

control AX75 AX150 VE250 VE500 AX75 +

VE250 
AX75 +

VE500 
AX150 +

VE250 
AX150 +

VE500 
AX VE AX* 

VE 

L 60.12 
± 2.81 

58.04 
± 2.26 

58.04 
± 1.94 

60.32 
± 0.79 

59.99 
± 2.66 

58.36 ± 1 58.6 ± 0.35 58.78 
± 2.97 

59.11 
± 1.33 

ns ns ns 

a* 4.19 ± 1.36 6.76 
± 0.18 

8.12 
± 1.33 

4.66 
± 0.19 

4.05 
± 0.18 

6.38 ± 0.8 6.26 ± 0.58 7.04 ± 0.56 7 ± 0.4 *** ns ns 

b* 16.88 
± 2.23 

51.98 
± 3.87 

56.77 
± 3.48 

18.4 
± 0.53 

16.26 
± 0.21 

51.44 
± 2.03 

48.6 ± 1.82 52.03 
± 2.14 

52.38 
± 3.13 

*** ns ns 

Chroma 17.5 ± 2.36 52.49 
± 3.81 

57.43 
± 3.61 

19.05 
± 0.45 

16.82 
± 0.2 

51.91 
± 2.08 

49.07 
± 1.78 

52.58 ± 2.2 52.91 
± 3.05 

*** ns ns 

Hue 1.32 ± 0.06 1.43 
± 0.03 

1.4 ± 0.03 1.32 
± 0.02 

1.33 
± 0.01 

1.42 ± 0.04 1.43 ± 0.02 1.44 ± 0.01 1.41 ± 0.06 *** ns ns  

a Abbreviations are as follows: L = lightness, a* = redness/greenness, b* = yellowness/blueness. 
b Value are presented as mean ± SD from three replicate groups. Different asterisk indicates level of significance of ANOVA test; * = p ≤ 0.05; ** = p ≤0.01; *** = p ≤

0.001; ns = no significant difference (p> 0.05). 

Table 4 
Color parameters in the caudal fin of juvenile giant grouper grouped by different 
levels of astaxanthin supplementation (0, 75, and 150 mg/kg). Different su-
perscripts (a-c) denote statistically significant differences within each row (one- 
way ANOVA p ≤ 0.05).  

Parameters1,2 Pooled group 

AX0 AX75 AX150 

a* 4.3 ± 0.75a 6.46 ± 0.55b 7.39 ± 0.93c 

b* 17.18 ± 1.49a 50.67 ± 2.84b 53.73 ± 3.44b 

Chroma 17.79 ± 1.56a 51.16 ± 2.83b 54.31 ± 3.51b 

Hue 1.32 ± 0.03a 1.43 ± 0.03b 1.42 ± 0.04b 

1Value are presented as mean ± SD from three replicate groups. 

Table 5 
Total antioxidant capacity (TAC) (A) and malondialdehyde (MDA) levels (B) in the liver tissue samples of juvenile giant grouper fed with different dietary supple-
mentation level of astaxanthin, vitamin E, and their combination.  

Parameters1 Experimental diets Two-way ANOVA 

control AX75 AX150 VE250 VE500 AX75 +

VE250 
AX75 +

VE500 
AX150 +

VE250 
AX150 +

VE500 
AX VE AX* 

VE 

TAC (mM) 1.52 
± 0.04 

1.60 
± 0.01 

1.61 
± 0.01 

1.61 
± 0.02 

1.58 
± 0.06 

1.59 
± 0.03 

1.62 
± 0.02 

1.60 
± 0.04 

1.61 
± 0.02 

* ns ns 

MDA (nmole/g) 1.82 
± 0.06 

1.80 
± 0.07 

1.98 
± 0.34 

1.87 
± 0.08 

1.67 
± 0.17 

1.83 
± 0.26 

1.88 
± 0.13 

1.87 
± 0.11 

1.70 
± 0.08 

ns ns ns 

1Value are presented as mean ± SD from three replicate groups. Different asterisk indicates level of significancy of ANOVA test; *¼ p ≤ 0.05; ** ¼ p ≤ 0.01; ***¼
p ≤ 0.001; ns = no significant difference (p > 0.05). 

Table 6 
The significantly affected means of the antioxidant status parameter in the liver 
tissue samples of juvenile giant grouper grouped by different levels of astax-
anthin supplementation. Different superscripts (a-b) denote statistically signifi-
cant differences within each row (one-way ANOVA p ≤ 0.05).  

Parameters1,2 Pooled group 

AX0 AX75 AX150 

TAC (mM) 1.57 ± 0.05a 1.60 ± 0.02a 1.61 ± 0.02b 

1Value are presented as mean ± SD from replicates (n = 9) pooled within 
different astaxanthin supplementation levels. AX0 consists of control, VE250, 
and VE500 group; AX75 consists of AX75, AX75 +VE0, and AX75 +VE500 
group; and AX150 consists of AX150, AX150 +VE0, and AX150 +VE500 groups. 
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relationship with the astaxanthin groups was obvious (Table 8). 

4. Discussion 

4.1. Whole-body and caudal fin coloration 

In fish, the deposition of yellow pigments such as tunaxanthin (Miki 
et al., 1985), lutein, and zeaxanthin (Bjerkeng et al., 2000) are respon-
sible for the yellowness in the integumentary system. In this study, 
yellowing (b*) of GG fed one of the astaxanthin-enriched diets was up to 
three times higher than of GG fed the control diet. These results suggest 
that astaxanthin is metabolized to yellow pigments, as previously 
demonstrated for rainbow trout (Oncorhynchus mykiss) (Schiedt et al., 
1985) and Japanese yellowtail (Seriola quinqueradiata) (Miki et al., 
1985). 

In fish and crustaceans, color parameters, e.g., hue, a*, and b* 
correlate strongly positive with carotenoid concentrations deposited in 
their tissues and are therefore good indicators of deposited carotenoids 
(Kalinowski et al., 2011; Sun et al., 2012; Fanning et al., 2014). Our 
results show that both redness and yellowness increased with increasing 
astaxanthin concentration; however, differences between GG fed the 
astaxanthin supplemented and non-supplemented diets were more 
pronounced than between supplementation levels. Moreover, there was 
no statistical difference in hue value between these two groups. The CIE 

Lab color space defines hue as the degree to which a color can be 
distinguished from other colors (Sun et al., 2012). Thus, the insignificant 
increase (+3.06 points) of yellowness (b*), no difference in hue, and no 
cluster differentiation between AX75 and AX150 groups in the PCOA 
diagram indicate that xanthophores in the skin of juvenile GG were 
nearly saturated at the lowest supplementation level of 75 mg/kg diet 
(Kimler and Taylor, 2002). 

Consistent with the results of this study, Booth et al. (2004) reported 
a similar trend of color saturation in red snapper (Pagrus auratus) fed 
diets containing astaxanthin at 36 mg/kg and 72 mg/kg. Dietary ca-
rotenoids gradually accumulate in animal tissues over the intake period, 
and accumulation rates will decline as the concentration in the storage 
tissue increases towards the saturation point (Choubert, 2010; Safari 
and Atashi, 2015). The present finding suggests that the supplementa-
tion of 75 mg/kg astaxanthin in the diet is sufficient to intensify the 
yellow color in the caudal fin of juvenile GG. Translating these results 
into feed formulations may require further investigation into lower 
levels of astaxanthin or alternative yellow pigments such as leutin, 
zeaxathin, or raw material rich in these compounds for more 
cost-effective color manipulations. 

There was no interaction between astaxanthin and vitamin E in 
promoting GG pigmentation, which contrasts with previous studies on 
rainbow trout, Arctic char, and yellow croaker (Pozo et al., 1988; 
Bjerkeng et al., 1999; Yi et al., 2018). This synergistic effect may be 
attributed to the similarity of astaxanthin and vitamin E as a 
lipid-soluble antioxidant (Machlin and Bendich, 1987), where sufficient 
vitamin E intake may spare astaxanthin from oxidation and therefore 
can be readily deposited in the tissue to induce coloration (Yi et al., 
2018). The absence of the sparring effect may indicate a limitation in the 
antioxidant function of vitamin E in GG, consistent with the results from 
the liver antioxidant capacity analysis. 

4.2. Antioxidant status 

Astaxanthin is reported to possess 100- to 500-fold higher antioxi-
dant activity than other antioxidants, e.g., α-tocopherol (vitamin E) and 
β-carotene (Naguib, 2000), which is consistent with the current results 
showing that GG fed astaxanthin at 150 mg/kg diet had higher total 
hepatic antioxidant capacity (TAC) than the control and vitamin E (VE) 
group. Astaxanthin’s ability to serve as a powerful antioxidant is 
attributed to its molecular structure, which contains hydroxyl (OH) and 

Table 7 
Growth performance, survival, feed utilization, and hepatosomatic indices of juvenile giant grouper fed with a diet supplemented with different levels of astaxanthin, 
vitamin E, and their combination.  

Parameters1 Experimental diets Two-way ANOVA2 

control AX75 AX150 VE250 VE500 AX75 +

VE250 
AX75 +

VE500 
AX150 +

VE250 
AX150 +

VE500 
AX VE AX*VE 

Initial BW (g) 16.5 ± 0.2 16.4 ± 0.3 16.1 ± 0.3 16.3 ± 0.3 16.3 ± 0.1 16.7 ± 0.9 16.4 ± 0.2 16.7 ± 0.3 16.3 ± 0.3 ns ns ns 
Final BW (g) 72.7 ± 0.2 74.2 ± 1.1 73.4 ± 3.0 77.8 ± 3.0 76.5 ± 2.9 72.9 ± 2.3 73.0 ± 2.5 72.2 ± 4.3 74.3 ± 1.4 ns ns ns 
WG (%) 342 ± 4 351 ± 20 356 ± 11 378 ± 23 370 ± 18 337 ± 22 344 ± 21 332 ± 30 356 ± 14 ns ns ns 
SGR (%) 4.95 

± 0.03 
5.02 
± 0.02 

5.06 
± 0.08 

5.21 
± 0.16 

5.16 
± 0.13 

4.92 
± 0.17 

4.97 
± 0.16 

4.87 
± 0.23 

5.06 ± 0.1 ns ns ns 

Initial BL (mm) 91 ± 0.6 91 ± 1.6 91 ± 2.3 92 ± 3.2 93 ± 2.2 92 ± 1.4 92 ± 1.0 93 ± 3.0 93 ± 1.9 ns ns ns 
Final BL (mm) 150 ± 0.4 152 ± 1.7 150 ± 1.1 152 ± 3.3 151 ± 1.5 151 ± 2.1 150 ± 0.7 149 ± 1.6 149 ± 1.0 ns ns ns 
Final CF (g/ 

cm3) 
2.14 
± 0.03 

2.10 
± 0.06 

2.19 
± 0.03 

2.20 
± 0.03 

2.19 
± 0.06 

2.12 
± 0.04 

2.13 
± 0.07 

2.14 
± 0.08 

2.23 
± 0.05 

* ns ns 

HSI (%) 2.76 
± 0.15 

2.56 
± 0.32 

2.6 ± 0.36 2.49 ± 0.2 2.79 
± 0.16 

2.33 ± 0.3 2.23 
± 0.19 

2.46 
± 0.34 

2.70 
± 0.19 

ns ns ns 

FI (%BW/day) 2.9 ± 0.04 3.02 
± 0.01 

2.98 
± 0.06 

3.01 
± 0.04 

2.95 
± 0.05 

2.99 
± 0.08 

3.02 
± 0.05 

3.01 
± 0.05 

3.04 
± 0.07 

ns ns ns 

FCR 0.69 
± 0.01 

0.71 ± 0 0.7 ± 0.01 0.7 ± 0 0.69 
± 0.01 

0.71 
± 0.01 

0.72 
± 0.02 

0.72 
± 0.01 

0.71 
± 0.02 

* ns ns 

Survival (%) 100 ± 0 100 ± 0 100 ± 0 100 ± 0 98 ± 3.9 100 ± 0 100 ± 0 100 ± 0 100 ± 0 ns ns ns 

1Abbreviations are as follows: BW = body weight; WG = weight gain; SGR = specific growth rate; IBL = initial body total length; FBL = final total body length; ICF 
= initial condition factor; FCF = final condition factor; HSI = hepatosomatic index; FI = feed intake; FCR = feed conversion ratio. 
2Value are presented as mean ± SD from three replicate groups. Different asterisk indicates level of significancy of ANOVA test; * ¼ p ≤ 0.05; ** ¼ p ≤ 0.01; ***¼
p ≤ 0.001; ns = no significant difference (p > 0.05). 

Table 8 
The significantly affected means of juvenile giant grouper’s growth performance 
grouped by different levels of astaxanthin supplementation. Different super-
scripts (a-b) denote statistically significant differences within each row (1-way 
ANOVA p ≤ 0.05).  

Parameters1, 2 Pooled group 

AX0 AX75 AX150 

Final CF (g/cm3) 2.18 ± 0.04ab 2.12 ± 0.05a 2.19 ± 0.06b 

FCR 0.69 ± 0.01a 0.71 ± 0.01b 0.71 ± 0.02b 

1Value are presented as mean ± SD from replicates pooled within different 
astaxanthin supplementation levels. AX0 consists of control, VE250, and VE500 
group; AX75 consists of AX75, AX75 +VE0, and AX75 +VE500 group; and 
AX150 consists of AX150, AX150 +VE0, and AX150 +VE500 groups. 
2Different superscripts indicate significantly different mean between dietary 
astaxanthin group (p ≤ 0.05) tested using Tukey’s multiple comparison test. 
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keto-moieties (C––O) on each ionone ring (Higuere-Ciapara et al., 2006; 
Hussein et al., 2006). This structure allows astaxanthin to donate elec-
trons and effectively quench reactive oxygen species (ROS), e.g., •O2

- , 
H2O2, and •HO (Higuere-Ciapara et al., 2006; Hussein et al., 2006). 
Vitamin E supplementation did not increase TAC levels, despite the 
analysis being based on Trolox equivalent, which is a vitamin E analog. 
Since approximately three-quarters of final fish weight was due to 
weight gain during the feeding experiment, it is unlikely that the initial 
body stock of antioxidants affected the measured TAC in this study. 

Malondialdehyde (MDA) is a by-product of lipid peroxidation 
commonly used as an indicator of oxidative processes in biological 
systems (Del Rio et al., 2005). Evoked oxidative stress has been shown to 
correlate with growth and immune response suppression (Long et al., 
2019). Therefore, the balance of ubiquitous ROS is critical to ensure 
optimal animal growth and health. The statistically similar MDA levels 
across treatments, irrespective of the dietary antioxidant level, indicate 
that juveniles GG were not under oxidative stress. Under adverse envi-
ronmental conditions such as temperature stress (Cheng et al., 2018), 
the need for antioxidant supplementation may increase, which is an 
avenue for further research in this area. 

4.3. Growth performance, survival, and feed utilization 

The present study did not find any effect of astaxanthin, vitamin E, or 
their combination on growth, survival or feed utilization of juvenile GG. 
Our finding contrasts with previous studies that have shown positive 
effects of astaxanthin supplementation on growth performance and feed 
utilization in Atlantic salmon (Salmo salar) (Christiansen et al., 1995a, 
1995b, 1994), Atlantic cod (Gadus morhua) (Hansen et al., 2016), puf-
ferfish (Takifugu obscurus) (Cheng et al., 2018), yellow catfish (Pelteo-
bagrus fulvidraco) (Liu et al., 2019), large yellow croaker (Larimichthys 
croceus) (Liu et al., 2014), rainbow trout (Oncorhynchus mykiss) (Bazyar 
Lakeh et al., 2010), and red porgy (Pagrus pagrus) (Kalinowski et al., 
2011). The growth-promoting effect of astaxanthin is due to its specu-
lative positive roles on the intermediary metabolism, e.g., ATP genera-
tion (Segner et al., 1989; Tacon, 1981), ability to enhance growth 
hormone (Lim et al., 2019), and potent antioxidant properties which 
inactivate harmful ROS and optimizes physiological functions, particu-
larly under adverse conditions (Liu et al., 2019). 

Astaxanthin also could enhance the activity of digestive enzymes in 
prawns, thereby increasing feed digestibility and utilization (Niu et al., 
2014). In contrast, this study found that astaxanthin supplementation 
slightly reduced feed utilization, i.e., increased FCR. While the reduction 
of feed utilization was statistically significant, the degree of change 
between treatments (− 0.02 point) was so small as to be irrelevant in 
practice. This reduced feed utilization may not reflect a low metabolic 
cost associated with the conversion of astaxanthin to yellow carotenoids 
but is more likely an artifact of analytical precision, with nearly identical 
feed conversion values in many of the experimental tanks, provoking a 
Type I error. 

To the best of our knowledge, the exact mechanism of astaxanthin to 
improve somatic growth has not been well elaborated. Moreover, the 
positive effects of astaxanthin on growth performance, feed utilization, 
and survival were not consistently reported across studies. In agreement 
with our finding, many other studies found no significant effects of 
astaxanthin supplementation, e.g., in coral trout (Zhu et al., 2022 
[0–173 mg/kg diet]), blood parrotfish (Micah et al., 2022 [450 mg/kg 
diet]), rainbow trout (Hart and Colombo, 2022 [17–60.6 mg/kg diet]; 
Yadollahi et al., 2021 [50 mg/kg diet]), Atlantic salmon (Olsen and 
Baker, 2006 [55 mg/kg diet]), yellow croaker (Luo et al., 2020 
[80 mg/kg diet]; Yi et al., 2014 [75 mg/kg diet]), koi (Sun et al., 2012 
[150 mg/kg diet]), olive flounder (Pham et al., 2014 [0–200 mg/kg 
diet]), Australian snapper (Doolan et al., 2008 [60 mg/kg diet]), gilt-
head seabream (Gomes et al., 2002 [40 mg/kg diet]), characins (Wang 
et al., 2006 [40 mg/kg diet]), and red porgy (Kalinowski et al., 2005 
[38 mg/kg diet]; Tejera et al., 2007 [27–68 mg/kg diet]). 

Furthermore, this study did not observe signs of vitamin E deficiency 
in fish fed with the control diet (analyzed vitamin E content: 3.4 mg/kg 
diet in dry matter basis), such as reduced growth (Yi et al., 2018; Niu 
et al., 2014; Zhou et al., 2013; Sau et al., 2004), muscular atrophy, and 
dyspigmentation (Chen et al., 2004; Kocabas and Gatlin III, 1999). This 
finding could indicate that the raw materials used in this study may have 
provided sufficient vitamin E to prevent these symptoms. Similarly, the 
absence of growth reduction even in fish fed with vitamin E-poor diet 
has previously been reported in several studies, e.g., in gilthead sea 
bream (Montero et al., 2001), golden shiner (Notemigonus crysoleucas) 
(Chen et al., 2004), turbot (Scophthalmus maximus L.), halibut (Hippo-
glossus hippoglossus L.) (Tocher et al., 2002) and meager (Argyrosomus 
regius) (Lozano et al., 2017). Dietary antioxidants, such as vitamin E, are 
reported to improve growth only in fish exposed to high oxidative risk, 
such as in stressful environments (Montero, 2001) and fed a highly 
oxidized diet (Gao et al., 2012; Tocher et al., 2003). 

The effects of astaxanthin and vitamin E on fish growth, feed utili-
zation, and survival are inconsistent across previous studies, even when 
the same species were studied. This suggests that the effects of dietary 
antioxidants likely depend on other factors. It has been reported that 
inclusion level and stress status (Liu et al., 2019), life stage (Christiansen 
and Torrissen, 1995a, 1995b), feeding duration (Lim et al., 2019), 
source or type of astaxanthin (Zhang et al., 2021; Priyadarshani, 2017; 
White et al., 2003; Choubert and Henrich, 1993), and fish species itself 
(Ha et al., 1993; Schiedt et al., 1985) to have influenced astaxanthins 
effect on fish growth, feed utilization and survival. The functionality of 
vitamin E supplementation were affected by the stress status (Gao et al., 
2012), feeding duration (Chen et al., 2004), dietary composition, e.g., 
the level of dietary lipid and HUFA (Atalah et al., 2012; Betancor et al., 
2011), and the presence of antioxidants derived from other functional 
ingredients such as selenium and vitamin C (Chen et al., 2004). The lack 
of improved growth and survival in this study, irrespective of antioxi-
dant levels, may be due to the fact that GGs were healthy and held under 
optimal conditions, as evidenced by the measured TAC and MDA levels. 
The beneficial effects of these two supplements under temperature or 
hypoxia conditions remain to be investigated. 

5. Conclusion 

The supplementation of synthetic astaxanthin at 75 mg/kg diet 
(0.75 g of Carophyll® Pink equivalent) was found to be sufficient to 
significantly improve the yellow coloration of the fins of juvenile GG 
after 30 days of feeding, based on the color saturation pattern. To our 
best knowledge this study is the first to provide a tool to modulate the 
color appearance of grouper, which may be used for product differen-
tiation for the live food fish trade where the visual appearance of fish is 
important. Furthermore, this study highlights that astaxanthin, but not 
vitamin E, increased the antioxidant capacity of GG and may be a more 
relevant antioxidant to combat free radical formation in adverse 
conditions. 

Notwithstanding, further studies testing lower levels of astaxanthin 
and vitamin E in GG under experimental stress conditions could 
potentially clarify the color saturation pattern and the interactive effects 
of these antioxidants on growth performance, coloration, and antioxi-
dant status. 
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