
Vol.:(0123456789)1 3

Journal of Membrane Computing (2020) 2:121–136
https://doi.org/10.1007/s41965-020-00041-3

REGULAR PAPER

Membrane computing with water

Thomas Hinze1 · Hendrik Happe1 · Alec Henderson2 · Radu Nicolescu2

Received: 1 October 2019 / Accepted: 21 April 2020 / Published online: 25 May 2020
© The Author(s) 2020

Abstract
We introduce water tank systems as a new class of membrane systems inspired by a decentrally controlled circulation of
water or other liquids throughout cells called tanks and capillaries called pipes. To our best knowledge, this is the first pro-
posal addressing the behavioural principle of floating and stored water for modelling of information processing in terms of
membrane computing. The volume of water within a tank stands for a non-negative rational value when acting in an analogue
computation or it can be interpreted in a binary manner by distinction of “(nearly) full” or “(nearly) empty”. Water tanks
might be interconnected by pipes for directed transport of water. Each pipe can be equipped with valves which in turn either
fully open or fully close the hosting pipe according to permanent measurements whether the filling level in a dedicated water
tank exceeds a certain threshold or not. We demonstrate dedicated water tank systems together with simulation case studies:
a ring oscillator for generation of clock signals and for iteratively making available amounts of water in a cyclic scheme,
analogue arithmetics by implementation of addition, non-negative subtraction, division, and multiplication complemented
by systems in binary mode for implementation of selected logic gates.

Keywords Water-based computing · Autonomous operation · Arithmetics · Membrane system

1 Introduction

Visualisation of computing processes in detail is an impor-
tant and demanding task for teaching to students of engi-
neering. Having an experimental setup at hand, the students
can observe and trace the course of signals throughout a
computation. They understand the occurrence of delays
and latencies in signal processing along with the necessity
of synchronisation in order to keep signals in a valid state.
Moreover, the students get sensibilised for imprecision and
slight deviation of signal levels to cope with for successful

hardware implementations. They learn about advantages and
disadvantages of analogue and digital modes of computation
and resulting consequences in algorithmic design and hard-
ware development [15]. State-of-the-art computers utilise
electrical signals. In spite of their preference in practice,
electrical signals turn out to be invisible and more or less
cumbersome in teaching at the beginners level.

In this context, it is an obvious idea to apply an alterna-
tive floating medium. Pure water in its liquid form seems to
be an ideal candidate. On the one hand, underlying natural
principles of floating water in comparison to the flow of
electricity show a close relationship when replacing the cur-
rent by volumetric flow rate and after substitution of voltage
by pressure. On the other hand, floating and stored water
enriched with a dye and passing through a macroscopic envi-
ronment is easily visible.

Beyond its usefulness for teaching, such a system can be
implemented in a decentralised manner inspired by a tissue
of biological cells. Indeed, higher organisms incorporate
mechanisms of computing with water, for instance the con-
trol loop for adjustment of the human intraocular pressure
[10] or for setting a local specific pH environment by purpo-
sive dilution in which enzymes exhibit their maximum activ-
ity [21]. Regulated transportation of water enriched with

 * Thomas Hinze
 thomas.hinze@uni-jena.de

 Hendrik Happe
 hendrik.happe@uni-jena.de

 Alec Henderson
 ahen386@aucklanduni.ac.nz

 Radu Nicolescu
 r.nicolescu@auckland.ac.nz

1 Department of Bioinformatics, Friedrich Schiller University
Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany

2 The University of Auckland, Private Bag 92019,
Auckland 1142, New Zealand

http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-020-00041-3&domain=pdf

122 T. Hinze et al.

1 3

reactive substances throughout and across tissues together
with a blood stream complemented by temporal storage and
processing within cells is a crucial part in numerous biologi-
cal control loops [2, 12]. A first step towards corresponding
models and simulation environments consists in considera-
tion of systems for computing with water which promises a
fascinating potential worth to be tackled.

The idea to employ water for information processing is
not new. First attempts date back more than 2000 years. The
ancient water cascade [14] for soil irrigation gives an illus-
trative example in which an initial pool of water becomes
separated into nearly equal portions by passing a sequence
of water tanks whose overflow forwards the water to the
next tank after the portion has been collected; see Fig. 1.
In the 1930s, the first real water-based analogue computer
called water integrator had been invented in the Soviet Union
and applied for numerical solution of ordinary differential
equation systems [1, 13, 24]. This computer comes with an
external manual control and utilises mechanical elements for
individual regulation of the volumetric flow rate in each of
the pipes. Fine-grained variation of flow rates can be seen as
a characteristic attribute of this computer whose constituents
comprise many expensive movable mechanical elements, but
nearly no sensors for measurement of filling levels or other
parameters. Later, hydraulic systems came into the focus to
mimic a computer [3, 4, 20]. Their principle of operation
is mainly based on adjustment of pressure throughout the
system in order to gain the intended functionality [23, 25].

Tom Head and his co-workers successfully initiated and
developed microflow systems [6, 7]. They have in common
that they employ the flow of water in order to bring together
substances for chemical reactions carried out in so-called
micro-chambers. To do so, they are optimised to manage
on a minimum of water. In addition to their microscaled
size, they utilise single droplets of water able to hit each
other causing an interaction [17, 22]. Microflow systems
complement the water droplets by reactants and ingredients
to achieve the capacity of information processing [5, 11].
Indeed, modelling of spatially distributed reaction systems

along with the exchange of molecules and their application
for information processing is a keystone of membrane com-
puting [16, 19]. More general, the field of membrane com-
puting includes identification and formalisation of principles
for information processing found in nature and in biological
systems [18]. Although chemical reactions represent many
aspects of biological information processing, decentrally
controlled storage and circulation of water considered as
a physical phenomenon without any chemistry embodies
also an issue worth attracting attention within membrane
computing.

Our approach to construct a water-based computer is
inspired by the objective to have no central control, and
instead, we envisage a distributed system in which the flow
of water is exclusively managed by local measurements of
filling levels. To this end, we introduce the framework of
water tank systems as a new class of membrane systems. Its
main ingredient is a finite number of water tanks. A water
tank can contain an initial volume of water and it is able to
store and to collect an amount of water up to a maximum
volume. The volume of water in a tank serves as data car-
rier and as a medium of data processing by variation of this
volume over time. To do so, water tanks might be intercon-
nected via pipes. A pipe enables the directed transport of
water from a tank to another one if opened. A pipe is allowed
to be equipped with one or more freely configurable valves.
Each valve either fully opens or fully closes its hosting pipe
depending on the permanent measurement of the filling
level in a dedicated water tank whether or not it exceeds a
given threshold or indicates an empty or nearly empty tank.
Please note that a valve is restricted to distinguish merely
two states “fully open” and “fully closed”, there are no states
in between. This setting allows for equal volumetric flow
rates in all pipes within a water tank system opened for water
transport and supplied by non-empty tanks. A pipe trans-
ports water if and only if all of its valves are fully opened
and the tank acting as water supply is not empty. Moreover,
the entrance of a pipe might be placed at an arbitrary fill-
ing level of its supply tank in a fixed position. So, this tank
needs to contain a minimum amount of water before filling
the pipe. The mentioned assumptions and prerequisites for
our water tank systems have been selected in a way to keep
the construction simple and free from any central control.

The resulting water tank systems autonomously operate
in a decentralised manner based on local measurements of
filling levels without the need of an external control. To
our best knowledge, this is the first contribution addressing
this type of behaviour for computing purpose. Since a water
tank can be seen as a membrane permeable to inflow and/or
outflow of water molecules whose presence is dynamically
regulated by local measurements (interaction rules), our
approach fits into the scope of membrane systems. For tech-
nical reasons, each water tank system comprises a special

3
1

1

3
1

3

start

3
3

start

Fig. 1 Schematic representation of an ancient water cascade for sep-
aration of a water pool into three nearly equal portions by opening
the start valve. Overflow pipes manage transportation of water to the
next tank after a portion of 1

3
 has been completed

123Membrane computing with water

1 3

water tank called reservoir which stands for a huge amount
of water responsible for supply if needed and subsuming
excessive water collected from overflow pipes of the tanks.
For better visibility, we allow a water tank system to start
its activities at a configurable point in time. So, the initial
water volumes of the tanks can be noticed prior to successive
modification. To do so, all outward flow pipes of water tanks
acting as inputs or those initially non-empty and employed
for auxiliary usage, consistently get a uniform start valve
that opens as soon as the entire water tank system is set into
operation.

A water tank system might operate either in analogue or in
binary mode. In analogue mode, the volume of water within
a tank represents a non-negative rational value. For this pur-
pose, we introduce water tank systems for arithmetic opera-
tions addition, non-negative subtraction, division, and multi-
plication. They can be assembled for performing sequenced or
nested computations. In addition, a ring oscillator consisting
of a cyclic structure with at least three water tanks emulates a
clock signal. In binary mode, an empty or nearly empty water
tank refers to the logical value “0” and a full or nearly full
one to “1” with latencies when the tank gets filled or emptied.
We define logic gates OR, AND, and a bit duplicator. Water-
based logic gates can be connected towards Boolean circuits
equipped with the capability of inherent self-synchronisation
without external control striving for construction of any reg-
ister machine known to be a Turing-complete model of com-
putation, shown for example (with chemical logic gates and
an oscillating species concentration interpreted as clock) in
[8]. All water tank systems presented throughout this paper
come with simulation case studies revealing system’s temporal
behaviour in detail. The underlying simulation source code
complements our ongoing project on a Java Environment for
Nature-inspired Approaches (JENA) [9].

The paper is structured as follows: in Sect. 2, we famil-
iarise the reader with the description and formal definition
of water tank systems and their behaviour. Hereafter, three
case studies selected from different application scenarios
demonstrate its practicability. First, as an introductory exam-
ple, we shed light on a ring oscillator in Sect. 3 followed by
analogue arithmetics in Sect. 4. The third study is dedicated
to emulation of combinable logic gates together with a bit
duplicator by water tank systems in binary mode in Sect. 5.
A discussion concludes the benefits and challenges raising
open questions for future work.

2 Water tank systems

Let A and B be arbitrary sets, ∅ the empty set, ℕ the set of natu-
ral numbers including zero, ℚ the set of rational numbers, and
ℚ+ the set of non-negative rational numbers. The Cartesian
product A × B = {(a, b) | a ∈ A ∧ b ∈ B} collects all tuples

from A and B. ℘(A) symbolises the power set of A. A frac-
tional multiset over A is a mapping F ∶ A ⟶ ℚ+ ∪ {+∞} .
Multisets in general can be written as an elementwise enu-
meration of the form {(a1,F(a1)), (a2,F(a2)),…} since
∀(a, b1), (a, b2) ∈ F ∶ b1 = b2.

A water tank system �∼ is a construct

with its components
W ∶ � ⟶ ℚ+ ∪ {+∞} finite frac-

tional multiset of water tanks

Let � be an alphabet of water tank identifier symbols.
w ∈ � specifies a water tank whose initial volume of
water is given by W(w) . A water tank is allowed to be
initially empty. A water tank r ∈ � acting as reservoir
is characterised by W(r) = +∞ . The volume of water
contained in a water tank w at time t ∈ ℕ is captured by
Vw(t) ∈ ℚ+ ∪ {+∞} . It holds Vw(0) = W(w).

A ⊂ ℘(ℕ × {0, 1}) .
. finite set of valves

Let w ∈ � be a water tank identifier, � ∈ ℚ+ a thresh-
old value, and t ∈ ℕ a point in time. A valve (also called
actor) is a function � ∶ ℕ ⟶ {0, 1} having one of the
forms

�(t) =

{
1 iff Vw(t) > 𝛩

0 otherwise

�(t) =

{
1 iff Vw(t) ≥ �

0 otherwise

�(t) =

{
1 iff Vw(t) < 𝛩

0 otherwise

�(t) =

{
1 iff Vw(t) ≤ �

0 otherwise

������(t) =

{
1 iff t ≥ t�����
0 otherwise,

meaning that 1 marks the valve to be fully open and 0
fully closed, respectively.

P ⊂ 𝛴 × 𝛴 × A ×ℚ+ ×ℚ+ .
. finite set of pipes

Let s ∈ � and w ∈ � with s ≠ w be water tanks, B ⊆ A
a set of valves, ������ ∈ B the start valve, v̇ ∈ ℚ+ with
v̇ > 0 a volumetric flow rate, and �s ∈ ℚ+ the mini-
mum volume of water required in s to supply. A pipe
p = (s,w,B, v̇,𝛩s) ∈ P enables the directed transport
of the volume portion v̇ of water from s to w within
one time step if and only if (∀� ∈ B ∶ �(t) = 1)

∧(������(t) = 1) ∧ (V
s
(t) ≥ v̇) ∧ (V

s
(t) ≥ 𝛩

s
) . The formal

�∼ = (W,A,P, tstart, tend)

124 T. Hinze et al.

1 3

conditions mean that all valves placed at the pipe have to
be open, the supply tank must contain at least the required
portion v̇ of water, and—in case the entry of the pipe is
placed at a higher filling level than 0—the supply tank
must even contain at least �s volume units of water.

tstart ∈ ℕ .
. point in time to start

tend ∈ ℕ with tend > tstart .
point in time to terminate

2.1 Systems behaviour

The spatiotemporal behaviour of a water tank system aims at
tracing of the water volumes in each water tank successively
over time. To this end, we assume a global clock t ∈ ℕ start-
ing with t = 0 . Each discrete processing step increases the
clock by 1 until the point in time to terminate tend is reached.
A configuration of a water tank system is defined by the
water volume (non-negative rational value) in each water
tank, formally expressed by

Initially, we set Vw(0) = W(w) for all w ∈ � . A processing
step results from the following update scheme in which the
water tank volumes Vw(t + 1) will be obtained from Vw(t)
taking into consideration the measurements of filling levels
and corresponding states of the valves available within the
system. The update scheme reads as follows:

t:= 0
while t < tend

for all (s, w,B, v̇, Θs) ∈ P

if

(
∏

b∈B

b(t) = 1

)
∧ (bstart(t) = 1) ∧ (Vs(t) ≥ v̇) ∧ (Vs(t) ≥ Θs)

Vs(t+ 1):= Vs(t)− v̇
Vw(t+ 1):= Vw(t) + v̇

t:= t+ 1

Vw(t) ∀ w ∈ �.

The water volume in the reservoir persists at +∞ for the
entire time span in which the system is in operation. For
passage of water throughout a pipe, we assume no additional
consumption of time beyond one processing step having in
mind that pipes typically bridge short distances and an extra
delay is seen to be neglectable in comparison to the time
needed to fill or to empty a water tank.

3 Ring oscillator

For generation of self-sustained clock signals able to syn-
chronise computing processes and for iteratively making
available an amount of water in order to control a primitive
recursion, an oscillatory course of the water volume within
a tank is required. Hence, we enrich the pool of water tank
systems by a module acting as ring oscillator. To do so, a
cyclic scheme consisting of at least three water tanks suf-
fices; see the left part of Fig. 2. An amount of water initially
placed in one of these tanks rotates from one tank to the next
one over time. The inflow of a tank inside the cycle might
get opened as soon as the tank ahead from the tank before
has been emptied. For instance, in the cycle w1 → w2 → w3 ,
water tank w2 can be filled after w3 has been emptied since
w1 is completely filled at this point in time. By placing the
corresponding valves, we achieve an autonomous principle
of operation. Complementing the cyclic scheme, we add
an output water tank y whose temporal course of the water
volume becomes managed by w1 . In the same way, further
output tanks beyond y can be integrated if necessary.

Our water tank system that mimics a ring oscillator can
be formalised by �RO . We assign a water volume of 10 units
to indicate a full tank. All filled pipes share a common volu-
metric flow rate v̇ = 0.1 . The system is started at t = 0:

Fig. 2 Water-based ring oscil-
lator composed of a cyclic
scheme of three tanks w1 , w2 ,
and w3 . The water in tank w1
manages the output course
provided in tank y in terms of a
clock signal y

reservoir
start

reservoir

w1morethanhalf

reservoir
2

w1emptyw2empty

reservoir reservoir

w 1

w 3 w

w3empty

w1empty

125Membrane computing with water

1 3

The simulation results considering 800 time steps are
depicted in the right part of Fig. 2. The temporal course
of the water volume in tank y forms the output. After a
short transient phase, a stable and self-sustained oscillation
becomes evident. Its high and low signal levels are balanced
to each other supporting its function of a clock.

4 Emulation of analogue arithmetics

Studying concepts of analogue computing embodies an
inspirational field in computer science, and it promises to
gain enduring insights for education. Commonly, analogue
computers feature by a simple setup and by an illustrative
principle of operation close to the adopted mechanisms. In
comparison to digital information processing, arithmetics
can be directly implemented in an easy way without taking
care of distinction between single digits. Analogue com-
puting based on water utilises the volume of water within
a tank directly to represent a non-negative rational value
able to be measured and modified. In consequence, analogue

𝛱RO =(W,A,P, 0, 800) with

W ={(w1, 10), (w2, 0), (w3, 0), (y, 0), (reservoir,+∞)}

A =

{(
�����(t) =

{
1 iff t ≥ 0

0 otherwise

)
,

(
�������(t) =

{
1 iff Vw1

(t) < v̇

0 otherwise

)
,

(
�������(t) =

{
1 iff Vw2

(t) < v̇

0 otherwise

)
,

(
�������(t) =

{
1 iff Vw3

(t) < v̇

0 otherwise

)
,

(
�������������� (t) =

{
1 iff Vw1

(t) > 5

0 otherwise

)}

P ={(w1,w2, {�����,�������}, 0.1, 0), (w1, reservoir, �, 0.1, 10),

(w2,w3, {�������}, 0.1, 0), (w2, reservoir, �, 0.1, 10),

(w3,w1, {�������}, 0.1, 0), (w3, reservoir, �, 0.1, 10),

(reservoir, y, {�����,��������������}, 0.1, 0),

(y, reservoir, {�������}, 0.1, 0), (y, reservoir, �, 0.1, 10)}

computers have to cope with slight imprecisions in process-
ing and they tend to be prone to perturbations. Water tank
systems operating in analogue mode make use of a uniform
volumetric flow rate in all pipes flooded by water. This
assumption turns out to be helpful in order to keep the sys-
tems small and effective. We focus on analogue water tank
systems for addition, non-negative subtraction, integer divi-
sion, and integer multiplication in a way that the output of
an operation can act as an input for a downstream operation
which enables evaluation of composed terms.

4.1 Addition

Addition of non-negative rational numbers belongs to the
simplest tasks when carried out by a water-based analogue
machine. We expect both of the input summands to be avail-
able as volumes of water in tanks x and y. For summation,
a union of these water volumes into a common output tank
z = x + y suffices. Figure 3 illustrates in its left part the
underlying scheme.

A formal specification of the corresponding water tank
system is given below. We exemplify an instance in which

Fig. 3 Analogue implementa-
tion of water-based addition
with input tanks x, y, and output
tank z = x + y whose resulting
water volume is available for
downstream usage as soon as
both input tanks are emptied

x y

reservoir

start
reservoir

reservoir

z = x + y

2 + 3 = 5

126 T. Hinze et al.

1 3

the sum 2 + 3 = 5 is calculated. This implies initial water
volumes Vx(0) = 2 and Vy(0) = 3 . The system is set into
operation at t = 25 by opening the start valves and it is con-
figured to terminate at t = 200 . Furthermore, we uniformly
assign a volumetric flow rate v̇ = 0.1 to all filled pipes. The
overflow pipes in all tanks have been placed in a way to
enable the handling of numbers within a range between 0
and 90.

The simulation results shown in Fig. 3 (right part) disclose
a duration of 30 time steps to conduct the calculation. After
both of the input water tanks x and y have been completely
emptied, the output water volume might be transferred for
downstream usage.

4.2 Non‑negative subtraction

For emulat ion of a non-negative subtract ion

z = x−̇y =

{
x − y iff x > y

0 otherwise
 , we make use of a strategy

�Add =(W,A,P, 25, 200) with

W ={(x, 2), (y, 3), (z, 0), (reservoir,+∞)}

A =

{(
�����(t) =

{
1 iff t ≥ 25

0 otherwise

)}

P ={(x, z, {�����}, 0.1, 0), (x, reservoir, �, 0.1, 90), (y, z, {�����}, 0.1, 0),

(y, reservoir, �, 0.1, 90), (z, reservoir, �, 0.1, 90)}

based on the assurance that all pipes flooded by water exhibit
the same volumetric flow rate v̇ . Having this feature at hand,
we construct the system beginning with two separate input
tanks x and y whose start valves can be opened at the same
time. Along with this, the water simultaneously runs from x
and from y to the reservoir until y is (nearly) empty. As soon
as all water has vanished from y, the outflow of x immedi-
ately switches over to fill z from now on. In this way, the

desired difference expressed by the portion of the initial
water volume in x exceeding those in y has accumulated in
z; see left part of Fig. 4.

The visualisation is done by a system instance to com-
pute 5−̇2 = 3 in which the start takes place at t = 25 . All
filled pipes possess a uniform volumetric flow rate v̇ = 0.1 .
Each overflow pipe gets supplied in case that a tank contains
at least 90 volume units of water. In addition to the start
valves, two auxiliary valves yempty and ynotempty are
required indicating the empty and non-empty state of tank y.

Fig. 4 Water tank scheme for
non-negative subtraction with
input tanks x, y and output tank
z = x−̇y . After both input tanks
have been completely emptied,
the output water volume Vz(t) is
ready for further processing

yx

reservoir

start
reservoir reservoir

ynotemptyyempty
reservoir

z = x − y

5 − 2 = 3

127Membrane computing with water

1 3

We let the simulation run for 200 time steps. The right part
of Fig. 4 captures the temporal courses of water volumes in
the tanks x, y, and z. 50 time steps after starting the system,
the calculation result is available in the output tank z and can
be used for further processing if needed.

𝛱Sub =(W,A,P, 25, 200) with

W ={(x, 5), (y, 2), (z, 0), (reservoir,+∞)}

A =

{(
�����(t) =

{
1 iff t ≥ 25

0 otherwise

)
,

(
������(t) =

{
1 iff Vy(t) < v̇

0 otherwise

)
,

(
���������(t) =

{
1 iff Vy(t) > 0

0 otherwise

)}

P ={(x, z, {�����, ������}, 0.1, 0), (x, reservoir, {�����, ���������}, 0.1, 0),

(x, reservoir, �, 0.1, 90), (y, reservoir, {�����}, 0.1, 0),

(y, reservoir, �, 0.1, 90), (z, reservoir, �, 0.1, 90)}

4.3 Integer division

Implementation of integer division by means of a water tank
system requires a well-elaborated algorithmic strategy. We
decided to employ the recursive definition

Fig. 5 Water tank scheme for
integer division with input tanks
x, y and output tank z = x∕y .
After input tank x and auxiliary
tanks x − y , x − yd , and inc
have been completely emptied,
the output water volume Vx∕y(t)
is ready for further processing

yx

3
y

reservoir

start
xnotempty
y3empty

reservoir
start

yempty
y3empty

ynotempty
y3empty

reservoir

yempty
reservoir

x−y

xempty

x−ydempty
reservoir
x−ydempty

yempty
reservoirxempty

y
2

x−ydempty

reservoir

z=x/y

xnotempty

reservoir
start

xempty

start

reservoir

yempty

y2empty
x−yempty

y2empty
x−yd

reservoirx−yempty

inc

3=4/215=4/02

128 T. Hinze et al.

1 3

in which x, y ∈ ℕ and y ≥ 1 holds. For emulation of the
recursive scheme, we adapt the ring oscillator and combine
it with a subtractor. To this end, we place two separate input
tanks x and y complemented by a tank x − y whose con-
tents corresponds to the non-negative subtraction x−̇y as
described before. Via the intermediate tank x − yd , we trans-
port the water volume representing x − y back to tank x com-
pleting a cycle. Each iteration of water throughout this cycle
diminishes its rotating volume by y until no water remains
and all three tanks x, x − y , and x − yd forming the cycle
have been emptied. In each iteration, the portion y of water
is needed again in order to execute the subtraction. So, we
have to take care that y gets restored along with the iteration.
For this purpose, we implement a second cycle consisting
of three tanks y, y2 , and y3 . The iterations in both cycles run
simultaneously in a self-synchronised manner controlled by
cross-placed valves; see upper part of Fig. 5. The underlying
division is done by a separate auxiliary tank called inc with
a storing capacity of exactly one volume unit of water. Each

�
x

y

�
=

⎧
⎪⎨⎪⎩

0 iff x < y ∧ x = 0

1 iff x < y ∧ x > 0�
x−y

y

�
+ 1 otherwise,

iteration opens the supply of tank inc for a short moment to
refill. Finally, this amount of one unit of water moves to the
output water tank z = x∕y which in turn accumulates these
portions over the time spent for iterations. After that, the
output tank contains the desired division result.

The formal specification of a water tank system for inte-
ger division comprises eight tanks in total. Moreover, nine
types of valves are required and 17 pipes manage the trans-
port of water. The system instance given below is dedicated
to the division example 20∕4 = 5 . We assign a common vol-
umetric flow rate v̇ = 0.1 to all filled pipes. All water tanks
except inc have a capacity of 90 volume units. We start the
system at t = 25 and observe it for 1600 time steps:

Fig. 6 Water tank scheme for
integer multiplication with
input tanks x, y and output tank
z = x × y . After input tank x and
auxiliary tanks x − 1 , x − 1d ,
and yc have been completely
emptied, the output water vol-
ume Vx×y(t) is ready for further
processing

2

3y

o 2

x

xempty
reservoir

x−1

reservoir

x−1empty
x−1d

reservoir

start
oneempty
x−1dempty

onenotempty
x−1dempty

reservoir

y3empty y3empty

yempty

y2empty

reservoir

o2empty
reservoir

start
o3empty

x−1dempty
reservoir

y3empty

x−1empty

one

oneempty
xempty
yempty

y2empty

reservoir

x−1empty
reservoir

start
x−1dempty
y3empty

reservoir

xnotempty

xempty
yempty

y2empty

x−1dempty
start

reservoir

reservoir

reservoir

z=x*y

start
yempty

ynotempty
y3empty

yc
y

3o

y

5 * 4 = 20 3 * 4 = 12

0x =
overflow pipe

reservoir

overflow pipe
1x =

reservoir

Fig. 7 Representation of logical values by a water tank

129Membrane computing with water

1 3

Figure 5 shows in its lower part two simulation runs reflect-
ing the divisions 20∕4 = 5 and 12∕4 = 3 . The successive
reduction of the water volume available in tank x along with
each iteration and the accumulation of the water portions of
1 volume unit becomes apparent from the diagrams. After
the tanks inc and x together with its successors x − y and
x − yd are empty at the same time, the output has been final-
ised and can be utilised for further processing.

𝛱Div = (W,A,P, 25, 1600) with

W ={(x, 20), (y, 4), (x − y, 0), (x − yd, 0), (y2, 0), (y3, 0), (inc, 0), (x∕y, 0),

(reservoir,+∞)}

A =

{(
�����(t) =

{
1 iff t ≥ 25

0 otherwise

)
,

(
������(t) =

{
1 iff Vx(t) < v̇

0 otherwise

)
,

(
���������(t) =

{
1 iff Vx(t) > 0

0 otherwise

)
,

(
������(t) =

{
1 iff Vy(t) < v̇

0 otherwise

)
,

(
���������(t) =

{
1 iff Vy(t) > 0

0 otherwise

)
,

(
� − ������(t) =

{
1 iff Vx−y(t) < v̇

0 otherwise

)
,

(
� − �������(t) =

{
1 iff Vx−yd(t) < v̇

0 otherwise

)
,

(
�������(t) =

{
1 iff Vy2

(t) < v̇

0 otherwise

)
,

(
�������(t) =

{
1 iff Vy3

(t) < v̇

0 otherwise

)}

P ={(x, x − y, {�����, ������, �������, � − ������}, 0.1, 0),

(x, reservoir, {�����, ���������, �������, � − ������}, 0.1, 0),

(x, reservoir, �, 0.1, 90), (x − y, reservoir, �, 0.1, 90),

(x − y, x − yd, {������, ������}, 0.1, 0), (x − yd, reservoir, �, 0.1, 90),

(x − yd, x, {�������, � − ������}, 0.1, 0), (y, reservoir, �, 0.1, 90),

(y, y2, {�����, �������, � − �������, ���������}, 0.1, 0),

(y2, y3, {������, ������}, 0.1, 0), (y3, reservoir, �, 0.1, 90),

(y3, y, {�������, � − ������}, 0.1, 0), (inc, reservoir, �, 0.1, 1),

(reservoir, inc, {�����, ���������}, 0.1, 0), (x∕y, reservoir, �, 0.1, 90),

(y2, reservoir, �, 0.1, 90), (inc, x∕y, {�����, ������, ������}, 0.1, 90)}

4.4 Integer multiplication

Within water-based analogue arithmetics, integer multiplica-
tion necessitates most effort for construction of the underly-
ing system. Our algorithmic strategy focuses on a recursive
definition

x ⋅ y =

{
y iff x = 1

(x − 1) ⋅ y + y otherwise,

130 T. Hinze et al.

1 3

whereas x, y ∈ ℕ and x ≥ 1 . This approach needs to combine
a ring oscillator with a subtractor responsible for the decre-
ment to control the descent of x into x − 1 when successively
tracing the recursion. In consequence, we construct a cycle
consisting of three water tanks called x, x − 1 , and x − 1d for
this purpose; see upper left part of Fig. 6. A second cycle
composed of three tanks called one, o2 , and o3 manages the
iterated presence of the subtrahend 1 to turn x into x − 1 by
subtraction. The iterations in both cycles need to be syn-
chronised to each other. This is done by cross-placement
of valves. Along with each iteration, a water volume of y
units has to be made available and successively accumulated
to obtain the final multiplication result. This requirement
implies a third cycle formed by three tanks called y, y2 , and
y3 . An initial water volume of y units rotates along these
tanks simultaneously to the iterations taking place in either
aforementioned cycles. We need to place additional valves
to synchronise this cycle as well. The water with a volume
of y units periodically present in tank y controls the supply

of a separate tank named yc to provide a copy of the water
volume y. As soon as an iteration has finished, this volume
gets added to the water volume in the output tank x × y .
Along with each iteration, a portion of y units is summed up.
After all water vanished from x by a number of cycles, the
desired calculation result x × y persists in the correspondent
output tank.

We exemplify the calculation 5 × 4 = 20 for formulation
of a system instance. It is composed of 11 water tanks, 13
types of valves, and 23 pipes in total. A volumetric flow rate
v̇ = 0.1 has been assigned to all filled pipes. A uniform rate
is mandatory to ensure the function of the entire system.
Moreover, we place the overflow pipes in a way to handle
water volumes up to 90 units except tank one whose capac-
ity is restricted to 1 unit. The system starts at t = 25 and its
temporal behaviour has been observed for 700 time steps.
Accordingly, the formal specification reads:

Fig. 8 Schematic representation
of a water tank system which
mimics an OR gate by z = x ∨ y .
The contents of the output tank
z is valid and can be employed
for downstream logic gates
as soon as both input tanks x,
y are empty and tank z is not
overfilled any more

1 v 0 = 1

z

y

reservoir

reservoir

x
start

reservoir

0 v 1 = 10 v 0 = 0

1 v 1 = 1

131Membrane computing with water

1 3

𝛱Mul =(W,A,P, 25, 700) with

W ={(x, 5), (y, 4), (x − 1, 0), (x − 1d, 0), (one, 1), (o2, 0), (o3, 0), (y2, 0),

(y3, 0), (yc, 0), (x ⋅ y, 0), (reservoir,+∞)}

A =

{(
�����(t) =

{
1 iff t ≥ 25

0 otherwise

)
,

(
������(t) =

{
1 iff Vx(t) < v̇

0 otherwise

)
,

(
���������(t) =

{
1 iff Vx(t) > 0

0 otherwise

)
,

(
� − ������(t) =

{
1 iff Vx−1(t) < v̇

0 otherwise

)
,

(
� − �������(t) =

{
1 iff Vx−1d(t) < v̇

0 otherwise

)
,

(
��������(t) =

{
1 iff Vone(t) < v̇

0 otherwise

)
,

(
�����������(t) =

{
1 iff Vone(t) > 0

0 otherwise

)
,

(
�������(t) =

{
1 iff Vo2

(t) < v̇

0 otherwise

)
,

(
�������(t) =

{
1 iff Vo3

(t) < v̇

0 otherwise

)
,

(
������(t) =

{
1 iff Vy(t) < v̇

0 otherwise

)
,

(
���������(t) =

{
1 iff Vy(t) > 0

0 otherwise

)
,

(
�������(t) =

{
1 iff Vy2

(t) < v̇

0 otherwise

)
,

(
�������(t) =

{
1 iff Vy3

(t) < v̇

0 otherwise

)}

P ={(x, x − 1, {�����, ��������, � − ������, �������}, 0.1, 0),

(x, reservoir, {�����, �����������, � − ������, �������}, 0.1, 0),

(x, reservoir, �, 0.1, 90), (x − 1, x − 1d, {������, ������}, 0.1, 0),

(x − 1, reservoir, �, 0.1, 90), (x − 1d, x, {� − ������, �������}, 0.1, 0),

(x − 1d, reservoir, �, 0.1, 90), (one, reservoir, �, 0.1, 1),

(one, o2, {�����, �������, � − �������, �������}, 0.1, 0),

(o2, o3, {��������, ������, ������}, 0.1, 0), (o2, reservoir, �, 0.1, 90),

(o3, one, {�������, � − ������, �������}, 0.1, 0), (o3, reservoir, �, 0.1, 90),

(y, y2, {�����, � − �������, �������}, 0.1, 0), (y, reservoir, �, 0.1, 90),

(y2, y3, {������, ������}, 0.1, 0), (y2, reservoir, �, 0.1, 90),

(y3, y, {� − ������, ���������, �������}, 0.1, 0), (y3, reservoir, �, 0.1, 90),

(reservoir, yc, {�����, � − �������, ���������, �������}, 0.1, 0),

(yc, x ⋅ y, {�����, ������}, 0.1, 0), (yc, reservoir, �, 0.1, 90),

(x ⋅ y, reservoir, �, 0.1, 90)}

132 T. Hinze et al.

1 3

Fig. 9 Schematic representa-
tion of a water tank system
which mimics an AND gate by
z = x ∧ y . The contents of the
output tank z is valid as soon
as all other tanks have been
completely emptied amorethanhalf

reservoir

reservoir

y

zfull
yempty

z

start
reservoir

x

reservoir

reservoir

a
xempty
yempty

ahalforless

xempty

0 = 00

0 = 01

1 = 00

1 = 11

Fig. 10 Scheme of a water tank
system acting as bit duplica-
tor yi = x with i = 1, 2 . The
contents of each output tank yi
can be accessed as soon it is full
or empty

reservoir

yreservoir

x

reservoir

reservoir

xnotempty
start

reservoir

xnotempty

y 2

reservoir

1

xempty xempty

133Membrane computing with water

1 3

The lower part of Fig. 6 shows simulation results for the
calculations 5 × 4 = 20 and 3 × 4 = 12 . The courses of the
water volumes in the tanks x, y, yc, and x × y have been
depicted over time. The successive increase of the water
volume in x × y by portions of y becomes evident while the
water volume in x gets diminished by 1 within each itera-
tion. The final result is available for downstream usage after

the tanks x, x − 1 , x − 1d , and yc have been emptied at the
same time.

5 Emulation of logic gates

For acting in binary mode, a water tank w ∈ � constitutes a
binary variable whereas an empty or nearly empty tank with
Vw(t) < v̇ refers to the logical value “0” and a high filling
level Vw(t) ≥ 100 × v̇ encodes “1”, respectively. The time
span to fill or to empty a water tank implies a latency in
which its logical value is invalid.

In addition to possible outflow pipe(s) applied for infor-
mation processing, a water tank incorporates an overflow
pipe whose entrance position corresponds to the desired high
filling level. The overflow pipe leads excessive water from
the tank into the reservoir; see Fig. 7.

5.1 OR gate

The disjunction OR is the simplest logic gate to be imple-
mented by a water tank system since a merge of both input
water volumes providing their union as output suffices in
principle. To do so, we place two input water tanks called x
and y whose outflows feed the output water tank z = x ∨ y ,
depicted in Fig. 8 (upper part). By opening the start valves,
the system is set into operation.

In order to keep the water volume representing the logical
value “1” globally uniform within the entire system, we need
to take care that the output water volume gets accordingly

reduced in case of supplied by either input tanks to calcu-
late 1 ∨ 1 = 1 . For this purpose, we place an overflow pipe
for transportation of all excessive water to the reservoir.
Figure 8 (lower part) shows simulation results for a system
instance in which a water volume of 10 units represents “1”
and the start is done at t = 25 . We assign a volumetric flow
rate v̇ = 0.1 to all filled pipes. The formal system’s descrip-
tion (initialisation for 1 ∨ 1 = 1) is:

The simulation studies exhibit the most effort for perform-
ing the calculation 1 ∨ 1 = 1 since it consumes much time
and the result is obtained after t = 174 . When using the out-
put z as an input for downstream logic gates, it is valid as
soon as both input tanks are empty or nearly empty and z
is not overfilled. A pipe processing the output needs to be
controlled by corresponding valves xempty (open if and
only if Vx(t) < v̇), yempty (Vy(t) < v̇), and znotoverfilled
(Vz(t) ≤ 10), respectively.

5.2 AND gate

The topology of our water-based AND gate (conjunction)
resembles its counterpart from disjunction but it incorpo-
rates a crucial difference. Since both of the input water tanks
x and y must have a high filling level at the logical value “1”
to generate the output result “1”, their contents is merged
and collected in an oversized auxiliary water tank a able
to store the double amount of water in comparison to x and
y. After a has been filled more than half, the inflow of the
output tank z gets opened, supplied by the reservoir. As soon
as z has reached its high filling level to encode “1”, tank a is
emptied again. In case that merely one or none of the input
tanks x, y is set to “1”, a cannot collect enough water to flood
z which implies the desired output of “0” leaving z in empty
state. In order to prepare the system for subsequent opera-
tion, all water is finally removed from a. Figure 9 (upper
part) illustrates the water tank system.

For simulation, we assign 10 volume units of water to rep-
resent “1”. Furthermore, all filled pipes constitute v̇ = 0.1 .
We expect the system to start at t = 25 . The corresponding
formal description initialised to calculate 1 ∧ 1 = 1 reads:

�OR =(W,A,P, 25, 200) with

W ={(x, 10), (y, 10), (z, 0), (reservoir,+∞)}

A =

{(
�����(t) =

{
1 iff t ≥ 25

0 otherwise

)}

P ={(x, z, {�����}, 0.1, 0), (x, reservoir, �, 0.1, 10), (y, z, {�����}, 0.1, 0),

(y, reservoir, �, 0.1, 10), (z, reservoir, �, 0.1, 10)}

134 T. Hinze et al.

1 3

The lower part of Fig. 9 depicts the temporal courses of the
water volumes within tanks x, y, a, and z over time from
t = 0 to 400 for all logical assignments. It becomes appar-
ent that the calculation of 1 ∧ 1 = 1 consumes most time
revealing the result after t = 380 . The output is available for
downstream usage as soon as the water tanks x, y, and a have
been completely emptied.

5.3 Bit duplicator

When water tank systems are applied for calculation of
Boolean expressions, it might happen that a Boolean variable
occurs several times within the term. Since water is treated

as a fugitive medium, a number of copies from a bit-encod-
ing water tank according to the multiplicity of its Boolean
variable is needed in order to satisfy all occurrences. To

𝛱AND =(W,A,P, 25, 400) with

W ={(x, 10), (y, 10), (a, 0), (z, 0), (reservoir,+∞)}

A =

{(
�����(t) =

{
1 iff t ≥ 25

0 otherwise

)
,

(
������(t) =

{
1 iff Vx(t) < v̇

0 otherwise

)
,

(
������(t) =

{
1 iff Vy(t) < v̇

0 otherwise

)
,

(
�����(t) =

{
1 iff Vz(t) ≥ 10

0 otherwise

)
,

(
�����������(t) =

{
1 iff Va(t) ≤ 10

0 otherwise

)
,

(
������������� (t) =

{
1 iff Va(t) > 10

0 otherwise

)}

P ={(x, a, {�����}, 0.1, 0), (x, reservoir, �, 0.1, 10), (y, a, {�����}, 0.1, 0),

(y, reservoir, �, 0.1, 10), (z, reservoir, �, 0.1, 10),

(a, reservoir, {������, ������, �����������}, 0.1, 0),

(a, reservoir, {������, ������, �����}, 0.1, 0),

(a, reservoir, �, 0.1, 20), (reservoir, z, {�������������}, 0.1, 0)}

this end, we provide a bit duplicator responsible for making
copies from the water volume present in a tank. Figure 10
shows in its upper part a schematic representation of the
corresponding water tank system with the input tank x and
two output tanks y1, y2 tracing the input with a certain delay.
The output tanks get supplied by the reservoir whenever x is
not empty and the start valve has been opened. In case of an
empty water tank x, the output tanks will be emptied as well.

As an example for simulation, let us assume a bit dupli-
cator with input x and two outputs y1, y2 . A filling level of
10 volume units corresponds to logical “1”. All filled pipes
possess a uniform volumetric flow rate v̇ = 0.1 . We start the
system at t = 25 logically initialised with x = 1.

We observe the system’s behaviour from t = 0 to 300 for
both cases x = 0 and x = 1 ; see lower part of Fig. 10. Either
courses of water volumes in y1 and y2 follow the input course

𝛱BD =(W,A,P, 25, 300) with

W ={(x, 10), (y1, 0), (y2, 0), (reservoir,+∞)}

A =

{(
�����(t) =

{
1 iff t ≥ 25

0 otherwise

)
,

(
������(t) =

{
1 iff Vx(t) < v̇

0 otherwise

)
,

(
���������(t) =

{
1 iff Vx(t) > 0

0 otherwise

)}

P ={(x, reservoir, {�����}, 0.1, 0), (x, reservoir, �, 0.1, 10),

(reservoir, y1, {�����, ���������}, 0.1, 0), (y1, reservoir, �, 0.1, 10),

(y1, reservoir, {������}, 0.1, 0), (y2, reservoir, {������}, 0.1, 0),

(reservoir, y2, {�����, ���������}, 0.1, 0), (y2, reservoir, �, 0.1, 10)}

135Membrane computing with water

1 3

with a delay of 100 time steps when deviating from being
empty. As soon as each of the output tanks y1 , y2 is com-
pletely empty or completely filled, its contents is available
for usage in downstream logic gates.

6 Conclusions

Water tank systems open an inspirational and interesting
concept for modelling and visualisation of computational
processes. A crucial feature of a water tank system lies in
its ability to function without any central or external control.
By means of valves that fully open or fully close the hosting
pipes according to the filling levels in dedicated water tanks,
a self-synchronisation can be obtained supported by water-
based modules like a ring oscillator. Cycles composed of at
least three tanks in which a volume of water can successively
rotate provide a powerful instrument to describe iterations
also sufficient for trace of primitive recursion schemes. In
our opinion, water tank systems convince due to their sim-
plicity and by their clear operation making all details visible.
All Java source codes for the simulation studies presented
throughout this paper are available from the first author upon
request.

Future work is directed to obtain a direct implementation
of a NOT gate and evaluation of composed logic expres-
sions which includes three tasks: (1) termination detection—
a control tank that will be filled exactly when the whole
evaluation is completed (regardless if the result is empty or
not). (2) System reset—to prepare the next evaluation. (3)
Simplifying the control valves on output pipes on multistage
expression directed acyclic graphs—at any level, only one or
two control valves, thus avoiding a combinatorial explosion
on the number of valves.

We are aware of the fact that water tank systems in the
present form are away from any deployment outside aca-
demics, but they could be a prototype in artificial life when
equipped with biochemical reactions and substrates residing
in the tanks which in turn forms a blood circulation affected
by organs. Particularly, description, modelling, and explo-
ration of biological control loops are seen as a promising
field of research to be tackled by water tank systems with
appropriate extensions.

Acknowledgements Open Access funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Angrist, S. (1964). Fluid control devices. Scientific American,
211(6), 80–88.

 2. Belsterling, C. A. (1971). Fluidic systems design. New York:
Wiley Interscience.

 3. Berque, D., Serlin, I., & Vlahov, A. (2004). A brief water excur-
sion: Introducing computer organization students to a water driven
1-bit half-adder. ACM SIGCSE Bulletin, 36(2), 52–56.

 4. Bissell, C. (2007). Historical perspectives—the Moniac. A Hydro-
mechanical Analog Computer of the 1950s. IEEE Control Systems
Magazine, 27(1), 69–74.

 5. Cheow, L. F., Yobas, L., & Kwong, D. L. (2007). Digital micro-
fluidics: Droplet based logic gates. Applied Physics Letters, 90,
054107.

 6. Head, T., & Gal, S. (2004). Aqueous computing: Writing into fluid
memory. Current Trends in Theoretical Computer Science, 1(1),
493–503.

 7. Head, T., & Gal, S. (2006). Aqueous computing: Writing on mol-
ecules dissolved in water. In J. Chen, N. Jonoska, & G. Rozenberg
(Eds.), Nanotechnology: Science and computation (pp. 321–331).
Berlin: Springer.

 8. Hinze, T., Fassler, R., Lenser, T., & Dittrich, P. (2009). Regis-
ter machine computations on binary numbers by oscillating and
catalytic chemical reactions modelled using mass-action kinetics.
International Journal of Foundations of Computer Science, 20(3),
411–426.

 9. Hinze, T. (2018). The Java Environment for Nature-inspired
Approaches (JENA): A workbench for biocomputing and bio-
modelling enthusiasts. In C. Graciani, A. Riscos-Nunez, G. Păun,
G. Rozenberg, A. Salomaa (Eds.) Enjoying natural computing,
lecture notes in computer science, vol. 11270, pp. 155-169.

 10. Kass, M. A., & Sears, M. L. (1977). Hormonal regulation of
intraocular pressure. Survey of Ophthalmology, 22(3), 153–176.

 11. Katsikis, G., Cybulski, J. S., & Prakash, M. (2015). Synchronous
universal droplet logic and control. Nature Physics, 11, 588–596.

 12. Kirshner, J. (1975). Design theory of fluidic components. New
York: Academic Press.

 13. Lukyanov, V. S. (1939). Hydraulic apparatus for engineering com-
putations. Bulletin of the Russian Academy of Sciences: Physics
URSS, Otdeleniye Tekhnicheskikh Nauk, 2, 53–67.

 14. Mahatantila, K., et al. (2008). Spatial and temporal changes of
hydrogeochemistry in ancient tank cascade systems in Sri Lanka:
Evidence for a constructed wetland. Water and Environment Jour-
nal, 22, 17–24.

 15. Mano, M. M., & Kime, C. R. (2004). Logic and computer design
fundamentals. New Jersey: Pearson Education International.

 16. Manca, V. (2019). Metabolic computing. Journal of Membrane
Computing, 1(3), 223–232.

 17. Mertaniemi, H., Forchheimer, R., Ikkala, O., & Ras, R. H. A.
(2012). Rebounding droplet-droplet collisions on superhydropho-
bic surfaces: From the phenomenon to droplet logic. Advanced
Materials, 24(42), 5738–5743.

 18. Păun, G. (2003). Membrane Computing. In A. Lingas, B.J. Nils-
son (Eds). Fundamentals of Computation Theory. FCT 2003.
Lecture Notes in Computer Science, vol. 2751, pp. 284-295

 19. Păun, G., Rozenberg, G., & Salomaa, A. (2010). The oxford hand-
book of membrane computing. Oxford: Oxford University Press.

http://creativecommons.org/licenses/by/4.0/

136 T. Hinze et al.

1 3

 20. Petrovic, A. (2004). Development of the first hydraulic analog
computer. Archives Internationales d’Histoire des Sciences,
54(153), 97–110.

 21. Ramos, A., et al. (1995). Enzyme basis for pH regulation of cit-
rate and pyruvate metabolism by Leuconostoc oenos. Applied and
Environmental Microbiology, 61(4), 1303–1310.

 22. Rhee, M., & Burns, M. A. (2009). Microfluidic pneumatic logic
circuits and digital pneumatic microprocessors for integrated
microfluidic systems. Lab on a Chip, 9(21), 3131–3143.

 23. Taberlet, N., Marsal, Q., Ferrand, J., & Plihon, N. (2018). Hydrau-
lic logic gates: building a digital water computer. European Jour-
nal of Physics, European Physical Society, 39(2), 025801.

 24. Trogemann, G., Nitussov, A. Y., & Ernst, W. (2001). Computing in
Russia: The history of computer devices and information technol-
ogy revealed. Köln: Vieweg.

 25. Wang, Y., & Huang, J. (2014). A water-based molecular flip-flop.
The European Physical Journal Applied Physics, 68(3), 30403.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Thomas Hinze studied computer
science and received the PhD at
Dresden University of Technol-
ogy (Germany) for his thesis
entitled "Universal Models and
Selected Algorithms of DNA
Computing" in 2002. In 2012, he
became a senior university lec-
turer at the Friedrich Schiller
University Jena (Germany) along
with his professorial dissertation
entitled "Molecular Computing".
Currently, he is the head of a
research group focussing on
modelling in bioinformatics, sys-
tems biology, and artificial life

which includes applications of membrane computing.

Hendrik Happe is an advanced
master student of computer sci-
ence at Friedrich Schiller Uni-
versity Jena (Germany). His
main interest covers aspects of
software development and algo-
rithmic design. He is familiar
with many programming lan-
guages and succeded in a num-
ber of projects in which imple-
mentations of heuristics form the
crucial part.

Alec Henderson is a PhD student
at the University of Auckland
(New Zealand). His main inter-
ests are in distributed computing,
artificial intelligence, astrophys-
ics and alternative models of
computation.

Radu Nicolescu is a senior lec-
turer in the School of Computer
Science at the University of
Auckland (New Zealand). He
holds a PhD in mathematics
from the University of Bucharest
(Romania). Before joining the
University of Auckland, he first
worked at the University of
Bucharest, and then 5 years on
industrial optimization and
robotics projects (Austria and
Germany). His research interests
include discrete mathematical
models, information coding and
complexity, compiler construc-

tion, logical and functional programming, models for parallel and dis-
tributed computing.

	Membrane computing with water
	Abstract
	1 Introduction
	2 Water tank systems
	2.1 Systems behaviour

	3 Ring oscillator
	4 Emulation of analogue arithmetics
	4.1 Addition
	4.2 Non-negative subtraction
	4.3 Integer division
	4.4 Integer multiplication

	5 Emulation of logic gates
	5.1 OR gate
	5.2 AND gate
	5.3 Bit duplicator

	6 Conclusions
	Acknowledgements
	References

