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Body wave observations of the Earth’s inner core show that it contains strong seismic heterogeneity, 
both laterally and radially. Models of inner core structure generated using body wave data are often 
limited by their parameterisation. Thus, it is difficult to determine whether features such as anisotropic 
hemispheres or an innermost inner core truly exist with their simple shapes, or result only from the 
chosen parameterisation and are in fact more complex features. To overcome this limitation, we conduct 
seismic tomography using transdimensional Markov Chain Monte Carlo on a high quality dataset of 5296 
differential and 2344 absolute P-wave travel times. In a transdimensional approach, the data defines the 
model space parameterisation, providing us with both the mean value of each model parameter and 
its probability distribution, allowing us to identify well versus poorly constrained regions. We robustly 
recover many first order observations found in previous studies without the imposition of a priori fixed 
geometry including an isotropic top layer (with anisotropy less than 1%) which is between 60 and 170 
km thick, and separated into hemispheres with a slow west and a faster east. Strong anisotropy (with a 
maximum of 7.2%) is found mainly in the west, with much weaker anisotropy in the east. We observe 
for the first time that the western anisotropic zone is largely confined to the northern hemisphere, a 
property which would not be recognised in models assuming a simple hemispherical parameterisation. 
We further find that the inner most inner core, in which the slowest anisotropic velocity direction is 
tilted relative to Earth’s axis of rotation (ζ = 55◦ ± 16◦), is offset by 400 km from the centre of the 
inner core and is restricted to the eastern hemisphere. We propose that this anomalous anisotropy might 
indicate the presence of a different phase of iron (either bcc or fcc) compared to the rest of the inner 
core (hcp).

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The Earth’s inner core was first discovered by Lehmann (1936)
through analysis of the P-wave outer core shadow zone. It is a 
solid sphere composed of an iron and nickel alloy with a radius 
of approximately 1217.5 km. Despite its remote location, the inner 
core has an essential role in the origin of many dynamic processes; 
in particular, its solidification and the resulting release of latent 
heat, drive convection in the outer core and thus sustain Earth’s 
magnetic field. This latent heat also contributes to the heat flux at 
the core mantle boundary and represents an important driver of 
mantle convection.

Although mineral physics provides us with estimates of the 
composition and crystalline properties of the inner core, only seis-
mology provides direct measurements of its elastic structure. One 
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of the most striking observations is that the inner core appears 
to be anisotropic, whereby the velocity of a seismic wave varies 
depending on its direction of propagation. In the inner core, this 
anomalous structure is observed in the fact that waves travelling 
aligned to Earth’s rotation axis arrive earlier than waves travelling 
in the equatorial plane. Later studies showed that these body wave 
observations are best matched by cylindrical anisotropy (Morelli 
et al., 1986), which also explains observations of anomalous zonal 
splitting of inner core sensitive free oscillations (Woodhouse et al., 
1986).

As global seismic data coverage increased, seismic investiga-
tions began to resolve 3D lateral variations and radial heterogene-
ity in the inner core. Hemispherical differences were first pro-
posed by Tanaka and Hamaguchi (1997) and later confirmed by 
many other studies (Niu and Wen 2001; Waszek and Deuss 2011; 
Lythgoe et al. 2014; Burdick et al. 2019). These hemispherical dif-
ferences are characterised by a eastern hemisphere with weak 
anisotropy and fast isotropic velocity, and a western hemisphere 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Raypath coverage of our entire dataset for different layers in the inner core. It shows all raypath segments through each given layer.
with strong anisotropy and low isotropic velocity. The outermost 
layer of the inner core has been proposed as isotropic, both in 
the east and west (Wen and Niu, 2002; Waszek and Deuss, 2011). 
Furthermore, an innermost inner core (IMIC) with a different fast 
or slow symmetry axes may exist, although the details remain 
unconfirmed regarding the exact direction of the slow axes, its 
regional distribution or its origins (Beghein and Trampert, 2003; 
Ishii and Dziewoński, 2003; Sun and Song, 2008b; Lythgoe et al., 
2014; Frost and Romanowicz, 2019). Sun and Song (2008b) pro-
duced an impressive early 3D tomographic model of the inner core 
using differential travel times. Their model recovered many of the 
main features in the inner core that we still see today, including 
isotropic quasi hemispheres, an inner most inner core and strong 
anisotropy in one quasi hemisphere.

One limitation in interpreting seismic body wave observations 
in terms of distinct regional features (like hemispheres) is that 
the resultant models strongly depend on the chosen parameteri-
sation. Furthermore, trade-offs exist between different structures 
depending on the model parameterisation. Not accounting for lat-
eral variations may explain why some studies find a sharp change 
in anisotropy at an apparent IMIC (Stephenson et al., 2020; Frost 
and Romanowicz, 2019), while others find a gradual IMIC bound-
ary, if it exists at all (Lythgoe et al., 2014). In addition, hemispheres 
are often assumed to be defined by meridians and features such 
as the innermost inner core usually have a constant radius, which 
may be overly simplifying their shapes.

Another major challenge when imaging the inner core is re-
moving the influence of mantle heterogeneity. A particular subset 
of raypaths, travelling from the South Sandwich Islands (SSI) to 
Alaska, have been noted to travel anomalously fast. It has been 
debated to what extent these travel times reflect inner core struc-
ture or mantle structure (Tkalčić 2010; Frost et al. 2020; Brett and 
Deuss 2020). To address the issue of mantle heterogeneity, we use 
multiple tomographic mantle models to assess unaccounted for 
mantle structure, and we develop inner core models which both 
include and exclude the South Sandwich Islands data.

In this study, we apply a transdimensional Markov Chain Monte 
Carlo (MCMC) inversion technique (Bodin and Sambridge, 2009) to 
a large high-quality body wave data set to make a 3D model of 
inner core velocity and anisotropy. We consider our model to be 
the next step in inner core tomography, with the main difference 
that we use a transdimensional Monte Carlo approach and that 
we can now utilise significantly more data due to the increased 
coverage of seismic stations and events. The advantage of a trans-
dimensional MCMC methodology over an inversion using a static 
parameterisation, is that the parameterisation of the model space 
2

evolves with the Markov chain and is not predetermined. Thus, the 
model parameterisation is driven by the data itself, with no prior 
assumptions on the parameterisation, such as the existence of an 
IMIC or hemispheres. Previously, Burdick et al. (2019) and Pejić et 
al. (2019) used a transdimensional MCMC approach to image a sin-
gle layer of inner core velocity and attenuation respectively. These 
previous studies were 2D spherical surface inversions and in this 
paper we go further by conducting the first fully 3D transdimen-
sional MCMC for the inner core, which allows us to resolve jointly 
for both lateral and radial variations in P-wave anisotropy, which 
is essential to answering questions on the mechanisms and causes 
of anisotropy in the inner core.

2. Data and pre-processing

We image the inner core using the phase PKPdf, which trav-
els the mantle, outer core, and inner core as a compressional body 
wave. PKPdf is used either individually, or in combination with a 
reference phase (PKPcd, PKPbc, PKPab), which only traverses the 
mantle and outer core. We employ independent datasets from 
three previous studies consisting of 1603 PKPbc-PKPdf, 627 PKPab-
PKPdf (Brett and Deuss, 2020), and 3102 PKPcd-PKPdf (Waszek and 
Deuss, 2011) differential travel time measurements, and 2344 ab-
solute PKPdf arrival times (Lythgoe et al., 2014). The arrival times 
of Brett and Deuss (2020) and Lythgoe et al. (2014) are visual 
picks, while Waszek and Deuss (2011) used a combination of both 
visual inspection and cross correlation between the inner core and 
outer core phases. Combining these datasets provides good cover-
age of the inner core from its surface to 200 km radius (see Fig. 1). 
We will need to consider the direction of travel of the PKPdf ray-
path through the inner core to image anisotropy. For cylindrical 
anisotropy, we describe the direction of travel by the angle ζ de-
fined as the angle between the PKPdf raypath in the inner core 
and Earth’s rotation axis. We have good raypath coverage for polar 
raypaths (defined as raypaths with ζ < 35◦), which is important 
for constraining inner core cylindrical anisotropy.

Following the methodology of Creager (1992) we define the 
fractional differential travel time as:

δt

t
= (tPKPref − tPKPdf)data − (tPKPref − tPKPdf)Model

t
(1)

where (tPKPref − tPKPdf)data is the observed difference in arrival 
time between a reference phase and the PKPdf phase, (tPKPref −
tPKPdf)Model is the theoretical arrival time difference predicted by 
a model, and t is the inner core travel time of the PKPdf raypath 
as predicted by a reference model. We use the 1D reference model 
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Fig. 2. The variation of mean δt with the angle ζ for a) PKPcd-PKPdf, b) PKPbc-PKPdf, c) PKPab-PKPdf and d) absolute PKPdf differential travel times. The horizontal lines 
show the standard deviation σmantle of the δt due to ‘mantle noise’ from the 6 global P-wave mantle models used. The number of data points and the average of σmantle is 
shown in each subtitle. Plots showing the differential travel times for each mantle model, from which the means, are derived are shown in Figs. S2-S3.
AK135 (Kennett et al., 1995). For absolute travel times, we remove 
the reference phase from the above equation.

Multiple studies have highlighted the significant influence of 
mantle structure on inner core travel times (Tkalčić 2010; Frost 
et al. 2020; Brett and Deuss 2020). Mantle corrections will be es-
pecially large for absolute travel time measurements, but may also 
be important for differential travel time data. To correct for the in-
fluence of mantle structure and estimate any corresponding uncer-
tainties introduced we calculate differential travel times using six 
different global P-wave models, integrated across the 1D raypaths 
from AK135. The global P-wave models used are: UUP07 (Amaru, 
2007), MITP08 (Li et al., 2008), GyPSuM, LLNL-G3Dv3 (Simmons et 
al., 2012), SAW642AN (Panning and Romanowicz, 2006) and SPani 
(Tesoniero et al., 2015). This results in six synthetic travel times 
for each PKPcd, PKPbc, PKPab and PKPdf travel time observation 
in our data set, from which we calculate six different values of δt
(Figs. S2-S3). Inspection of Figs. S2-S3 reveals a significant uniform 
negative shift for the mantle-corrected absolute PKPdf travel times. 
We expect that this shift is due to 1D mantle structure that differs 
from the reference model used (AK135); we remove it by subtract-
ing the mean of the mantle-corrected equatorial data from each 
measurement. Using the six δt

t values for each data point for each 
model, we determine the mean and standard deviation, σmantle . 
The standard deviation σmantle is used as a starting estimate of the 
noise introduced into the data by the mantle structure which is 
then extended through hierarchical sampling (see section 4.3).

While the mantle corrections will do a good job of correcting 
large scale lower mantle structure, strong velocity perturbations lo-
cally around events or seismic stations will not be as well resolved 
by these global tomographic models. However, we assume that 
such differences will be removed by the differential travel time 
methodology, because the primary and reference phases are most 
similar near the source and receiver. As expected, the PKPab-PKPdf 
and absolute PKPdf data are more affected by mantle structure 
than the PKPcd-PKPdf and PKPbc-PKPdf data (Fig. 2). Regardless, 
the mantle corrections in all datasets are an order of magnitude 
less than the measurements themselves.

3. The forward problem

For a fast direction parallel to Earth’s axis of rotation, cylindri-
cal body wave anisotropy in the inner core is defined as follows 
(Creager, 1992)
3

δt

t
= δv

v
= a + b cos2(ζ ) + c cos4(ζ ) (2)

where δt
t is equivalent to the velocity anomaly δv

v (assuming low 
attenuation in the inner core). The difference in the velocity of 
equatorial raypaths relative to the reference model (AK135), δV eq , 
is given by a in Equation (2). The amount of anisotropy, δVani , 
is defined as the velocity difference between polar and equato-
rial raypaths, given by b + c. This measure of anisotropy is strictly 
for cylindrical anisotropy, and assumes that the slow and fast di-
rections are perpendicular. The b and c parameters of Equation 
(2) are related to components of the elastic tensor, Cij , which de-
scribes the anisotropy of a medium by b = (C33 − C11)/2C11 and 
c = (4C44 +2C13 −C11 −C33)/8C11 (Creager, 1992). From the model 
parameters a, b and c we calculate the isotropic velocity, or Voigt 
average velocity (Lythgoe et al., 2014) commonly interpreted by 
mineral physicists;

δV iso = a + b

3
+ c

5
(3)

Equation (2) reveals that the slowest velocity direction is not re-
stricted to an angle of ζ = 90◦ , but depends on combinations of b
and c, thus can be any angle between 0 − 90◦ . The slowest angle 
is obtained by differentiating Equation (2) and calculating its max-
imum value, following Lythgoe et al. (2014), which results in the 
following:

ζslow = cos−1

√−b

2c
(4)

Some variations in ζslow are statistically insignificant: it is possible 
to have a large range of values of ζslow but with minimal abso-
lute velocity differences between ζslow and ζ = 90◦ . To only keep 
statistically significant values of ζslow , we use a tolerance condi-
tion, such that the difference between ζslow velocity and that at 
ζ = 90◦ must be greater than 0.5% of the reference velocity. We 
will present our model showing variations in δV eq , δV iso , δVani , 
and ζslow . It is important to note that throughout this paper we 
define anisotropy to be the difference between the polar and the 
equatorial velocity (as is conventional for body wave studies of the 
inner core). However, in some regions of our model the difference 
between the polar and equatorial velocity is small (δVani ∼ 1.0%) 
while the difference between the ζslow direction and the ζ = 0◦
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is stronger (∼2.0%). These regions should still be thought of as 
anisotropic even though the value of δVani is small.

For a single raypath with ζ and set of coefficients (a, b, c) we 
predict the normalised differential travel time using Equation (1). 
However, this treats the inner core as a homogeneous volume, 
whereas we are interested in 3D variations. For an inner core with 
multiple sub-volumes, we split the ray into different portions for 
each model sub-volume travelled, resulting in the following linear 
forward problem:

Gm = dsyn (5)

G =

⎛
⎜⎜⎜⎝

A1,1t1 A1,1t1 cos2(ζ ) A1,1t1 cos4(ζ ) A1,2t1 · · ·
A2,1t2 A2,1t2 cos2(ζ ) A2,1t2 cos4(ζ ) A2,2t2 · · ·
A3,1t3 A3,1t3 cos2(ζ ) A3,1t3 cos4(ζ ) A3,2t3 · · ·

...
...

. . .

⎞
⎟⎟⎟⎠ (6)

m =

⎛
⎜⎜⎜⎜⎜⎝

a1
b1
c1
a2
...

⎞
⎟⎟⎟⎟⎟⎠

(7)

d =

⎛
⎜⎜⎜⎝

δt1
δt2
δt3
...

⎞
⎟⎟⎟⎠ (8)

where G is the sensitivity kernel matrix which has the same num-
ber of rows as the number of travel times in our dataset, and the 
same number of columns as the length of vector m. Ai, j within
G is a value between 0 and 1 describing the fraction of raypath i
which travels through volume j and 

∑N
j=1 Ai, j = 1 for a total of N

volumes. The model vector, m, contains the parameters a j, b j, c j
for each volume j. d is the data vector containing the differen-
tial travel time δti of each raypath i. Note that the inner core 
travel time ti has been moved from the left hand side in Equa-
tion (2) to the right hand side, and is now part of matrix G. In 
a static MCMC, the parameterisation of the sensitivity kernel ma-
trix G remains constant, forming a fixed forward problem. In the 
transdimensional MCMC, the sensitivity kernel matrix G changes at 
each step of every new model parameterisation.

Calculating the Ai, j terms is a function of the raypath discreti-
sation and the basis functions used. For this study, we use fixed 
raypaths as modelled by AK135 using the Taup Toolkit (Crotwell et 
al., 1999) and assume the inner core is spherical (note that we do 
correct our data for ellipticity using the methodology of Dziewon-
ski and Gilbert, 1976). We do not adjust the raypaths in our model 
using 3D raytracing. The transdimensional inversion is already a 
computationally expensive non-linear inversion and tests incor-
porating 3D raytracing through an anisotropic model significantly 
increased the time taken to approximate the posterior making it 
unfeasible. Therefore, we decided that for this study it was suf-
ficient to use fixed raypaths and assess the uncertainties in the 
travel times through hierarchical sampling.

The basis functions are 3D Voronoi cells, which provide a fast 
method of tessellating a domain with non-overlapping volumes.

4. The inverse problem

4.1. Bayes’ theorem

We solve the inverse problem using a Bayesian approach, where 
we do not consider one single solution but instead regard the so-
lution to be a collection of models (an ‘ensemble’) from which un-
certainties can be determined. In practice, the Bayesian approach 
4

combines prior information on a model space with data to produce 
a posterior probability distribution. Following Bodin and Sambridge 
(2009), the posterior probability p(m|dobs) is given by

p(m|dobs) ∝ p(dobs|m)p(m) (9)

where the likelihood function p(dobs|m) is the probability of ob-
serving a set of data given a set of model parameters. The prior
function p(m) describes our knowledge of the model space be-
fore considering the data. The posterior p(m|dobs) represents how 
the data and our prior knowledge combine, providing us with the 
probability that a given set of model parameters are true.

4.2. Markov chain Monte Carlo

We then use Markov Chain Monte Carlo (MCMC) to sample 
the posterior probability distribution of our data-model system 
(Cowles and Carlin, 1996). For a given prior probability and data, 
we evaluate the forward problem over many proposed models, 
with each proposed model related to the previous model with a 
small random perturbation. After randomly perturbing an initial 
model, we use the Metropolis-Hastings algorithm (Hastings 1970) 
to probabilistically accept or reject perturbations. The Metropolis-
Hastings criteria ensure that accepted models are representative of 
the posterior probability distribution.

4.3. Likelihood and hierarchical noise

The likelihood function, p(dobs|m), describes how well a set of 
model parameters reproduces the data:

p(dobs|m) ∝ exp
−φ(m)

2
(10)

where φ is the least squares misfit of a model normalised by data 
noise. We use an L2 norm which is frequently used in seismic to-
mography:

φ(m) =
∣∣∣∣
∣∣∣∣dsyn − dobs

λd

∣∣∣∣
∣∣∣∣
2

(11)

where dsyn is the synthetic data predicted by the model m (cal-
culated using Equation (5)), λd is the hierarchical parameter and 
is the estimated data noise. λd has a profound influence on the 
MCMC because the algorithm will only fit the data to within this 
noise limit. Thus, λd is analogous to the damping parameter in a 
damped least squares inversion. However unlike the damping pa-
rameter, it is possible to assess the value of λd from the data itself 
using hierarchical methods. We separate λd into λDataT ype for each 
data type, since the four data types (PKPcd, PKPbc, PKPab differ-
ential travel times and absolute PKPdf travel times) have different 
levels of noise. For each individual δt data point we use the mantle 
noise, σmantle , estimated from the six global tomographic models 
(see section 2) as a minimum level of noise. From this, each mea-

surement then has its own λd =
√

λ2
DataT ype + σ 2

mantle . The misfit 
then becomes:

φ(m) =
√√√√√

NData∑
n=1

(
(dsyn − dobs)n√

λ2
DataT ype + σ 2

mantle,n

)2

(12)

The hierarchical parameter λDataT ype is not a term that we 
choose, but is sampled as an additional perturbation step in the 
MCMC, which is also accepted following the Metropolis-Hastings 
algorithm. In this way, λDataT ype estimates the noise by examin-
ing contradictions within the data itself, and combining this with 
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the prior estimate of the data noise from the tomographic models. 
For example, if two or more observations that sample the same 
region of the model are contradictory then they will be fit poorly 
and drive the hierarchical parameter to higher values indicating 
a greater level of uncertainty in the data. This approach handles 
data uncertainties thoroughly, using the estimates of σmantle from 
the tomographic models to provide a minimum misfit on individ-
ual data points, then using the λDataT ype terms to maintain an 
overview of the noise of each subset of data. Substituting Equa-
tion (12) into Equation (10) provides us with the first term on the 
right hand side of Equation (9).

4.4. Prior

The prior, p(m) (the second term on the right hand side of 
Equation (9)), is a probability distribution function representing 
any knowledge on the physical system before data is considered. 
We use Gaussian probability distributions for model parameters, a, 
b and c with a mean of 0 and a standard deviation, σ , of 0.1 (or 
10% velocity perturbations relative to AK135). That is, for the ith a
parameter we have in our model we have:

p(ai) = 1

σ
√

2π
exp(− a2

i

2σ
) (13)

with the same equation for b and c, giving a prior of the form:

p(m) =
∏

i

p(ai)p(bi)p(ci). (14)

This prior reflects current knowledge on inner core structure while 
not restricting the size of the model space prohibitively. For ex-
ample, it has the capacity to incorporate anisotropy (b + c) of 10% 
in our model. We consider Gaussian priors to be more appropriate 
than uniform priors as uniform priors can overly restrict the size 
of the model space.

4.5. Transdimensional model proposals

In a traditional MCMC inversion the parameterisation of the 
model space is static (i.e. the number and locations of the Voronoi 
cells remains the same across all iterations) and defined prior 
to the inversion. Thus, only the model parameters a, b and c
within each Voronoi cell would be perturbed. However, in our 
transdimensional MCMC, the data defines how the model is pa-
rameterised through perturbing the number and locations of the 
Voronoi cells. Thus, the transdimensional method samples models 
with different complexity (i.e. number of model parameters and 
volumes) resulting in an ensemble of varying dimensioned mod-
els that plausibly explain the observations. This is implemented as 
a ‘reductionist’ methodology, i.e. if the dataset can be fit equally 
well with 10 volumes instead of 11, then the final ensemble will 
include more models with 10 volumes than 11.

The velocity perturbations to the model parameters a, b and c
are described in Appendix B.1. The additional perturbations to the 
parameterisation of the model space require three more perturba-
tion types: move (moving cells), birth (generating new cells), and 
death (removing cells) and are described in detail in Appendix B.2-
B.4.

5. Ensemble analysis

We applied the transdimensional MCMC algorithm (section 4.5) 
to our data (section 2) and ran 20 chains for 4,000,000 iterations 
with an acceptance rate (the percentage of accepted perturbations) 
of 30.5%. Fig. 3a shows how the misfit changes as a function of 
iteration in the inversion for all 20 chains. The misfit drops rapidly 
5

Fig. 3. a) Variation of misfit with iteration in all 20 chains for our transdimen-
sional model. b) Variation of no. of volumes with iteration in all 20 chains for 
our transdimensional model. The greyed out area in a) & b) is the ‘burn in’. 
c) The total hierarchical parameter of each of our data types, i.e. λtotal

DataT ype =√
λ2

DataT ype + mean(σ
DataT ype

mantle )2 calculated from the ensemble from our transdimen-

sional model. (For interpretation of the colours in the figure(s), the reader is re-
ferred to the web version of this article.)

in the first 200,000 iterations before reaching a misfit minimum; 
the transdimensional algorithm then samples models around this 
minimum value.

Once the inversion has completed the desired number of it-
erations, the models are collected into an ensemble from which 
statistics are calculated. We remove the influence of the starting 
model by excluding the first third of all iterations in the ensem-
ble of models; the so-called ‘burn in’. It is also common practice 
to ‘thin’ the chain by only retaining every 100th model, which en-
sures that each model in an ensemble is independent. Following 
‘burn in’ and ‘thinning’ leaves a final ensemble of 533,380 models. 
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For further discussion regarding appropriate values for the ‘burn 
in’ and ‘thinning’ we refer the reader to Cowles and Carlin (1996).

For an MCMC investigation, it is important to ensure that the 
model sampling has converged, whereby the model space has 
been sufficiently explored and the models are no longer evolv-
ing substantially. To assess convergence, we examine the number 
of volumes in each chain as a function of iteration (Fig. 3b). The 
number of volumes across all chains drops rapidly within the first 
10,000 iterations, as the starting model is refined and Voronoi cells 
which do not reduce misfit are removed. After this initial reduc-
tion of volumes, the MCMC algorithm better assesses the noise 
level within the data, and the number of volumes across all chains 
starts to increase before flattening out after 1,000,000 iterations. 
For the next 3,000,000 iterations, the mean number of volumes 
across all chains does not change substantially, implying conver-
gence. After convergence, the average model misfit has reduced 
from 1.0 to 0.55, and the models have between 23 and 38 vol-
umes.

We also investigate the average hierarchical noise parameters 
for each data type (section 4.3) from the 533,380 models in our fi-
nal ensemble (Fig. 3c). As expected, the PKPcd-PKPdf data has the 
lowest noise level with 0.29 s on average of uncertainty in each 
measurement, followed by PKPbc-PKPdf data with a noise level of 
0.63 s. Finally, the PKPab-PKPdf data and absolute PKPdf data show 
the largest levels of noise with similar values of approximately 
0.95 s. Thus, the hierarchical sampling found the PKPcd-PKPdf data 
to have the lowest noise level, and will fit those observations more 
closely than the PKPab-PKPdf and absolute PKPdf data. From this 
analysis we expect that the top of the inner core is the best re-
solved region of our model due to the low noise level in the 
PKPcd-PKPdf data and the fact that we have more data sensitive 
to the top of the inner core than the centre of the inner core.

6. Results

Our final model was generated by calculating the mean and 
standard deviations of four different model parameters from the a, 
b and c values of the 533,380 models in our ensemble: the equato-
rial velocity (δV eq), the isotropic or Voigt average velocity (δV iso), 
the anisotropic velocity difference (δVani ), and the angle of slowest 
direction (ζslow ) (see section 3). Models in our ensemble will con-
tain different numbers of Voronoi cells at different locations and 
these individual models will contain sharp boundaries. However 
when we average across all 533,380 models the boundaries will 
not be in exactly the same place in every model, meaning that the 
average model can contain smoothly varying and irregular shaped 
boundaries.

We will explore our results in terms of large-scale general 
observations that have been seen before, including the isotropic 
hemispheres (section 6.1), the anisotropic zone (section 6.2) and 
the inner most inner core (section 6.3), but mainly focus on the 
finer-scale details which have become obvious because of our 
transdimensional approach.

6.1. Isotropic hemispheres

Our model confirms the previously found hemispherical pattern 
with seismic P-waves travelling anomalously fast in the ‘eastern 
hemisphere’ of the inner core and anomalously slow in the ‘west-
ern hemisphere’. This is evident in maps of equatorial velocity 
throughout the inner core (Fig. 4a-c), and at the top of the in-
ner core in isotropic velocity (Fig. 4g). The hemispherical pattern 
is also clearly visible in cross sections through the equatorial plane 
(Fig. 5a,c) and meridional cross sections through the North and 
South pole (Fig. 6a,c). This is in agreement with numerous pre-
vious studies (Tanaka and Hamaguchi 1997; Niu and Wen 2001;
6

Waszek and Deuss 2011; Lythgoe et al. 2014; Burdick et al. 2019; 
Brett and Deuss 2020). We avoid describing the hemisphere 
boundaries using single meridians because the hemisphere bound-
aries are not straight lines through the poles; this is most visible 
in the equatorial velocity at the ICB around southern Africa and 
Hawaii (Fig. 4a.)

It is interesting to note that the hemispherical pattern in the 
equatorial velocity (Fig. 5a and 6a) persists and the magnitude of 
the equatorial velocity increases with depth in the eastern hemi-
sphere. The advantage of our use of the transdimensional ap-
proach, is that we are not limited to simple hemispherical shapes 
anymore and so are now able to identify regional heterogeneity 
within the hemispheres. Further complexity is particularly visi-
ble in the meridional cross section (Fig. 6a), which reveals that 
the boundary separating the fast and slow equatorial velocities 
appears sharp and undulating. Some faster equatorial velocities 
associated with the eastern hemisphere encroach on the slower ve-
locities of the western hemisphere. These new observations would 
be challenging to identify robustly without using a transdimen-
sional methodology, as it would be difficult to know the extent to 
which the final model was influenced by the initial fixed parame-
terisation.

Comparing our model of the equatorial velocity to that of Bur-
dick et al. (2019) we see good overall agreement in the location of 
the hemisphere boundaries, but with some extra complexity, this 
is due to the fact that we also solve for the 3D velocity structure 
and have more data both of which will influence the location of 
the boundaries at the ICB.

The hemispherical pattern in the isotropic velocity is present 
until about 60-170 km depth below the ICB (Fig. 4g, 5c and 6c), 
with boundaries between slow ‘west’ and fast ‘east’ located ap-
proximately at 170◦W and 30◦E in broad agreement with previous 
studies (Tanaka and Hamaguchi 1997; Waszek and Deuss 2011; 
Burdick et al. 2019). The reason that the isotropic velocity dif-
ference does not persist deeper in the inner core, is because the 
isotropic velocity is a Voigt average of the velocities in all direc-
tions. Although the hemispherical variations persist in the equato-
rial velocity with depth, the contribution of anisotropy (i.e. higher 
polar velocities) causes the isotropic velocity to lose its hemispher-
ical pattern deeper than 60-170 km below the ICB (Fig. 7a).

6.2. Anisotropic zone

In agreement with previous studies (i.e. Tanaka and Hamaguchi 
1997; Niu and Wen 2001; Lythgoe et al. 2014; Brett and Deuss 
2020), our model also contains a strong anisotropic zone in the 
west where inner core seismic P-waves travelling in the north-
south or polar direction travel faster than waves that travel in the 
east-west or equatorial direction. The lateral extent of the west-
ern anisotropic zone is clearly visible in maps of the anisotropic 
velocity difference (Fig. 4n-o) at 400 and 800 km radius and also 
in cross-sections through our model (Fig. 5e and 6e). The inner 
core displays very little anisotropy near the ICB (Fig. 4m), with the 
exception of a strong patch with high uncertainty around South 
America, similar in location to a high uncertainty region found in 
Pejić et al. (2019).

A 1D profile through our model (Fig. 7a) furthermore shows 
that indeed anisotropy is weak at the top of the inner core (0 
to 1%) and confirms strong anisotropy to be located within the 
western hemisphere approximately between 50 and 1100 km ra-
dius, and only weak anisotropy (< 0.5%) in the eastern hemisphere. 
The anisotropic strength increases rapidly with depth, reaching a 
maximum of 7.2% in the western hemisphere. The radius of the 
transition to strong anisotropy in this region occurs between 1170 
km and 1050 km (Fig. 7a). It is difficult to define more precisely 
this radius due to a lack of raypaths with turning points between 
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Fig. 4. Maps of the mean and standard deviation (SD) of δVeq , δVani and δV iso at the ICB (1217.5 km radius), 800 km radius and 400 km radius throughout our model. The 
same plot showing a transdimensional inversion using the same model setup but excluding data originating from the South Sandwich Islands is shown on Fig. S16.
1110 km and 1060 km (Blom et al., 2015), resulting in a partial 
null space. This lack of data is reflected in the standard deviation 
(Fig. 5f), which shows a broad region of high uncertainty at the top 
of the anisotropic zone.

Tanaka and Hamaguchi (1997) described the anisotropic zone 
as being a ‘quasi-hemisphere’, i.e. it does not precisely span 180◦
of longitude. Indeed, we also observe that the anisotropic zone 
does not span 180◦ but runs between 170◦W and 30◦E (Fig. 5e), 
spanning a width of 200◦ in broad agreement with previous mod-
els (Sun and Song 2008a; Irving and Deuss 2011; Lythgoe et al. 
2014).

Most importantly, because of our transdimensional approach 
we do not prescribe simple hemispherical shapes; this enabled us 
to find that the anisotropic zone does not continue all the way 
to the south pole. Instead, we observe for the first time that the 
western anisotropic zone is largely confined to the northern hemi-
7

sphere (Fig. 6e). The anisotropy at the South pole of the inner 
core at 800 km radius is 2% with an uncertainty of 1.5%, while 
the anisotropy around North America is 8% with an uncertainty 
of 2% (Fig. 6e) meaning that within the bounds of uncertainty in 
our model the South pole has significantly lower anisotropy than 
the region around North America. This regional feature would have 
been difficult to map using traditional seismic tomography em-
ploying fixed parameterisations, and has important implications for 
models of inner core growth (section 7). Given that this region of 
strong anisotropy does not span half the inner core in either lon-
gitude or latitude, we use the descriptor of an ‘anisotropic zone’ 
(instead of hemisphere).

We conducted a resolution test, to ensure the concentration of 
anisotropy in the northern part of the western hemisphere was 
not an artefact of imperfect data coverage. To do this, we ran an 
inversion using synthetic data for a known synthetic model, con-
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Fig. 5. Cross sections showing the average and standard deviation (SD) of the δVeq , δVani , δV iso and ζslow variations throughout our model. The cross section is a horizontal 
slice through the equator with constant latitude. The view of the reader is shown in the perspective panel. The same plot showing a transdimensional inversion using the 
same model setup but excluding data originating from the South Sandwich Islands is shown on Fig. S19.

Fig. 6. Cross sections showing the average and standard deviation (SD) of the δVeq , δVani , δV iso and ζslow variations throughout our model. The cross section is a vertical 
slice spanning all latitudes and going from 90◦W to 90◦E. The view of the reader is shown in the perspective panel. The same plot showing a transdimensional inversion 
using the same parameters but excluding data originating from the South Sandwich Islands is shown on Fig. S18.
taining simple hemispheres (with 8% anisotropy and 0% equatorial 
velocity in the west and 0% anisotropy and 2% equatorial veloc-
ity in the east) spanning all latitudes and a spherical IMIC (with 
0.5% anisotropy and 1% equatorial velocity) located at the centre of 
the model (Figs. S9-S11). From this model we generated synthetic 
8

data using our real raypaths and added realistic Gaussian noise. 
The same transdimensional inversion was then conducted on the 
synthetic data as for the real data. We reproduced all major fea-
tures from the synthetic model reliably (Figs. S12-S15), including 
an anisotropic hemisphere across all latitudes. This confirms that 
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Fig. 7. A profile through the inner core going from 90◦W,0◦N at the top to 90◦E,0◦N at the bottom. a) Shows the mean and standard deviation (SD) of δVeq , δVani , δV iso

while the profile on b) shows the variations in ζslow direction throughout our model.

Fig. 8. Maps of the mean and standard deviation (SD) of ζslow at the ICB, 800 km radius and 400 km radius throughout our model. The same plot showing a transdimensional 
inversion using the same model setup but excluding data originating from the South Sandwich Islands is shown on Fig. S17.
if the anisotropic region in the west of the inner core spanned all 
latitudes our data would be able to recover this feature.

We also ran a separate inversion excluding the particular subset 
of raypaths travelling from the South Sandwich Islands to Alaska 
(Figs. S16-S19). These raypaths appear to travel anomalously fast, 
and it has been debated to what extent these travel times reflect 
regional-scale inner core structure versus mantle contamination 
(Tkalčić 2010; Frost et al. 2020; Brett and Deuss 2020). Our model 
excluding SSI data shows the same main features, in particular that 
the western anisotropic zone is still located primarily in the north-
ern hemisphere. Thus, we conclude that the effect of the SSI data 
on our inversion is minimal and that the western anisotropic zone 
is indeed confined to the northern hemisphere.

6.3. Offset IMIC

The inner most inner core (IMIC) has been defined in previ-
ous studies as a anisotropic region where the slowest direction 
9

(i.e. ζslow of equation (4)) is at an angle smaller than 90 degrees 
from the fastest direction. ζslow is harder to constrain than δV eq

and δVani since variations in ζslow produce a more subtle effect 
on P-wave travel times. Despite this, we detect a clear region in 
which ζslow is 55◦ ± 16◦; this is most notable in the cross-sections 
through our model (Figs. 5g and 6g). Within this region, δVani (the 
difference between purely polar paths with ζ = 0◦ and equatorial 
paths with ζ = 90◦ is small (∼ 1%). What matters here instead, 
is that the difference in velocity between polar paths with ζ = 0◦
and paths with ζslow is as large as 2% and therefore, despite hav-
ing a small value of δVani this region should still be considered 
anisotropic.

Interestingly, it appears not to be a spherical feature at the cen-
tre of the inner core. In fact, the centre of the IMIC in our model is 
offset from the centre of the inner core by approximately 400 km, 
and our IMIC is contained within the eastern hemisphere (Fig. 7b 
and Fig. 8c). Our ‘non-spherical’ or offset IMIC appears to recon-
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cile previous differing IMIC models (Ishii and Dziewoński, 2003; 
Beghein and Trampert, 2003; Sun and Song, 2008b; Lythgoe et al., 
2014; Frost and Romanowicz, 2019). The model of Sun and Song 
(2008b) was an early 3D inner core model which observed an IMIC, 
in their model the parameterisation of the IMIC was fixed, with 
the IMIC in the central 600 km of the inner core. However, Sun 
and Song (2008b) also ran a model without a fixed IMIC. They 
concluded that their model with and without a fixed IMIC was ap-
proximately the same and that the IMIC was spherical. However, 
looking at their model again it seems possible that they were al-
ready seeing evidence of an offset IMIC but did not have the data 
at the time to be certain. Lythgoe et al. (2014) went further and 
proposed that the IMIC is in fact part of a larger hemispherical 
pattern which is in effect what we still see in our model today 
with more data and a more advanced technique.

We ensured that this offset is not an artefact of data cover-
age by running two synthetic tests. In one test we included a 
central spherical IMIC in our synthetic model (Figs. S9-S11) and 
produced synthetic data. After running a transdimensional inver-
sion with this synthetic data we were able to resolve this regional 
feature (Figs. S12-S15), showing that if the IMIC was spherical our 
data would be able to resolve this. In the second synthetic test we 
used an offset IMIC which was only present in the eastern hemi-
sphere (Figs. S20-S21) and we were also able to fully recover this 
synthetic model after running a transdimensional inversion (Figs. 
S22-S23).

6.4. Summary

Summarising the findings from our model, we identify three 
robust and particularly interesting features in our model:

1. Strong anisotropy is isolated to a zone within the western 
hemisphere. The anisotropy is strongest north of the equator 
and weakens to virtually no anisotropy near the south pole. 
The top of the inner core near the ICB displays very little 
anisotropy, however, anisotropy increases sharply below 200 
km depth in the west.

2. We interpret a region with ζslow = 55◦ ±16◦ , located primarily 
in the eastern hemisphere at a radius less than 700 km as the 
IMIC, with the centre of the IMIC offset from the centre of the 
inner core by 400 km.

3. Equatorial and isotropic velocity anomalies are separated into 
two hemispheres, with a slow western hemisphere and a fast 
eastern hemisphere. The isotropic velocity difference between 
the hemispheres is present in the top 60-170 km of the inner 
core, and disappears at greater depth. The hemispherical pat-
tern in equatorial velocity, on the other hand, persists to the 
centre of the inner core with the equatorial velocity increasing 
with depth in the eastern hemisphere.

7. Geodynamic implications

Relating our seismic observations to geodynamical processes in 
the inner core is challenging due to the multiple mechanisms pro-
posed to explain the formation of anisotropy and the generation of 
hemispheres. It is now widely accepted that anisotropy is caused 
by the alignment of iron crystals, which occurs either during so-
lidification or afterwards through texturing. However, the phase 
of iron which is stable at inner core conditions remains debated. 
At inner core temperatures and pressures iron takes the form of 
hcp (hexagonal close packed), bcc (body centred cubic), or fcc 
(face centred cubic) crystals. Each phase displays varying intrinsic 
anisotropy, although the magnitude of anisotropy observed seis-
mically also depends on the degree of crystal alignment. In order 
to test if our seismic observations would be able to constrain the 
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phase of iron, we calculated the anisotropy of a single crystal of 
each phase of iron at inner conditions using values obtained by ab 
initio simulations from Vočadlo (2007) and Martorell et al. (2015)
and calculated the corresponding seismic travel times (see Fig. S7). 
The precise magnitude of anisotropy of these phases of iron at in-
ner core temperatures and pressures remains an open question and 
while hcp iron seems the most likely candidate to account for ob-
served inner core anisotropy, fcc iron is yet to be ruled out. Details 
on calculating the velocity characteristics of single crystals of iron 
can be found in Appendix B.5.

To facilitate the comparison between the single crystal ani-
sotropy from the mineral physics and the anisotropy variations 
in our models, we used the mean a, b, and c parameters from 
our models for three different locations and plot the correspond-
ing predicted fractional travel times (Fig. 9a). We select locations 
from the western anisotropic zone (90◦W, 0◦N, 800 km radius), 
the IMIC (90◦E, 0◦N, 100 km radius), and the eastern hemisphere 
(90◦E, 0◦N, ICB). The western zone clearly exhibits strong cylindri-
cal anisotropy, whereby polar raypaths are 5.9% faster than equa-
torial. There is negligible anisotropy in the eastern hemisphere 
(< 0.5%), and rays which travel in a polar direction are slower than 
equatorial rays. In the IMIC, the equatorial and polar velocities are 
similar; the slowest direction is oriented at ζ = 55◦ , with a veloc-
ity decrease of almost 2% relative to the polar velocity.

The anisotropy in the western zone (Fig. 9a) appears most sim-
ilar to the anisotropy predicted for a single hcp crystal with sym-
metry axis aligned N-S (Fig. 9b), while anisotropy in the IMIC is 
more complex. Polar raypaths passing through the IMIC are only 
slightly faster than the equatorial raypaths; the largest travel time 
difference is instead between the slowest direction (at ζ = 55◦) 
and the equatorial and polar directions. This anomalous anisotropy 
could be caused by the dominance of the bcc or fcc iron phases 
with a tilted fast symmetry axis. For example, If we align the 
anisotropy symmetry axis with the fastest direction through a bcc 
or fcc crystal (which is at ζ = 54◦ , see Fig. S7) then we get the pre-
dicted travel times shown in Fig. 9c. The travel times for fcc and 
bcc (Fig. 9c) bear a resemblance to the anisotropy we observe in 
the IMIC (Fig. 9a). It is important to note, that this analysis is an 
approximation as we are assuming that the anisotropy of a large 
volume made of many crystals can be described by a single crystal 
with 100% alignment relative to Earth’s axis of rotation. We are, 
however, making this comparison to encourage further research 
into the possibility that seismic anisotropy within different regions 
in the inner core could be explained by different phases of iron.

Anisotropic phases of iron, by themselves, do not account for 
the observed pattern of inner core anisotropy. The crystals must be 
aligned in a lattice preferred orientation (LPO) or alternatively in a 
shape preferred orientation (SPO), as a texture of randomly ori-
ented anisotropic crystals would appear isotropic overall. Given a 
particular phase of iron, the question arises how this LPO is gener-
ated, and which mechanism(s) result in a heterogeneous distribu-
tion of this LPO. LPOs are commonly caused by post-solidification 
deformation, for the inner core one possible deformation mecha-
nism would involve induced stresses causing axis symmetric flow, 
resulting in iron crystals aligning with this flow. A number of 
mechanisms have been proposed to create such texturing, in-
cluding topographic relaxation (also known as equatorial growth, 
Yoshida et al. (1996)), whereby preferential growth at the equa-
tor of the inner core causes flow toward the poles due to geo-
static forces. An alternative mechanism involves Maxwell stress or 
Lorentz forces induced by the magnetic field, causing deformation 
strongly influenced by outer core flow (Karato 1999; Buffett and 
Wenk 2001). It is likely that a combination of these mechanisms 
is required to explain the observed seismic complexity. For exam-
ple, models of topographic relaxation typically produce symmetric 
flow around the equator which would create seismic anisotropy at 
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Fig. 9. a) Cylindrical anisotropy curves from three characteristic locations in our 
model. The western region represents the velocity variations from location: 90◦W, 
0◦N, 800 km radius. The IMIC curve is from the location: 90◦E, 45◦N, 100 km radius. 
The eastern hemisphere curve is from the location: 90◦E, 0◦N at the inner core 
boundary. The horizontal green dashed line highlights the ζslow direction for the 
IMIC location. b) and c) show predicted single crystal anisotropy for three different 
iron crystal arrangements. b) shows the velocity variations of hcp, bcc, and fcc iron 
phases relative to velocity at ζ = 0◦ assuming the c-axis of the hcp crystal is at 
ζ = 0◦ . c) shows the prediction if we consider the azimuth of maximum velocity 
through a single bcc or fcc crystal is at ζ = 54◦ . Values for the stiffness matrix for 
hcp and fcc iron are taken from Martorell et al. (2015) at 6600 K and at 360 GPa, 
while the values of the stiffness matrix for bcc iron was taken from Vočadlo (2007)
at 6000 K. See Appendix B.5 for details on how to calculate predicted travel times 
from the stiffness matrix of a specific iron crystal.

both poles. This is in contrast to our observation that anisotropy 
in the inner core does not extend from south pole to north pole. 
Given this new observation, it is important that future geodynami-
cal models assess whether topographic relaxation mechanisms can 
produce asymmetric flow around the equator, resulting in stronger 
anisotropy at the north pole than the south pole.

Hemispherical structures in the inner core are equally compli-
cated to account for, and must further be compatible with the pro-
cesses to generate anisotropy. Proposed hemispherical models are 
separated broadly based on whether the density or thermal profile 
in the inner core is stable. If the inner core has an unstable den-
11
sity or thermal profile, then convection becomes probable (Lythgoe 
and Deuss, 2015). For specific conditions (large viscosity and low 
thermal conductivity), this convection will be in the form of in-
ner core translation which can result in a hemispherical pattern 
(Alboussiere et al. 2010; Deguen et al. 2018). An anisotropic fabric 
will be able to form if this translation is combined with a texturing 
mechanism such as topographical relaxation (Yoshida et al. 1996; 
Deguen et al. 2011), deformation due to magnetic forces (Karato, 
1999) or annealing during translation (Bergman et al., 2010). For 
example, recent work by Frost et al. (2021) has shown that trans-
lation in the inner core is able to produce a region in the west with 
strong anisotropy. However, translation models require a high inner 
core viscosity (> 1018 Pa s), which is not in agreement with cur-
rent viscosity estimates of 1013 − 1017 (Koot and Dumberry, 2011; 
Ritterbex and Tsuchiya, 2020).

Alternatively, variations in crystallisation rate at the inner core 
boundary could result in hemispherical differences being ‘frozen 
in’ as the inner core grows (Aubert et al., 2008). In this case, heat 
flux at the ICB would be influenced by flow in the outer core, 
the magnetic field, and potentially thermal anomalies at the core 
mantle boundary (Karato 1993). This mechanism of hemisphere 
formation implies that structures at increasing depth within the 
inner core record older properties of ICB properties, outer core 
flow, and magnetic field strength. This opens the potential to use 
seismology to infer paleomagnetic properties, but it is also unclear 
if anomalies in the outer core could last long enough to main-
tain a consistent pattern of crystallisation in the inner core, and 
whether this pattern could truly be preserved for substantial peri-
ods of time.

8. Conclusion

Our transdimensional-MCMC model of inner core seismic ve-
locity shows that hemispherical structures and regional-scale vari-
ations in anisotropy are required to explain inner core body wave 
data. The observed features remain when removing anomalous 
data from earthquakes originating in the South Sandwich Islands, 
and also when using data corrected for 3D mantle structure. Our 
results reveal for the first time that the strong anisotropic region 
in the west is primarily located in the northern hemisphere, with 
implications for geodynamical models of inner core formation. This 
result is guided only by the data itself without any prior structure 
imposed in the parameterisation, and is robust even when con-
sidering uncertainties in the data and model space. We propose 
to call this an anisotropic zone (rather than hemisphere) to better 
describe its shape. We also find robust evidence for a innermost in-
ner core, in which the slowest velocity is at an angle of 55◦ ± 16. 
The IMIC is offset by 400 km from the centre of the inner core 
and is contained mainly within the eastern hemisphere. Its dis-
tinct anisotropy could indicate a different phase of iron (either bcc 
or fcc) than the rest of the inner core (hcp), and potentially re-
sult from multiple stages of inner core growth, while its offset is 
compatible with models of slow lateral translation.
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