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Abstract
We introduce water tank systems as a new class of membrane systems inspired by a decentrally controlled circulation of 
water or other liquids throughout cells called tanks and capillaries called pipes. To our best knowledge, this is the first pro-
posal addressing the behavioural principle of floating and stored water for modelling of information processing in terms of 
membrane computing. The volume of water within a tank stands for a non-negative rational value when acting in an analogue 
computation or it can be interpreted in a binary manner by distinction of “(nearly) full” or “(nearly) empty”. Water tanks 
might be interconnected by pipes for directed transport of water. Each pipe can be equipped with valves which in turn either 
fully open or fully close the hosting pipe according to permanent measurements whether the filling level in a dedicated water 
tank exceeds a certain threshold or not. We demonstrate dedicated water tank systems together with simulation case studies: 
a ring oscillator for generation of clock signals and for iteratively making available amounts of water in a cyclic scheme, 
analogue arithmetics by implementation of addition, non-negative subtraction, division, and multiplication complemented 
by systems in binary mode for implementation of selected logic gates.

Keywords Water-based computing · Autonomous operation · Arithmetics · Membrane system

1 Introduction

Visualisation of computing processes in detail is an impor-
tant and demanding task for teaching to students of engi-
neering. Having an experimental setup at hand, the students 
can observe and trace the course of signals throughout a 
computation. They understand the occurrence of delays 
and latencies in signal processing along with the necessity 
of synchronisation in order to keep signals in a valid state. 
Moreover, the students get sensibilised for imprecision and 
slight deviation of signal levels to cope with for successful 

hardware implementations. They learn about advantages and 
disadvantages of analogue and digital modes of computation 
and resulting consequences in algorithmic design and hard-
ware development [15]. State-of-the-art computers utilise 
electrical signals. In spite of their preference in practice, 
electrical signals turn out to be invisible and more or less 
cumbersome in teaching at the beginners level.

In this context, it is an obvious idea to apply an alterna-
tive floating medium. Pure water in its liquid form seems to 
be an ideal candidate. On the one hand, underlying natural 
principles of floating water in comparison to the flow of 
electricity show a close relationship when replacing the cur-
rent by volumetric flow rate and after substitution of voltage 
by pressure. On the other hand, floating and stored water 
enriched with a dye and passing through a macroscopic envi-
ronment is easily visible.

Beyond its usefulness for teaching, such a system can be 
implemented in a decentralised manner inspired by a tissue 
of biological cells. Indeed, higher organisms incorporate 
mechanisms of computing with water, for instance the con-
trol loop for adjustment of the human intraocular pressure 
[10] or for setting a local specific pH environment by purpo-
sive dilution in which enzymes exhibit their maximum activ-
ity [21]. Regulated transportation of water enriched with 
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reactive substances throughout and across tissues together 
with a blood stream complemented by temporal storage and 
processing within cells is a crucial part in numerous biologi-
cal control loops [2, 12]. A first step towards corresponding 
models and simulation environments consists in considera-
tion of systems for computing with water which promises a 
fascinating potential worth to be tackled.

The idea to employ water for information processing is 
not new. First attempts date back more than 2000 years. The 
ancient water cascade [14] for soil irrigation gives an illus-
trative example in which an initial pool of water becomes 
separated into nearly equal portions by passing a sequence 
of water tanks whose overflow forwards the water to the 
next tank after the portion has been collected; see Fig. 1. 
In the 1930s, the first real water-based analogue computer 
called water integrator had been invented in the Soviet Union 
and applied for numerical solution of ordinary differential 
equation systems [1, 13, 24]. This computer comes with an 
external manual control and utilises mechanical elements for 
individual regulation of the volumetric flow rate in each of 
the pipes. Fine-grained variation of flow rates can be seen as 
a characteristic attribute of this computer whose constituents 
comprise many expensive movable mechanical elements, but 
nearly no sensors for measurement of filling levels or other 
parameters. Later, hydraulic systems came into the focus to 
mimic a computer [3, 4, 20]. Their principle of operation 
is mainly based on adjustment of pressure throughout the 
system in order to gain the intended functionality [23, 25].

Tom Head and his co-workers successfully initiated and 
developed microflow systems [6, 7]. They have in common 
that they employ the flow of water in order to bring together 
substances for chemical reactions carried out in so-called 
micro-chambers. To do so, they are optimised to manage 
on a minimum of water. In addition to their microscaled 
size, they utilise single droplets of water able to hit each 
other causing an interaction [17, 22]. Microflow systems 
complement the water droplets by reactants and ingredients 
to achieve the capacity of information processing [5, 11]. 
Indeed, modelling of spatially distributed reaction systems 

along with the exchange of molecules and their application 
for information processing is a keystone of membrane com-
puting [16, 19]. More general, the field of membrane com-
puting includes identification and formalisation of principles 
for information processing found in nature and in biological 
systems [18]. Although chemical reactions represent many 
aspects of biological information processing, decentrally 
controlled storage and circulation of water considered as 
a physical phenomenon without any chemistry embodies 
also an issue worth attracting attention within membrane 
computing.

Our approach to construct a water-based computer is 
inspired by the objective to have no central control, and 
instead, we envisage a distributed system in which the flow 
of water is exclusively managed by local measurements of 
filling levels. To this end, we introduce the framework of 
water tank systems as a new class of membrane systems. Its 
main ingredient is a finite number of water tanks. A water 
tank can contain an initial volume of water and it is able to 
store and to collect an amount of water up to a maximum 
volume. The volume of water in a tank serves as data car-
rier and as a medium of data processing by variation of this 
volume over time. To do so, water tanks might be intercon-
nected via pipes. A pipe enables the directed transport of 
water from a tank to another one if opened. A pipe is allowed 
to be equipped with one or more freely configurable valves. 
Each valve either fully opens or fully closes its hosting pipe 
depending on the permanent measurement of the filling 
level in a dedicated water tank whether or not it exceeds a 
given threshold or indicates an empty or nearly empty tank. 
Please note that a valve is restricted to distinguish merely 
two states “fully open” and “fully closed”, there are no states 
in between. This setting allows for equal volumetric flow 
rates in all pipes within a water tank system opened for water 
transport and supplied by non-empty tanks. A pipe trans-
ports water if and only if all of its valves are fully opened 
and the tank acting as water supply is not empty. Moreover, 
the entrance of a pipe might be placed at an arbitrary fill-
ing level of its supply tank in a fixed position. So, this tank 
needs to contain a minimum amount of water before filling 
the pipe. The mentioned assumptions and prerequisites for 
our water tank systems have been selected in a way to keep 
the construction simple and free from any central control.

The resulting water tank systems autonomously operate 
in a decentralised manner based on local measurements of 
filling levels without the need of an external control. To 
our best knowledge, this is the first contribution addressing 
this type of behaviour for computing purpose. Since a water 
tank can be seen as a membrane permeable to inflow and/or 
outflow of water molecules whose presence is dynamically 
regulated by local measurements (interaction rules), our 
approach fits into the scope of membrane systems. For tech-
nical reasons, each water tank system comprises a special 
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Fig. 1  Schematic representation of an ancient water cascade for sep-
aration of a water pool into three nearly equal portions by opening 
the start valve. Overflow pipes manage transportation of water to the 
next tank after a portion of 1

3
 has been completed
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water tank called reservoir which stands for a huge amount 
of water responsible for supply if needed and subsuming 
excessive water collected from overflow pipes of the tanks. 
For better visibility, we allow a water tank system to start 
its activities at a configurable point in time. So, the initial 
water volumes of the tanks can be noticed prior to successive 
modification. To do so, all outward flow pipes of water tanks 
acting as inputs or those initially non-empty and employed 
for auxiliary usage, consistently get a uniform start valve 
that opens as soon as the entire water tank system is set into 
operation.

A water tank system might operate either in analogue or in 
binary mode. In analogue mode, the volume of water within 
a tank represents a non-negative rational value. For this pur-
pose, we introduce water tank systems for arithmetic opera-
tions addition, non-negative subtraction, division, and multi-
plication. They can be assembled for performing sequenced or 
nested computations. In addition, a ring oscillator consisting 
of a cyclic structure with at least three water tanks emulates a 
clock signal. In binary mode, an empty or nearly empty water 
tank refers to the logical value “0” and a full or nearly full 
one to “1” with latencies when the tank gets filled or emptied. 
We define logic gates OR, AND, and a bit duplicator. Water-
based logic gates can be connected towards Boolean circuits 
equipped with the capability of inherent self-synchronisation 
without external control striving for construction of any reg-
ister machine known to be a Turing-complete model of com-
putation, shown for example (with chemical logic gates and 
an oscillating species concentration interpreted as clock) in 
[8]. All water tank systems presented throughout this paper 
come with simulation case studies revealing system’s temporal 
behaviour in detail. The underlying simulation source code 
complements our ongoing project on a Java Environment for 
Nature-inspired Approaches (JENA) [9].

The paper is structured as follows: in Sect. 2, we famil-
iarise the reader with the description and formal definition 
of water tank systems and their behaviour. Hereafter, three 
case studies selected from different application scenarios 
demonstrate its practicability. First, as an introductory exam-
ple, we shed light on a ring oscillator in Sect. 3 followed by 
analogue arithmetics in Sect. 4. The third study is dedicated 
to emulation of combinable logic gates together with a bit 
duplicator by water tank systems in binary mode in Sect. 5. 
A discussion concludes the benefits and challenges raising 
open questions for future work.

2  Water tank systems

Let A and B be arbitrary sets, ∅ the empty set, ℕ the set of natu-
ral numbers including zero, ℚ the set of rational numbers, and 
ℚ+ the set of non-negative rational numbers. The Cartesian 
product A × B = {(a, b) | a ∈ A ∧ b ∈ B} collects all tuples 

from A and B. ℘(A) symbolises the power set of A. A frac-
tional multiset over A is a mapping F ∶ A ⟶ ℚ+ ∪ {+∞} . 
Multisets in general can be written as an elementwise enu-
meration of the form {(a1,F(a1)), (a2,F(a2)),…} since 
∀(a, b1), (a, b2) ∈ F ∶ b1 = b2.

A water tank system �∼ is a construct

with its components
W ∶ � ⟶ ℚ+ ∪ {+∞} . . . . . . . . . . . . . . . finite frac-

tional multiset of water tanks

Let � be an alphabet of water tank identifier symbols. 
w ∈ � specifies a water tank whose initial volume of 
water is given by W(w) . A water tank is allowed to be 
initially empty. A water tank r ∈ � acting as reservoir 
is characterised by W(r) = +∞ . The volume of water 
contained in a water tank w at time t ∈ ℕ is captured by 
Vw(t) ∈ ℚ+ ∪ {+∞} . It holds Vw(0) = W(w).

A ⊂ ℘(ℕ × {0, 1}) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . finite set of valves

Let w ∈ � be a water tank identifier, � ∈ ℚ+ a thresh-
old value, and t ∈ ℕ a point in time. A valve (also called 
actor) is a function � ∶ ℕ ⟶ {0, 1} having one of the 
forms

�(t) =

{
1 iff Vw(t) > 𝛩

0 otherwise

�(t) =

{
1 iff Vw(t) ≥ �

0 otherwise

�(t) =

{
1 iff Vw(t) < 𝛩

0 otherwise

�(t) =

{
1 iff Vw(t) ≤ �

0 otherwise

������(t) =

{
1 iff t ≥ t�����
0 otherwise,

meaning that 1 marks the valve to be fully open and 0 
fully closed, respectively.

P ⊂ 𝛴 × 𝛴 × A ×ℚ+ ×ℚ+ . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . finite set of pipes

Let s ∈ � and w ∈ � with s ≠ w be water tanks, B ⊆ A 
a set of valves, ������ ∈ B the start valve, v̇ ∈ ℚ+ with 
v̇ > 0 a volumetric flow rate, and �s ∈ ℚ+ the mini-
mum volume of water required in s to supply. A pipe 
p = (s,w,B, v̇,𝛩s) ∈ P enables the directed transport 
of the volume portion v̇ of water from s to w within 
one time step if and only if (∀� ∈ B ∶ �(t) = 1)

∧(������(t) = 1) ∧ (V
s
(t) ≥ v̇) ∧ (V

s
(t) ≥ 𝛩

s
) . The formal 

�∼ = (W,A,P, tstart, tend)
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conditions mean that all valves placed at the pipe have to 
be open, the supply tank must contain at least the required 
portion v̇ of water, and—in case the entry of the pipe is 
placed at a higher filling level than 0—the supply tank 
must even contain at least �s volume units of water.

tstart ∈ ℕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . point in time to start

tend ∈ ℕ with tend > tstart . . . . . . . . . . . . . . . . . . . . . . . . . . 
point in time to terminate

2.1  Systems behaviour

The spatiotemporal behaviour of a water tank system aims at 
tracing of the water volumes in each water tank successively 
over time. To this end, we assume a global clock t ∈ ℕ start-
ing with t = 0 . Each discrete processing step increases the 
clock by 1 until the point in time to terminate tend is reached. 
A configuration of a water tank system is defined by the 
water volume (non-negative rational value) in each water 
tank, formally expressed by

Initially, we set Vw(0) = W(w) for all w ∈ � . A processing 
step results from the following update scheme in which the 
water tank volumes Vw(t + 1) will be obtained from Vw(t) 
taking into consideration the measurements of filling levels 
and corresponding states of the valves available within the 
system. The update scheme reads as follows:

t:= 0
while t < tend

for all (s, w,B, v̇, Θs) ∈ P

if

(
∏

b∈B

b(t) = 1

)
∧ (bstart(t) = 1) ∧ (Vs(t) ≥ v̇) ∧ (Vs(t) ≥ Θs)

Vs(t+ 1):= Vs(t)− v̇
Vw(t+ 1):= Vw(t) + v̇

t:= t+ 1

Vw(t) ∀ w ∈ �.

The water volume in the reservoir persists at +∞ for the 
entire time span in which the system is in operation. For 
passage of water throughout a pipe, we assume no additional 
consumption of time beyond one processing step having in 
mind that pipes typically bridge short distances and an extra 
delay is seen to be neglectable in comparison to the time 
needed to fill or to empty a water tank.

3  Ring oscillator

For generation of self-sustained clock signals able to syn-
chronise computing processes and for iteratively making 
available an amount of water in order to control a primitive 
recursion, an oscillatory course of the water volume within 
a tank is required. Hence, we enrich the pool of water tank 
systems by a module acting as ring oscillator. To do so, a 
cyclic scheme consisting of at least three water tanks suf-
fices; see the left part of Fig. 2. An amount of water initially 
placed in one of these tanks rotates from one tank to the next 
one over time. The inflow of a tank inside the cycle might 
get opened as soon as the tank ahead from the tank before 
has been emptied. For instance, in the cycle w1 → w2 → w3 , 
water tank w2 can be filled after w3 has been emptied since 
w1 is completely filled at this point in time. By placing the 
corresponding valves, we achieve an autonomous principle 
of operation. Complementing the cyclic scheme, we add 
an output water tank y whose temporal course of the water 
volume becomes managed by w1 . In the same way, further 
output tanks beyond y can be integrated if necessary.

Our water tank system that mimics a ring oscillator can 
be formalised by �RO . We assign a water volume of 10 units 
to indicate a full tank. All filled pipes share a common volu-
metric flow rate v̇ = 0.1 . The system is started at t = 0:

Fig. 2  Water-based ring oscil-
lator composed of a cyclic 
scheme of three tanks w1 , w2 , 
and w3 . The water in tank w1 
manages the output course 
provided in tank y in terms of a 
clock signal y

reservoir
start

reservoir

w1morethanhalf

reservoir
2

w1emptyw2empty

reservoir reservoir

w 1

w 3 w

w3empty

w1empty
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The simulation results considering 800 time steps are 
depicted in the right part of Fig. 2. The temporal course 
of the water volume in tank y forms the output. After a 
short transient phase, a stable and self-sustained oscillation 
becomes evident. Its high and low signal levels are balanced 
to each other supporting its function of a clock.

4  Emulation of analogue arithmetics

Studying concepts of analogue computing embodies an 
inspirational field in computer science, and it promises to 
gain enduring insights for education. Commonly, analogue 
computers feature by a simple setup and by an illustrative 
principle of operation close to the adopted mechanisms. In 
comparison to digital information processing, arithmetics 
can be directly implemented in an easy way without taking 
care of distinction between single digits. Analogue com-
puting based on water utilises the volume of water within 
a tank directly to represent a non-negative rational value 
able to be measured and modified. In consequence, analogue 

𝛱RO =(W,A,P, 0, 800) with

W ={(w1, 10), (w2, 0), (w3, 0), (y, 0), (reservoir,+∞)}

A =

{(
�����(t) =

{
1 iff t ≥ 0

0 otherwise

)
,

(
�������(t) =

{
1 iff Vw1

(t) < v̇

0 otherwise

)
,

(
�������(t) =

{
1 iff Vw2

(t) < v̇

0 otherwise

)
,

(
�������(t) =

{
1 iff Vw3

(t) < v̇

0 otherwise

)
,

(
�������������� (t) =

{
1 iff Vw1

(t) > 5

0 otherwise

)}

P ={(w1,w2, {�����,�������}, 0.1, 0), (w1, reservoir, �, 0.1, 10),

(w2,w3, {�������}, 0.1, 0), (w2, reservoir, �, 0.1, 10),

(w3,w1, {�������}, 0.1, 0), (w3, reservoir, �, 0.1, 10),

(reservoir, y, {�����,��������������}, 0.1, 0),

(y, reservoir, {�������}, 0.1, 0), (y, reservoir, �, 0.1, 10)}

computers have to cope with slight imprecisions in process-
ing and they tend to be prone to perturbations. Water tank 
systems operating in analogue mode make use of a uniform 
volumetric flow rate in all pipes flooded by water. This 
assumption turns out to be helpful in order to keep the sys-
tems small and effective. We focus on analogue water tank 
systems for addition, non-negative subtraction, integer divi-
sion, and integer multiplication in a way that the output of 
an operation can act as an input for a downstream operation 
which enables evaluation of composed terms.

4.1  Addition

Addition of non-negative rational numbers belongs to the 
simplest tasks when carried out by a water-based analogue 
machine. We expect both of the input summands to be avail-
able as volumes of water in tanks x and y. For summation, 
a union of these water volumes into a common output tank 
z = x + y suffices. Figure 3 illustrates in its left part the 
underlying scheme.

A formal specification of the corresponding water tank 
system is given below. We exemplify an instance in which 

Fig. 3  Analogue implementa-
tion of water-based addition 
with input tanks x, y, and output 
tank z = x + y whose resulting 
water volume is available for 
downstream usage as soon as 
both input tanks are emptied

x y

reservoir

start
reservoir

reservoir

z = x + y

2 + 3 = 5
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the sum 2 + 3 = 5 is calculated. This implies initial water 
volumes Vx(0) = 2 and Vy(0) = 3 . The system is set into 
operation at t = 25 by opening the start valves and it is con-
figured to terminate at t = 200 . Furthermore, we uniformly 
assign a volumetric flow rate v̇ = 0.1 to all filled pipes. The 
overflow pipes in all tanks have been placed in a way to 
enable the handling of numbers within a range between 0 
and 90.

The simulation results shown in Fig. 3 (right part) disclose 
a duration of 30 time steps to conduct the calculation. After 
both of the input water tanks x and y have been completely 
emptied, the output water volume might be transferred for 
downstream usage.

4.2  Non‑negative subtraction

For emulat ion of  a  non-negative subtract ion 

z = x−̇y =

{
x − y iff x > y

0 otherwise
 , we make use of a strategy 

�Add =(W,A,P, 25, 200) with

W ={(x, 2), (y, 3), (z, 0), (reservoir,+∞)}

A =

{(
�����(t) =

{
1 iff t ≥ 25

0 otherwise

)}

P ={(x, z, {�����}, 0.1, 0), (x, reservoir, �, 0.1, 90), (y, z, {�����}, 0.1, 0),

(y, reservoir, �, 0.1, 90), (z, reservoir, �, 0.1, 90)}

based on the assurance that all pipes flooded by water exhibit 
the same volumetric flow rate v̇ . Having this feature at hand, 
we construct the system beginning with two separate input 
tanks x and y whose start valves can be opened at the same 
time. Along with this, the water simultaneously runs from x 
and from y to the reservoir until y is (nearly) empty. As soon 
as all water has vanished from y, the outflow of x immedi-
ately switches over to fill z from now on. In this way, the 

desired difference expressed by the portion of the initial 
water volume in x exceeding those in y has accumulated in 
z; see left part of Fig. 4.

The visualisation is done by a system instance to com-
pute 5−̇2 = 3 in which the start takes place at t = 25 . All 
filled pipes possess a uniform volumetric flow rate v̇ = 0.1 . 
Each overflow pipe gets supplied in case that a tank contains 
at least 90 volume units of water. In addition to the start 
valves, two auxiliary valves yempty and ynotempty are 
required indicating the empty and non-empty state of tank y.

Fig. 4  Water tank scheme for 
non-negative subtraction with 
input tanks x, y and output tank 
z = x−̇y . After both input tanks 
have been completely emptied, 
the output water volume Vz(t) is 
ready for further processing

yx

reservoir

start
reservoir reservoir

ynotemptyyempty
reservoir

z = x − y

5 − 2 = 3
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We let the simulation run for 200 time steps. The right part 
of Fig. 4 captures the temporal courses of water volumes in 
the tanks x, y, and z. 50 time steps after starting the system, 
the calculation result is available in the output tank z and can 
be used for further processing if needed.

𝛱Sub =(W,A,P, 25, 200) with

W ={(x, 5), (y, 2), (z, 0), (reservoir,+∞)}

A =

{(
�����(t) =

{
1 iff t ≥ 25

0 otherwise

)
,

(
������(t) =

{
1 iff Vy(t) < v̇

0 otherwise

)
,

(
���������(t) =

{
1 iff Vy(t) > 0

0 otherwise

)}

P ={(x, z, {�����, ������}, 0.1, 0), (x, reservoir, {�����, ���������}, 0.1, 0),

(x, reservoir, �, 0.1, 90), (y, reservoir, {�����}, 0.1, 0),

(y, reservoir, �, 0.1, 90), (z, reservoir, �, 0.1, 90)}

4.3  Integer division

Implementation of integer division by means of a water tank 
system requires a well-elaborated algorithmic strategy. We 
decided to employ the recursive definition

Fig. 5  Water tank scheme for 
integer division with input tanks 
x, y and output tank z = x∕y . 
After input tank x and auxiliary 
tanks x − y , x − yd , and inc 
have been completely emptied, 
the output water volume Vx∕y(t) 
is ready for further processing

yx

3
y

reservoir

start
xnotempty
y3empty

reservoir
start

yempty
y3empty

ynotempty
y3empty

reservoir

yempty
reservoir

x−y

xempty

x−ydempty
reservoir
x−ydempty

yempty
reservoirxempty

y
2

x−ydempty

reservoir

z=x/y

xnotempty

reservoir
start

xempty

start

reservoir

yempty

y2empty
x−yempty

y2empty
x−yd

reservoirx−yempty

inc

3=4/215=4/02
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in which x, y ∈ ℕ and y ≥ 1 holds. For emulation of the 
recursive scheme, we adapt the ring oscillator and combine 
it with a subtractor. To this end, we place two separate input 
tanks x and y complemented by a tank x − y whose con-
tents corresponds to the non-negative subtraction x−̇y as 
described before. Via the intermediate tank x − yd , we trans-
port the water volume representing x − y back to tank x com-
pleting a cycle. Each iteration of water throughout this cycle 
diminishes its rotating volume by y until no water remains 
and all three tanks x, x − y , and x − yd forming the cycle 
have been emptied. In each iteration, the portion y of water 
is needed again in order to execute the subtraction. So, we 
have to take care that y gets restored along with the iteration. 
For this purpose, we implement a second cycle consisting 
of three tanks y, y2 , and y3 . The iterations in both cycles run 
simultaneously in a self-synchronised manner controlled by 
cross-placed valves; see upper part of Fig. 5. The underlying 
division is done by a separate auxiliary tank called inc with 
a storing capacity of exactly one volume unit of water. Each 

�
x

y

�
=

⎧
⎪⎨⎪⎩

0 iff x < y ∧ x = 0

1 iff x < y ∧ x > 0�
x−y

y

�
+ 1 otherwise,

iteration opens the supply of tank inc for a short moment to 
refill. Finally, this amount of one unit of water moves to the 
output water tank z = x∕y which in turn accumulates these 
portions over the time spent for iterations. After that, the 
output tank contains the desired division result.

The formal specification of a water tank system for inte-
ger division comprises eight tanks in total. Moreover, nine 
types of valves are required and 17 pipes manage the trans-
port of water. The system instance given below is dedicated 
to the division example 20∕4 = 5 . We assign a common vol-
umetric flow rate v̇ = 0.1 to all filled pipes. All water tanks 
except inc have a capacity of 90 volume units. We start the 
system at t = 25 and observe it for 1600 time steps:

Fig. 6  Water tank scheme for 
integer multiplication with 
input tanks x, y and output tank 
z = x × y . After input tank x and 
auxiliary tanks x − 1 , x − 1d , 
and yc have been completely 
emptied, the output water vol-
ume Vx×y(t) is ready for further 
processing
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start

reservoir

reservoir

reservoir
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Fig. 7  Representation of logical values by a water tank
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Figure 5 shows in its lower part two simulation runs reflect-
ing the divisions 20∕4 = 5 and 12∕4 = 3 . The successive 
reduction of the water volume available in tank x along with 
each iteration and the accumulation of the water portions of 
1 volume unit becomes apparent from the diagrams. After 
the tanks inc and x together with its successors x − y and 
x − yd are empty at the same time, the output has been final-
ised and can be utilised for further processing.

𝛱Div = (W,A,P, 25, 1600) with

W ={(x, 20), (y, 4), (x − y, 0), (x − yd, 0), (y2, 0), (y3, 0), (inc, 0), (x∕y, 0),

(reservoir,+∞)}

A =

{(
�����(t) =

{
1 iff t ≥ 25

0 otherwise

)
,

(
������(t) =

{
1 iff Vx(t) < v̇

0 otherwise

)
,

(
���������(t) =

{
1 iff Vx(t) > 0

0 otherwise

)
,

(
������(t) =

{
1 iff Vy(t) < v̇

0 otherwise

)
,

(
���������(t) =

{
1 iff Vy(t) > 0

0 otherwise

)
,

(
� − ������(t) =

{
1 iff Vx−y(t) < v̇

0 otherwise

)
,

(
� − �������(t) =

{
1 iff Vx−yd(t) < v̇

0 otherwise

)
,

(
�������(t) =

{
1 iff Vy2

(t) < v̇

0 otherwise

)
,

(
�������(t) =

{
1 iff Vy3

(t) < v̇

0 otherwise

)}

P ={(x, x − y, {�����, ������, �������, � − ������}, 0.1, 0),

(x, reservoir, {�����, ���������, �������, � − ������}, 0.1, 0),

(x, reservoir, �, 0.1, 90), (x − y, reservoir, �, 0.1, 90),

(x − y, x − yd, {������, ������}, 0.1, 0), (x − yd, reservoir, �, 0.1, 90),

(x − yd, x, {�������, � − ������}, 0.1, 0), (y, reservoir, �, 0.1, 90),

(y, y2, {�����, �������, � − �������, ���������}, 0.1, 0),

(y2, y3, {������, ������}, 0.1, 0), (y3, reservoir, �, 0.1, 90),

(y3, y, {�������, � − ������}, 0.1, 0), (inc, reservoir, �, 0.1, 1),

(reservoir, inc, {�����, ���������}, 0.1, 0), (x∕y, reservoir, �, 0.1, 90),

(y2, reservoir, �, 0.1, 90), (inc, x∕y, {�����, ������, ������}, 0.1, 90)}

4.4  Integer multiplication

Within water-based analogue arithmetics, integer multiplica-
tion necessitates most effort for construction of the underly-
ing system. Our algorithmic strategy focuses on a recursive 
definition

x ⋅ y =

{
y iff x = 1

(x − 1) ⋅ y + y otherwise,
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whereas x, y ∈ ℕ and x ≥ 1 . This approach needs to combine 
a ring oscillator with a subtractor responsible for the decre-
ment to control the descent of x into x − 1 when successively 
tracing the recursion. In consequence, we construct a cycle 
consisting of three water tanks called x, x − 1 , and x − 1d for 
this purpose; see upper left part of Fig. 6. A second cycle 
composed of three tanks called one, o2 , and o3 manages the 
iterated presence of the subtrahend 1 to turn x into x − 1 by 
subtraction. The iterations in both cycles need to be syn-
chronised to each other. This is done by cross-placement 
of valves. Along with each iteration, a water volume of y 
units has to be made available and successively accumulated 
to obtain the final multiplication result. This requirement 
implies a third cycle formed by three tanks called y, y2 , and 
y3 . An initial water volume of y units rotates along these 
tanks simultaneously to the iterations taking place in either 
aforementioned cycles. We need to place additional valves 
to synchronise this cycle as well. The water with a volume 
of y units periodically present in tank y controls the supply 

of a separate tank named yc to provide a copy of the water 
volume y. As soon as an iteration has finished, this volume 
gets added to the water volume in the output tank x × y . 
Along with each iteration, a portion of y units is summed up. 
After all water vanished from x by a number of cycles, the 
desired calculation result x × y persists in the correspondent 
output tank.

We exemplify the calculation 5 × 4 = 20 for formulation 
of a system instance. It is composed of 11 water tanks, 13 
types of valves, and 23 pipes in total. A volumetric flow rate 
v̇ = 0.1 has been assigned to all filled pipes. A uniform rate 
is mandatory to ensure the function of the entire system. 
Moreover, we place the overflow pipes in a way to handle 
water volumes up to 90 units except tank one whose capac-
ity is restricted to 1 unit. The system starts at t = 25 and its 
temporal behaviour has been observed for 700 time steps. 
Accordingly, the formal specification reads:

Fig. 8  Schematic representation 
of a water tank system which 
mimics an OR gate by z = x ∨ y . 
The contents of the output tank 
z is valid and can be employed 
for downstream logic gates 
as soon as both input tanks x, 
y are empty and tank z is not 
overfilled any more

1 v 0 = 1

z

y

reservoir

reservoir

x
start

reservoir

0 v 1 = 10 v 0 = 0

1 v 1 = 1
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𝛱Mul =(W,A,P, 25, 700) with

W ={(x, 5), (y, 4), (x − 1, 0), (x − 1d, 0), (one, 1), (o2, 0), (o3, 0), (y2, 0),

(y3, 0), (yc, 0), (x ⋅ y, 0), (reservoir,+∞)}

A =

{(
�����(t) =

{
1 iff t ≥ 25

0 otherwise

)
,

(
������(t) =

{
1 iff Vx(t) < v̇

0 otherwise

)
,

(
���������(t) =

{
1 iff Vx(t) > 0

0 otherwise

)
,

(
� − ������(t) =

{
1 iff Vx−1(t) < v̇

0 otherwise

)
,

(
� − �������(t) =

{
1 iff Vx−1d(t) < v̇

0 otherwise

)
,

(
��������(t) =

{
1 iff Vone(t) < v̇

0 otherwise

)
,

(
�����������(t) =

{
1 iff Vone(t) > 0

0 otherwise

)
,

(
�������(t) =

{
1 iff Vo2

(t) < v̇

0 otherwise

)
,

(
�������(t) =

{
1 iff Vo3

(t) < v̇

0 otherwise

)
,

(
������(t) =

{
1 iff Vy(t) < v̇

0 otherwise

)
,

(
���������(t) =

{
1 iff Vy(t) > 0

0 otherwise

)
,

(
�������(t) =

{
1 iff Vy2

(t) < v̇

0 otherwise

)
,

(
�������(t) =

{
1 iff Vy3

(t) < v̇

0 otherwise

)}

P ={(x, x − 1, {�����, ��������, � − ������, �������}, 0.1, 0),

(x, reservoir, {�����, �����������, � − ������, �������}, 0.1, 0),

(x, reservoir, �, 0.1, 90), (x − 1, x − 1d, {������, ������}, 0.1, 0),

(x − 1, reservoir, �, 0.1, 90), (x − 1d, x, {� − ������, �������}, 0.1, 0),

(x − 1d, reservoir, �, 0.1, 90), (one, reservoir, �, 0.1, 1),

(one, o2, {�����, �������, � − �������, �������}, 0.1, 0),

(o2, o3, {��������, ������, ������}, 0.1, 0), (o2, reservoir, �, 0.1, 90),

(o3, one, {�������, � − ������, �������}, 0.1, 0), (o3, reservoir, �, 0.1, 90),

(y, y2, {�����, � − �������, �������}, 0.1, 0), (y, reservoir, �, 0.1, 90),

(y2, y3, {������, ������}, 0.1, 0), (y2, reservoir, �, 0.1, 90),

(y3, y, {� − ������, ���������, �������}, 0.1, 0), (y3, reservoir, �, 0.1, 90),

(reservoir, yc, {�����, � − �������, ���������, �������}, 0.1, 0),

(yc, x ⋅ y, {�����, ������}, 0.1, 0), (yc, reservoir, �, 0.1, 90),

(x ⋅ y, reservoir, �, 0.1, 90)}
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Fig. 9  Schematic representa-
tion of a water tank system 
which mimics an AND gate by 
z = x ∧ y . The contents of the 
output tank z is valid as soon 
as all other tanks have been 
completely emptied amorethanhalf
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Fig. 10  Scheme of a water tank 
system acting as bit duplica-
tor yi = x with i = 1, 2 . The 
contents of each output tank yi 
can be accessed as soon it is full 
or empty
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The lower part of Fig. 6 shows simulation results for the 
calculations 5 × 4 = 20 and 3 × 4 = 12 . The courses of the 
water volumes in the tanks x, y, yc, and x × y have been 
depicted over time. The successive increase of the water 
volume in x × y by portions of y becomes evident while the 
water volume in x gets diminished by 1 within each itera-
tion. The final result is available for downstream usage after 

the tanks x, x − 1 , x − 1d , and yc have been emptied at the 
same time.

5  Emulation of logic gates

For acting in binary mode, a water tank w ∈ � constitutes a 
binary variable whereas an empty or nearly empty tank with 
Vw(t) < v̇ refers to the logical value “0” and a high filling 
level Vw(t) ≥ 100 × v̇ encodes “1”, respectively. The time 
span to fill or to empty a water tank implies a latency in 
which its logical value is invalid.

In addition to possible outflow pipe(s) applied for infor-
mation processing, a water tank incorporates an overflow 
pipe whose entrance position corresponds to the desired high 
filling level. The overflow pipe leads excessive water from 
the tank into the reservoir; see Fig. 7.

5.1  OR gate

The disjunction OR is the simplest logic gate to be imple-
mented by a water tank system since a merge of both input 
water volumes providing their union as output suffices in 
principle. To do so, we place two input water tanks called x 
and y whose outflows feed the output water tank z = x ∨ y , 
depicted in Fig. 8 (upper part). By opening the start valves, 
the system is set into operation.

In order to keep the water volume representing the logical 
value “1” globally uniform within the entire system, we need 
to take care that the output water volume gets accordingly 

reduced in case of supplied by either input tanks to calcu-
late 1 ∨ 1 = 1 . For this purpose, we place an overflow pipe 
for transportation of all excessive water to the reservoir. 
Figure 8 (lower part) shows simulation results for a system 
instance in which a water volume of 10 units represents “1” 
and the start is done at t = 25 . We assign a volumetric flow 
rate v̇ = 0.1 to all filled pipes. The formal system’s descrip-
tion (initialisation for 1 ∨ 1 = 1 ) is:

The simulation studies exhibit the most effort for perform-
ing the calculation 1 ∨ 1 = 1 since it consumes much time 
and the result is obtained after t = 174 . When using the out-
put z as an input for downstream logic gates, it is valid as 
soon as both input tanks are empty or nearly empty and z 
is not overfilled. A pipe processing the output needs to be 
controlled by corresponding valves xempty (open if and 
only if Vx(t) < v̇ ), yempty ( Vy(t) < v̇ ), and znotoverfilled 
( Vz(t) ≤ 10 ), respectively.

5.2  AND gate

The topology of our water-based AND gate (conjunction) 
resembles its counterpart from disjunction but it incorpo-
rates a crucial difference. Since both of the input water tanks 
x and y must have a high filling level at the logical value “1” 
to generate the output result “1”, their contents is merged 
and collected in an oversized auxiliary water tank a able 
to store the double amount of water in comparison to x and 
y. After a has been filled more than half, the inflow of the 
output tank z gets opened, supplied by the reservoir. As soon 
as z has reached its high filling level to encode “1”, tank a is 
emptied again. In case that merely one or none of the input 
tanks x, y is set to “1”, a cannot collect enough water to flood 
z which implies the desired output of “0” leaving z in empty 
state. In order to prepare the system for subsequent opera-
tion, all water is finally removed from a. Figure 9 (upper 
part) illustrates the water tank system.

For simulation, we assign 10 volume units of water to rep-
resent “1”. Furthermore, all filled pipes constitute v̇ = 0.1 . 
We expect the system to start at t = 25 . The corresponding 
formal description initialised to calculate 1 ∧ 1 = 1 reads:

�OR =(W,A,P, 25, 200) with

W ={(x, 10), (y, 10), (z, 0), (reservoir,+∞)}

A =

{(
�����(t) =

{
1 iff t ≥ 25

0 otherwise

)}

P ={(x, z, {�����}, 0.1, 0), (x, reservoir, �, 0.1, 10), (y, z, {�����}, 0.1, 0),

(y, reservoir, �, 0.1, 10), (z, reservoir, �, 0.1, 10)}
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The lower part of Fig. 9 depicts the temporal courses of the 
water volumes within tanks x, y, a, and z over time from 
t = 0 to 400 for all logical assignments. It becomes appar-
ent that the calculation of 1 ∧ 1 = 1 consumes most time 
revealing the result after t = 380 . The output is available for 
downstream usage as soon as the water tanks x, y, and a have 
been completely emptied.

5.3  Bit duplicator

When water tank systems are applied for calculation of 
Boolean expressions, it might happen that a Boolean variable 
occurs several times within the term. Since water is treated 

as a fugitive medium, a number of copies from a bit-encod-
ing water tank according to the multiplicity of its Boolean 
variable is needed in order to satisfy all occurrences. To 

𝛱AND =(W,A,P, 25, 400) with

W ={(x, 10), (y, 10), (a, 0), (z, 0), (reservoir,+∞)}

A =

{(
�����(t) =

{
1 iff t ≥ 25

0 otherwise

)
,

(
������(t) =

{
1 iff Vx(t) < v̇

0 otherwise

)
,

(
������(t) =

{
1 iff Vy(t) < v̇

0 otherwise

)
,

(
�����(t) =

{
1 iff Vz(t) ≥ 10

0 otherwise

)
,

(
�����������(t) =

{
1 iff Va(t) ≤ 10

0 otherwise

)
,

(
������������� (t) =

{
1 iff Va(t) > 10

0 otherwise

)}

P ={(x, a, {�����}, 0.1, 0), (x, reservoir, �, 0.1, 10), (y, a, {�����}, 0.1, 0),

(y, reservoir, �, 0.1, 10), (z, reservoir, �, 0.1, 10),

(a, reservoir, {������, ������, �����������}, 0.1, 0),

(a, reservoir, {������, ������, �����}, 0.1, 0),

(a, reservoir, �, 0.1, 20), (reservoir, z, {�������������}, 0.1, 0)}

this end, we provide a bit duplicator responsible for making 
copies from the water volume present in a tank. Figure 10 
shows in its upper part a schematic representation of the 
corresponding water tank system with the input tank x and 
two output tanks y1, y2 tracing the input with a certain delay. 
The output tanks get supplied by the reservoir whenever x is 
not empty and the start valve has been opened. In case of an 
empty water tank x, the output tanks will be emptied as well.

As an example for simulation, let us assume a bit dupli-
cator with input x and two outputs y1, y2 . A filling level of 
10 volume units corresponds to logical “1”. All filled pipes 
possess a uniform volumetric flow rate v̇ = 0.1 . We start the 
system at t = 25 logically initialised with x = 1.

We observe the system’s behaviour from t = 0 to 300 for 
both cases x = 0 and x = 1 ; see lower part of Fig. 10. Either 
courses of water volumes in y1 and y2 follow the input course 

𝛱BD =(W,A,P, 25, 300) with

W ={(x, 10), (y1, 0), (y2, 0), (reservoir,+∞)}

A =

{(
�����(t) =

{
1 iff t ≥ 25

0 otherwise

)
,

(
������(t) =

{
1 iff Vx(t) < v̇

0 otherwise

)
,

(
���������(t) =

{
1 iff Vx(t) > 0

0 otherwise

)}

P ={(x, reservoir, {�����}, 0.1, 0), (x, reservoir, �, 0.1, 10),

(reservoir, y1, {�����, ���������}, 0.1, 0), (y1, reservoir, �, 0.1, 10),

(y1, reservoir, {������}, 0.1, 0), (y2, reservoir, {������}, 0.1, 0),

(reservoir, y2, {�����, ���������}, 0.1, 0), (y2, reservoir, �, 0.1, 10)}
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with a delay of 100 time steps when deviating from being 
empty. As soon as each of the output tanks y1 , y2 is com-
pletely empty or completely filled, its contents is available 
for usage in downstream logic gates.

6  Conclusions

Water tank systems open an inspirational and interesting 
concept for modelling and visualisation of computational 
processes. A crucial feature of a water tank system lies in 
its ability to function without any central or external control. 
By means of valves that fully open or fully close the hosting 
pipes according to the filling levels in dedicated water tanks, 
a self-synchronisation can be obtained supported by water-
based modules like a ring oscillator. Cycles composed of at 
least three tanks in which a volume of water can successively 
rotate provide a powerful instrument to describe iterations 
also sufficient for trace of primitive recursion schemes. In 
our opinion, water tank systems convince due to their sim-
plicity and by their clear operation making all details visible. 
All Java source codes for the simulation studies presented 
throughout this paper are available from the first author upon 
request.

Future work is directed to obtain a direct implementation 
of a NOT gate and evaluation of composed logic expres-
sions which includes three tasks: (1) termination detection—
a control tank that will be filled exactly when the whole 
evaluation is completed (regardless if the result is empty or 
not). (2) System reset—to prepare the next evaluation. (3) 
Simplifying the control valves on output pipes on multistage 
expression directed acyclic graphs—at any level, only one or 
two control valves, thus avoiding a combinatorial explosion 
on the number of valves.

We are aware of the fact that water tank systems in the 
present form are away from any deployment outside aca-
demics, but they could be a prototype in artificial life when 
equipped with biochemical reactions and substrates residing 
in the tanks which in turn forms a blood circulation affected 
by organs. Particularly, description, modelling, and explo-
ration of biological control loops are seen as a promising 
field of research to be tackled by water tank systems with 
appropriate extensions.
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