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BRUVs were deployed during two separate time peri-
ods (February and August 2017), to separately exam-
ine patterns of depth use. Both the relative abundance 
and diversity of reef fishes declined with depth, and 
there were pronounced differences in the taxonomic 
and functional structure of the fish assemblage across 
the depth gradient. In shallow habitats (< 30 m), the 
fish assemblage was dominated by herbivores, detri-
tivores, planktivores and sessile invertivores, whereas 
the fish assemblage in deeper habitats (> 30 m) was 
dominated by piscivores and mobile invertivores. 
Depth and habitat type were also strong predictors for 
important fisheries species such as coral trout (Plec-
tropomus spp.), emperors (Lethrinus spp.) and treval-
lies (Carangid spp.). We found limited evidence of 
temporal changes in depth and habitat use by fishes 
(including fisheries target species), although recorded 
temperatures were 4  °C higher in February 2017 
compared to August 2017.

Keywords Baited remote underwater video 
systems · Coral reef fisheries · Depth variation · 
Mesophotic reefs · Submerged shoals · Tropical 
fishes · Fish assemblage

Introduction

In aquatic ecosystems, environmental conditions 
vary markedly with depth, underpinning distinct dif-
ferences in the distribution and abundance of many 

Abstract Coral reef fishes often exhibit specific or 
restricted depth distributions, but the factors (biotic 
or abiotic) that influence patterns of depth use are 
largely unknown. Given inherent biological gradients 
with depth (i.e. light, nutrients, habitat, temperature), 
it is expected that fishes may exploit certain depths 
within their environment to seek out more favourable 
conditions. This study used baited remote underwa-
ter video (BRUV) systems to document variation in 
the taxonomic and functional (trophic and size) struc-
ture of a fish assemblage along a shallow to upper-
mesophotic depth gradient (13–71 m) at a submerged, 
offshore shoal in the northern Great Barrier Reef. 
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functionally important aquatic taxa across this gradi-
ent (Brokovich et al. 2008; MacDonald et al. 2016). 
Depth, and consequently habitat-use by mobile ani-
mals, such as fishes, influences access to resources 
(Hussey et  al. 2015), predation risk (Furey et  al. 
2013), sociality (Alanara et  al. 2001) and reproduc-
tive success (Samoilys and Squire 1994). Mobile spe-
cies may also be able to exploit intrinsic depth-related 
gradients in environmental conditions to moderate 
exposure to extreme and/or changing environmental 
conditions, such as increasing temperature and wave 
energy (Kahler et  al. 2001; Bonagerts et  al. 2010; 
Smith et al. 2016). Importantly, the suitability of hab-
itats can vary spatially (i.e. with depth) and tempo-
rally, such that mobile organisms may utilise different 
habitats diurnally or seasonally (Furey et al. 2013).

The structure of coral reef ecosystems varies mark-
edly with depth, as the architects of these ecosystems 
(corals and algae) are directly influenced by depth-
related changes in light availability (Adey 1998; 
Zintzen et  al. 2012). The differential abundance, 
composition and growth of habitat-forming organ-
isms in-turn drives depth-related changes in habitat 
structure and resource availability (Holt 1987; Hixon 
and Menge 1991; Bell et  al. 2009). Accordingly, 
many coral reef fishes are restricted to particular 
depth-ranges, with major changes in the structure and 
function of fish assemblages across moderate depth 
gradients (Brokovich et  al. 2008; Gonzalez-Sanson 
et al. 2009). Recently, there has been increasing inter-
est in deeper (mesophotic) coral reef ecosystems as 
potential refuges, particularly for recreationally and 
commercially exploited fishes that inhabit shallower 
environments (e.g. Loya et al. 2016; Sih et al. 2017; 
Rocha et al. 2018). This is because environmental dis-
turbances such as coral bleaching and storm damage 
generally attenuate relatively quickly with increas-
ing depth (Bridge et  al. 2014; Smith et  al. 2014). 
In general, deeper habitats may not be impacted by 
disturbances to the same extent as shallow habitats 
(but see Bonagaerts et  al. 2013; White et  al. 2017), 
creating a more stable environment for some fishes, 
especially in the case of thermal anomalies (Brown 
1997; Glynn 1996; Neal et  al. 2014). Nevertheless, 
distinct assemblages of fishes inhabit mesophotic reef 
ecosystems (e.g. > 150  m, Sih et  al. 2017), suggest-
ing limited capacity for these systems to act as ref-
uges for shallow-water taxa (Lindfield et al. 2016; Sih 
et al. 2019; Rocha et al. 2018; Williams et al. 2019). 

Understanding the capacity for shallow water fishes 
to utilise deeper habitats requires accurate informa-
tion on species distributions, abundances and fish-
habitat associations along depth gradients.

Refuge seeking behaviour (i.e. movements to seek 
optimal habitat) by coral reef fishes, especially in spe-
cies targeted by recreational and commercial fisher-
ies, is poorly studied and may be limited due to high 
levels of site fidelity and strong microhabitat asso-
ciations (Lindberg et  al. 2006). For example, recent 
studies have demonstrated that some large-bodied 
coral reef fishes move to cooler, deeper waters when 
they experience elevated temperatures (Richards et al. 
2012; Currey et  al. 2015) and shelter under tabular 
coral structures during times of day when solar irra-
diance is strongest (Kerry and Bellwood 2015). Fur-
thermore, many fishes move between habitats (on 
hourly, daily or seasonal scales), thereby experienc-
ing different environmental conditions (e.g. varying 
ambient temperature) (Kahn et  al. 2017; Scott et  al. 
2019). Because fishes are generally ectothermic, tem-
perature can have direct impacts on foraging (Car-
tamil and Lowe 2004; Scott et  al. 2017), mobility 
(Azumaya and Ishida 2005; Thums et al. 2013), and 
digestion (Neverman and Wurtsbaugh 1994). One 
of the best opportunities for fishes to exploit hetero-
geneity within their environment may be with depth 
(Goyer et al. 2014) as there can be marked changes in 
light and temperature over relatively short distances 
(Bertolo et al. 2011). Movement among habitats may 
moderate effects of environmental change on tropical 
fishes, including important tropical fisheries species, 
although it is important to consider potential trade-
offs associated with using different habitats.

Historically, many depth-related studies of coral 
reef fishes focused on relatively shallow water 
habitats < 30  m deep (Cappo et  al. 2007; Harvey 
et  al. 2007; McLean et  al. 2011), largely due to the 
logistical constraints associated with surveying 
depths > 30 m. However, advances in diver-independ-
ent survey methods, such as baited remote underwater 
video (BRUV) systems (e.g. Cappo et al. 2007; Sto-
war et al. 2008; Langlois et al. 2018) are overcoming 
traditional challenges to studying fish assemblages in 
deep water. On the Great Barrier Reef (GBR), and 
throughout other ecosystems in Australia and around 
the world, there has been increased focus on the mes-
ophotic zone (Bridge et  al. 2011; Sih et  al. 2017). 
Nevertheless, studies investigating both the photic 



943Rev Fish Biol Fisheries (2022) 32:941–962 

1 3
Vol.: (0123456789)

(< 30  m depth) and mesophotic zones (30 – 300  m 
depth) simultaneously remain relatively limited (but 
see Stowar et al. 2008; Fitzpatrick et al. 2012; Bond 
et al. 2018; Currey et al. 2020), especially in the case 
of submerged shoal habitats. Submerged shoals are 
unique habitats and differ from emergent coral reefs, 
as they do not form conspicuous structures, but exist 
as either discrete or diffuse patches of hard substra-
tum above the surrounding seafloor (Stowar et  al. 
2008). Submerged shoals throughout the Indo-Pacific 
region remain relatively unexplored but are thought to 
harbor many new species (Pyle 2000) as well as pro-
vide hotspots for recreational and commercial fisher-
ies (Stowar et al. 2008).

The potential for submerged shoals to act as fish-
eries hotspots is particularly notable as millions of 
people worldwide are directly reliant on coral reef 
fisheries to meet their basic nutritional requirements 
(Bell et al. 2009; McClanahan et al. 2015; Hicks et al. 
2019). However, global coral reef fishery catches are 
declining (Newton et  al. 2007; Cuetos-Bueno and 
Hook 2015), due to the cumulative impacts of stress-
ors such as anthropogenic climate change, coastal 
development and overfishing (Pauly et al. 2005; New-
ton et  al. 2007; Graham et  al. 2007; Robinson et  al. 
2019). Fisheries effort is generally concentrated in 
accessible, near-shore, shallow waters (< 30  m), 
such that many once productive fishing grounds have 
been overexploited (Lindfield et  al. 2016). This has 
prompted fishers to adopt new strategies, such as fish-
ing in deeper waters or submerged shoals, to maintain 
high catch rates (Pauly et  al. 2005; Friedman et  al. 
2011; Lindfield et  al. 2014). As such, the utilisation 
of submerged shoal habitats by reef fishes warrants 
further investigation.

The purpose of this study was to document varia-
tion in the structure (relative abundance, biodiversity, 
and taxonomic and functional structure) of reef fish 
assemblages across a broad depth range (13–71 m) at 
Linden Bank, an offshore submerged shoal, subject to 
some fishing pressure, in the northern GBR. While 
all fishes were considered, our explicit focus was 
on fisheries target species. Sampling was conducted 
using BRUV systems which allowed for consistent 
sampling across the entire depth range. Moreover, 
sampling was conducted at two separate time peri-
ods (February and August, 2017) to explore temporal 
variation in the depth distribution of the fish assem-
blage. Notably, recorded temperatures in February 

2017 (28.75–29.63 °C) were substantially higher than 
August 2017 (24.53–25.28  °C), such that the depth 
distribution of fishes (including fisheries target spe-
cies) might be expected to differ between the two 
sampling periods if they exploit depth-gradients to 
mediate exposure to sub-optimal environmental con-
ditions. If so, any changes may have ramifications for 
the structure and function of fish assemblages across 
spatial scales in different habitats, particularly for 
important fisheries species that have high ecological 
and economic value and are more vulnerable to the 
effects of fishing.

Methodology

Study area

Linden Bank (−16.296900°S, 145.993066°E) is a 
submerged shoal situated along the outer shelf edge 
of the Great Barrier Reef (Fig.  1), 57  km offshore 
and < 1 km from the Australian continental shelf. The 
bank is 6.9 km long and 4.1 km wide. The top of the 
bank is in 13–15 m of water and slopes gradually to 
71 m (Fig. 1).

Sampling methods

Baited remote underwater video: We used BRUV 
systems to sample the fish assemblage structure 
across the full range of depths (13 – 71  m) at Lin-
den Bank. Each BRUV consisted of a Sony Mini-
DV handycam inside a simple underwater housing 
custom made from PVC pipe and pressure rated to 
over 100 m. The camera housing was mounted inside 
a pyramid-shaped galvanised steel frame that pro-
tected the camera, maintained its orientation (tilted 
10 degrees below horizontal and held approximately 
400  mm above the seafloor) and facilitated attach-
ment of a bait arm, ballast weights and rope to the 
surface. The flexible bait arm made of rigid PVC 
conduit held a plastic mesh bait bag containing 1 kg 
of crushed pilchards (Sardinops or Sardinella spp.) 
at approximately 1 m in front of the camera. BRUV 
frames were ballasted with steel bars according to the 
prevailing sea-state and current conditions to ensure 
stability on the seabed. An 8 mm diameter polypro-
pylene rope with surface floats attached enabled the 



944 Rev Fish Biol Fisheries (2022) 32:941–962

1 3
Vol:. (1234567890)

BRUV to be deployed and later retrieved from the 
surface (Fig. 2, Stowar et al. 2008).

BRUV deployment: Following best-practice BRUV 
sampling protocols available at the time of our study 
(Cappo et  al. 2007; Harasti et  al. 2015; Walsh et  al. 
2017; Cundy et al. 2017; Langlois et al. 2018), each 
BRUV (Fig.  2) was deployed sequentially along a 
transect across a distance of ~ 2  km. Within each 
transect, BRUV deployments were separated by a 

minimum of 200 m to minimise any potential effects 
of the bait plume from the preceding unit. This sam-
pling design also allowed BRUV units to be dropped 
at varying depths according to the topography of Lin-
den Bank (Fig. 1). Each BRUV was soaked for up to 
1  h (based on previous studies; Cappo et  al. 2007; 
Harasti et  al. 2015; Walsh et  al. 2017; Cundy et  al. 
2017; Langlois et  al. 2018) before being retrieved 
by an hydraulic pot hauler. On each sampling day 

Fig. 1  Map showing the spatial and temporal deployments 
of BRUVS at Linden Bank in February 2017 (triangles) and 
August 2017 (circles) with associated bathymetry. Bathymetric 

information from Geoscience Australia using the AusSeabed 
Marine Data Discovery Portal (http:// marine. ga. gov. au/#/)

http://marine.ga.gov.au/#/
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24–30 BRUV units were deployed. Sampling was 
conducted over five days in February 2017 (n = 86) 
and three days in August 2017 (n = 79) (Fig. 1). All 
deployments were conducted during daylight hours 
(0730–1700) and ranged in depth from 13 to 71  m. 
No BRUV was deployed within one hour of sunset or 
sunrise. Due to the topography of the site, the most 
common sampling depth was between 30 and 40 m.

Temperature measurements: A temperature logger 
(Vemco Minilog-II-T) was attached to each BRUV 
unit to provide accurate and real time temperature 
profiles for each deployment. Each logger was pro-
grammed to record temperature every 10  min. Dur-
ing deployments in February 2017, water tempera-
tures ranged from 28.75 to 29.63 °C (apart from two 
outlying measurements which recorded temperatures 
of 26.35  °C and 27.58  °C). Notably, these lower 
temperatures (< 28  °C) were recorded at the great-
est depths sampled (> 60 m), and recorded tempera-
tures were very consistent from 10 to 60 m (Fig. 3). 
In August 2017, recorded temperatures ranged from 
24.53 to 25.28 °C (apart from one outlying measure-
ment which recorded a temperature of 25.98 °C) and 
varied relatively little (< 1 °C) from 10 to 60 m depth 
(Fig. 3).

Habitat classification: For each deployment, habi-
tat was classified (by visual estimation) into one of 6 

categories; algal covered sand (ACS), coral reef (CR), 
low-relief rubble (LRR), open sand (OS), seawhip/
algal reef (SWA), or sand next to reef (SNR) based on 
previous studies using BRUV at similar depths and in 
similar habitats on the GBR (Stowar et al. 2008).

Fish identification and analysis of video metrics: 
BRUV footage was analysed by two primary observ-
ers, however the chief observer watched all the vid-
eos to ensure consistency. Each observer recorded 
the time of the video on the sea-bed, time of first 
appearance of each species, and relative abundance of 
each species calculated as MaxN. MaxN is the maxi-
mum number of individuals from a single fish spe-
cies observed in a single frame of footage during one 
deployment (Willis and Babcock 2000) and is a com-
mon abundance metric used for BRUV studies (e.g. 
Langlois et al. 2018; Bouchet et al. 2018). MaxN is a 
conservative estimate of abundance but eliminates the 
possibility of re-counting fishes swimming in and out 
of the field of view. To standardise MaxN across all 
deployments, imagery was analysed for 60 min from 
the time the BRUV landed on the sea-bed. Relative 
abundance for each BRUV sample was calculated, 
by summing MaxN values across species on each 
BRUV. Fish were identified to the lowest possible 
taxonomic level, with the assistance of experts, fish 
identification books and Fishbase™. Every effort was 

Fig. 2  Depiction of the 
Baited Remote Underwater 
Video System setup. Steel 
ballast bars are attached to 
pegs on the base according 
to local sea surface and cur-
rent conditions to prevent 
movement in situ (image 
taken from Stowar et al. 
2008)
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made to identify large, conspicuous fishes in addition 
to smaller, cryptic species. Visibility was approxi-
mated for each deployment, using the 1  m bait arm 
as a reference. On average, visibility was 10–15 m for 
all deployments. Nine deployments were excluded 
from the final analysis due to technical malfunctions 
including; the camera being out of focus, bad point of 
view (i.e. camera focussed straight down or straight 
up), or the video didn’t record. One BRUV was lost 
all together. For the remaining BRUVs, all fish pre-
sent within the field of view were counted.

Fisheries species: Queensland’s Commercial 
Line Fishery is made up of five fisheries including; 
coral reef finfish fishery (CRFFF), rocky reef fin-
fish fishery, the pelagic fishery, the Gulf of Carpen-
taria finfish fishery and the deepwater multiple-hook 
fishery. Because of the location of our study on the 
GBR, we focused on species from the CRFFF and 
pelagic fisheries only (see Table S1 for a full list of 
species). Data on Commercial Line Fishery species 
were obtained from logbook records via the QFish 
online portal (QDAF 2020), Queensland Fisheries 
Management Plan 2003 (QDAF 2003) and existing 
Queensland Fisheries species groups categorisations 
from Brown et al. (2020). In the CRFFF, there are 20 
primary target species (accounting for approximately 
95% of the total harvest) and 125 ‘other species’ that 
are regularly retained as by-product for domestic 

markets (Tobin et al. 2013). Notably, for the CRFFF, 
QFish recognises parrotfishes as Scaridae (i.e., sepa-
rate from Labridae), and this separation is retained for 
the fisheries analysis herein. In the pelagic fishery, 
primary targets are; spanish mackerel, spotted mack-
erel and trevallies but most scombrids, and carangids 
are retained (Table S1, QDAF 2020).

Statistical analysis

Relationships between the response variables (rela-
tive fish abundance and species richness) and envi-
ronmental characteristics (depth [continuous: mean 
centred], temperature [continuous: mean centred], 
and habitat type [categorical with 6 levels] were 
assessed using generalised linear models (GLMs) 
separately for the two sampling periods [February 
and August 2017]). Due to the high-degree of co-lin-
earity between depth and temperature we constructed 
models based on two subsets of the predictor vari-
ables (subset a: depth and habitat type; subset b: tem-
perature and habitat type) for each response variable. 
Full models with all interactions were initially fitted 
in each case, and then simplified. The most parsimo-
nious model for each response variable was selected 
based on the corrected Akaike Information Criterion 
(AICc). In all cases the predictor variable ‘subset a’ 
(i.e. when temperature was not included) resulted in 

Fig. 3  Temperature-depth 
profiles of Linden Bank 
during February 2017 
(red) and August 2017 
(blue) taken from tem-
perature loggers attached 
to the BRUVS. Each point 
represents an average 
temperature measure-
ment from each BRUVS 
deployment. The shaded 
ribbon represents the 95% 
confidence interval across 
each sampling period
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the most parsimonious model (Table  1). A negative 
binomial error distribution with a log-link was used 
to account for the non-normal and overdispersed 
nature of the count data in all cases. Tukey’s adjusted 
pairwise comparisons were utilised to examine within 
category differences. Model fit and assumptions were 
examined using residual plots, all of which were sat-
isfactory. To explore how spatial variation in BRUV 
deployments between sampling periods (i.e. Febru-
ary and August) may have shaped the patterns in the 
data, we assessed whether the deployment depths 
(response variable) differed between February and 
August (fixed categorical factors) using a generalised 
linear model (GLM) fitted with a Gamma distribution 
and log-link (Table  S1). We also tested whether the 
frequency of each habitat sampled differed between 
sampling periods using a chi-square test.

Composition of the fish assemblage (based on 
MaxN relative abundance data) was also examined 
taxonomically and functionally. Taxonomically, fishes 
were grouped by family (45 families) due to the high 
presence of zeroes at the genus and species resolution. 
Functionally, species were categorised into one of 7 
trophic groups (planktivorous, herbivorous, detritivo-
rous, invertivorous [sessile], invertivorous [mobile], 
piscivorous, and omnivorous) and then further distin-
guished based on body size (< or > 10 cm maximum 
total length), following Hemingson and Bellwood 
(2018). Data from each sampling period were ana-
lysed separately, as above. In all cases, the analyses 
were based on Wisconsin double standardised, fourth 
root-transformed data sets, and Bray Curtis similarity 

matrices. Initially, the relative importance of depth 
and habitat type in explaining the variation in the 
multivariate fish assemblage datasets (taxonomic and 
functional) were explored using a BIOENV routine. 
Relationships between the multivariate fish assem-
blage datasets (taxonomic and functional) and the two 
relevant environmental parameters (depth and habi-
tat type) were then formally tested using distance-
based permutational multivariate analysis of variance 
(adonis). The results of these analyses were visualised 
using distance-based redundancy analysis constrained 
by the environmental variables.

Additionally, we wanted to specifically explore if 
there was any variability in the relative abundance of 
key groups of commercially targeted fishes: (Plectro-
pomus [coral trout], carangids, scombrids, lethrinids, 
serranids, lutjanids, scarids, labrids, siganids and 
acanthurids and key species groups (carcharhinids, 
Table  S1) across depth and habitat types. Fisher-
ies species groups were classified into i) Top 95%—
defined as the species and species groups that make 
up 95% of catch (by weight) for the coral reef finfish 
and pelagic fisheries (following categorisations from 
Brown et  al. 2018) and ii) All Fisheries Species, 
consisting of all species caught in these two fisher-
ies. Although Caesionids are considered a target spe-
cies for the pelagic fishery (under classification ii), 
this group was excluded from the fisheries analyses 
because their high abundance overwhelmingly shaped 
the patterns documented and masked the contribu-
tion of other fisheries targets. In addition, despite the 
fact parrotfishes (formerly Scaridae) have now been 

Table 1  Final models showing differences in fish abundance and species richness detected on BRUVs across depth and habitat type 
categories

Data for each sampling period (i.e. February and August) were analysed separately. Models were selected based on the corrected 
Akaike Criterion (AICc). Shown are degrees of freedom (df), model maximum log-likelihood (logLik), AICc

Response variable Variables df logLik AICc

February, 2017
Fish abundance Depth × Habitat type 13  − 387.790 806.6

Habitat type × Temperature 7  − 400.104 815.6
Fish species richness Depth × Habitat type 13  − 266.481 564.0

Habitat type × Temperature 7  − 267.075 567.6
August, 2017
Fish abundance Depth × Habitat type 8  − 332.413 682.9

Habitat type × Temperature 7  − 336.044 689.4
Fish species richness Depth × Habitat type 8  − 247.749 513.6

Habitat type × Temperature 8  − 250.646 519.3
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subsumed into Labridae, Scaridae and Labridae were 
analysed separately in the fisheries analyses follow-
ing separate groupings in QFish. Data for each sam-
pling period were analysed separately. For all fisher-
ies analyses, a Bray Curtis similarity matrix, based 
on fourth root transformed data was initially formu-
lated for each subset of data. The relative importance 
of depth and habitat type in explaining the variation 
in the fisheries assemblage datasets (Top 95% and 
All Fisheries Species) was initially explored using 
a BIOENV routine. Following this, relationships 
between the two fisheries assemblage datasets and 
the two relevant environmental parameters (depth 
and habitat type) were formally tested using distance-
based permutational multivariate analysis of variance 
(adonis). The results of these analysis were visualised 
using distance-based redundancy analysis constrained 
by the environmental variables. All statistical analy-
ses was performed in the software R (R Core Team 
2019), using the MuMIn (Barton 2020), tidyverse 
(Wickham et  al. 2019), emmeans (Lenth 2020) and 
vegan (Oksanen et al. 2019) packages.

Results

A total of 7381 (sum of MaxN) individual fishes, 
sharks and rays were identified, representing 356 spe-
cies from 45 families. Species richness varied from 
1 to 54 species per deployment. Depth and habi-
tat type explained a substantial amount of the vari-
ance associated with relative abundance (February; 
 R2 = 0.62, August  R2 = 0.65) and richness (February; 
 R2 = 0.73 and August;  R2 = 0.74) of the fish assem-
blage (Tables 1 and S2). Relative abundance for Feb-
ruary deployments was 50 individuals per BRUV and 
in August 38 individuals per BRUV across all habi-
tat types (Fig. 4a, b. Species richness, i.e. number of 
species observed, did not vary between February and 
August, irrespective of the spatial variation in BRUV 
deployments across sampling periods (Table  S2). 
The areal extent of sampling was higher in Febru-
ary (38.16  km2) compared to August (13.6km2), but 
there was no difference in the range of habitat types 
or depths surveyed (X2 = 3.749, df = 5, p = 0.586, 
Table  S3). Across both sampling periods, relative 
fish abundance was strongly influenced by depth, but 
there was a significant interaction between depth and 
habitat type (Tables 1 and S2). In coral reef habitats, 

relative fish abundance increased with depth down 
to 30  m (the maximum depth for coral reef habitat 
in this study) and in algal-covered sand habitats fish 
abundance remained relatively stable across depths. 
In low-relief rubble habitats, relative fish abundance 
increased with depth in February, but decreased with 
depth in August (Fig. 4a, b). Across all other habitats 
there was a marked decrease in relative abundance 
with depth (Fig.  4a, b). In contrast to relative abun-
dance, fish species richness declined more sharply 
with depth in August compared with February across 
the majority of habitat types (Fig. 4c, d), although in 
low-relief rubble habitats, species richness increased 
with depth in February, but decreased with depth in 
August. These overall declines in species richness 
also differed among habitats as species richness was 
substantially higher on more complex reef associated 
habitats compared to lower-complexity, more open 
habitats (Fig. 4c, d; Tables S2 & S4).

The fish assemblage varied markedly across the 
depth gradient (13–71 m) at Linden Bank. The most 
speciose families were Labridae (57 spp), Pomacen-
tridae (34 spp), Acanthuridae (30 spp), and Serra-
nidae (21 spp). Labridae and Caesionidae were the 
most abundant families observed throughout the 
shallower depth range between 13 and 29 m, com-
prising approximately 30% and 20% of the shallow 
water fish assemblage respectively (Fig.  5a). Simi-
larly, planktivores and herbivores were the most 
abundant trophic groups in this shallow water depth 
range (Fig.  5b). By contrast, mobile invertivores 
and piscivores such as lethrinids and carangids 
were relatively more abundant at depths below 50 m 
(Figs. 5a and b), and these trophic groups accounted 
for approximately 68% and 25% of the relative 
abundance of the fish assemblage > 50  m respec-
tively (Fig. 5b).

Overall, variation in the taxonomic composition of 
reef fishes was explained by depth and habitat type 
(Fig.  6, Table  S5). In both sampling periods, dif-
ferences across depths were driven by iconic coral 
reef taxa (e.g. Chaetodontidae, and Pomacanthidae) 
that were relatively more abundant in shallow water 
areas and coral reef, seawhip/algal reef and low-
relief rubble habitats (Fig. 6). In contrast, in February 
and August, as depth increased the fish assemblage 
became dominated by higher relative abundances of 
carangids, lethrinids and mullids, particularly in the 
various sand habitats (Fig. 6).
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In addition to taxonomic differences, there 
were clear differences in the composition of broad 
trophic groups across depth, and habitat type (Fig. 7, 
Table  S5). Again, depth and habitat type were sig-
nificantly correlated with the taxonomic composition 
of the fish assemblage in February and August 2017 
(Table  S5). In both sampling periods, the shallow-
water fish assemblage, particularly in the coral reef, 
seawhip/algal reef and low-relief rubble habitats, was 
dominated by sessile invertivores, with herbivores/
planktivores and detritivores also characterising these 
areas (Fig. 7). As depth increased, the fish assemblage 
became dominated by large piscivores and predators 
of mobile invertebrates, in the various sandy habitats 
(Fig.  7). However, it is important to note that while 

the relative standardised abundance of some taxa and 
carnivorous functional groups increased with depth, 
the total abundance and species richness of fish gen-
erally declined with increasing depth (Fig. 4).

122 species of fishes considered to be fisher-
ies targets of the Queensland Line Fishery were 
observed on Linden Bank. All species can be found 
in Table  S1, but those included in the top 95% of 
Queensland catch data by weight were; Plectropo-
mus leopardus, Plectropomus laevis, Plectropomus 
areolatus, Variola albimarginata, Variola louti, 
Variola spp., Lethrinus nebulosus, Lutjanus sebae, 
Caranx sexfasciatus, Caranx melampygus, Alectis 
indica, Carangoides spp., Scomberomerous spp., Lut-
janus spp., Choerodon spp., Epinephelus spp., and 

Fig. 4  Relationships between relative fish abundance (MaxN 
 hour−1) (a and b) and species richness (n species  hour−1) 
(c and d) and habitat type categories across depth, and sam-
pling period (February 2017 [a and c], August 2017 [b and 

d]). Lines show the mean predicted fits from generalised lin-
ear models, while shaded ribbons indicate the 95% confidence 
intervals. For ease of interpretation data points are not shown, 
however, to see these refer to Fig. S1
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Siganus spp. (Table S1). Key shark species were also 
observed including; Carcharhinus amblyrhynchos, 
Carcharhinus melanopterus, Galeocerdo cuvier, Tri-
aenodon obesus, Sphyrna mokkaran. These impor-
tant fishery species were observed across all depths 
from 13 to 71 m and accounted for ~ 27% (1991 out 
of 7381) of all fishes observed. Overall, the relative 
abundance of all fisheries targeted species was fairly 

constant with depth across both sampling periods 
(Fig.  8k). However, for individual fisheries groups 
(i.e. Plectropomus spp., Labrids, and Serranids) we 
documented higher relative abundances in shallower 
areas (< 40 m), and fewer individuals at > 40 m depth 
(Fig.  8c, e, g). This decrease in relative abundance 
with depth appeared to be consistent between Feb-
ruary and August. The relative abundance of scarids 

Fig. 5  Comparison of 
changes in the relative 
abundance (percentage of 
total fish assemblage) of a 
the most common families 
in the assemblage and b 
trophic groups with depth. 
Percentage abundance for 
each trophic group was 
calculated by summing all 
fish on all deployments in 
each depth category
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in August also followed a similar decreasing pattern 
with depth, however in February, a high abundance 
of Scarus spp. were observed at depths below 60 m 
(Fig.  8j). Alternatively, lethrinids and carangids, 
were the only fisheries group whose relative abun-
dance increased slightly with depth, a pattern that 

was consistent between February and August 2017 
(Fig. 8a, b).

Finally, for both the Top 95% (Fig S2) and All 
Fisheries Species (Fig.  9), multivariate analy-
ses described similar patterns to the taxonomic 
and trophic composition of the entire fish assem-
blage. Again, depth and habitat type were influential 

Fig. 6  Top: Capscale ordination for the a February 2017 and 
b August 2017 fish assemblage based on family level taxon-
omy and constrained by the environmental variables: habitat 
type category and depth (coloured polygons are to aid inter-
pretation and do not represent significant groupings). Bottom: 

vectors showing the reef fish families that contributed substan-
tially to the patterns observed in the ordination in c February 
2017 and d August 2017, and the direction of depth increases 
in multidimensional space
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predictors, significantly correlating with the overall 
taxonomic composition of all fisheries target spe-
cies in February and August (Table S6). In all cases, 
Carangidae typified deeper areas (< 40 m), especially 

sandy habitats (Fig. 9, Fig S2). Lethrinidae also char-
acterised these deeper areas in the subset of data 
composed of all fisheries target species. In contrast, 
and irrespective of sampling period, the shallower 

Fig. 7  Top: Capscale ordination for the a February 2017 and 
b August 2017 fish assemblage based on broad trophic groups 
constrained by the environmental variables: habitat type cate-
gory and depth (coloured polygons are to aid interpretation and 
do not represent significant groupings). Bottom: vectors show-

ing the reef fish families that contributed substantially to the 
patterns observed in the ordination in c February 2017 and d 
August 2017, and the direction of depth increases in multidi-
mensional space
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habitats were characterised by Serranidae and Labri-
dae for both the Top 95% and All Fisheries species 
data. In addition, the substantial contribution of Plec-
tropomus spp. to the shallow water assemblage in 
the ‘top 95% of fisheries target’ subset is particularly 
notable (Fig. 8c & S2, Table S6).

Discussion

This study revealed marked changes in the relative 
abundance, species richness and composition of reef 
fishes with depth (13–71  m) on a submerged off-
shore shoal (Linden Bank) on the Great Barrier Reef, 
Australia. Overall, the relative abundance and spe-
cies richness of fishes generally declined with depth, 
however, this was dependent on habitat. These results 
support those from previous studies on the GBR, and 
elsewhere (e.g. Thresher and Colin 1986; Pearson 
and Stevens 2015; Lindfield et al. 2016; Asher et al. 
2017), which have documented strong depth zona-
tion patterns in fish assemblages, with distinct assem-
blages generally found below 40 m. These patterns of 
zonation are inextricably linked with both biotic (i.e. 
competition, predation and nutritional resource avail-
ability) and abiotic (i.e. substate, temperature, light) 
factors that vary with depth (Dustan 1979; Lesser 
et al. 2009; Kanhg et al. 2010).

While our study was based on a single location, 
the patterns of reef fish distributions documented are 
markedly similar to those observed in other tropical 
(e.g. Red Sea, Marshall Islands) (Brokovich et  al. 
2008; Thresher & Colin 1986) and sub-tropical reef 
systems (e.g. North West Hawaiian Islands) (Asher 
et  al. 2017). For example, as in our study, depth is 
generally found to be a strong predictor of reef fish 
taxonomic structure (Cooper et al. 2019; Asher et al. 
2020). We found that shallow (13–30 m) areas were 
characterised by relatively higher abundances of 
iconic coral reef fish taxa (e.g. Acanthuridae, Chae-
todontidae, Labridae, Pomacanthidae, Pomacentri-
dae), whereas the fish assemblage at greater depths 
(i.e. below 30  m), was dominated by species from 
Balistidae, Carangidae, Lethrinidae and Mullidae (see 
also Lindfield et al. 2016; Sih et al. 2017; Asher et al. 
2017). Furthermore, shallow (< 30 m) areas were typ-
ically characterised by herbivores, detritivores, sessile 
invertivores and planktivores, while deeper (> 30 m) 
areas were typified by larger predatory fishes that fed 

on fishes and mobile invertebrates (see also Asher 
et  al. 2017; Cooper et  al. 2019). Striking similari-
ties in the results of this study (at Linden Bank) with 
other comparable reef habitats (e.g. Asher et al. 2017) 
suggests that depth gradients in the taxonomic and 
functional structure of reef fish assemblages is highly 
consistent across locations.

Depth-related variation in the structure of the fish 
assemblage at Linden Bank was largely attributable to 
changes in the dominant habitat type. In general, hab-
itat structure changes with depth due to decreasing 
light levels and variation in temperature and pressure 
(Done 1983; McGehee 1994). On Linden Bank, coral 
dominated reefs were the most prevalent habitat in 
shallow areas (< 32 m) and the associated fish assem-
blage tended to be comprised of smaller-bodied reef 
fishes such as planktivores and corallivores that often 
require benthic habitat complexity for shelter (Srini-
vasan 2003). Lower complexity, open sand or algal 
meadows and seawhip gardens dominated habitats 
in the upper-mesophotic zone (50–70  m) and were 
typified by mobile piscivores, and invertivores, as in 
previous studies (Asher et  al. 2017; Williams et  al. 
2019). It is therefore likely that the distinct nature of 
the shallow water fish assemblage at Linden Bank, is 
influenced by habitat availability, rather than directly 
by depth per se.

Aside from habitat availability, higher primary 
productivity and a broader range of nutritional 
resources in shallow reef environments will underpin 
a wider range of niches, promoting co-existence of a 
higher number of fish species (Pratchett 2005; Wilson 
et  al. 2008). For example, the higher relative abun-
dances of herbivorous/detritivorous fishes observed in 
shallow waters in this study, may be a result of these 
groups tracking nutritional resource availability (Russ 
2003; Russ et al. 2015; Bellwood et al. 2018), as the 
productivity of algae (Klumpp and McKinnon 1989; 
Tebbett and Bellwood 2021) and nutritional quality of 
particulate detritus (Crossman et al. 2001; Purcell and 
Bellwood 2001) are known to peak in shallow water 
reef habitats, where light levels are high. It has even 
been suggested that the evolution of key locomo-
tor and feeding traits allowed herbivorous and detri-
tivorous fishes to move into such habitats to exploit 
these nutritional resources (Bellwood et al. 2018). In 
this study, the highest relative abundances of plank-
tivorous fishes were observed in depths < 50 m. Light 
availability is also likely to limit many planktivorous 
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fishes to these shallower depths as they rely heav-
ily on visual acuity to procure their planktonic prey 
(Rickel and Genin 2005; Johansen and Jones 2013). 
Similarly, corallivorous chaetodontids made up a 
large component of the sessile invertivore feeding 
group at Linden Bank, and the abundance of many 
of these fishes is heavily dependent on the avail-
ability of their specific coral prey (Pratchett et  al. 
2006; Graham et al. 2009). Coral dominated habitats 
were not detected beyond 32 m at Linden Bank, and 
accordingly, coral feeding fishes were not recorded at 
depths > 32 m.

In contrast to the trophic groups that dominated 
shallow water areas, the higher trophic level car-
nivorous fishes (piscivores and predators of mobile 
invertebrates) are not as limited by light or nutri-
tional resource acquisition and can readily exist 
in the deeper water habitats (Bejarano et  al. 2014; 
Andradi-Brown et al. 2016; Sih et  al. 2017). How-
ever, it is important to note that while the relative 
abundance (compared to other groups) of some taxa 
and carnivorous functional groups increased with 
depth, the abundance and species richness of the 
fish community declined markedly with depth. So 
rather than gaining different taxa or trophic groups 
across the depth range examined, our results sug-
gest that in many cases taxa and trophic groups 
may be lost at different rates along this gradient. 
Evidence from stable isotopes suggests deeper 
water predators remain heavily reliant on the pro-
ductivity of shallow water fish assemblages between 
0 and 30  m (Smith and Parrish 2002; Asher et  al. 
2017). As such, these piscivores and predators of 
mobile invertebrates may act as important nutrient 
conduits channeling nutrients from photic to meso-
photic depths (Meyer et  al. 2001; Wetherbee et  al. 
2004). For example, predators such as Carangids 
and Lethrinids that remain relatively abundant at 
depths between 30 and 70  m, are large and highly 
mobile allowing them to easily transition between 
depths (Currey et al. 2015; Asher et al. 2017), and 
thus move energy across this depth gradient (Smith 

& Parrish 2002), particularly by moving into shal-
lower waters during crepuscular or nocturnal peri-
ods for foraging (Bosiger & McCormick 2014). 
Although, any relationships between habitat con-
nectivity and mobile fishes may be species-specific, 
with recent studies showing limited depth use for 
other mobile predators such as Plectropomus leop-
ardus (Matley et al. 2015; Scott et al. unpublished). 
It is also worth noting that schools of herbivorous 
parrotfishes (Scarus ghobban) were still observed at 
depths beyond 60 m. This particular species appears 
to have broken the standard parrotfish mold, poten-
tially being more flexible in its dietary require-
ments, as it frequently inhabits more marginal reef 
environments (Bariche & Bernardi 2009; Bennett 
et  al. 2015). Further understanding of the capac-
ity for reef fishes to move energy across depths and 
exist in deeper, light limited environments offers an 
interesting avenue for additional research (see Hilt-
ing et al. 2013; Fukunaga et al. 2016).

Temperature often varies greatly with depth (Ber-
tolo et al., 2011) and is expected to influence the dis-
tribution, abundance and composition of fishes. In 
this study, absolute temperature differed markedly 
between sampling periods (February and August 
2017) but varied relatively little with depth within 
sampling periods. Moreover, depth-related differ-
ences in the fish assemblage were seemingly inde-
pendent of temperature. Depth-related refuges are 
hypothesised to buffer fishes and other coral reef 
organisms from localised stressors (i.e. elevated tem-
peratures and wave energy) that are generally most 
pronounced in upper surface waters (Bonagerts et al. 
2010; Smith et al. 2016). However, our data provides 
little support for the redistribution of fish species in 
accordance with changing temperatures. Rather, the 
depth distributions of most fish species appeared to 
be constrained by the availability of specific habitats 
and resources. It is possible that limited changes in 
the depth-distribution of fishes were attributable to 
the apparent lack of strong temperature gradients with 
depth (especially in February 2017), and it remains 
to be seen if our results (where there was consistent 
high temperature to a depth of > 50 m) were linked to 
anomalous conditions. If, however, elevated tempera-
tures during marine heatwaves are linked to limited 
changes in temperature then this may limit the capac-
ity of fishes to exploit depth-refugia as a means of 
moderating exposure to supra-optimal temperatures.

Fig. 8  The relative abundance (MaxN  hour−1) of key fish 
groups (a–j) and all commercially targeted fish species (k) 
in February 2017 and August 2017 across the depth gradient 
examined. Coloured lines show the fit of a LOESS smoother, 
the shaded ribbons delineate the 95% confidence intervals and 
the coloured points are the raw data points

◂
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While we found limited evidence for the redistri-
bution of species between sampling periods despite 
a > 4 °C difference in recorded temperatures, the over-
all relative abundance of fishes was ~ 26% higher in 
February 2017 compared to August 2017. The higher 
relative abundance of fishes in February may be due 
to a number of factors. For example, fishes may make 
seasonal reproductive movements to Linden Bank to 

spawn in summer (Samoilys and Squire 1994; Zeller 
1998). Alternatively, temperature induced increases 
in metabolic demands during summer may increase 
foraging activity (Scott et al. 2017) making individu-
als more likely to approach the bait from the BRUV. 
However, temporal contrasts in this study cannot 
be clearly attributed to seasons or temperature dif-
ferences due to simultaneous variation in the areal 

Fig. 9  Top: Capscale ordination for the a February 2017 and 
b August 2017 assemblages of all fisheries target species on 
the Great Barrier based on family level taxonomy and con-
strained by the environmental variables: habitat type category 
and depth (coloured polygons are to aid interpretation and do 

not represent significant groupings) and bottom: vectors show-
ing the reef fish families that contributed substantially to the 
patterns observed in the ordination in c February 2017 and d 
August 2017, and the direction of depth increases in multidi-
mensional space
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extent of sampling. Although, there were no signifi-
cant differences in the range of habitat type or depths 
sampled in February versus August 2017.

Fisheries species are particularly vulnerable to the 
effects of fishing if there is limited habitat or con-
strained depth-ranges for target species (Jennings 
and Polunin 1996). Shallow waters have been selec-
tively and heavily impacted by fishing due to gear 
constraints and accessibility to coastal fisheries (Fry 
et  al. 2006). However, technological advances in 
gear type and fuel efficiency mean the exploitation of 
deeper reefs, further from shore, is becoming more 
commonplace (Schiller et al. 2015; Friedlander et al. 
2019). In contrast to previous studies which highlight 
the potential for mesophotic coral reef ecosystems to 
act as refugia from disturbances and potential sinks 
for fisheries productivity (Bridge et  al. 2011, 2013; 
Sih et al. 2017), our data tend to suggest a lack of any 
apparent or effective depth refuge down to 50 m, at 
least at this location. Again, the depth-distribution of 
fisheries target species in this study was strongly cor-
related with depth and habitat type rather than tem-
perature and there appeared to be no overall differ-
ences in the depth-distribution between February and 
August 2017. This notion is supported by the direct 
dependence of many taxonomic and functional fisher-
ies groups from the coral reef finfish fishery on the 
resources present in shallow-water habitats.

It is important to note that while we did find that 
the larger-bodied, mobile, carnivorous fisheries tar-
get species such as Lethrinids, Carangids and some 
Lutjanids (i.e. L. sebae) tended to characterise deeper 
locations, this was largely because their abundances 
remained relatively similar across the depth gradi-
ent, while the relative abundances of all other groups 
tended to decline. As such, this does not necessarily 
suggest they prefer deeper environments, but instead 
their distribution across this depth gradient could be 
decoupled from the factors constraining other groups 
(Smith and Parrish 2002; Asher et  al. 2017). Given 
that Linden Bank is open to fishing, and subject to 
intensive fishing for pelagic fishes between Septem-
ber – December, the distribution of some groups 
could also be impacted by fisheries effects (i.e. lim-
ited variation in abundance across depths could be 
due to fishing pressure in the shallows reducing the 
relative abundance of some groups). However, the 
isolation and exposure of Linden Bank are likely to 
limit fisheries pressure on benthic fishes. Therefore, 

if environmental stressors lead to the degradation 
of highly-productive shallow water reef areas, there 
could be bottom-up ecosystem effects impacting the 
food chain and culminating in reduced fisheries pro-
ductivity (e.g. Graham et  al. 2007; Pratchett et  al. 
2014; Hempson et  al. 2017). Even if deeper areas 
offered some refuge for some fish species, they are 
often habitat and resource limited compared with 
shallow reef areas and, therefore, may be unable to 
counteract a decline in fisheries productivity. Under 
future climate change scenarios, more frequent ther-
mal anomalies coupled with limited water move-
ment due to changing ocean currents are expected to 
impact the structure and function of coral reef eco-
systems (IPCC 2022). Given the predicted increase in 
the frequency of such anomalies in the coming dec-
ades, there may be very limited opportunity for reef 
fishes to find thermal or structural refuge, thereby 
undermining the long-term productivity of wild fish 
stocks (Pratchett et al. 2016).

Overall, this study provides one of the few assess-
ments of depth-related changes in the relative abun-
dance as well as taxonomic and trophic structure of a 
coral reef fish assemblage (including important fish-
eries species) across a shallow to upper mesophotic 
depth gradient (but see Asher et al. 2017). Extensive 
sampling at Linden Bank in February and August 
2017, revealed marked changes in the taxonomic and 
functional composition of fishes with depth that were 
largely attributable to changes in habitat structure. 
Contrary to expectations, there was minimal varia-
tion in temperature with depth (at least down to 50 m) 
and no obvious major temporal changes in the depth 
distributions of larger and more mobile fishes. Given 
that shallow-water coral reef habitats are highly vul-
nerable to increasing anthropogenic stressors (Hughes 
et al. 2017; IPCC 2022), and that our data highlight 
a limited propensity for depth to act as a refuge for 
fishes at this location, it is likely that any stressors 
that degrade the shallow-water habitats in this loca-
tion could jeopardise the viability and sustainability 
of associated fisheries. The significantly higher rela-
tive abundance and species richness of fishes in shal-
low water (< 30  m) areas at Linden Bank, suggests 
that effectively managing such areas is essential to 
sustain fisheries productivity into the future.
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