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Abstract: Microplastics are recognised as a ubiquitous and hazardous pollutant worldwide. These
small-sized particles have been detected in human faeces collected from a number of cities, providing
evidence of human ingestion of microplastics and their presence in the gastrointestinal tract. Here,
using Raman spectroscopy, we identified an average of 50 particles g−1 (20.4–138.9 particles g−1

wet weight) in faeces collected from a healthy cohort in Hong Kong. This quantity was about five
times higher than the values reported in other places in Asia and Europe. Polystyrene was the most
abundant polymer type found in the faeces, followed by polypropylene and polyethylene. These
particles were primarily fragments, but about two-thirds of the detected polyethylene terephthalate
were fibres. More than 88% of the microplastics were smaller than 300 µm in size. Our study provides
the first data on the faecal level, and thus the extent of ingestion, of microplastics in Hong Kong’s
population. This timely assessment is crucial and supports the recently estimated ingestion rate of
microplastics by Hong Kong residents through seafood consumption, which is one of the highest
worldwide. These findings may be applicable to other coastal populations in South China with
similar eating habits.

Keywords: microplastic; stool; gastrointestinal tract; gut microbiota; South China

1. Introduction

Alongside the more widespread use of plastics that can be manufactured at a cheaper
cost but with higher durability, the magnitude of plastic pollution has increased drastically
worldwide over the past two decades [1]. For instance, it has been estimated that up to
2.4 million tonnes of plastic waste is annually discharged into the ocean through various
human activities [2]. These plastic pieces can be fragmented into smaller sizes, and when
smaller than 5 mm, they are commonly referred to as microplastics, which can be found
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nowadays almost everywhere and in a wide range of food items such as fish, shellfish and
table salt, as well as drinking water (e.g., [3–5]). Microplastics have also been detected in
human faeces collected from different populations in Asia, Europe and America, suggesting
human ingestion of microplastics and their presence in the gastrointestinal tract [6–10].
However, details on human exposure to microplastics are still far from sufficient. Here, we
supplement this information by determining the microplastic content in faeces of a healthy
cohort in Hong Kong and assessing the exposure relevant to the local setting [11]. This as-
sessment is timely, since the ingestion rate of microplastics by Hong Kong residents through
seafood consumption has been recently estimated to be one of the highest worldwide [5].

2. Materials and Methods

Microplastics were extracted from eight faecal samples collected from four men and
four women aged 30–65 as part of an established gut microbiota survey of the Hong Kong
population in September 2020 [12]. Each faecal sample was collected with a wooden stick
and stored at −20 ◦C prior to laboratory processing. The frozen sample was thawed and
an aliquot (0.32 ± 0.14 g; mean ± SD) was digested in a 450 mL solution of 10% potassium
hydroxide (KOH; Acros Organics, Geel, Belgium) and 15% ethylenediaminetetraacetic acid
disodium salt dihydrate (EDTA; Acros Organics) at 40 ◦C for 24 h, after which 50 mL of
30% hydrogen peroxide (H2O2; Sigma Aldrich, St. Louis, MO, USA) was added and the
digestion process continued for another 48 h [13]. Any undigested matter was collected by
filtration and further digested in 50 mL of 2% 1-allyl-3-methylimidazolium chloride (AMIM-
Cl; Sigma Aldrich) for 24 h to remove cellulose fibres [14]. All particles were retrieved
by filtration and resuspended in a 50 mL dense solution of sodium iodide (3.67 g cm−3;
Sigma Aldrich) to separate microplastics by flotation. Microplastics in the supernatant
were retrieved on a stainless-steel sieve with 30 µm pores. To minimise contamination, all
solutions were prepared using ultrapure water prefiltered through 0.22 µm pores (Merck
Milli-Q, Darmstadt, Germany). All glassware and tools were thoroughly rinsed with
ultrapure water before use, and cotton lab coats and nitrile gloves were worn at all times
during sample processing. Eight procedural blank samples using ultrapure water were
included to estimate the background level of microplastics.

Microplastics in the faecal samples and procedural blank samples were identified
using Raman spectroscopy. Raman spectroscopic measurements were performed with a
Renishaw inVia confocal Raman microscope coupled with a near-infrared 785 nm laser
source at 300 mW output power (Wotton-under Edge, UK) and a Leica 10× objective lens
(Wetzlar, Germany). Raman spectra of all particles in the area coated with microplastics
(8 mm in diameter) on each stainless-steel sieve were acquired using an automated map-
ping approach at a spatial resolution of 28.4 µm for 5 s per measurement with 10% laser
power in the wavenumber range of 676–1767 cm−1. Calibration was performed using the
vibrational band at 520 cm−1 of a silicon reference. Baseline correction, smoothing and
cosmic ray removal of the acquired spectra were performed with the Renishaw WiRE 5.2
software. A two-dimensional array of Raman spectra was generated for the area of interest,
from which the polymer types of microplastics were identified with the corresponding
Raman peaks and were colour-coded using the Renishaw Polymeric Materials Database
(Figures 1 and 2) [5]. As microplastics are typically detected as fragments and fibres, the
sizes of fragments and fibres were defined as the Feret diameter and length along the
central axis, respectively. Size measurements were performed on stereomicrographs of
microplastics using the software ImageJ 1.52q (National Institutes of Health, Bethesda, MD,
USA).
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Figure 1. (a) Microplastics and other undigested matter extracted from human faeces on a stainless-

steel sieve with 30 μm pores, (b) a two-dimensional array of colour-coded microplastics generated 

with an automated Raman mapping approach at a spatial resolution of 28.4 µm, and (c) the 

Figure 1. (a) Microplastics and other undigested matter extracted from human faeces on a stainless-
steel sieve with 30 µm pores, (b) a two-dimensional array of colour-coded microplastics generated
with an automated Raman mapping approach at a spatial resolution of 28.4 µm, and (c) the super-
imposed image of (a) and (b) to locate these particles, which were confirmed to be polyethylene
(PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC) and polyethylene terephthalate
(PET).
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Figure 2. Selected microplastics on stainless-steel sieves with a plain Dutch weave pattern (scale bar:
100 µm), and their Raman spectra (red) compared to the reference spectra of PE, PP, PS, PVC and
PET provided in the Renishaw Polymeric Materials Database (blue). Please refer to Figure 1 for the
abbreviations of plastic polymers.

3. Results and Discussion

Previous investigations on microplastics in human faeces primarily employed the
oxidising agent H2O2, solely or with other chemicals in the biomass digestion step [6,8,10].
Other adopted approaches included digestion in KOH [9] and nitric acid [7] to extract
microplastics. The performance of different digestion methods on biological samples has
been reviewed (e.g., [15,16]), among which the use of alkalis was the most common, while
the use of acids could decompose certain plastic types and thus should be avoided if
practicable. Based on these findings, our previous work developed an improved digestion
method to extract microplastics from biological matrices using KOH, H2O2 and EDTA [13].
In the present study, we further modified this method by adding AMIM-Cl to facilitate
digestion of cellulose fibres in human faecal samples, where a total of 129 microplastic
particles were identified, with the sizes ranging from 40.2 to 4812.9 µm. After correction
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from the procedural blank samples, 20.4–138.9 particles per g faeces were detected in all
faecal samples. Five polymer types were identified, with polystyrene (PS) being the most
abundant (55.0% ± 27.0% relative frequency), followed by polypropylene (PP; 22.9% ±
15.8%), polyethylene (PE; 12.1% ± 8.2%), polyethylene terephthalate (PET; 9.5% ± 10.2%),
and polyvinyl chloride (PVC; 0.5% ± 1.4%) (Figure 3). The Raman spectra of these polymers
are provided in Figure 2. All detected particles of PS, PP, PE and PVC were in the shape of
fragments, whereas 66.7% of PET were fibres. The majority of microplastics were 30–100 µm
(30.9% ± 13.5%), 100–200 µm (43.0% ± 17.7%) and 200–300 µm in size (14.4% ± 7.1%),
with the remaining between 300–400 µm (4.7% ± 4.4%) and 400–1800 µm (7.0% ± 11.4%;
Figure 4).
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Figure 3. Polymer types of microplastics in (a) all faecal samples (n = 8) and (b) each of the samples,
from four men (M1–4) and four women (F1–4), Hong Kong residents. The most abundant type was
PS, followed by PP, PE and PET, while PVC was the least common among the samples. Please refer to
Figure 1 for the abbreviations of plastic polymers.

Several recent surveys of microplastics in human faeces reported an average of nine
particles per g faeces, which was considerably lower than the average 50 particles per
g faeces determined in the present work (Table 1). It should be noted that we set the
lowest end of particle size range to be 30 µm, but other studies of microplastics in human
faeces adopted different lowest ends at 20 µm [10] and 50 µm [6]. Nevertheless, even if
we only counted microplastics > 50 µm (117 out of 129 particles; 90.7%), our results still
presented a higher number of microplastics per g faeces than these studies. While the
differences could be attributable to methodological variations such as particle size cut-offs
and the potential underestimation by Fourier-transform infrared spectroscopy compared
with Raman spectroscopy [17,18], our findings nevertheless allude to a higher prevalence
of microplastics in the human gastrointestinal tract than is currently appreciated. The
same four major types of microplastics were identified among the present and previous
surveys (PS, PP, PE and PET; Table 1), but in different proportions where PS was the most
abundant in this Hong Kong cohort compared with PP being the most common in other
Asian and European individuals [6,7,10]. Such variability in composition might be specific
to local environments and lifestyles such as the widespread use of PS takeaway containers
in Hong Kong.
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Figure 4. Particle size distribution of microplastics in (a) all faecal samples (n = 8) and (b) each of
the samples from four men (M1–4) and four women (F1–4). Particle sizes ranged between 30 and
1800 µm, while microplastics of 30–300 µm accounted for more than 88% of the total number.

Table 1. Selected studies of microplastics in faeces of healthy human cohorts in Asia and Europe.

Sampling Region China (Hong Kong) China (Beijing) Indonesia (a Rural
Village of Pacet)

Japan (Tokyo) and
Europe (7 Cities 1)

Sample size and gender 4 men and 4 women 24 men 5 men and 6 women 3 men and 5 women
Years of age 30–65 18–25 20–50 33–65

Prevalence of MP 2 100% 96% 64% 100%
Quantity of MP, range 20.4–138.9 particles g−1 1.0–36.0 particles g−1 6.9–16.5 µg g−1 0.8–41.6 particles g−1

Quantity of MP, mean ±
SD 50.3 ± 39.0 particles g−1 8.9 ± 8.5 particles g−1 12.2 ± 4.1 µg g−1 9.3 ± 14.8 particles g−1

Quantity of MP, median 36.4 particles g−1 6.5 particles g−1 12.4 µg g−1 2.0 particles g−1

Detected size range of MP 30–1800 µm 20–800 µm Not reported 50–500 µm
Major polymers of MP PS > PP > PE > PET 2 PP > PET > PS > PE PP > PE > PS > PET PP > PET > PS > PE

Major shapes of MP Fragment > fibre Not reported Not reported Fragment and film >
sphere and fibre

Spectroscopic approach Raman FTIR 2 Raman FTIR
Reference Present study [10] [7] [6]

1 United Kingdom (Birmingham), The Netherlands (Groningen), Italy (Sassari), Austria (Vienna), Poland (Toruń),
Finland (Enontekiö) and Russia (Krasnoyarsk); 2 Abbreviations: microplastics (MP), polystyrene (PS), polypropy-
lene (PP), polyethylene (PE), polyethylene terephthalate (PET) and Fourier-transform infrared (FTIR).

4. Conclusions

Our findings from faecal samples reveal the potentially high ingestion rates of mi-
croplastics by Hong Kong residents, which could be five times higher than those in other
places in Asia and Europe. However, larger sample sizes are required in future studies to
confirm these findings. Other potential research topics are to establish how the quantities
and types of microplastics in the gastrointestinal tract would change in response to dietary
or environmental exposure, their perturbations to gut microbiota, and more importantly,
whether these microplastics could adversely impact human health.
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