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An Introduction to the Application of (Case 1) Best-Worst Scaling in Marketing 

Research  

Abstract 

We review and discuss recent developments in Best-Worst Scaling (BWS) that allow 

researchers to measure items or objects on measurement scales with known properties. We 

note that BWS has some distinct advantages compared with other measurement approaches, 

such as category rating scales or paired comparisons. We demonstrate how to use BWS to 

measure subjective quantities in two different empirical examples. One of these measures 

preferences for weekend getaways and requires comparing relatively few objects; a second 

measures academics’ perceptions of the quality of academic marketing journals and requires 

comparing a very large set of objects. We conclude by discussing some limitations and future 

research opportunities related to BWS. 

Key words: Best-worst scaling, measurement, preference, choice 



 3

1. Introduction 

Academics and practitioners in various disciplines often wish to measure an 

individual’s strength of preference for (or level of agreement with) a number of objects 

(which can be statements or some other items of interest). A typical objective is to locate all 

the objects on a measurement scale with known mathematical properties to allow robust 

statistical comparisons of changes over time and/or differences between respondents. In 

practice this can be challenging; for example, rating scales attempt to ensure all individuals 

use the same numerical scale, but in practice various idiosyncrasies in response styles have 

been found (Auger, Devinney, & Louviere, 2007). Such idiosyncrasies can arise from 

individuals using rating scales in different ways, cultural differences and/or verbal 

ambiguities with labels (Lee, Soutar, & Louviere, 2008). Furthermore, it has been observed 

that individuals tend not to discriminate between response categories when they are not asked 

to respond in ways that elicit tradeoffs or relative preferences for the objects being valued, 

such as asking people to rate the “importance” of several factors on a rating scale. That is, 

respondents do not have to trade off one factor against another, with evidence that this often 

leads to little differences in mean ratings (e.g., Cohen & Neira 2003; Lee, Soutar, & 

Louviere, 2007). 

An approach to dealing with such issues that has been growing in popularity in many 

fields is to avoid tasks that ask individuals to use numbers in favor of tasks that infer strength 

of preference (or other subjective, latent dimensions) from how often they choose one object 

over other, known objects. Such observed choice frequencies ensure that the derived numbers 

are on a known (choice frequency or probability) scale. However, some choice-based 

approaches like the method of paired comparisons require large numbers of choice questions 

to estimate preferences for objects. Indeed, asking individuals to choose from all possible 
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pairs of objects becomes infeasible in survey settings as the number of objects grow, a clear 

weakness of the method of paired comparisons.  

The purpose of this paper is to introduce, discuss and illustrate a choice-based 

measurement approach that reconciles the need for question parsimony with the advantage of 

choice tasks that force individuals to make choices (as in real life). Prior work recognizes 

three choice-based measurement cases. In case 1 (the object case), individuals are asked to 

choose the best and worst (on some subjective scale) from a set of objects (e.g., Finn & 

Louviere, 1992). In case 2 (the profile case) individuals evaluate several profiles of objects 

described by combinations of attributes/features dictated by an underlying design; they “see” 

the profiles one at a time and choose the best and the worst feature/attribute levels within 

each presented profile (e.g., Louviere, 1994). In case 3, individuals choose the best and the 

worst designed profiles (choice alternatives) from various choice sets dictated by an 

underlying design (e.g., Marley & Pihlens, 2012). 

The purpose of this paper is to introduce, discuss and illustrate case 1. We focus on 

case 1 because it illustrates the fundamentals of choice-based measurement in general, and 

what is known as “Best-Worst Scaling” (BWS) in particular. BWS was introduced by Finn & 

Louviere (1992), and recent advances suggest that academics and practitioners would benefit 

from an updated discussion of its concepts and methods. BWS is one way to avoid and 

overcome some of the limitations of rating-based and similar measurement methods used in 

marketing and in other fields. BWS Case 1 typically allows one to obtain measures for each 

person (respondent) on a difference scale with known properties (Marley & Louviere, 2005). 

Cases 2 and 3 can be viewed as extensions of case 1 in which objects or items are represented 

as multi-dimensional choice objects (options). However, the fundamental ideas and principles 

from case 1 also apply to cases 2 and 3; thus, we focus on explaining case 1 in detail because 

this provides a foundation for understanding cases 2 and 3. 
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Accordingly, the objective of this paper is to provide an introduction for academics 

and practitioners on how to design, implement and analyze case 1 Best-Worst Scaling 

studies. The case for such a paper is threefold: 1) Papers detailing the mathematical proofs of 

the main estimators used to implement such studies are highly technical and not easily 

understood by novices (Marley & Louviere, 2005; Marley, Flynn, & Louviere, 2008), hence a 

need for a more straightforward explanation to encourage applications. 2) Disciplines in 

which comprehensive ‘how to do’ BWS discussions have been published have seen a 

proliferation of empirical studies (e.g., Flynn, 2010), suggesting that a tutorial paper also 

should benefit marketing academics and practitioners. 3) Several methods for estimating the 

values of objects on underlying subjective scales have been proposed; but many of these, 

although easy to implement in a spreadsheet or generic statistical package, are not part of  the 

typical ‘toolbox’ of methods used by academics and practitioners. Indeed, a ‘user guide’ 

paper detailing the BWS profile case (case 2) for health economists arose from requests at 

conferences to (among other things) ‘see’ what the data and regression models ‘look’ like 

(Flynn, Louviere, Peters, & Coast, 2007).  

So, to provide a ‘how to do’ BWS tutorial, this paper is organized as follows. First we 

offer a conceptual framework and empirical justification for BWS. We then present two 

empirical studies. We emphasize how to set up, design and implement a BWS case 1 survey 

in practice, and how to analyze the associated results. Specifically, we present worked 

examples that illustrate how to use BWS for relatively small (six objects) and very large (72 

objects) comparison sets. The paper ends with a discussion and conclusions section that 

recaps the major points of the paper, identifies some limitations and issues and suggests some 

potential future research directions. 
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2. A Conceptual Framework for BWS 

BWS is underpinned by random utility theory (RUT), which also underlies discrete 

choice experiments used in marketing research and economics (Thurstone, 1927; McFadden, 

1974). RUT assumes that an individual’s relative preference for object A over object B is a 

function of the relative frequency with which A is chosen as better than, or preferred, to B. 

Thus, it requires individuals to make choices stochastically (with some error). Thurstone’s 

(1927) paper proposed RUT, and used it to motivate and develop the method of paired 

comparisons, where individuals chose the ‘best’ object from sets of two objects. Thurstone 

recognized that the theory requires individuals to make errors in their choices, so that the 

model parameter estimates that we term ‘scale values’ can be derived. Scale values are 

measures of the locations of each object on an underlying subjective scale of interest. 

McFadden (1974) generalized Thurstone’s RUT model to provide tractable, closed-form 

models that accommodate choices from sets of three or more objects. More formally, for the 

‘best’ only case McFadden considered: 

SA = VA + A 
SB = VB + B 
SC = VC + C 
SD = VD + D 
 
Above, the true subjective scale value (Sk) of the k-th object consists of two 

components, the observed value Vk, which is systematic (explainable) and the errors, k 

which are random (unexplainable). The random component implies that one cannot predict 

the exact choice that a person will make, but only the probability that a person will choose 

each object offered (McFadden, 1974). This choice probability can be expressed as: 

P(A=best | A,B,C,D) = P[(VA + A) > (Vk + k)], considering all other options are 

available to be chosen in the comparison set. McFadden (1974) derived what is known as the 

conditional logit model by assuming that the errors are distributed as independent and 
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identically distributed Type 1 Extreme Value. The choice probabilities for this model have 

the following closed form expression: 

P(A=best | A,B,C,D) = exp(VA)/exp(VA)+exp(VB)+exp(VC)+exp(VD)]. 

McFadden’s framework relates choices from sets of multiple objects to an underlying 

latent scale value associated with each object, but until recently little work was available to 

help researchers identify and implement reasonably good ways of collecting choice data from 

individuals to implement these models. An obvious exception, of course, is the method of 

paired comparisons, which has been extensively studied (e.g., David, 1988). Unfortunately, 

the method of paired comparisons poses inherent limitations in survey applications because 

the number of comparisons needed increases geometrically with the number of objects to be 

measured. So, paired comparisons can be practical for measuring a few objects (e.g., six 

objects require 15 pairs), but typically are not practical for larger numbers of objects (e.g., we 

later study 72 objects, which would require 2556 pairs).  

One way to address the size limitation of paired comparisons is the multiple choice 

approach introduced by Louviere & Woodworth (1983) that relies only on ‘best’ choices. 

Although their discrete choice experiment (“DCE”, also called “choice-based conjoint”) 

approach is widely used, few researchers seem to appreciate that collecting only “first (or 

best) choices” provides minimal information for statistical estimation purposes. Thus, an 

approach that provides more statistical information than merely the first or best choice could 

be useful in many research applications. 

BWS capitalizes on the fact that collecting ‘worst’ information, in a similar way to 

‘best’ information, provides much more information. That is, BWS capitalizes on the idea 

that when individuals evaluate a set of three or more objects or items on a subjective scale, 

their choices of the top and bottom objects/items should be (all else equal) more reliable than 

choices of middle objects/items. Thus, BWS assumes that individuals make reliable and valid 
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choices of the two most extreme objects/items in a set, consistent with Adaptation Level 

Theory (Helson, 1964). A key advantage of BWS is that it provides information about BOTH 

the top ranked and the bottom ranked items in a set. Taken together, these two choices 

provide much more information about the ranking of the choice options in each set. Only 

order information matters in choices; hence, asking both top and bottom ranked choices gives 

much more information about the overall ranking of the objects than just the top choice. 

More generally, BWS implies use of multiple comparison sets, with each set having at 

least three objects/items. In this respect, a BWS “experiment” is just another type of discrete 

choice experiment, similar to the DCEs proposed by Louviere and Woodworth (1983). To 

wit, they proposed constructing comparison (choice) sets from 2J fractional factorial designs 

(J=the number of objects/items). However, most BWS applications design choice 

(comparison) sets with balanced incomplete block designs (BIBDs), such as Lee et al. (2008). 

A BIBD is a type of experimental design in which each choice option appears equally often, 

and co-appears equally often with each other choice option. Unlike 2J designs, BIBDs ensure 

that choice set sizes are always equal. A type of BIBD called a “Youden” design (e.g., 

Raghavarao, 1988) allows one to control for order by ensuring that each object appears in 

every order. In our experience there is little difference in outcomes associated with order, but 

one can always rotate the BIBD items by superimposing a latin square design on each block 

to control for order. 

We describe, discuss and illustrate applications of the case 1 approach below. We use 

two examples to illustrate relatively simple, straightforward ways to design and analyze the 

choice data from the BWS tasks for the following reasons: a) in many, if not most cases, one 

can design and analyze BWS tasks in ways that do not require complex statistical analyses; b) 

simple design and analysis methods make BWS accessible to many researchers with different 

statistical competencies; and c) simple design and analysis methods make it less likely that 
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researchers will make mistakes, allowing them to use BWS with more confidence. The two 

examples illustrate using BWS for a small and large number of objects to be measured 

(scaled), namely 6 and 72 objects, respectively.  

 

3. Implementing Best–Worst Choice Tasks: Empirical example one 

 

3.1 Empirical Issue of Interest 

The first empirical example involves holiday destinations. The subjective dimension 

of interest is the likelihood of visiting a destination for a weekend getaway. The study 

population is residents of Sydney, Australia, who could choose among the following weekend 

getaways: 1) Central Coast (beach house), 2) Katoomba (up market hotel), 3) Barrington 

Tops (an isolated setting), 4) Bowral (Southern Highlands), 5) South Coast (heritage village), 

and 6) Sydney (up market hotel). We recruited a sample of 420 respondents from the 

Pureprofile online panel in Australia who satisfied the criterion that they resided in the 

Sydney metropolitan areas (defined by postcodes) and had taken at least one weekend 

getaway holiday in the previous 12 months. The Pureprofile panel has over 600,000 

households recruited and maintained to match the overall Australian population on key 

Census demographics as closely as possible. 

 

 

3.2 Implementing BWS Tasks: Design 

The first stage in implementing a BWS survey is to choose a statistical design to 

construct the comparison sets. As noted earlier, researchers can choose from several 

statistical designs. We used a BIBD to design the comparison sets because they provide: a) 

constant comparison set sizes; b) the number of comparison sets increases approximately 
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linearly in J (number of objects/items to be measured; here J=6), such that one can often (but 

not always) find BIBDs for J objects/items in J or at most a few more than J sets; and c) 

BIBDs can be found in many sources, such as Raghavarao (1988) and Street and Street 

(1987). BIBDs also ensure that each of the J objects/items occur the same number of times 

across all sets, and co-occur the same number of times with the other (J-1) objects. These 

properties are important because unequal set sizes may unintentionally signal to individuals 

that a survey is about something unintended by the researcher and/or that they are “supposed” 

to choose differently in sets of different sizes, etc (i.e., if set sizes differ across a survey, it 

may lead to “demand artifacts”). Also, if one object appears more often than other objects it 

may signal that the survey is “really about” the one or more objects that appear more often.  

To use a BIBD to implement a BWS survey, one numbers the objects/items of 

research interest from 1 to J, and replaces the same (1 to J) numbers in a BIBD table with the 

corresponding names, symbols or descriptions of each object to be measured. We illustrate 

this below with a BIBD for six objects (coded 1,2,…,6) that creates 10 comparison sets 

(survey questions), shown in the first four columns of Table 1. 

 

<Table 1 here> 

 

Next, one uses a ‘find and replace’ procedure to replace the object code numbers in 

columns 2-4 of Table 1 with the object names (here, holiday destinations, but more generally 

they can be items, principles, brands, etc) to make comparison sets, as shown in columns 5-7. 

The next step is to embed the comparison sets in a survey. One way to ask BWS questions is 

shown by the particular survey format shown in Table 2. 

 

<Table 2 here> 
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Table 2 reveals that the BIBD used in the destination survey has the property that 

each destination occurs five times and co-occurs twice across the 10 sets.  

 

3.3 BWS Response Data and Simple Analyses 

A conventional BWS task requires respondents to choose the best and the worst 

objects in each comparison set. In this example 420 respondents were simply asked to 

identify the destination s/he was most likely to visit (best) and which destination s/he was 

least likely to visit (worst) in each of the 10 comparison sets that each contained three 

destinations. The analysis is based on assigning the most likely destination a ‘+1’ and the 

least likely destination a ‘−1’, and with each item appearing five times, preferences are 

measured on a scale bounded by −5 and +5. A simple analysis involves summary statistics 

like sums or means. Our survey also asked respondents to self-report the average number of 

trips they took to each destination during the prior 12 months (revealed preference), which 

allows us to compare BWS measures against these ‘revealed preference’ (RP) self-reports.  

Columns five and six of Table 3 show one person’s best and worst choices. 

 

<Table 3 here> 

 

Summarizing the best and worst choice data merely involves counting the occurrences 

of best and worst choices for each choice object, as shown in Table 4. A simple scale and 

semi-order (ranking) is obtained by subtracting worst counts from best counts, as shown in 

the last column. The advantage of collecting data about the worst choice becomes clear when 

considering the lower ranked objects: the scale derived from best only choice data cannot 

distinguish objects 5 and 6, whereas best and worst choices taken together provide rank order 
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information for these two objects. The reason for calculating counts is to obtain empirical 

estimates of the choice proportions. As noted by Louviere and Woodworth (1983), these 

counts contain all the statistical information in the data, and can be used to estimate the 

parameters of a Luce (1959) or multinomial logit model (McFadden, 1974). That is, if there 

are J objects, one simply estimates the intercepts or “alternative-specific constants” in the 

logit model: 

U1 = 1 + 1, 

U2 = 2 + 2, 

 

UJ= 0 

The counts corresponding to the s above are shown in Table 4. 

 

<Table 4 here> 

 

Marley and Louviere (2005) show that such best count minus worst count differences 

(BWS ‘scores’) are sufficient statistics for a conditional (multinomial) logistic regression 

model. This implies that all the information needed for more sophisticated conditional 

(multinomial) logistic regression models is available from the BWS scores; so a researcher 

need not use more sophisticated statistical estimation methods, such as various types of 

regression analyses to estimate the scale values of the objects (regression model parameter 

estimates). Instead, one can simply use the BWS scores. In BWS Case 1, the objects being 

chosen are not described by attributes that vary; thus each object is represented by a single 

regression parameter (an “alternative-specific constant” in a conditional logistic regression 

model). Thus, if there are J objects to be measured (scaled), there are J-1 regression model 

parameters that can be identified, with the J-th parameter set to a constant (typically zero). 
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To summarize, there can be several dependent variables of interest in BWS: 

1. For individuals. 

 One calculates the total number of times that each object of interest is chosen 

as best and worst across all comparison sets (choice sets). 

 The dependent variables resulting from this can be a) the difference in the best 

and worst counts or choice totals (i.e., best counts minus worst counts), b) a 

full or partial ranking obtained from the best and worst choices in each 

comparison set, or c) an expansion of the best and worst choices into implied 

choice sets as discussed by Louviere et al. (2008). 

2. For aggregates of individuals. 

 One also calculates the total number of times that each object of interest is 

chosen as best and worst across all comparison sets (choice sets) and 

individuals. 

 If the data are disaggregated to represent each object in each comparison 

set for each person, the dependent variables resulting from this can be a) 

the difference in the best and worst counts or choice totals (i.e., best counts 

minus worst counts), b) a full or partial ranking obtained from the best and 

worst choices in each comparison set, or c) an expansion of the best and 

worst choices into implied choice sets as discussed by Louviere et al. 

(2008). 

 If the data are aggregated to represent each object across all comparison 

sets and persons, the dependent variables resulting from this can be a) the 

difference in the best and worst counts or choice totals (i.e., best counts 

minus worst counts),  and b) the square root of the ratio of best counts 

divided by worst counts (This measure is proportional to the best counts 
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under the assumption that worst counts = 1/(best counts); the natural log of 

this quantity is the expected value of the object on the latent scale if the 

choice process is consistent with a conditional logit model). 

The above dependent variables can be analyzed in simple ways, such as calculating 

them directly from the data, or one can use more sophisticated analytical methods, such as 

ordinal regression models and probabilistic discrete choice models. We also showed in Table 

5 and Figure 1 that typically ordinary least squares applied directly to the best minus worst 

differences will produce reliable and valid measures of the scale positions of the objects on 

the latent scale. We also noted that the scale positions represent intercept terms in discrete 

choice models. 

Researchers should be cautious about using BWS scores (best minus worst counts) to 

make inferences about individual respondents (Flynn, 2010); for example, in the present 

example, objects 3 and 4 (in the middle of the scale) are not differentiated by BWS scores. 

Despite this caveat, experience suggests that one does not have to aggregate choices across 

many individuals for average scores (for individuals in question) to perform well and 

correlate highly with estimates from more sophisticated models. 

  

3.4 BWS More Sophisticated Analyses Requiring Statistical Software 

We now consider two other ways to analyze the data, both of which utilize a [0,1] 

dependent variable (indicating whether a particular choice option was not chosen/chosen): 1) 

linear probability models (LPMs), which are ordinary least squares (OLS) regression models 

fit to the choice data; and 2) conditional logit models (McFadden, 1974). LPMs are justified 

by Heckman & Snyder (1997), who argue that if errors are not symmetric, LPMs are likely to 

better represent respondents’ choices than would other models (See also Alrich & Nelson, 

1984).  
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To estimate LPMs and conditional logit models (CLMs) we use information from the 

best and worst choices in each comparison set to “expand the data”. By “expanding the data” 

we mean using the rank order information to construct several sets of implied choices for 

various pairs of objects associated with each comparison set. For example, if one observes 

best and worst choices for two objects in a set of three objects, one has the full rank ordering. 

One can use the observed best and worst choices to construct three pairs of implied choices 

(Horsky & Rao, 1984), from which one infers the implied choice that should be made for 

each of the three pairs of objects. Thus, for three option sets, one can “expand” best and worst 

choices into three implied choice pairs for each three option set (A vs B, B vs C and A vs C). 

For four object/option sets, best and worst choices give a semi-order; that is, one can infer the 

choices in most, but not all of the possible pairs. For other set sizes the idea is the same, but 

observing only best and worst choices gives less information about a full ranking as the 

number of options per set increase. 

More specifically, suppose one observes best and worst choices in a set of three 

options - say “A”, “B” and “C”. Suppose further that A is chosen best and C is chosen worst. 

This ranking implies that A should be chosen for the pair AB and the pair AC, and B should 

be chosen for the third pair BC. In the case of four options, say “A”, “B”, “C” and “D”, if a 

respondent chooses A best and D worst, this implies that A should be chosen in the pairs AB, 

AC and AD, B should be chosen in the pair BD and C should be chosen in the pair CD. Thus, 

the best and worst choices provide information that can be “expanded” to several pairs of 

choices, with the higher ranked option being the one expected to be chosen. From a choice 

modeling standpoint, one can “stack” the pairs, and code the option implied as the one chosen 

from each pair as a “1”, with the other option in the pair coded as a “0”. Standard conditional 

logit modeling estimation software can be used to estimate the model parameters. The results 

from our example are in Table 5. 
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The top part of Table 5 shows best and worst counts for each of the six destinations 

summed across all 420 respondents and 10 comparison sets, and the best minus worst counts 

(B-W) for each destination, as well as the self-reported choices (RP, or the average number of 

trips per person to each destination). The lower part of Table 5 contains the statistical results 

from estimating a conditional logit model from the Best choices and the statistical results 

from estimating an OLS regression model (a linear probability model) from the Best choices. 

 

<Table 5 here> 

 

Figure 1 plots the set of estimates from each of three regression models together with 

the revealed preference data against the best-minus-worst scores. The ordinary least squares 

regression model estimates (best-fit line), relating each of these four sets to the best-minus-

worst scores are given below it. These estimates, together with associated R-squared values, 

suggest that all four sets are strongly linearly related to the best-minus-worst scores.  In other 

words, all provide the same relative scale (measurement) position information about the 

objects. The takeaway from Figure 1 is that one typically can estimate the latent scale 

positions (measures) of each object with any of the methods illustrated. Thus, one may wish 

to use the simplest approach, by simply calculating Best counts minus Worst counts (BWS 

Scores). One can calculate BWS Scores for each person in a sample, and describe the 

resulting distribution of the scores with typical statistics, such as means, medians, standard 

errors, etc (as shown in Table 5 for means and associated standard errors). It is worth noting 

that one is unlikely to need the standard errors of the BWS scores for each person because 

one rarely (if ever) needs to do statistical inference for one person. Instead, one wants to 

summarize the statistical properties of the sample. Figure 1 also contains a graph of the 

relationship between the best-minus-worst (B-W) scores and the actual trips (RP). The 
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relationship is approximately linear, with an R-squared of 0.86, suggesting that the BWS 

measures match the reported choices well.  

If one wishes to conduct statistical inference, one needs to be sure that the sample size 

is consistent with the desired test of parameter equality or differences. We discuss a general 

way to determine sample size requirements for best-worst studies later in the paper. The 

obvious caveat or limitation to the simple BWS score analysis is that averages can obscure 

underlying differences in measures across people. If one needs to understand individual 

differences, one can analyze the individual-level best-worst choices in several ways to gain 

such insights. That is, one can consider using various cluster analytic methods, latent class 

models or random parameter models. We illustrate the use of scale-adjusted latent class 

models (Magidson & Vermunt, 2007) later in the paper, but this is only one of several options 

open to analysts. The topic of capturing individual differences is vast, so in the interests of 

focus and space, we merely note that if one wants to explore individual differences, one will 

need to consider one or more methods for doing so. As a final comment, however, it is worth 

noting that for any research problem requiring reliable estimates of individual differences, 

one typically requires larger sample sizes than if one only wants to estimate sample average 

subjective values. 

 

<Figure 1 here> 

 

3.5 Examining Choice Frequencies Across the Sample.  

As explained above, BWS difference scores create a rank order of preference based 

on sample averages. We also fit individual-level LPM models to each person’s (respondent’s) 

BWS scores. The sample statistics for these individual-level LPM estimates are in Table 6. 

The results suggest that the Central Coast is the most preferred destination, with Bowral in 
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the Southern Highlands of NSW the least preferred. Other destinations are intermediate. The 

average of the respondents reported most recent visits (RP) are included in the table, and the 

correlation between “Mean” and RP estimates is 0.91. Naturally, both the BWS scores and 

the RP reported visits contain error, hence the observed correlation should be taken merely as 

evidence that the relationship is relatively strong and in the correct direction. More generally, 

however, the standard errors of BWS scores can be calculated from the sample data to 

provide an indication of the degree of agreement in the sample on the subjective position of 

each object or item being measured. Lower standard errors imply more agreement in the 

sample. 

 

<Table 6 here> 

 

3.6 Sample Sizes 

BWS measures are derived from multinomial frequency counts or proportions. As 

noted earlier, we can calculate differences in frequency counts and ratios of frequency counts. 

We assume that one is not interested in inferences about any one individual associated with 

BWS scores, as one typically is not interested in inferences about one set of rating scale 

values from one person. Thus, sample sizes matter only to the extent that one designs a BWS 

task in such a way that one can calculate the scores of interest. In most cases, and at a 

minimum, BWS scores give a full or partial ranking of items or objects of research interest. 

Sample size considerations arise if one wants to make inferences about a population 

represented by a sample of people and/or if one wants to compare estimates (e.g., BWS 

scores) from two or more samples or different subsamples from a particular population (e.g., 

different “segments” in a sample). In these cases, BWS measures follow the rules for sample 

sizes associated with multinomial distributions. No specific methods for sample size have 
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been developed for B-W scaling. Sample size methods developed for multinomial 

proportions data can be used (e.g., Thompson 1987; Rose 2011). Several papers look at the 

issue of sample size requirements for multinomial proportions data (e.g., Angers, 1979, 1984 

& 1989), and Thompson (1987) derived a formula to calculate sample size requirements for 

multinomial proportions data. Thompson showed that, like the binomial case, sample size is a 

function of the level of acceptable error and the degree of desired confidence required by 

analysts in obtaining true population proportions. He also demonstrated that the sample size 

requirement for multinomial proportions data is independent of the number of multinomial 

categories (J outcomes or choice options; i.e., items, things) but not independent of what he 

termed the “worst possible outcome”. The worst possible outcome is defined as m of the J 

options having equal choice frequencies (proportions) or shares of 1/m, with the J-m 

remaining options having a value of zero. 

Unfortunately, the value of m is not independent of the value of the confidence level, 

and so it must be calculated for different levels of confidence required. For example, if we 

use Thompson’s approach and require a sample to satisfy the probability that at least 0.95 of 

all proportions are within 0.05 of the true population proportions and assume that m equals 

three, the required sample size is 510 respondents (independent of the number of options J). 

That is, in this example the worst possible outcome that would be observed to occur is one 

where three population proportions are equal to 1/3, and the rest equal zero. Unfortunately, as 

things stand, we do not know whether different sample size implications are associated with 

different analysis methods. Thus, researchers may wish to rely on sample size estimation 

methods for discrete choice models, such as that from Rose (2011) for the general case of 

best only choices. It is worth noting, however, that it is likely that sample size requirements 

for estimating Case 1 parameters using discrete choice models will be less than for best only 

choices because BWS choices provide extra choice data for any given sample size.  
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4. Empirical Example 2 

We now turn our attention to a second empirical example that involves very large 

numbers of objects or items (72). The purpose of this example is to show that relatively large 

set sizes can be readily incorporated into a BWS study by reducing the size of the choice set 

through the use of a nested BIBD design. There are two reasons why researchers may wish to 

consider reducing comparison set sizes: 1) If individuals are relatively consistent in their 

choices, large numbers of objects per choice question give insufficient data points for middle-

ranked objects (i.e., zero best-minus-worst counts will be observed, giving no information on 

relative preferences for middle ranked objects, as was the case in Table 4). 2) Small choice 

sets make the task of choosing the best and worst easier for individuals who may have 

cognitive limitations.  

There are two ways to collect enough choice data to derive an acceptable ranking 

when the choice set size is large: 1) After asking an individual for their best and worst objects 

in the set, one can ask a second round (or more) of best-worst questions to obtain additional 

ranking information (second best object, second worst, third best, third worst etc). Additional 

rounds of questions can be used to obtain a complete ranking of all objects in the choice set. 

This is particularly easy in web-based surveys because one can eliminate already chosen 

options from screens, making the task easier for respondents. If one uses this approach to 

collect additional best and worst choices, one must expand the choices to implied choice sets, 

and use more advanced analytical methods than the simple analytical methods discussed in 

this paper. That is, as noted by Horsky & Rao (1984), one can expand the data in each BIBD 

set to paired choices implied by the full or partial ranking obtained. As previously noted, the 

subjective values to be estimated are intercepts or alternative-specific constants in conditional 
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logit models or more complex choice models, such as latent class or G-MNL (Fiebig, Keane, 

Louviere, & Wasi, 2010).  

Whether and how many additional rounds of Best and Worst questions are needed 

will depend on a) the size of the comparison (choice) sets, b) how many objects (total choice 

options) are being measured, and c) how critical it is for one to reliably and accurately 

measure (scale, estimate) each object of interest on the underlying latent scale for each 

person. For example, if one only needs to accurately discriminate the best and worst objects, 

and is less interested in intermediate objects (e.g., one often wants to sort potential product 

attributes for choice experiments into clearly important, intermediate and clearly 

unimportant), asking only one round of Best and Worst questions should be sufficient. More 

accuracy in differentiating and measuring the objects will dictate how many rounds of 

questions are needed, and this typically can be determined by a small pilot study in advance 

of the primary data collection. 

A way to deal with large numbers of items to be measured is to use nested BIBD 

designs. That is, one first uses a suitable BIBD to generate a block of choice sets with a 

relatively large set size, and then uses a second suitable BIBD to reduce the number of 

objects in each choice set to a more manageable size. We illustrate the nested BIBD approach 

below and provide a worked example of how to do it. 

 

4.1 Issue of Interest 

There are several ways to ‘judge’ the quality of academic work. Stremersch et al 

(2007) examine the quality of individual articles, whilst Lehmann (2005), provides a range of 

criteria against which journals quality may be measured; some objective such as citations and 

impact factors, others more subjective.  We approach the issue of measuring subjective 

evaluations of the quality of academic marketing journals and this forms the basis of our 
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second example of best worst scaling.  We consulted several available journal rankings 

papers/reports in marketing and business to obtain a fairly comprehensive set of academic 

and quasi-academic marketing journals (e.g., Fry, Walters, & Scheuermann, 1985; Geary, 

Marriott, & Rowlinson, 2004; Sivadas & Johnson, 2005; Starbuck, 2005). We focused on 

marketing-specific journals, excluding non-marketing journals like Econometrica or 

Psychometrika, although marketing academics publish in them. This generated a list of 73 

journals for BWS (see Appendix B). 

 

4.2 Implementing BWS and Design  

To generate an appropriate BIBD, we consulted Street & Street (1987) to obtain a 

BIBD for 73 objects that gave 72 comparison sets with 9 journals per set. We then used a 

second BIBD to expand each comparison set of 9 journals into 12 comparison sets with 3 

journals per set. This reduced the size of comparison sets from 9 journals per set to 3 per set, 

giving a total of 12 x 72 = 864 comparison sets for the entire survey. 

A simple example of how to pool two BIBDs in this way can be found below that 

involves a BIBD for 13 objects that produces 13 sets of size 9 and a BIBD for 9 objects that 

has 12 sets of size 3. We expand each block (row, set) in the first BIBD by using the second 

BIBD to make 12 new sets for each row in the first BIBD. This leads to 13 x 12 = 156 sets of 

size 3, as shown in Figure 2. 

 
 

<Figure 2 here> 

 

Respondents were recruited by placing notices in online newsletters via postings to 

the ELMAR virtual community, the European Marketing Academy, The Australia-New 

Zealand Marketing Academy, and The Academy of Marketing in the United Kingdom. We 



 23

also placed notices on the posting board at the Marketing Science Conference. In 2006 we 

published the survey online on a secure Web server, and directed respondents to a URL with 

the survey. Questions were added to the survey to determine respondents’ academic rank, 

years in academia, geographic location and research specialties. To collect the BW choice 

data we randomly assigned each survey respondent to one block in the first BIBD, and asked 

the respondent to complete all 12 comparison sets from the second BIBD. 

Approximately 900 respondents received an email directing them to the survey. A 

total of 529 responded to the recruitment invitation and provided complete data (we deleted 

approximately 15 people whose surveys were incomplete or unusable, including one person 

who did the survey 10 times). 

 

4.3 BWS Response Data and Simple Analyses 

As with example 1, the analysis of the journal ranking choices is based on assigning 

the best journal in the set a ‘+1’ and the worst a ‘−1’. The best and worst choice data are 

summarized by counting the occurrence of best and worst choices for each choice object 

(journal). However, as respondents were randomly assigned to each of the 72 initial blocks of 

12 journals before being asked to evaluate all 9 blocks of three journals per initial block of 

12, there were large differences in sample sizes for various survey versions. Thus, the 

resulting aggregate sample probability of choosing a journal (estimated by the proportion of 

choices for each journal) is not independent of the probability that it is available to be chosen. 

To account for this, we reweighted the choice frequency counts for best and worst choices to 

take into account the probability of journal occurrence. The weights are calculated as follows: 

 

weight journali = average appearances for all journals / average appearances journali. 
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For example, suppose there are four blocks or versions of the Best-Worst task, which 

will occur if one randomly assigns sets of choice sets to the 4 versions in equal numbers 

without replacement. Each of the four versions constitutes a separate “survey”. Suppose one 

recruits participants from an online panel and randomly assigns each person who agrees to 

participate to one of the versions. Let the versions be V1, V2, V3 and V4. Let the number of 

respondents to each version be, respectively, 35, 20, 30 and 15, for a total of 100 participants. 

The versions need to be weighted because in the overall sample, some of the J objects being 

measured occur more/less often than others. The average sample size = 25, so the weights are 

calculated for each version as follows: 

Weight for V1 = 25/35 = 0.71 
Weight for V2 = 25/20 = 1.25 
Weight for V1 = 25/30 = 0.83 
Weight for V1 = 25/15 = 1.67 

 

One weights each observation in each version by the weights calculated above. We use this 

weighting approach in the example that follows. 

The re-weighting increases the number of choices of journals appearing less often and 

decreases the number of choices of journals appearing more often. Using these weighted best 

and worst counts, we obtained a simple scale by subtracting weighted worst counts from 

weighted best counts. The aggregate sample results are shown in Appendix C, which also 

lists journals and occurrence-weighted BWS journal quality scores. The BWS scores for each 

journal in Appendix C gives a ratio scale of journal quality, meaning that one can conclude 

that a journal with a score of 1.00 has approximately twice the level of perceived quality of a 

journal with a score of 0.50. Because scores are ratio-scaled, they can be transformed into 

point systems consistent with measured levels of perceived quality.  

 

4.4 Further Examination of the Sample. 
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Our sample contained enough choice data to also conducted separate analyses for 

each of three regions; North America (Canada and the USA = 220), Europe (94) and 

Australia–New Zealand (107). We tested the hypothesis that there is heterogeneity in how 

academics perceive (value) journal quality. To do this we estimated a scale-adjusted latent 

class model (SALCM) from the choice data (Magidson & Vermunt 2007). The results of the 

SALCM produced only one journal-quality class using the Bayesian information criterion 

criteria for model selection. That is, respondents tend to rank journals similarly in all three 

regions. Discussion and examples of the SALCM estimation technique can be found in Burke 

et al., (2010) and Flynn, Louviere, Peters, & Coast (2010). Despite our finding that 

respondent ranked journals similarly across regions, it is possible that researchers in top 

schools would rank journals differently to researchers in other schools. School level data 

were not available in this study but examining such heterogeneity across schools may provide 

an interesting line of enquiry for future researchers.  

The top 10 journals are shown in Table 7. The sample mean quality measure for all 

journals is 41.5 (see Appendix C), with a standard error of 2.73; hence, differences of 5.5 

scale units are significant. So, the Journal of Marketing and Journal of Marketing Research 

are perceived as top journals and statistically equal firsts, followed by the Journal of 

Consumer Research, Journal of the Academy of Marketing Science and Marketing Science, 

which are statistically equal seconds in perceived quality. The next four are statistically equal 

thirds; with the Journal of Advertising significantly lower than the top two in this tier. 

 

<Table 7 here> 
 
 
5. Discussion and Conclusions 

A Google search for the terms “Best-Worst Scaling” and Maximum Difference 

Scaling” returned, respectively 1.96M and 3.7M “hits (April 22, 2012). Perusal of the first 
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several pages of hits clearly shows that the choice-based measurement approach that we call 

“Best-Worst Scaling” is used primarily by academics, with practitioners mainly included in 

the hits for “Maximum Difference Scaling”. The results also suggest a growing number of 

academics in several different fields are adopting the BWS approach. Apart from the original 

Finn & Louviere (1992) paper that introduced the approach, and the theoretical treatment by 

Marley & Louviere (2005) that derives the formal measurement properties of various case 1 

Best-Worst Choice models, there are few “how to do it” papers. Thus, the objective of this 

paper was to describe and discuss ways to implement, analyze and interpret case 1 (object 

case) Best-Worst Scaling (BWS) applications, and show how to use BWS by applying it to 

two empirical examples.  

We showed that BWS is relatively easy to implement and analyze, even with fairly 

large numbers of objects (e.g., the academic journals example), making it accessible to many 

academic and applied researchers. We focused on simple ways to analyze BWS data (using 

best-minus-worst scores and simple regression models) to show that one can obtain good 

results with fairly simple analysis methods. A more detailed and formal treatment of the 

theory underlying BWS is in Marley & Louviere (2005); our aim was to give as straight 

forward an explanation of the theory and methods possible. Thus, we emphasized simple 

counts of choices (i.e., sums), expansion of best and worst choices to implied paired choices 

and graphical tests to allow one to assess if data are consistent with theory. 

Table 8 below illustrates the steps in designing a best-worst scaling study. 

<Table 8 here> 

 

5.1 BW Scaling for Groups of Individuals 

We also applied more complex regression models frequently used to analyze data 

from traditional discrete choice experiments. The measurement values estimated by these 
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conditional logit models are the natural logarithms of the classical (Luce, 1959) multiple-

choice model that yields ratio scales. We caution that many of the same issues associated 

with those models also apply to BWS. Most notably, the assumptions underlying such models 

are quite strong, and have been discussed in the discrete choice modeling literature for many 

years (e.g., Train, 2003). Perhaps most importantly, such models theoretically apply only to 

single people; additional assumptions are required to extend them to aggregates of people. 

How well such models approximate individuals compared with aggregates of individuals 

remains unresolved. Recent work on choice models for single individuals by Louviere, et al. 

(2008) suggests that individual-level models can outperform more aggregate models. Thus, it 

may be that McFadden’s (1974) conditional logit model or Luce’s (1959) model may be a 

reasonable first approximation to a person’s unknown choice processes for BWS choice 

tasks. Further work is needed to understand if and when one needs to, and how to, relax 

assumptions associated with these models. We set the latter issues aside here and merely note 

that a great deal of experience with BWS over the past five years suggests that these models 

seem to be reasonable first approximations to unknown individual-level choice process(es). 

 
5.2 Unresolved Issues with BWS 

There are a number of unresolved issues with BWS that can be viewed as future 

research opportunities. For example, because BWS relies on discrete choices, it has the 

limitations of random utility choice models, such as possible violations of the independence 

of irrelevant alternatives (IIA) property of Luce’s (1959) model and McFadden’s (1974) 

conditional logit model. Whether IIA violations exist is an empirical issue, and how serious 

they are in individual-level BWS choice data remains an open issue. Nevertheless, we note 

that the equal co-occurrence property inherent to BIBDs allows one to estimate violations of 

the IIA property of simple choice models as it ensures that the two-way interactions (cross- 

effects) are estimable (Lazari & Anderson 1994). 
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Similarly, objects or items of interest in BWS applications may exhibit various 

degrees of similarity and/or correlated errors, which is also an open issue. Those familiar with 

discrete choice models will recognize that these issues have been widely discussed in the 

choice-modeling literature. Hence, the issues are easy to state but complex to resolve, 

especially when one is modeling single people. 

We also should emphasize the need to consider decision rules used by respondents. 

Because individuals are asked to choose the best and worst objects (i.e., largest/smallest, 

most/least preferred, etc), BWS is sometimes called ‘maximum difference’ scaling (or, 

‘MaxDiff’ scaling). The latter nomenclature is unfortunate because the maxdiff model is only 

one of a number of models of the process that an individual might use to make a series of 

best-worst choices; in mathematical psychology the maxdiff model assumes that an 

individual considers all possible best-worst pairs (simultaneously) and chooses that pair that 

maximizes the difference between the two objects comprising the pair. Naturally, an 

individual might use alternative choice processes. For example, they might choose the best 

stimulus first, followed by choice of worst stimulus; or choose the worst stimulus first, 

followed by the best stimulus, and so forth. The way(s) individuals make such choices is an 

empirical question. However, each way implies a different possible process model of their 

choices and, strictly speaking, a different statistical model. 

We note that BWS scales currently are relative to sets of objects studied. For example, 

if we offer a person the set {Hitler, Mussolini and Stalin} and ask them to choose the best and 

worst national leaders, they would make two choices. However, it is likely that, if asked, they 

would say that no one in the set was a ‘good’ leader. Ongoing work aims to resolve this 

problem by developing BWS measures that reflect absolute as well as relative positions. 

More generally, however, solutions to this problem require extra information external to a 

BWS task, and theoretically sound solutions to this problem would be welcome. Meanwhile, 
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one can ask people to report whether “none of the objects are good” and/or “none of the 

objects are bad”, which can be used to anchor the scales. The latter is common practice in 

discrete choice experiments, dating from Louviere & Woodworth (1983). Another possibility 

is anchoring relative to a status quo option in each comparison set, but to our knowledge this 

has yet to be done. 

We illustrated and discussed simple and more complex ways to analyze best-worst 

choice data. Examples evaluating a small and large number of objects were demonstrated, 

thus illustrating the generalizability of the methods. Future work should examine the extent to 

which BWS can out-perform traditional rating scales and investigate whether the benefits 

noted here are generalizable across policy and marketing areas. 
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Figure 1: Comparison of BWS Measures - Getaways 

This figure plots the estimates for each of three regression models and the revealed 
preference data against the calculated best minus worst scores (most preferred minus least 
preferred) for the six getaway destinations. Ordinary least squares (OLS) regressions for the 
linear probability model (LPM) estimates, conditional logit model (CLM) estimates, rank-
ordered logit model (ROL) estimates and revealed preference (RP) data are given by: 
 
LPM = 0.16(B-W) + 0.72; R² = 0.99 
CLM = 0.45(B-W) + 0.001; R² = 0.90 
ROL = 0.48(B-W) - 0.95; R² = 0.99 
RP = 2.88(B-W) + 3.63; R² = 0.86 
 
The four OLS regressions demonstrate that the easily calculated B-W scores are strongly 
linearly related to the estimates from three more complex regression models and the revealed 
preference (actual observed) data.  
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Figure 2: Pooling two BIBDs 

BIBD 1 for 13 objects in 13 sets of size 9 

 

BIBD 2 for 9 objects 
in 12 sets of size 3 

Block 1 2 3 4 5 6 7 8 9 Block 1 2 3 
1 10 6 12 3 4 13 1 9 7 1 2 4 8 
2 2 10 13 9 11 3 4 8 12 2 1 4 5 
3 8 13 2 6 9 7 3 1 11 3 4 7 9 
4 6 2 10 4 7 11 8 12 1 4 3 4 6 
5 9 7 6 12 13 5 11 10 8 5 1 2 3 
6 5 11 9 1 6 8 12 3 4 6 2 5 7 
7 13 5 8 11 1 4 10 7 3 7 2 6 9 
8 4 3 5 7 8 2 9 6 10 8 1 8 9 
9 1 8 3 13 12 10 5 2 6 9 5 6 8 
10 12 9 7 8 2 1 13 4 5 10 3 7 8 
11 3 12 4 2 5 6 7 11 13 11 1 6 7 
12 11 4 1 5 10 9 6 13 2 12 3 5 9 
13 7 1 11 10 3 12 2 5 9  

 
 

Blocks: 
BIBD 2 

Block 1 from BIBD 1 



Blocks: 
BIBD 2 

Block 13 from BIBD 1 

1 6 3 9 1 1 10 5 
2 10 3 4 2 7 10 3 
3 3 1 7 3 10 2 9 
4 12 3 13 4 11 10 12 
5 10 6 12 5 7 1 11 
6 6 4 1 6 1 3 2 
7 6 13 7 7 1 12 9 
8 10 9 7 8 7 5 9 
9 4 13 9 9 3 12 5 
10 12 1 9 10 11 2 5 
11 10 13 1 11 7 12 2 
12 12 4 7 12 11 3 9 
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Table 1: BIBD for 6 Objects 

Set Object codes  Object names  

1* 1 2 5 Central Coast beach house Katoomba upmarket hotel South Coast, heritage 
village 

2 2 3 6 Katoomba upmarket hotel Barrington Tops, an isolated 
setting Sydney, upmarket hotel 

3 3 4 2 Barrington Tops, an isolated 
setting Bowral, Southern Highlands Katoomba upmarket 

hotel 

4 4 1 3 Bowral, Southern Highlands Central Coast beach house Barrington Tops, an 
isolated setting 

5 2 5 4 Katoomba upmarket hotel South Coast, heritage 
village 

Bowral, Southern 
Highlands 

6 3 5 6 Barrington Tops, an isolated 
setting 

South Coast, heritage 
village Sydney, upmarket hotel 

7 4 6 5 Bowral, Southern Highlands Sydney, upmarket hotel South Coast, heritage 
village 

8 1 2 6 Central Coast beach house Katoomba upmarket hotel Sydney, upmarket hotel 

9 5 1 3 South Coast, heritage village Central Coast beach house Barrington Tops, an 
isolated setting 

10 6 4 1 Sydney, upmarket hotel Bowral, Southern Highlands Central Coast beach 
house 

* For example, the BIBD design states that object codes 1, 2 and 5 should appear in set 1. From the list 
of object names, ‘Central Coast beach house’ is object 1, Katoomba upmarket hotel’ is object 2 and ‘South 
Coast, heritage village’ is object 5, so those are the three destinations to appear in set 1. 
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Table 2: Example Survey BWS Task Based on Table 1 

Most likely to visit Comparison set 1 Least likely to visit 

 Central Coast beach house 

 Katoomba upmarket hotel 

 South Coast, heritage village 

   

Most likely to visit Comparison set 2 Least likely to visit 

 Katoomba upmarket hotel 

 Barrington Tops, an isolated setting 

 Sydney, upmarket hotel 

 …  

Most likely to visit Comparison set 10 Least likely to visit 

 Sydney, upmarket hotel 

 Bowral, Southern Highlands 

 Central Coast beach house 
 
This table merely separates the sets into a respondent-friendly format. The respondent chooses the ‘most likely’ 
and ‘least likely’ destination to visit in each of the ten sets.  
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Table 3: One respondent’s answers to the BIBD for 6 Objects 

Set Object number codes  Best Worst 

 1* 1 2 5 1 5 
2 2 3 6 2 6 
3 3 4 2 2 3 
4 4 1 3 1 3 
5 2 5 4 2 5 
6 3 5 6 3 5 
7 4 6 5 4 5 
8 1 2 6 1 6 
9 5 1 3 1 5 
10 6 4 1 1 6 

* For example, in set 1 the hypothetical respondent picked ‘Central Coast beach house’ (object 1) as best (most 
likely destination to visit) and ‘South Coast, heritage village’ (object 5) as the worst (least likely destination to 
visit); in set 2 the person chose the ‘Katoomba upmarket hotel’ (object 2) as the best (most likely destination to 
visit) and the ‘Sydney, upmarket hotel’ (object 6) as the worst (least likely destination to visit).  
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Table 4: Total Frequency Counts, Best and Worst Choices 

Object 
Best 

Count
Worst
Count

B-W 
Difference

 1* 5 0 5 
2 3 0 3 
3 1 1 0 
4 1 1 0 
5 0 3 -3 
6 0 5 -5 

* For example, ‘Central Coast beach house’ (object 1) was chosen as best (most likely to visit) by the 
hypothetical respondent five times but was never chosen as worst (least likely to visit).  
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Table 5: Results for Getaways Study 

Destinations N 

Calculated from Best and Worst Choice Totals 
RP (Ave 
Reported 

Trips) 
Best Choices Worst Choices B-W Statistics 

Sum Mean SE Sum Mean SE B-W Mean SE Stdev 

Sydney 490 939 1.916 .090 951 1.941 .095 -12 -.025 .175 3.864 5.138 

South Coast 490 768 1.567 .068 656 1.339 .064 112 .228 .120 2.658 5.534 

Bowral 490 488 .996 .057 899 1.835 .067 -411 -.839 .111 2.465 1.186 

Barrington 490 643 1.312 .072 970 1.980 .083 -327 -.668 .143 3.163 0.988 

Katoomba 490 576 1.176 .063 868 1.771 .070 -292 -.595 .121 2.688 0.593 

Central Coast 490 1347 2.749 .084 417 .851 .063 930 1.898 .136 3.001 8.300 

Destinations N 

Estimated from The Best Choices 

Cond Logit Model Results Linear Prob Model Results 

Est SE Wald Sig Est SE t Sig 

Sydney 490 -.053 .025 4.329 .037 .490 .018 27.156 .000 

South Coast 490 .064 .024 7.187 .007 .536 .018 29.625 .000 

Bowral 490 -.169 .025 45.098 .000 .447 .018 25.103 .000 

Barrington 490 -.171 .026 44.434 .000 .447 .018 24.862 .000 

Katoomba 490 -.077 .025 9.744 .002 .480 .018 27.009 .000 

Central Coast 490 .407 .025 16.28 .000 .702 .018 38.091 .000 
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Table 6: Individual-Level LPM Estimates 

Destination N Mean StdErr StdDev RP 

Sydney 420 0.734 0.030 0.624 5.138 

South Coast 420 0.728 0.024 0.501 5.534 

Bowral 420 0.575 0.022 0.453 1.186 

Barrington 420 0.613 0.028 0.580 0.988 

Katoomba 420 0.644 0.022 0.450 0.593 

Central Coast 420 1.019 0.028 0.574 8.300 
These results expand on the LPM ones of Table 5 
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Table 7: BWS Scores for Top 10 Journals 

Rank Journal 
BWS 
Score 

1 
Journal of Marketing 100.00 

Journal of Marketing Research 98.01 

2 

Journal of Consumer Research 91.19 

Journal of the Academy of Marketing Science 90.06 

Marketing Science 89.47 

3 

Journal of Retailing 80.30 

Journal of Business Research 78.69 

Journal of Consumer Psychology 75.27 

International Journal of Research in Marketing 74.72 

4 Journal of Advertising 71.74 
These scores represent ratio-scaled percentage quality scores for the top ranked journals. 
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Objects to be 
evaluated 

Theoretically any number of items can be compared with each other. It is 
important to note that this approach produces relative importance scores for 
the objects compared, indicating which are better, or worse, than others. 
BWS does not provide a subjective evaluation of how good or bad these 
objects are in absolute terms.  

How to 
compare the 
objects  

Small numbers of objects can be evaluated using paired comparisons, but this 
quickly becomes impractical as the number of comparison objects increases 
Moderate numbers of objects are better compared in sets created by BIBDs 
that are readily available, produce comparison sets of constant size and 
usually produce a number of comparison sets that are roughly equal to the 
total number objects to be compared.  
For large numbers of objects a single BIBD design typically produces 
insufficient data to rank middle-valued items. In this case, one can consider 
either collecting additional best and worst information or using a nested 
BIBD.  

Designing the 
survey 

Number the objects to be compared sequentially, and simply replace the 
numbers from the BIBD with the objects to be compared. Ask respondents to 
choose the best and worst from the list.  

Choosing the 
sample size  

Refer to Thompson (1987) or Rose (2011) 

Pre-Examine 
the data 

Check that respondents are consistent in their choices. For example, a 
histogram of the individual choices of each object provides insights into 
engagement with the survey.  
At an aggregate (sample) level the consistency of choices across the sample 
gives insights into consistency of views about the relative rank of objects. 

Analyzing 
the data 

Simple counts of best (+1) and worst (-1) provide insights into the preference 
of individuals. Best – worst (B-W) scores correlate well with revealed 
preferences and predict real behavior comparably with more sophisticated 
regression models.  

Reporting the 
results 

Results can be used to create a hierarchy of preferences – as in the examples 
in the paper, and/or to predict behavior, as shown in the regression examples.  

 
Table 8: steps in the design of a best-worst study 
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Appendix A: Histograms for individual-level LPM estimates 
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Appendix B: Journals – in alphabetical order 

 
Academy of Mkting Science Review J. of MacroMkting 

Academy of Mkting Studies J.  J. of Mkt-Focused Mgmt  

Advances in Consumer Research J. of Mkting 

Advances in Intnl Mkting J. of Mkting Channels 

Asia-Pacific J. of Mkting and Logistics J. of Mkting Communications 

Australasian Mkting J.  J. of Mkting Education 

Australian J. of Mkt Research J. of Mkting for Higher Education 

European J. of Mkting J. of Mkting Mgmt  

Industrial Mkting Mgmt  J. of Mkting Research 

Intnl J. of Advertising J. of Mkting Theory and Practice 

Intnl J. of Bank Mkting J. of Non Profit and Public Sector Mkting 

Intnl J. of Mkt Research J. of Personal Selling and Sales Mgmt  

Intnl J. of Nonprofit and Voluntary Sector Mkting J. of Product and Brand Mgmt  

Intnl J. of Research in Mkting J. of Public Policy and Mkting 

Intnl J. of Retail and Distribution Mgmt  J. of Retailing 

Intnl J. of Service Industry Mgmt  J. of Retailing and Consumer Services 

Intnl Mkting Review J. of Service Research 

J. of Advertising J. of Services Mkting (The) 

J. of Advertising Research J. of Strategic Mkting 

J. of Brand Mgmt  J. of Targeting, Measurement and Analysis for 
Mkting 

J. of Business and Industrial Mkting  J. of the Academy of Mkting Science 

J. of Business Research J. of Vacation Mkting 

J. of Business-to-Business Mkting Mkting Bulletin 

J. of Consumer Behaviour Mkting Education Review 

J. of Consumer Mkting Mkting Health Services 

J. of Consumer Psychology Mkting Intelligence and Planning 

J. of Consumer Research Mkting Letters 

J. of Current Issues and Research in Advertising Mkting Mgmt  

J. of Customer Behaviour Mkting Research 

J. of Database Mkting Mkting Science 

J. of EuroMkting Mkting Theory 

J. of Fashion Mkting and Mgmt  Mkting Week 

J. of Global Mkting Psychology and Mkting 

J. of Interactive Mkting Qualitative Mkt Research: An Intnl J.  

J. of Intnl Consumer Mkting Services Mkting Quarterly (formerly J. of 
Professional Services Mkting) 

J. of Intnl Mkting Sport Mkting Quarterly 

J. of Intnl Mkting and Mkting Research  
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Appendix C: Academic Marketing Journals-Overall Scores and Regional Scores 
 

Overall 
Sample 

North  
America 

Aust / 
NZ 

Europe Journal 

100.00 100.00 98.89 93.89 Journal of Marketing 
98.01 91.83 100.00 100.02 Journal of Marketing Research 
91.19 93.20 86.89 81.80 Journal of Consumer Research 
90.06 89.87 97.21 73.89 Journal of the Academy of Marketing Science 
89.47 88.25 97.96 77.94 Marketing Science 
80.30 83.31 67.95 85.72 Journal of Retailing 
78.69 86.90 69.09 70.00 Journal of Business Research 
75.27 77.73 73.28 73.97 Journal of Consumer Psychology 
74.72 61.98 81.77 78.11 International Journal of Research in Marketing 
71.74 69.98 65.25 77.83 Journal of Advertising 
68.47 63.97 73.10 66.72 Journal of Advertising Research 
67.74 59.07 83.75 61.62 European Journal of Marketing 
66.08 67.57 66.74 61.66 Journal of Service Research 
65.67 69.11 73.04 47.21 Psychology and Marketing 
63.65 65.19 87.83 53.84 Marketing Letters 
59.30 60.08 52.73 61.14 Advances in Consumer Research 
57.17 68.80 49.58 27.66 Journal of Public Policy and Marketing 
53.96 41.26 60.26 61.51 International Journal of Market Research 
53.43 49.15 51.04 63.88 Journal of International Marketing 
52.19 49.99 41.44 58.68 Industrial Marketing Mgmt  
51.14 40.11 67.00 45.48 Academy of Marketing Science Review 
50.59 59.20 30.53 22.64 Journal of Personal Selling and Sales Mgmt  
50.21 54.48 52.77 25.44 Journal of Services Marketing 
48.42 47.14 57.93 45.71 Journal of Product and Brand Mgmt  
48.00 41.63 65.88 42.41 Journal of Consumer Behavior 
46.71 53.23 24.98 39.92 Journal of Macromarketing 
46.15 40.52 41.70 56.25 Marketing Theory 
44.35 37.36 50.05 46.83 International Marketing Review 
43.73 46.39 38.74 35.05 Journal of Marketing Theory and Practice 
43.21 36.73 44.71 46.48 Journal of Marketing Mgmt  
42.14 35.63 44.88 29.76 Journal of Strategic Marketing 
39.38 40.65 41.29 29.62 Journal of Business-to-Business Marketing 
38.52 33.14 41.90 42.76 Journal of Retailing and Consumer Services 
37.95 44.35 29.87 23.74 Journal of Consumer Marketing 
37.12 28.56 35.78 49.82 Journal of Business and Industrial Marketing 
36.86 28.52 44.89 54.99 International Jl Retail & Distribution Mgmt 
36.34 22.97 38.58 41.09 Jl of International Marketing and Marketing Research 
35.80 44.30 27.06 19.30 Journal of Marketing Education 
35.16 30.38 34.30 35.61 International Journal of Advertising 
34.95 27.24 49.86 26.65 Marketing Research 
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34.19 42.76 30.85 16.39 Journal of Brand Mgmt  
33.17 28.22 33.01 29.82 International Journal of Service Industry Mgmt  
32.36 28.89 22.44 29.51 Journal of Interactive Marketing 
32.36 32.81 34.35 24.43 Journal of Global Marketing 
31.98 20.80 37.74 35.92 Marketing Intelligence and Planning 
29.13 19.91 26.46 18.85 Journal of Customer Behavior 
29.11 31.86 28.44 9.60 Services Marketing Qtrly (aka Jl Prof'l Services Mktg) 
28.07 33.53 16.24 12.35 Journal of Current Issues and Research in Advertising 
28.03 28.14 23.35 18.79 Jl of Targeting, Measurement & Analysis for Mktg 
28.02 27.92 27.48 19.87 Marketing Mgmt  
27.25 22.52 38.16 13.79 Qualitative Market Research: An International Journal 
26.96 26.08 21.69 20.03 Advances in International Marketing 
26.67 27.13 23.66 19.92 Journal of Marketing Channels 
26.50 20.57 28.28 17.26 Journal of International Consumer Marketing 
26.48 22.28 34.45 13.89 Journal of Marketing Communications 
24.46 13.74 40.89 16.57 Australasian Marketing Journal 
23.95 17.75 26.86 12.38 Journal of Non Profit and Public Sector Marketing 
23.21 21.56 22.56 20.65 Academy of Marketing Studies Journal 
22.07 19.61 35.72 10.09 Australian Journal of Market Research 
21.55 24.97 15.06 10.43 Marketing Education Review 
20.77 20.43 14.14 18.88 Journal of Database Marketing 
18.89 9.61 34.11 10.74 Asia-Pacific Journal of Marketing and Logistics 
17.81 20.71 13.94 16.77 International Jl of Nonprofit & Voluntary Sector Mktg 
17.41 19.25 9.86 14.62 Journal of Market-Focused Mgmt  
16.91 16.60 16.27 10.23 Marketing Health Services (aka Jl Health Care Mktg) 
16.31 14.52 11.68 14.95 Journal of Marketing for Higher Education 
16.01 19.73 10.53 0.65 Journal of Euromarketing 
12.35 6.95 15.77 4.75 Marketing Bulletin 
10.10 8.26 5.48 17.03 International Journal of Bank Marketing 
9.59 11.83 3.87 -3.12 Sport Marketing Quarterly 
7.73 1.60 6.37 3.11 Journal of Fashion Marketing and Mgmt  
7.32 4.90 2.22 0.00 Journal of Vacation Marketing 
0.00 0.00 0.00 -8.11 Marketing Week 

 
 
 




